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Abstract - Building large software systems is difficult. 
Maintaining large systems is equally hard. Making post-
release changes requires not only thorough understand-
ing of the architecture of a software component about to 
be changed but also its dependencies and interactions 
with other components in the system. Testing such 
changes in reasonable time and at a reasonable cost is a 
difficult problem as infinitely many test cases can be 
executed for any modification. It is important to obtain 
a risk assessment of impact of such post-release change 
fixes. Further, testing of such changes is complicated by 
the fact that they are applicable to hundreds of millions 
of users, even the smallest mistakes can translate to a 
very costly failure and re-work. There has been signifi-
cant amount of research in the software engineering 
community on failure prediction, change analysis and 
test prioritization. Unfortunately, there is little evidence 
on the use of these techniques in day-to-day software 
development in industry. In this paper, we present our 
experiences with CRANE: a failure prediction, change 
risk analysis and test prioritization system at Microsoft 
Corporation that leverages existing research for the 
development and maintenance of Windows Vista. We 
describe the design of CRANE, validation of its useful-
ness and effectiveness in practice and our learnings to 
help enable other organizations to implement similar 
tools and practices in their environment.   

I. INTRODUCTION 

Software maintenance is a set of activities associated 
with changes to software after it has been delivered to end-
users. The IEEE Standard for Software Maintenance [8] 
defines three main types of maintenance activities: 
 
1. Corrective maintenance: reactive modification of a 

software product to correct discovered faults. This cat-
egory also includes emergency maintenance defined as 
unscheduled corrective maintenance performed to keep 
a system operational. 

2. Adaptive maintenance: modification performed to 
keep a computer program usable in changing environ-
ment. 

3. Perfective maintenance: modification to improve some 
aspect of quality, such as performance or reliability  

The amount of effort going into each of these catego-
ries varies depending on the nature of the software consid-
ered, its intended purpose, size and characteristics of its 
current user base. However, the software maintenance 
phase exhibits attributes that are common across different 
software products: 
1. Software maintenance is expensive. It is generally 

accepted that the maintenance phase consumes the ma-
jority of resources required to take a software product 
throughout its lifecycle, from inception until end-of-
life. The total cost of maintenance is estimated to com-
prise 50% or more of total life-cycle costs. [24] 

2. Maintenance work is often done by people who had not 
created the system. Unless the effective lifetime of a 
software product is relatively short, it is expected that 
the original designers, developers and testers are no 
longer involved in changes to the product. Reverse en-
gineering might be necessary in the absence of good 
documentation and institutional knowledge. 

3. The size of the maintenance engineering team is typi-
cally much smaller than the size of the development 
engineering team required to create the product in the 
first place. 

4. Changes in deployed software carry a high risk due to 
possibility of introducing unwanted behavior (a soft-
ware regression). Customer’s tolerance to such break-
ing changes is low. 

5. Frequently, time for creating and verifying a fix is 
constrained (E.g. security-related fixes). Verification 
and validation of such fixes needs to be done efficient-
ly. 
Due to these characteristics, testing of changes in de-

ployed software is essentially a different kind of activity 
from software testing done before release. Even though 
software maintenance testing deals with fewer changes, it 
typically needs to happen in very limited time and often 
with limited resources. On the other hand, increased risk 
and cost of making mistakes might warrant expanded test 
scope. These two competing forces create a challenging 
environment. One way of addressing this issue is to ensure 
appropriate information is collected and used to guide and 
focus test efforts. Data should allow engineers to under-
stand system-wide implications of the change and risks 
involved.  



To address this problem the Windows Serviceability 
team, the team that does software maintenance for the 
Windows operating system family, uses a set of software 
metrics that are collected from static analysis of source 
code, dynamic analysis of tests running on the system, and 
field data. All these data sources are together  used to pre-
dict risk and impact of a change and to guide re-testing of 
modified code by answering the following questions: 

 How risky is the fix we are about to make? 
 Which parts of the change are the riskiest? 
 Which subset of existing test cases should be exe-

cuted to maximize the chances of finding defects 
in the changed code? 

 Which parts of the change will not be covered by 
existing tests and  need new tests? 

 What dependent parts of the system need to be re-
tested? 

 For code that exposes a public interface, which 
consumers of the APIs should be verified? 

In this paper, we propose the use of carefully selected 
data and processes to perform a comprehensive analysis of 
risks of fixes, surfacing risk mitigation techniques existing 
in the system, indicating a need for new risk mitigations. 
We describe functionality and architecture of an existing 
system called CRANE that realizes the above goals. Lastly, 
we provide information on the effectiveness of the system 
and describe how it is being used as part of Windows ser-
vicing workflow. 

The remainder of this paper is organized as follows. In 
section 2, we describe Windows servicing landscape and 
servicing challenges related to Windows. Section 4 presents 
the operational details of CRANE. Sections 5 and 6 present 
the usage of CRANE in failure prediction, risk analysis and 
test prioritization. In section 7, we conclude and outline 
areas of future work on CRANE. 

II. WINDOWS SERVICING LANDSCAPE 

A.  Context 

The Windows Serviceability team is a several hundred 
person organization distributed across different countries 
that is responsible for software maintenance of the Win-
dows operating system family. The Windows Serviceability 
team at any point in time supports multiple versions of the 

Windows operating system. Current support includes Win-
dows XP, Server 2003, Vista, Windows Server 2008, Win-
dows 7 etc. End-customers receiving updates to Windows 
operating system can be broadly divided onto four groups: 

 
1. Home users predominantly use the client version of 

the operating system like Windows Vista, Windows 
XP, or Windows Media Center and want to keep their 
PCs in good working condition. 

2. Small and medium-size businesses, as well as Enter-
prises that use both Windows server and client releases 
and want to protect their intellectual property, avoid 
work stoppage, keep their maintenance costs low and 
want their investments in IT infrastructure working re-
liably. 

3. Original equipment manufacturers (OEMs) and 
Independent hardware vendors (IHVs) produce PCs 
and devices that run with Windows and want the oper-
ating system to support the newest hardware so that 
their customers can obtain the best possible experience. 

4. Independent software vendors (ISVs) produce appli-
cations for Windows and need compatibility between 
different Windows versions and support for all the ap-
plication features. 
 
During the post-release phase, any of these customer 

groups might be the primary target of a fix. All of our cus-
tomers however expect two things when a Windows fix is 
requested - quality, defined as seamless integration and lack 
of change in behavior (if a change in behavior was intend-
ed, it should be backwards compatible, i.e. existing Win-
dows applications should continue to function the same 
way as before), and reasonable turnaround time between 
reporting a problem and having a fix ready for deployment. 

When a new Windows OS version is released publical-
ly to customers (called release to manufacturing or 
“RTM”), the servicing team assumes ownership of all the 
source code used to build that version of Windows and will 
use it to produce hotfixes. A Windows hotfix is a packaged 
set of binaries that fix problems, address issues, improve 
performance, and fix security bugs etc. in the released ver-
sion of the OS. When installed, these new binaries usually 
replace their previous versions. 

 

Figure 1: Hotfix engineering process 
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One feature of the Windows servicing process is a 
cumulative nature of post-RTM code changes. When a fix 
to binary FOO.EXE is made for the first time, the resulting 
package will contain only change a1. When a later change 
a2 is made to the same binary, that new hotfix will contain 
binary FOO.EXE with both changes a1 and a2. This ap-
proach simplifies code maintenance but as time goes on 
and more fixes are implemented, the likelihood of the re-
sulting hotfix containing more than just one change in-
creases. Consequently, if any of the changes are faulty and 
the failure is not discovered early, quality of all subsequent 
hotfixes will be negatively affected. In addition to this, all 
hotfixes should be synchronized with the various Windows 
versions across multiple releases like XP, Server 2003 and 
Vista, and also across different process architectures like 
x86 and x64 bit operating systems. Additionally the fixes 
are also verified across 30+ language packs  like English 
(US), German and Russian. This discussion indicates the 
complexity of the Windows servicing landscape.  

B.  Hotfix engineering process 

All problem reports related to Windows go through 
one of the product support channels. A small portion of 
these support cases turns out to be true code defects (cor-
rective maintenance) or requests to change behavior (adap-
tive maintenance). The Windows Serviceability team as-
sumes responsibility for implementing necessary changes 
in both cases and starts the hotfix engineering process 
(Figure 1). Each hotfix request begins with triage that 
involves representatives of business management, devel-
opment, testing, product support, and sometimes the cus-
tomer as well in a brainstorming session. During the triage, 
stakeholders evaluate available and feasible workarounds, 
potential methods of fixing the problem, as well as risks 
and efforts required from development and testing. As a 
result, they conclude if the change in the Windows code is 
necessary or a workaround can be used. Assuming the fix 
is approved by all parties (Fixes might not turn into a code 
change if the customer accepts a feasible workaround.); 
developers then implement the fix and get it code re-
viewed. At the same time, test engineers prepare and carry 
out their test plans for testing of the hotfix. 

Hotfix testing typically consists of the following phas-
es: 
1. Fix-specific testing or unit testing: This phase is 

intended to verify that the fix itself, if it in fact corrects 
the intended problem  and does not produce any re-
gressions. 

2. Component integration testing: Windows is compo-
nentized and all binaries have a place within some 
component area; interfaces between these areas serve 
as boundaries of component testing. The objective of 
this stage is to find and remove any regression in be-
havior within the component itself as well as at each of 
its interfaces. 

3. System integration testing: The changed component 
might have dependencies from other components that 
use it through its interfaces. To ensure that the change 
does not cause regression in other parts of the system, 
each such dependent component might require re-
testing, at least in places where it calls into changed 
code. 

4. Compatibility testing: Any change with a potential to 
impact third-party code running as part of the system 
must be tested against affected software (applications 
and drivers are two typical examples of third-party 
code running on Windows). 

When sufficient confidence in the quality of the fix is 
gained, it is sent to the customer for final acceptance. Upon 
approval, the hotfix is released. As available hotfixes ac-
cumulate over time, deployment can become a time-
consuming affair. Therefore, periodically all fixes are 
rolled up to create a Service Pack. Service Packs are well 
tested since time constraints are not as strict as for individ-
ual hotfixes. 

III. RELATED WORK 

There has been significant research in the software 
engineering community on defect prediction. This subsec-
tion is intended as a broad introduction to a few large in-
dustrial empirical studies on failure/defect prediction. 

Graves et al. [5] predict fault incidences using soft-
ware change history based on a weighted time damp model 
using the sum of contributions from all changes to a mod-
ule, where large and/or recent changes contribute the most 
to fault potential [5]. Mockus et al. [9] predict the customer 
perceived quality using logistic regression for a commer-
cial telecommunications system (of seven million LOC) by 
utilizing external factors like hardware configurations, 
software platforms, amount of usage and deployment is-
sues. They observed an increase in probability of failure of 
twenty times by accounting for such measures in their 
predictions. Khoshgoftaar et al. [17] studied two consecu-
tive releases of a large legacy system (containing over 
38,000 procedures in 171 modules) for telecommunica-
tions. Discriminant analysis identified fault-prone modules 
based on 16 static software product metrics. Their model 
when used on the second release showed 21.7% type 
I,19.1% II and 21.0% overall misclassification rates for 
identifying fault-prone modules.  

Schröter et al. [20] showed that import dependencies 
can predict defects. They proposed an alternate way of 
predicting failures for Java classes. Rather than looking at 
the complexity of a class, they looked exclusively at the 
components that a class uses. For Eclipse, the open source 
IDE they found that using compiler packages results in a 
significantly higher failure-proneness (71%) than using 
GUI packages (14%). Ostrand et al. [17] use code 
measures in a negative binomial regression equation to 
predict the number of faults in a multiple release software 
system (size of the last release was 538 KLOC). The top 



20% of the files so identified as fault-prone for fifteen 
consecutive releases representing four years of field usage 
and contained between 71% and 93% (average 84%) of the 
total faults in each release [6]. Biyani and Santhanam [1] 
show for four industrial systems at IBM there is a very 
strong relationship between development defects per mod-
ule and field defects per module. This allows building of 
prediction models based on development defects to identi-
fy field defects. Additionally structural object-orientation 
(OO) measurements, such as those in the CK OO metric 
suite [2], have been used to evaluate and predict fault-
proneness [11]. There has been an extensive body of re-
search in the failure prediction and test prioritization  [7, 
19] communities. We intend for this section merely to set 
up the context for the research presented in this paper[3]. A 
systematic review related work in defect prediction can be 
found in [4]. 

IV. CRANE TOOLSET 

During triage, decisions will have to be made on the 
proposed fix. Risk assessment of the proposed fix is need-
ed to plan for potential mitigations. The Triage Report 
allows users to look at the various data points for the part 
of Windows about to be changed, viz.: 

 
1. Vital metrics for the candidate executable and the 

procedures. 
2. History of changes done to this part of code. 
3. Data on quality of the test process for the area being 

changed. 
4. Initial approximation of the list of system components 

to be re-tested. 
5. Initial approximation of risk of regressing existing 

behavior. 
6. Available test cases that can exercise the proposed 

change. 
 
Once the fix is implemented, we collect and report ad-

ditional data points using the Hotfix Report. The goal is to 
surface risks and inform about existing and potential quali-
ty assurance activities needed to mitigate the risks: 

  
1. Detailed package content. 
2. Quality of the test process for the changed area. 
3. Existing tests likely to uncover defects in the changed 

code. 
4. Changed lines of code for which tests do not exist. 

5. Dependent components. 
6. Known third-party software affected by the fix. 
7. Final approximation of risk of regression for the fix. 

 
When the fix is finally included in an integration test 

pass, an Integration Report is generated. It provides a 
summary of the various data points like applicable tests 
and impacted third-party applications over all fixes. Any 
fix being analyzed might be only one of many fixes tested 
in the same pass so it is important to prioritize fixes to 
focus the testers’ attention. Secondly, testers involved in 
the integration pass collectively are responsible for all parts 
of the operating system; for many of the testers their 
owned areas do not change when testing commences. 
Thirdly, depending on the number and size of changes, 
data provided by CRANE might need to be filtered for the 
user or her team. While we focus on the most fundamental 
report delivered by CRANE – the Hotfix report, the de-
scription will hold good for most of the Triage report and 
the Integration report since they implement similar con-
cepts. Any differences for these reports will be explicitly 
pointed out. 

CRANE processing can be divided into three main 
stages:  

1. Offline Data Collection: Windows development 
process data is mined from various sources and 
cached. 

2. Fix Analysis: automated and manually initiated 
processing of code changes against the previously 
collected data and interpretation of results.  

3. Presentation and visualization of the analysis 
results 

CRANE’s data collection tools gather data from different 
sources pertaining to various aspects of Windows devel-
opment and testing process. The bottom layer of Figure 2 
shows the data collection process. Examples of data col-
lected include binary dependencies, binary code churn, 
regression history, details of fixes, binary metrics, code 
coverage data. Collected binary history information is used 
to build regression prediction models. These failure predic-
tion models leverage research performed at Microsoft 
Research on failure-prediction using various metrics [12, 
13, 15, 16]. For example Table 1 shows the various preci-
sion and recall accuracies for predicting Failure-proneness 
in Windows Vista using several process and product met-
rics. 



 

Figure 2: Hotfix analysis process

 Table 1: Overall model accuracy using different                   
software measures [16] 

Model Precision Recall

Organizational Structure 86.2% 84.0% 

Code Churn 78.6% 79.9% 

Code Complexity 79.3% 66.0% 

Dependencies 74.4% 69.9% 

Code Coverage 83.8% 54.4% 

Pre-Release Bugs 73.8% 62.9% 

 
Once all relevant data is collected and preprocessed, 
CRANE is ready to accept requests for processing Win-

dows code changes. The middle layer of Figure 2 shows 
the steps involved in processing.  
1. CRANE automatically scans the hotfix release share 

and initiates analysis of a new hotfix.  
2. For each binary in the hotfix, the Last Known Good 

(LKG) version (most recently released or the most re-
cently well-tested)  is retrieved from the binary store 

3. Code churn  from the LKG version  is determined 
using BMAT differencing algorithm [10]. 

4. Noise in BMAT output (changes not actually made) is 
filtered out by crosschecking the diff-output with 
source code differences from the code versioning sys-
tem. The cleaned outcome represents the actual code 
changes. 

5. For these changes prioritization of available tests is 
done using  Echelon [22]. 



6. Relevant change metrics are retrieved and regression 
risk is calculated using statistical models. 

7. Impacted components and impacted applications are 
identified using dependency data and application pro-
files mined previously. 

8. The final report is saved to a database and can be ei-
ther viewed through the CRANE portal or integrated 
in other tools through CRANE APIs. 

V. FAILURE PREDICTION 

The first step to evaluating impact and risk of a change 
is to understand the exact extent of changes. This can be 
analyzed by looking at historical data for the affected bina-
ries and on the actual code changes. 

Figure 3 shows the various historical and basic data 
points for binaries that are made available for end-users 
including complexity, failure-proneness risk (part 1), cur-
rent coverage (part 2), churn history (part 3), dependent 
components (part 4), impacted components (part 5) availa-
ble tests (part 6), and overall binary regression risk (part 1). 
Churn details includes all changes done to the executable 
along with details like type of a fix, release date, down-
loads by users and whether the fix needed any re-work 
after release (part 7). The last two data points can indicate 
the level of confidence we can have in the quality of previ-
ous fixes. All the historical data gives a broad idea about 
the nature of failures in the affected binaries. 

Once the fix is coded up, CRANE can compare the 
new binary with the LKG version and determine the actual 
changes. In many cases, source code might be compiled 
into multiple executables and the changed executables 
might force inclusion of additional dependent binaries in 
the package as well. Moreover, even though testers are 
most often interested in perusing the last code modifica-
tion, sometimes they also want to know the extent of 
changes done since the last broadly distributed release of 
the executable. For example, they might be interested in all 
the changes happened in the binary since the last Service 
Pack. The reason is that broad releases have typically gone 
through a very extensive and rigorous test process and, 
more importantly, have already been deployed in the field 
and their level of quality is often well understood. CRANE 
shows the number and the extent of changes done since the 
LKG version of each binary. Figure 3 only shows one 
branch in detail. In the tool, however we show details for 
each baseline code branch affected by the fix (figure 3, part 
8). With this information, engineers are able to look at the 
same change in multiple contexts and decide if full re-
testing in each branch is necessary. Often similarities be-
tween code changes can be exploited to shorten test execu-
tion time. When multiple fixes are tested at the same time, 
it is also useful to rank fixes by their risk of regression to 
help test engineers concentrate on most risky changes.  

We have been able to successfully predict the risk of 
regression and achieve a high degree of accuracy allowing 
us to distinguish clearly between high and low risk fixes. 

This in turn allows us to target a subset of fixes that is most 
likely to contain defects. What specific risk mitigation 
actions should happen for such fixes is the subject of addi-
tional processes, namely test selection, identification of 
impacted components and impacted third-party code and 
identification of test gaps. 

Failure-proneness is the probability that a particular 
software element (such as a binary) will fail in the opera-
tion in the field [14]. As discussed earlier attributes typical-
ly considered good predictors of failure proneness can be 
module size and complexity, past churn in the module and 
metrics pertaining to the organization producing the soft-
ware being evaluated. We re-purposed methods described 
in research to come up with models using fix-specific met-
rics in an attempt to estimate the likelihood of the fix being 
defective (all the prior work was on the probability of a 
file, binary, component being defective). Using logistic 
regression, we create hotfix failure prediction (called re-
gression risk to clearly highlight the differences in these 
probabilities to determine if a fix itself will be defective) 
formulas tailored for our product and the servicing process 
so as to distinguish accurately between high and low risk 
fixes at different stages of the process (Figure 3, part 1). 
Fixes were then classified into one of five buckets: very 
high risk, high, average, low and very low risk based on 
empirically assigned thresholds in the [0, 1] range. We 
chose this method over displaying the actual probability 
values so that engineers can easily grasp the difference 
between values.  

The Fix Regression Proneness (FRP) model is used to 
determine the risk of failure in the context of a specific fix. 
Because we need the flexibility of making decisions early 
in the process and the ability to refine our risk assessment 
as data becomes available we have developed two varia-
tions of FRP: 
 Simplified FRP, used before a fix is available, con-

siders only data points, which are easy to obtain with-
out implementing the fix. Simplified FRP requires a 
user to provide information about which binaries the 
change will affect, the size of the change in terms of 
the number of modified source files, and whether the 
modification is a design change. The rest of the predic-
tors (historical complexity, historical hotfixes) are au-
tomatically extracted for the appropriate binary (or bi-
naries). 

 Detailed FRP, used after the fix is implemented, has 
a higher accuracy but relies on predictors like  number 
of lines of code deleted by the change, that are obtain-
able only after the fix is implemented. CRANE uses 
the Detailed FRP when processing final fixes and this 
data point is available as part of the hotfix report. See 
Figure 3, part 1 where the failure probability  is based 
on churn, complexity, prior hotfixes, churn and de-
pendencies.  
To evaluate empirically the efficacy of our results we 

analyzed all fixes made to Windows for one year. Table 2 



represents the results of this evaluation. 46.2 % fixes iden-
tified by CRANE as very high risk had failed in the field. 
17% if the fixes identified by CRANE as high risk failed as 
well in the field. These numbers as desired are in decreas-
ing magnitude as we do not want all fixes identified as low 
risk, failing and vice-versa - none of the fixes identified as 
high risk failing (as significant amount of effort is spent on 
testing high-risk fixes). These results were the crucial re-
sults that showed the several hundred person strong WinSE 
team the utility of CRANE and lead to increased trust and 
higher usage. 

Table 2: Retrospective evaluation of CRANE 

Predicted 
risk 

Very 
High 

High Average Low Very 
Low 

Efficacy 46.2% 17% 4.4% 3.1% 1.56% 

A point to be noted is that these are not accura-
cy/precision/recall values (hence do not sum to 100%). The 
primary concern for the Windows team is to gain confi-
dence in the system. The way these numbers are interpret-
ed by the teams, when a fix is identified as very high risk 
by CRANE there is a 46% chance that this fix will fail in 
operation.  

VI. TEST PRIORITIZATION 

The purpose of test selection is to identify a subset of 
available tests that is most likely to be effective in finding 
defects in changed code. Effective test selection makes it 
possible to decrease the total cost of running selected tests 
while keeping defect-finding effectiveness of the formed 
subset at the maximum level. To perform test selection, 
CRANE uses Microsoft’s Echelon test prioritization 
scheme [22]. Echelon analyzes differences between two  

 

 

Figure 3: Report for the implemented fix 
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binaries, at a basic binary block level, and then uses previ-
ously archived code coverage information to identify tests 
that will trigger execution through maximum number of 
changed binary blocks. Echelon prioritizes the selected 
tests by “changed blocks covered per test cost unit” ratio. 
Tests that add more coverage to the changed code per unit 
of effort will end up at top of the list. At this time, we use 
Echelon as a test prioritization rather than a pure test selec-
tion tool i.e. we do not recommend that only the selected 
tests be executed on a fix but rather that they are run first. 
(For example, figure 3, part 6). 

For the situations where certain portions of changed 
code will be identified as not covered through existing 
tests, these “test gaps” are an important indicator of test 
cost—ideally all changed code would be executed before 
the release, therefore new tests need to be defined and run,  
in our tool a source level view of changes (figure not 
shown here for reasons of space) represents this infor-
mation in a form of “green” (covered by existing tests) and 
“red” (not covered) coloring of all changed lines of code. 
Our recommendation is that all currently uncovered parts of 
code have tests developed and executed for them. 

Following the prioritization scheme as defined in 
Echelon[22] has yielded significant cost and efficiency 
benefits. In addition the documented saving[22] our own 
studies suggest that the effectiveness of our approach to 
identify tests which, when executed, identify regressions is 
between 50 and 63%. To arrive at these numbers we per-
formed three independent case studies. We considered a 
number of fixes that we knew were defective and asked the 
following questions: (a) did a test exist in our system, 
which finds this problem, (b) was this test identified by 
Echelon and selected for execution for the original fix. For 
each of the studies we took mutually exclusive fixes. The 
normalized values are due to the confidential nature of the 
number of failures in Windows. Table 3 contains the re-
sults. The primary purpose of these studies was to gain 
confidence of the large engineering community of the ef-
fectiveness and use of CRANE.  

Table 3: Results of studies on Echelon's effectiveness 

 
Study 

1 
Study 

2 
Study 

3 
A - Total number of re-
gressed fixes X Y Z 
B - Number of fixes with 
pre-existing tests able to find 
a problem 0.8 X 0.6Y Z 
C - Number of fixes for 
which a suitable pre-existing 
test was identified by Eche-
lon 0.4 X 0.4 Y 0.5 Z 

Echelon's effectiveness [C/B] 52% 63% 50% 

We plan to enhance further the test selection algorithm 
by exploring the use of current research in the software 
engineering community. In the future we also plan to use a 
more precise definition of test cost comprehensively de-

scribing effort needed to configure test environments, exe-
cute tests and analyze results and use that to further in-
crease the efficiency of test selection. 

VII. LESSONS LEARNED 

Windows due to its size, complexity, diverse set of us-
ers and role in the PC ecosystem poses a unique mainte-
nance challenge. Expectations for hotfix quality and re-
sponse time are critical to the continuous success of Win-
dows. The CRANE toolset has been developed to expose 
engineers to previously hidden information with the pur-
pose of helping them make decisions on the scope of test-
ing required to minimize risks of further problems in 
changed code. CRANE is an example of a successful tool-
set from research [10, 14-16, 21, 22] to practice which is 
built upon prior work in Microsoft Research.  

This paper documents the use, engineering trade-offs, 
deployment and successes of CRANE. Since its deploy-
ment, CRANE has been able to help developers and testers 
find defects by either identifying individual tests or areas of 
testing likely to uncover problems. Its adoption has in-
creased significantly in recent months by several hundred 
of users. For context for other industrial organizations, 
CRANE had an initial investment of six engineers working 
on it full time plus one researcher from Microsoft Research 
on loan to Windows to transfer research results into a prod-
uct. CRANE was used to triangle every bug for Windows 
Vista SP2, a significant engineering task which was of 
significant fiscal and technical importance to Microsoft. 
The total investment was in excess of one Million dollars 
plus and the total development time from design to opera-
tionalize was nine months. 

A key take-away during design and development of 
CRANE was to ensure its accuracy and effectiveness with-
out sacrificing simplicity and usability. In the process, we 
also came to realize the following underlying principles 
that are of practical importance in creating data mining 
tools like ours:  

Data should be simple to understand, empirical, insight-
ful. Users need to understand the connection between a 
given metric and the outcome (preventing regressions in 
our case). Metrics should provide information that would 
otherwise be hidden. 

Data needs to be project and context specific. The choice 
of metrics is determined by the project at hand. Even met-
rics that can be applied universally will have project-
specific thresholds above which risk is substantially larger. 
Statistical analysis of data helps determine these thresholds. 

Metrics should be non-redundant. A few carefully cho-
sen data points are easier to use than many numbers. Each 
data point should add a substantial amount of new infor-
mation.  

Information should be actionable. Metrics should be 
interpreted and users need to understand how to act based 
on the data presented. Some apriori assumptions are neces-



sary (i.e. “if you see complexity >= 50 be concerned”) but 
some of this knowledge can only be accumulated over time 
as our tools and data points are used.  

Have at least one statistical expert in the team. This 
helps significantly during the model development and de-
ployment phase. Additionally user engineers always had 
questions on the implications and meanings of the FRP 
values. A statistical expert was very helpful for the devel-
opment of CRANE. 

Our future work is targeted towards the following areas: 

Improved performance of metric collection. In order to 
roll out CRANE to other product divisions within Mi-
crosoft we plan to improve the performance and speed for 
collecting code metrics information. This involves building 
robust parsers, investment in engineering efficiency and 
interconnection between various data sources. 
Ensuring validity in a changing development system. 
Development process is a constantly evolving social sys-
tem. With our risk prediction work completed, we are able 
to make better decisions at all stages of the hotfix process. 
As a result, we expect to see modifications to the process 
driven by people taking action on data they observe which 
in turn might affect what predictors we use for calculating 
risk and how strongly they correlate with defects. We ex-
pect we will need to recalculate our models every few 
months to keep up with these changes. 

Efficiency of recommendations. Some of the current rec-
ommendations make simplifying assumptions, which might 
affect efficiency of test execution. For example, a more 
precise definition of test execution cost will be useful in 
improving efficiency of test selection. 

Effectiveness of recommendations. Change driven test 
prioritization in combination with recommendations on 
impacted components and applications has already proven 
effective in detecting regressions. We plan to experiment 
with various modifications to the schemes described above 
in an attempt to increase the effectiveness of our recom-
mendations. 
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