
CRANE: Failure Prediction, Change Analysis and Test Prioritization in
Practice - Experiences from Windows

Jacek Czerwonka1, Rajiv Das1, Nachiappan Nagappan2, Alex Tarvo1, Alex Teterev1
1 Windows Sustained Engineering, Core Operating Systems Division, Microsoft Corporation

2 Microsoft Research
{ jacekcz, rajivdas, nachin, alexta, alextet } @ microsoft.com

Abstract - Building large software systems is difficult.
Maintaining large systems is equally hard. Making post-
release changes requires not only thorough understand-
ing of the architecture of a software component about to
be changed but also its dependencies and interactions
with other components in the system. Testing such
changes in reasonable time and at a reasonable cost is a
difficult problem as infinitely many test cases can be
executed for any modification. It is important to obtain
a risk assessment of impact of such post-release change
fixes. Further, testing of such changes is complicated by
the fact that they are applicable to hundreds of millions
of users, even the smallest mistakes can translate to a
very costly failure and re-work. There has been signifi-
cant amount of research in the software engineering
community on failure prediction, change analysis and
test prioritization. Unfortunately, there is little evidence
on the use of these techniques in day-to-day software
development in industry. In this paper, we present our
experiences with CRANE: a failure prediction, change
risk analysis and test prioritization system at Microsoft
Corporation that leverages existing research for the
development and maintenance of Windows Vista. We
describe the design of CRANE, validation of its useful-
ness and effectiveness in practice and our learnings to
help enable other organizations to implement similar
tools and practices in their environment.

I. INTRODUCTION

Software maintenance is a set of activities associated
with changes to software after it has been delivered to end-
users. The IEEE Standard for Software Maintenance [8]
defines three main types of maintenance activities:

1. Corrective maintenance: reactive modification of a

software product to correct discovered faults. This cat-
egory also includes emergency maintenance defined as
unscheduled corrective maintenance performed to keep
a system operational.

2. Adaptive maintenance: modification performed to
keep a computer program usable in changing environ-
ment.

3. Perfective maintenance: modification to improve some
aspect of quality, such as performance or reliability

The amount of effort going into each of these catego-
ries varies depending on the nature of the software consid-
ered, its intended purpose, size and characteristics of its
current user base. However, the software maintenance
phase exhibits attributes that are common across different
software products:
1. Software maintenance is expensive. It is generally

accepted that the maintenance phase consumes the ma-
jority of resources required to take a software product
throughout its lifecycle, from inception until end-of-
life. The total cost of maintenance is estimated to com-
prise 50% or more of total life-cycle costs. [24]

2. Maintenance work is often done by people who had not
created the system. Unless the effective lifetime of a
software product is relatively short, it is expected that
the original designers, developers and testers are no
longer involved in changes to the product. Reverse en-
gineering might be necessary in the absence of good
documentation and institutional knowledge.

3. The size of the maintenance engineering team is typi-
cally much smaller than the size of the development
engineering team required to create the product in the
first place.

4. Changes in deployed software carry a high risk due to
possibility of introducing unwanted behavior (a soft-
ware regression). Customer’s tolerance to such break-
ing changes is low.

5. Frequently, time for creating and verifying a fix is
constrained (E.g. security-related fixes). Verification
and validation of such fixes needs to be done efficient-
ly.
Due to these characteristics, testing of changes in de-

ployed software is essentially a different kind of activity
from software testing done before release. Even though
software maintenance testing deals with fewer changes, it
typically needs to happen in very limited time and often
with limited resources. On the other hand, increased risk
and cost of making mistakes might warrant expanded test
scope. These two competing forces create a challenging
environment. One way of addressing this issue is to ensure
appropriate information is collected and used to guide and
focus test efforts. Data should allow engineers to under-
stand system-wide implications of the change and risks
involved.

To address this problem the Windows Serviceability
team, the team that does software maintenance for the
Windows operating system family, uses a set of software
metrics that are collected from static analysis of source
code, dynamic analysis of tests running on the system, and
field data. All these data sources are together used to pre-
dict risk and impact of a change and to guide re-testing of
modified code by answering the following questions:

 How risky is the fix we are about to make?
 Which parts of the change are the riskiest?
 Which subset of existing test cases should be exe-

cuted to maximize the chances of finding defects
in the changed code?

 Which parts of the change will not be covered by
existing tests and need new tests?

 What dependent parts of the system need to be re-
tested?

 For code that exposes a public interface, which
consumers of the APIs should be verified?

In this paper, we propose the use of carefully selected
data and processes to perform a comprehensive analysis of
risks of fixes, surfacing risk mitigation techniques existing
in the system, indicating a need for new risk mitigations.
We describe functionality and architecture of an existing
system called CRANE that realizes the above goals. Lastly,
we provide information on the effectiveness of the system
and describe how it is being used as part of Windows ser-
vicing workflow.

The remainder of this paper is organized as follows. In
section 2, we describe Windows servicing landscape and
servicing challenges related to Windows. Section 4 presents
the operational details of CRANE. Sections 5 and 6 present
the usage of CRANE in failure prediction, risk analysis and
test prioritization. In section 7, we conclude and outline
areas of future work on CRANE.

II. WINDOWS SERVICING LANDSCAPE

A. Context

The Windows Serviceability team is a several hundred
person organization distributed across different countries
that is responsible for software maintenance of the Win-
dows operating system family. The Windows Serviceability
team at any point in time supports multiple versions of the

Windows operating system. Current support includes Win-
dows XP, Server 2003, Vista, Windows Server 2008, Win-
dows 7 etc. End-customers receiving updates to Windows
operating system can be broadly divided onto four groups:

1. Home users predominantly use the client version of

the operating system like Windows Vista, Windows
XP, or Windows Media Center and want to keep their
PCs in good working condition.

2. Small and medium-size businesses, as well as Enter-
prises that use both Windows server and client releases
and want to protect their intellectual property, avoid
work stoppage, keep their maintenance costs low and
want their investments in IT infrastructure working re-
liably.

3. Original equipment manufacturers (OEMs) and
Independent hardware vendors (IHVs) produce PCs
and devices that run with Windows and want the oper-
ating system to support the newest hardware so that
their customers can obtain the best possible experience.

4. Independent software vendors (ISVs) produce appli-
cations for Windows and need compatibility between
different Windows versions and support for all the ap-
plication features.

During the post-release phase, any of these customer

groups might be the primary target of a fix. All of our cus-
tomers however expect two things when a Windows fix is
requested - quality, defined as seamless integration and lack
of change in behavior (if a change in behavior was intend-
ed, it should be backwards compatible, i.e. existing Win-
dows applications should continue to function the same
way as before), and reasonable turnaround time between
reporting a problem and having a fix ready for deployment.

When a new Windows OS version is released publical-
ly to customers (called release to manufacturing or
“RTM”), the servicing team assumes ownership of all the
source code used to build that version of Windows and will
use it to produce hotfixes. A Windows hotfix is a packaged
set of binaries that fix problems, address issues, improve
performance, and fix security bugs etc. in the released ver-
sion of the OS. When installed, these new binaries usually
replace their previous versions.

Figure 1: Hotfix engineering process

Triage Fix
Development Code Reviews Fix-specific

Testing

Component
Integration

Testing

System
Integration

Testing

Compatibility
Testing Acceptance Release of

hotfix

One feature of the Windows servicing process is a
cumulative nature of post-RTM code changes. When a fix
to binary FOO.EXE is made for the first time, the resulting
package will contain only change a1. When a later change
a2 is made to the same binary, that new hotfix will contain
binary FOO.EXE with both changes a1 and a2. This ap-
proach simplifies code maintenance but as time goes on
and more fixes are implemented, the likelihood of the re-
sulting hotfix containing more than just one change in-
creases. Consequently, if any of the changes are faulty and
the failure is not discovered early, quality of all subsequent
hotfixes will be negatively affected. In addition to this, all
hotfixes should be synchronized with the various Windows
versions across multiple releases like XP, Server 2003 and
Vista, and also across different process architectures like
x86 and x64 bit operating systems. Additionally the fixes
are also verified across 30+ language packs like English
(US), German and Russian. This discussion indicates the
complexity of the Windows servicing landscape.

B. Hotfix engineering process

All problem reports related to Windows go through
one of the product support channels. A small portion of
these support cases turns out to be true code defects (cor-
rective maintenance) or requests to change behavior (adap-
tive maintenance). The Windows Serviceability team as-
sumes responsibility for implementing necessary changes
in both cases and starts the hotfix engineering process
(Figure 1). Each hotfix request begins with triage that
involves representatives of business management, devel-
opment, testing, product support, and sometimes the cus-
tomer as well in a brainstorming session. During the triage,
stakeholders evaluate available and feasible workarounds,
potential methods of fixing the problem, as well as risks
and efforts required from development and testing. As a
result, they conclude if the change in the Windows code is
necessary or a workaround can be used. Assuming the fix
is approved by all parties (Fixes might not turn into a code
change if the customer accepts a feasible workaround.);
developers then implement the fix and get it code re-
viewed. At the same time, test engineers prepare and carry
out their test plans for testing of the hotfix.

Hotfix testing typically consists of the following phas-
es:
1. Fix-specific testing or unit testing: This phase is

intended to verify that the fix itself, if it in fact corrects
the intended problem and does not produce any re-
gressions.

2. Component integration testing: Windows is compo-
nentized and all binaries have a place within some
component area; interfaces between these areas serve
as boundaries of component testing. The objective of
this stage is to find and remove any regression in be-
havior within the component itself as well as at each of
its interfaces.

3. System integration testing: The changed component
might have dependencies from other components that
use it through its interfaces. To ensure that the change
does not cause regression in other parts of the system,
each such dependent component might require re-
testing, at least in places where it calls into changed
code.

4. Compatibility testing: Any change with a potential to
impact third-party code running as part of the system
must be tested against affected software (applications
and drivers are two typical examples of third-party
code running on Windows).

When sufficient confidence in the quality of the fix is
gained, it is sent to the customer for final acceptance. Upon
approval, the hotfix is released. As available hotfixes ac-
cumulate over time, deployment can become a time-
consuming affair. Therefore, periodically all fixes are
rolled up to create a Service Pack. Service Packs are well
tested since time constraints are not as strict as for individ-
ual hotfixes.

III. RELATED WORK

There has been significant research in the software
engineering community on defect prediction. This subsec-
tion is intended as a broad introduction to a few large in-
dustrial empirical studies on failure/defect prediction.

Graves et al. [5] predict fault incidences using soft-
ware change history based on a weighted time damp model
using the sum of contributions from all changes to a mod-
ule, where large and/or recent changes contribute the most
to fault potential [5]. Mockus et al. [9] predict the customer
perceived quality using logistic regression for a commer-
cial telecommunications system (of seven million LOC) by
utilizing external factors like hardware configurations,
software platforms, amount of usage and deployment is-
sues. They observed an increase in probability of failure of
twenty times by accounting for such measures in their
predictions. Khoshgoftaar et al. [17] studied two consecu-
tive releases of a large legacy system (containing over
38,000 procedures in 171 modules) for telecommunica-
tions. Discriminant analysis identified fault-prone modules
based on 16 static software product metrics. Their model
when used on the second release showed 21.7% type
I,19.1% II and 21.0% overall misclassification rates for
identifying fault-prone modules.

Schröter et al. [20] showed that import dependencies
can predict defects. They proposed an alternate way of
predicting failures for Java classes. Rather than looking at
the complexity of a class, they looked exclusively at the
components that a class uses. For Eclipse, the open source
IDE they found that using compiler packages results in a
significantly higher failure-proneness (71%) than using
GUI packages (14%). Ostrand et al. [17] use code
measures in a negative binomial regression equation to
predict the number of faults in a multiple release software
system (size of the last release was 538 KLOC). The top

20% of the files so identified as fault-prone for fifteen
consecutive releases representing four years of field usage
and contained between 71% and 93% (average 84%) of the
total faults in each release [6]. Biyani and Santhanam [1]
show for four industrial systems at IBM there is a very
strong relationship between development defects per mod-
ule and field defects per module. This allows building of
prediction models based on development defects to identi-
fy field defects. Additionally structural object-orientation
(OO) measurements, such as those in the CK OO metric
suite [2], have been used to evaluate and predict fault-
proneness [11]. There has been an extensive body of re-
search in the failure prediction and test prioritization [7,
19] communities. We intend for this section merely to set
up the context for the research presented in this paper[3]. A
systematic review related work in defect prediction can be
found in [4].

IV. CRANE TOOLSET

During triage, decisions will have to be made on the
proposed fix. Risk assessment of the proposed fix is need-
ed to plan for potential mitigations. The Triage Report
allows users to look at the various data points for the part
of Windows about to be changed, viz.:

1. Vital metrics for the candidate executable and the

procedures.
2. History of changes done to this part of code.
3. Data on quality of the test process for the area being

changed.
4. Initial approximation of the list of system components

to be re-tested.
5. Initial approximation of risk of regressing existing

behavior.
6. Available test cases that can exercise the proposed

change.

Once the fix is implemented, we collect and report ad-

ditional data points using the Hotfix Report. The goal is to
surface risks and inform about existing and potential quali-
ty assurance activities needed to mitigate the risks:

1. Detailed package content.
2. Quality of the test process for the changed area.
3. Existing tests likely to uncover defects in the changed

code.
4. Changed lines of code for which tests do not exist.

5. Dependent components.
6. Known third-party software affected by the fix.
7. Final approximation of risk of regression for the fix.

When the fix is finally included in an integration test

pass, an Integration Report is generated. It provides a
summary of the various data points like applicable tests
and impacted third-party applications over all fixes. Any
fix being analyzed might be only one of many fixes tested
in the same pass so it is important to prioritize fixes to
focus the testers’ attention. Secondly, testers involved in
the integration pass collectively are responsible for all parts
of the operating system; for many of the testers their
owned areas do not change when testing commences.
Thirdly, depending on the number and size of changes,
data provided by CRANE might need to be filtered for the
user or her team. While we focus on the most fundamental
report delivered by CRANE – the Hotfix report, the de-
scription will hold good for most of the Triage report and
the Integration report since they implement similar con-
cepts. Any differences for these reports will be explicitly
pointed out.

CRANE processing can be divided into three main
stages:

1. Offline Data Collection: Windows development
process data is mined from various sources and
cached.

2. Fix Analysis: automated and manually initiated
processing of code changes against the previously
collected data and interpretation of results.

3. Presentation and visualization of the analysis
results

CRANE’s data collection tools gather data from different
sources pertaining to various aspects of Windows devel-
opment and testing process. The bottom layer of Figure 2
shows the data collection process. Examples of data col-
lected include binary dependencies, binary code churn,
regression history, details of fixes, binary metrics, code
coverage data. Collected binary history information is used
to build regression prediction models. These failure predic-
tion models leverage research performed at Microsoft
Research on failure-prediction using various metrics [12,
13, 15, 16]. For example Table 1 shows the various preci-
sion and recall accuracies for predicting Failure-proneness
in Windows Vista using several process and product met-
rics.

Figure 2: Hotfix analysis process

 Table 1: Overall model accuracy using different
software measures [16]

Model Precision Recall

Organizational Structure 86.2% 84.0%

Code Churn 78.6% 79.9%

Code Complexity 79.3% 66.0%

Dependencies 74.4% 69.9%

Code Coverage 83.8% 54.4%

Pre-Release Bugs 73.8% 62.9%

Once all relevant data is collected and preprocessed,
CRANE is ready to accept requests for processing Win-

dows code changes. The middle layer of Figure 2 shows
the steps involved in processing.
1. CRANE automatically scans the hotfix release share

and initiates analysis of a new hotfix.
2. For each binary in the hotfix, the Last Known Good

(LKG) version (most recently released or the most re-
cently well-tested) is retrieved from the binary store

3. Code churn from the LKG version is determined
using BMAT differencing algorithm [10].

4. Noise in BMAT output (changes not actually made) is
filtered out by crosschecking the diff-output with
source code differences from the code versioning sys-
tem. The cleaned outcome represents the actual code
changes.

5. For these changes prioritization of available tests is
done using Echelon [22].

6. Relevant change metrics are retrieved and regression
risk is calculated using statistical models.

7. Impacted components and impacted applications are
identified using dependency data and application pro-
files mined previously.

8. The final report is saved to a database and can be ei-
ther viewed through the CRANE portal or integrated
in other tools through CRANE APIs.

V. FAILURE PREDICTION

The first step to evaluating impact and risk of a change
is to understand the exact extent of changes. This can be
analyzed by looking at historical data for the affected bina-
ries and on the actual code changes.

Figure 3 shows the various historical and basic data
points for binaries that are made available for end-users
including complexity, failure-proneness risk (part 1), cur-
rent coverage (part 2), churn history (part 3), dependent
components (part 4), impacted components (part 5) availa-
ble tests (part 6), and overall binary regression risk (part 1).
Churn details includes all changes done to the executable
along with details like type of a fix, release date, down-
loads by users and whether the fix needed any re-work
after release (part 7). The last two data points can indicate
the level of confidence we can have in the quality of previ-
ous fixes. All the historical data gives a broad idea about
the nature of failures in the affected binaries.

Once the fix is coded up, CRANE can compare the
new binary with the LKG version and determine the actual
changes. In many cases, source code might be compiled
into multiple executables and the changed executables
might force inclusion of additional dependent binaries in
the package as well. Moreover, even though testers are
most often interested in perusing the last code modifica-
tion, sometimes they also want to know the extent of
changes done since the last broadly distributed release of
the executable. For example, they might be interested in all
the changes happened in the binary since the last Service
Pack. The reason is that broad releases have typically gone
through a very extensive and rigorous test process and,
more importantly, have already been deployed in the field
and their level of quality is often well understood. CRANE
shows the number and the extent of changes done since the
LKG version of each binary. Figure 3 only shows one
branch in detail. In the tool, however we show details for
each baseline code branch affected by the fix (figure 3, part
8). With this information, engineers are able to look at the
same change in multiple contexts and decide if full re-
testing in each branch is necessary. Often similarities be-
tween code changes can be exploited to shorten test execu-
tion time. When multiple fixes are tested at the same time,
it is also useful to rank fixes by their risk of regression to
help test engineers concentrate on most risky changes.

We have been able to successfully predict the risk of
regression and achieve a high degree of accuracy allowing
us to distinguish clearly between high and low risk fixes.

This in turn allows us to target a subset of fixes that is most
likely to contain defects. What specific risk mitigation
actions should happen for such fixes is the subject of addi-
tional processes, namely test selection, identification of
impacted components and impacted third-party code and
identification of test gaps.

Failure-proneness is the probability that a particular
software element (such as a binary) will fail in the opera-
tion in the field [14]. As discussed earlier attributes typical-
ly considered good predictors of failure proneness can be
module size and complexity, past churn in the module and
metrics pertaining to the organization producing the soft-
ware being evaluated. We re-purposed methods described
in research to come up with models using fix-specific met-
rics in an attempt to estimate the likelihood of the fix being
defective (all the prior work was on the probability of a
file, binary, component being defective). Using logistic
regression, we create hotfix failure prediction (called re-
gression risk to clearly highlight the differences in these
probabilities to determine if a fix itself will be defective)
formulas tailored for our product and the servicing process
so as to distinguish accurately between high and low risk
fixes at different stages of the process (Figure 3, part 1).
Fixes were then classified into one of five buckets: very
high risk, high, average, low and very low risk based on
empirically assigned thresholds in the [0, 1] range. We
chose this method over displaying the actual probability
values so that engineers can easily grasp the difference
between values.

The Fix Regression Proneness (FRP) model is used to
determine the risk of failure in the context of a specific fix.
Because we need the flexibility of making decisions early
in the process and the ability to refine our risk assessment
as data becomes available we have developed two varia-
tions of FRP:
 Simplified FRP, used before a fix is available, con-

siders only data points, which are easy to obtain with-
out implementing the fix. Simplified FRP requires a
user to provide information about which binaries the
change will affect, the size of the change in terms of
the number of modified source files, and whether the
modification is a design change. The rest of the predic-
tors (historical complexity, historical hotfixes) are au-
tomatically extracted for the appropriate binary (or bi-
naries).

 Detailed FRP, used after the fix is implemented, has
a higher accuracy but relies on predictors like number
of lines of code deleted by the change, that are obtain-
able only after the fix is implemented. CRANE uses
the Detailed FRP when processing final fixes and this
data point is available as part of the hotfix report. See
Figure 3, part 1 where the failure probability is based
on churn, complexity, prior hotfixes, churn and de-
pendencies.
To evaluate empirically the efficacy of our results we

analyzed all fixes made to Windows for one year. Table 2

represents the results of this evaluation. 46.2 % fixes iden-
tified by CRANE as very high risk had failed in the field.
17% if the fixes identified by CRANE as high risk failed as
well in the field. These numbers as desired are in decreas-
ing magnitude as we do not want all fixes identified as low
risk, failing and vice-versa - none of the fixes identified as
high risk failing (as significant amount of effort is spent on
testing high-risk fixes). These results were the crucial re-
sults that showed the several hundred person strong WinSE
team the utility of CRANE and lead to increased trust and
higher usage.

Table 2: Retrospective evaluation of CRANE

Predicted
risk

Very
High

High Average Low Very
Low

Efficacy 46.2% 17% 4.4% 3.1% 1.56%

A point to be noted is that these are not accura-
cy/precision/recall values (hence do not sum to 100%). The
primary concern for the Windows team is to gain confi-
dence in the system. The way these numbers are interpret-
ed by the teams, when a fix is identified as very high risk
by CRANE there is a 46% chance that this fix will fail in
operation.

VI. TEST PRIORITIZATION

The purpose of test selection is to identify a subset of
available tests that is most likely to be effective in finding
defects in changed code. Effective test selection makes it
possible to decrease the total cost of running selected tests
while keeping defect-finding effectiveness of the formed
subset at the maximum level. To perform test selection,
CRANE uses Microsoft’s Echelon test prioritization
scheme [22]. Echelon analyzes differences between two

Figure 3: Report for the implemented fix

1

4

5

6

7

32

8

binaries, at a basic binary block level, and then uses previ-
ously archived code coverage information to identify tests
that will trigger execution through maximum number of
changed binary blocks. Echelon prioritizes the selected
tests by “changed blocks covered per test cost unit” ratio.
Tests that add more coverage to the changed code per unit
of effort will end up at top of the list. At this time, we use
Echelon as a test prioritization rather than a pure test selec-
tion tool i.e. we do not recommend that only the selected
tests be executed on a fix but rather that they are run first.
(For example, figure 3, part 6).

For the situations where certain portions of changed
code will be identified as not covered through existing
tests, these “test gaps” are an important indicator of test
cost—ideally all changed code would be executed before
the release, therefore new tests need to be defined and run,
in our tool a source level view of changes (figure not
shown here for reasons of space) represents this infor-
mation in a form of “green” (covered by existing tests) and
“red” (not covered) coloring of all changed lines of code.
Our recommendation is that all currently uncovered parts of
code have tests developed and executed for them.

Following the prioritization scheme as defined in
Echelon[22] has yielded significant cost and efficiency
benefits. In addition the documented saving[22] our own
studies suggest that the effectiveness of our approach to
identify tests which, when executed, identify regressions is
between 50 and 63%. To arrive at these numbers we per-
formed three independent case studies. We considered a
number of fixes that we knew were defective and asked the
following questions: (a) did a test exist in our system,
which finds this problem, (b) was this test identified by
Echelon and selected for execution for the original fix. For
each of the studies we took mutually exclusive fixes. The
normalized values are due to the confidential nature of the
number of failures in Windows. Table 3 contains the re-
sults. The primary purpose of these studies was to gain
confidence of the large engineering community of the ef-
fectiveness and use of CRANE.

Table 3: Results of studies on Echelon's effectiveness

Study

1
Study

2
Study

3
A - Total number of re-
gressed fixes X Y Z
B - Number of fixes with
pre-existing tests able to find
a problem 0.8 X 0.6Y Z
C - Number of fixes for
which a suitable pre-existing
test was identified by Eche-
lon 0.4 X 0.4 Y 0.5 Z

Echelon's effectiveness [C/B] 52% 63% 50%

We plan to enhance further the test selection algorithm
by exploring the use of current research in the software
engineering community. In the future we also plan to use a
more precise definition of test cost comprehensively de-

scribing effort needed to configure test environments, exe-
cute tests and analyze results and use that to further in-
crease the efficiency of test selection.

VII. LESSONS LEARNED

Windows due to its size, complexity, diverse set of us-
ers and role in the PC ecosystem poses a unique mainte-
nance challenge. Expectations for hotfix quality and re-
sponse time are critical to the continuous success of Win-
dows. The CRANE toolset has been developed to expose
engineers to previously hidden information with the pur-
pose of helping them make decisions on the scope of test-
ing required to minimize risks of further problems in
changed code. CRANE is an example of a successful tool-
set from research [10, 14-16, 21, 22] to practice which is
built upon prior work in Microsoft Research.

This paper documents the use, engineering trade-offs,
deployment and successes of CRANE. Since its deploy-
ment, CRANE has been able to help developers and testers
find defects by either identifying individual tests or areas of
testing likely to uncover problems. Its adoption has in-
creased significantly in recent months by several hundred
of users. For context for other industrial organizations,
CRANE had an initial investment of six engineers working
on it full time plus one researcher from Microsoft Research
on loan to Windows to transfer research results into a prod-
uct. CRANE was used to triangle every bug for Windows
Vista SP2, a significant engineering task which was of
significant fiscal and technical importance to Microsoft.
The total investment was in excess of one Million dollars
plus and the total development time from design to opera-
tionalize was nine months.

A key take-away during design and development of
CRANE was to ensure its accuracy and effectiveness with-
out sacrificing simplicity and usability. In the process, we
also came to realize the following underlying principles
that are of practical importance in creating data mining
tools like ours:

Data should be simple to understand, empirical, insight-
ful. Users need to understand the connection between a
given metric and the outcome (preventing regressions in
our case). Metrics should provide information that would
otherwise be hidden.

Data needs to be project and context specific. The choice
of metrics is determined by the project at hand. Even met-
rics that can be applied universally will have project-
specific thresholds above which risk is substantially larger.
Statistical analysis of data helps determine these thresholds.

Metrics should be non-redundant. A few carefully cho-
sen data points are easier to use than many numbers. Each
data point should add a substantial amount of new infor-
mation.

Information should be actionable. Metrics should be
interpreted and users need to understand how to act based
on the data presented. Some apriori assumptions are neces-

sary (i.e. “if you see complexity >= 50 be concerned”) but
some of this knowledge can only be accumulated over time
as our tools and data points are used.

Have at least one statistical expert in the team. This
helps significantly during the model development and de-
ployment phase. Additionally user engineers always had
questions on the implications and meanings of the FRP
values. A statistical expert was very helpful for the devel-
opment of CRANE.

Our future work is targeted towards the following areas:

Improved performance of metric collection. In order to
roll out CRANE to other product divisions within Mi-
crosoft we plan to improve the performance and speed for
collecting code metrics information. This involves building
robust parsers, investment in engineering efficiency and
interconnection between various data sources.
Ensuring validity in a changing development system.
Development process is a constantly evolving social sys-
tem. With our risk prediction work completed, we are able
to make better decisions at all stages of the hotfix process.
As a result, we expect to see modifications to the process
driven by people taking action on data they observe which
in turn might affect what predictors we use for calculating
risk and how strongly they correlate with defects. We ex-
pect we will need to recalculate our models every few
months to keep up with these changes.

Efficiency of recommendations. Some of the current rec-
ommendations make simplifying assumptions, which might
affect efficiency of test execution. For example, a more
precise definition of test execution cost will be useful in
improving efficiency of test selection.

Effectiveness of recommendations. Change driven test
prioritization in combination with recommendations on
impacted components and applications has already proven
effective in detecting regressions. We plan to experiment
with various modifications to the schemes described above
in an attempt to increase the effectiveness of our recom-
mendations.

ACKNOWLEDGEMENTS

This work would have not been possible without the sup-
port of Bharat Shyam, General Manager of Windows SE,
Wael Bahaa-El-Din, Technical fellow, Windows Core
Operating Systems Division who funded the headcount
staffing and resources in the team to build CRANE; Thom-
as Ball and Jim Larus from MSR who allowed Nachiappan
to be on loan to the Windows team for the fiscal year 2007.

REFERENCES

[1] S. Biyani, Santhanam, P., "Exploring defect data from

development and customer usage on software modules
over multiple releases", Proceedings of International Sym-
posium on Software Reliability Engineering, pp. 316-320,
1998.

[2] L. C. Briand, J. Wuest, S. Ikonomovski, and H. Lounis,
"Investigating quality factors in object-oriented designs: an
industrial case study", Proceedings of International Con-
ference on Software Engineering, pp. 345-354, 1999.

[3] C. Catal, Diri, B., "A Systematic Review of Software Fault
Prediction Studies", Expert Systems with Applications,
36(6), pp. 7346-7354, 2009.

[4] R. Das, Czerwonka, J., Nagappan, N, "Finding Dependen-
cies from Defect History", Proceedings of Industrial
Track, International Symposium on Software Reliability
Engineering, 2009.

[5] T. L. Graves, Karr, A.F., Marron, J.S., Siy, H., "Predicting
Fault Incidence Using Software Change History", IEEE
Transactions in Software Engineering, 26(7), pp. 653 -
661, 2000.

[6] T. Gyimothy, Ferenc, R., Siket, I., "Empirical validation of
object-oriented metrics on open source software for fault
prediction", IEEE Transactions in Software Engineering,
31(10), pp. 897 - 910, 2005.

[7] M. J. Harrold, Rosenblum, D., Rothermel, G., Weyuker.
E., "Empirical Studies of a Prediction Model for Regres-
sion Test Selection", IEEE Transactions in Software Engi-
neering, 27(3), pp. 248-263, 2001.

[8] IEEE, "IEEE Standard for Software Mainrenance," 1998.
[9] T. M. Khoshgoftaar, Allen, E.B., Goel, N., Nandi, A.,

McMullan, J., "Detection of Software Modules with high
Debug Code Churn in a very large Legacy System", Pro-
ceedings of International Symposium on Software Relia-
bility Engineering, pp. 364-371, 1996.

[10] S. McFurling, Pierce, K., Wung, Z., "BMAT – A Binary
Matching Tool," Microsoft Research Technical Report
MSR-TR-99-83, 1999.

[11] A. Mockus, Zhang, P., Li, P., "Drivers for customer per-
ceived software quality", Proceedings of International
Conference on Software Engineering, pp. 225-233, 2005.

[12] N. Nagappan, Ball, T., "Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study", Proceedings of International Symposium on Em-
pirical Software Engineering, pp. 364-373, 2007.

[13] N. Nagappan, Ball, T., "Use of Relative Code Churn
Measures to Predict System Defect Density", Proceedings
of International Conference on Software Engineering, pp.
284-292, 2005.

[14] N. Nagappan, Ball, T., Murphy, B., "Using Historical In-
Process and Product Metrics for Early Estimation of Soft-
ware Failures", Proceedings of International Symposium
on Software Reliability Engineering, pp. 62-74, 2006.

[15] N. Nagappan, Ball, T., Zeller, A., "Mining metrics to pre-
dict component failures", Proceedings of International
Conference on Software Engineering, pp. 452-461, 2006.

[16] N. Nagappan, Murphy, B., Basili, V., "The Influence of
Organizational Structure On Software Quality: An Empiri-
cal Case Study", Proceedings of International Conference
on Software Engineering, pp. 521-530, 2008.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where the
Bugs Are", Proceedings of International Symposium on
Software Testing and Analysis, pp. 86-96, 2004.

[18] A. Pogdurski, Clarke, L.A., "A Formal Model of Program
Dependences and its Implications for Software Testing,
Debugging, and Maintenance", IEEE Transactions in Soft-
ware Engineering, 16(9), pp. 965-979, 1990.

[19] G. Rothermel, Harrold, M.J., "A safe, efficient regression
test selection technique", ACM Transactions on Software
Engineering and Methodology, 6(2), pp. 173-210, 1997.

[20] A. Schröter, T. Zimmermann, and A. Zeller, "Predicting
Component Failures at Design Time," in International
Symposium on Empirical Software Engineering, 2006.

[21] A. Srivastava, Edwards, A., Vo, H., "Vulcan: Binary
Transformation in a Distributed Environment," Microsoft
Research Technical Report MSR-TR-2001-50, 2001.

[22] A. Srivastava, Thiagarajan, J., "Effectively Prioritizing
Tests in Development Environment", Proceedings of In-
ternational Symposium on Software Testing and Analysis,
pp. 97-106, 2002.

[23] A. Srivastava, Thiagarajan. J., Schertz, C., "Efficient Inte-
gration Testing using Dependency Analysis," Microsoft
Research-Technical Report, MSR-TR-2005-94, 2005.

[24] H. V. Vliet, Software Engineering: Principles and Practic-
es. West Sussex, England: John Wiley & Sons, 2000.

