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Abstract

Large-scale distributed computing systems can suffer from occasional severe
violation of performance goals; due to the complexity of these systems, manual
diagnosis of the cause of the crisis is too slow to inform interventions taken
during the crisis. Rapid automatic recognition of the recurrence of a problem
can lead to cause diagnosis and informed intervention. We frame this as an
online clustering problem, where the labels (causes) of some of the previous
crises may be known. We give a fast and accurate solution using model-based
clustering based on a Dirichlet process mixture; the evolution of each crisis is
modeled as a multivariate time series.

In the periods between crises we perform full Bayesian inference for the past
crises, and as a new crisis occurs we apply fast approximate Bayesian updat-
ing. These inferences allow real-time expected-cost-minimizing decision making
that fully accounts for uncertainty in the crisis labels and other parameters. We
apply and validate our methods using simulated data and data from a produc-
tion computing center with hundreds of servers running a 24/7 email-related

application.
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1. INTRODUCTION

Commercial distributed computing providers offer remotely hosted processing ser-
vices. The providers accomplish this computing by farming out to servers that may
be spread across geographical and corporate boundaries in centers containing tens of
thousands of machines. For instance, Microsoft offers email processing via an Email
Hosted Service (EHS), in which incoming messages are routed to servers that apply
a set of spam filters before directing remaining emails to the user.

Such systems have performance requirements such as limits on processing times,
set in agreements with clients; violation of these limits (a “crisis”) leads to cash
penalties and potential loss of contracts, so rapid diagnosis and intervention is critical
when a violation occurs. Such problems can happen, for instance, when demand is
high and servers become overloaded, or due to human misconfigurations (e.g., during
software updates) or performance problems in lower-level computing centers on which
the servers rely (e.g., for performing authentication services).

When a crisis occurs, we wish to rapidly identify any previous crises of the same
type, and take the intervention that has been most effective in the previous occur-
rences. Due to the large scale, the interdependence and the distributed nature of

the systems, problems tend to recur and human diagnosis is very slow, so one must



recognize the recurrence of a problem in an automated fashion. A set of status mea-
surements for the servers, such as CPU utilization and queue length and throughput
for various tasks, are available for this purpose; there can be hundreds of these mea-
surements per server.

We consider the problem of matching a currently occurring (and thus incompletely
observed) crisis to previous crises of mixed known and unknown causes. This is an
online clustering problem with partial labeling that is complicated by the incomplete-
ness of the data for the new crisis. By online clustering we mean the task of grouping
(in real time) observations that arrive in a temporal sequence. Previous work in on-
line crisis/failure identification (Cohen et al. 2005, Yuan et al. 2006, Duan and Babu
2008, Bodik et al. 2009) uses multi-stage approaches combining statistical, machine
learning, or ad-hoc methods. While giving practical solutions, they do not provide
a complete model for the process of interest. They also restrict to either completely
labeled or completely unlabeled data, and do not satisfactorily address the incomplete
nature of the new crisis data.

We provide a solution using online model-based clustering, where the evolution
of each crisis is modeled as a multivariate time series. In the periods between crises
we perform full Bayesian inference for the past crises, and as a new crisis occurs we
apply fast approximate Bayesian updating.

A Dirichlet process mixture model (Escobar 1994; Ishwaran and Zarepour 2002) is
used for the cluster assignments; this allows us to automatically estimate the number
of clusters from the data, and to quantify our uncertainty regarding the number of
clusters. Since the posterior distribution can be highly multimodal, we make the
inference on clusters as efficient as possible by combining parallel tempering (Geyer
1991) with a collapsed-space split-merge Markov chain method (Jain and Neal 2004).

Fully Bayesian inference of this kind is required to perform optimal decision mak-



ing while accounting for uncertainty in the crisis type assignments and the parameters
of those types. We describe how to use our Bayesian identification of a new crisis to
choose an intervention that minimizes the expected cost of the crisis.

Online clustering based on Dirichlet process or related mixture models has been
previously addressed by Sato (2001), Zhang, Ghahramani and Yang (2004), and
Gomes, Welling and Perona (2008). These papers focus on clustering very large num-
bers of observations, motivated by the need to automatically categorize huge volumes
of news stories and images; Zhang et al. (2004), for instance, cluster 62,962 documents
having 100,000 features. These authors therefore develop fast approximate methods.
Zhang et al. (2004) obtain a single “best” cluster assignment for each observation, not
updating the cluster assignments of existing observations as new observations arrive,
nor quantifying uncertainty regarding the cluster assignment. Sato (2001) and Gomes
et al. (2008) use a variational approximation to the posterior distribution, where the
approximating distribution is completely factorizable and has a simple parametric
form for the marginal distribution of each parameter. Such an approximation can be
useful for very large sample sizes, where more precise inference is intractable, but is
hard to justify otherwise.

In our context the number of observations is small to moderate, and the focus is on
accurate clustering and quantification of uncertainty, including uncertainty regarding
the cluster assignments. For this reason we perform fully Bayesian online clustering
without resorting to a variational approximation. Our Markov chain method simu-
lates accurately from the posterior distribution, updating the cluster assignments of
old observations as more data become available, handling the multimodality of the
posterior distribution, and capturing dependencies between parameters.

Our main contribution is to solve an important applied problem by combin-

ing Dirichlet process mixture models for time series observations with sophisticated



Markov chain Monte Carlo methods. To our knowledge we are also the first to do fully
Bayesian real-time online clustering without resorting to a variational approximation.

We demonstrate the accuracy of our crisis identification method using simulated
data and comparing with a state-of-the-art maximum likelihood / maximum a pos-
teriori clustering algorithm; our method is far more accurate in these simulations.
Then we apply our method to the Email Hosted Service. Priors for the parameters
are obtained by combining information from experts with information in the data,
and reflect the fact that the server status measurements are chosen with the goal of
being indicative of crisis type.

An alternative to clustering is given by classification methods, which can be ap-
plied by using the available labels and creating a category for crises of unknown cause.
We do not take this approach, since it is less informative than clustering: it can cat-
egorize the new crisis as having unknown type, but cannot identify it as having the
same type as several specific unlabeled past crises. In the typical case where few or
no labels are available (see Sec. , the output of classification approaches is not very
meaningful.

The rest of the article is organized as follows. In Section [2] we describe the data
that are typically available for distributed computing centers. Our model for the crisis
evolution and crisis types is given in Section [3] Posterior computation for this model
is described in Section [4, and methods for online prediction and optimal decision
making are given in Section [5} The simulation study is presented in Section [0 while

results for EHS are given in Section [7] In Section [§] we draw conclusions.



2. MEASURING PERFORMANCE IN DISTRIBUTED

COMPUTING

In distributed computing a common set of measurements from each server capture
its current activity and state, and are typically aggregated over fixed-length time
intervals. EHS handles email traffic, applying a sequence of spam filters, so that
some of the measurements are the number of emails that pass each filter, and the
number blocked by each filter, during the time interval.

Distributed computing systems have a set of performance goals, defined in agree-
ments with clients. An extended period of violation of these performance goals is
considered to be a system crisis. In EHS, for instance, the system is considered to be
in violation if at least a predetermined percentage of the servers are above a threshold
for a “key performance indicator.” Two consecutive violation periods are considered
to define the beginning of a crisis in EHS, and the crisis is considered to continue
until there are four consecutive periods of non-violation.

Traces of several server measurements (“metrics”) for EHS are shown in Figure
for a ten-day period; the median value over the servers is plotted. Crisis periods are
highlighted and labeled according to their types, which were diagnosed afterwards.
The first two crises are known to have particular causes “A” and “B”, while the last
four crises are known to have the same cause “C”. It is clear that the third metric
is elevated during crises of type C, but not during crises of type A or B. The second
metric is elevated during crises of type C, but diminished during crises of type A and
B. The first metric appears to be elevated during crises of type C, possibly diminished
during crises of type B, and not strongly affected by crises of type A.

This plot suggests that the medians of the metrics over the servers are very in-
formative as to the crisis type. Furthermore, the median of any particular metric

appears to be consistently either low, normal, or high during crises of a particular



type. This is supported by the opinion of EHS experts, so we fit our models on the
median values of the metrics, discretizing according to thresholds that define “low”,
“normal”, or “high” values.

We define the normal range of (the median value of) a metric to be the 2nd and
98th quantile of that metric during non-crisis periods. Applying these quantiles to the
EHS data, “high” or “low” values of many of the metrics correspond closely with crisis
periods. We expect similar dimension reduction and discretization to be effective (and
essential) in other distributed computing systems. The number of servers in these
systems is typically huge and is increasing at a rapid pace, so it is important to use

data summaries that do not grow in dimension with the number of servers.

3. CLUSTERING OF SYSTEM CRISES

3.1 Crisis Modeling

We use a time series model for crisis evolution. Denote the vector of metrics for the
ith crisis in the th time period after the start of the crisis by Y. = (Yir, .-, Yas);
for crises of type k, we assume that the initial state vector Y;;. is sampled from a
discrete distribution, and that the state vector Y;;. subsequently evolves according to
a Markov chain of order q.

Estimation of the full joint distribution of Y;;. and the full transition matrix is
infeasible when the number of crises [ is small and the number of metrics .J is moderate
or large, as is typical (for the EHS data I = 27 and J = 18). For such small sample
sizes, extremely parsimonious conditional independence structures have been found
both empirically and theoretically to provide the best accuracy in estimation of a
class variable (Domingos and Pazzani 1997; Friedman, Geiger and Goldszmidt 1997;
Hand and Yu 2001). In particular, naive Bayes models, which assume conditional

independence of all attributes conditional on the class, and augmented naive Bayes



models that assume only pairwise dependencies conditional on the class, have been
found to have the best accuracy.

We therefore assume independence of all metrics conditional on the crisis type
(dependencies between pairs of metrics can easily be accommodated by replacing
the pair of metrics, having three states each, with a single metric that has nine
states). Conditional on k, Y;; then has a discrete distribution with probability
vector yUk) = ('yyk),fyéjk),’yéjk)), and Y;;; evolves according to a Markov chain of
order g over the three states (1:low, 2:normal, 3:high). For parsimony we take ¢ = 1;
the elements of the row-stochastic Markov transition matrix are denoted by Tgk)
where the subscripts s,t € {1,2,3} indicate the states. The resulting complete-data
likelihood function is as follows, where we condition on the unknown type indicators
Z; of each crisis ¢ = 1, ..., I and where the values n;;s are the number of transitions
of the jth metric from state s to state ¢ during crisis i:

™ (D HZY, (09, 1Y) =T [(7§j2i>>1(Yilj:t) I1 (ngﬂ)"”“] G

it s
For simplicity we will use 7 to indicate likelihood, prior, and posterior distributions,

as distinguished by their arguments.

3.2 Cluster Modeling

The Dirichlet process mixture (DPM) model provides natural prior specification for
online clustering, allowing estimation of the number of clusters while maintaining
exchangeability between observations (Escobar and West 1995). A DPM can be
obtained as the limit of a finite mixture model with Dirichlet prior distribution on
the mixing proportions (Neal 2000; Rasmussen 2000). In our context the DPM is
parameterized by a scalar « controlling the expected number of types occurring in a
set of crises, and by a prior distribution Go({yV), TU)},) for the set of all parameters

associated with each crisis type k.



We take G to be the product over j of independent Dirichlet distributions for ~*)
(with parameter vectors a¥)), times the product over j and s of independent Dirichlet
distributions for the transition matrix rows TY® (with parameter vectors b"%)). The
use of such a product Dirichlet prior distribution for the rows of an unconstrained
transition matrix is standard practice (e.g. Carlin, Gelfand and Smith (1992), Diaconis
and Rolles (2006)).

The DPM model for the crisis types {Z;}__, and crisis parameters y0%) TU* can
be described as follows, in the case where the causes of the crises are all unknown.

The first crisis has type 1 (Z; = 1) by definition. For subsequent crises,

i <iZy = 2}
n 1— 1+«

B «
Ci—1+a’

Pr(Z; = 2|2y, ..., Z;) for z € {Zy}i<i

PI‘(Z, 7& A Vi < 7:|Z1, e Zi—l)

This is called the “Chinese restaurant process”; each observation 7 is conceptually a
guest who, upon entering a restaurant, either sits at a table that is already occupied,
with probability proportional to the number of guests at that table, or sits at an
empty table.

Conditional on the cluster assignments Z;, the parameters of each cluster k are

independently distributed according to Gy. Thus the DPM model can be written

I

7 ({Z}) = 7(20) [ [ 7 (Zil{Zs}o <)

i=2
! o 1
[T |t om0y S|

(009,199,121, ) = T 6o (609 199, (3)
k=1

where m; = max{Z; : i’ <1} for ¢ > 0 and mo = 0. In this description the Dirichlet
process has been integrated out, obtaining a generalized Polya urn scheme (Blackwell

and MacQueen 1973).



When the causes of some of the crises are known (the partially labeled case), this
information can be captured by indicator functions 1(Z; = Z; ) for pairs of crises i, i’
that are known to have the same type (denoted by i ~ ") and 1(Z; # Z;) for pairs of
crises 4, i’ that are known to have different types (denoted by ¢ 5 ¢’). In this case the
prior w({Z;}._,) is proportional to the expression multiplied by the restriction

11z =2z:) ][] 12 # Z:) (4)
i inti!
while the prior w({yU®, TUMY,  {Z;}L_)) is unchanged. Our computational methods
extend trivially to accommodate the partial labels, by simply disallowing configura-

tions that are incompatible with those labels (see Section [4)).

3.3 Choice of prior constants
We select the prior hyperparameters a, a%), and bgj) by combining information
elicited from domain experts with information in the data. The former is formal
Bayes, while the latter is empirical Bayes (Carlin and Louis 2009). Sensitivity to
these choices is examined in Section [7.1]

We elicit @ from experts; results are remarkably insensitive to the choice of «
(Sec. & . According to the DPM model, the probability that two randomly
chosen crises have the same type is 1/(a + 1). In the EHS example, domain experts
estimate this to be 10%, yielding o« = 9. This implies that the expected number of
types in the EHS data is 12.9 (for 27 crises), which the experts agree is reasonable.

For a¥) and bgj) one might consider the “default” choice of agj ) = bg) =1 for all
j, s, and t; this gives a generalized uniform prior for each of the vectors %) and each
of the rows ng *) of the transition matrices, and is a common choice when performing
Bayesian inference on discrete distributions or transition matrices when the number
of parameters is fixed (e.g. Carlin et al. 1992). In our context this prior is very diffuse

relative to the likelihood (explained below). Unfortunately, diffuse priors can be

10



problematic when comparing models with parameter spaces of different dimensions,
as is the case in the clustering context where we are comparing different values of the
number of clusters. In particular, such priors can dramatically favor the model with
the smallest number of parameters (cf. Kass and Raftery 1995). We encountered this
problem when attempting to use the generalized uniform prior for the EHS data or
simulated data that mimicked the EHS data; all of the crises were assigned to a single
cluster with very high posterior probability. The generalized uniform prior is not used
for document clustering with DPMs, perhaps for this reason; it is replaced by either
a data-based prior specification or a symmetric Dirichlet distribution with parameter
less than one (Blei, Griffiths, Jordan and Tenenbaum 2004; Zhang et al. 2004).

To explain why the generalized uniform prior is very diffuse relative to the likeli-
hood in the distributed computing context, we note that real data from distributed
computing have very specific properties that are simply not compatible with much
of the parameter space. For instance, the metrics more commonly take the value 2
(“normal”) than the values 1 (“low”) or 3 (“high”); also, the metrics change values
infrequently in the time series, so that any reasonable transition matrix TU* must
have diagonal elements close to one.

To create a sensible prior for al?), we first follow Zhang et al. (2004) in taking the
prior mean of the vector YU%) to be the empirical frequencies over the entire dataset,
i.e. the empirical distribution v* = (75,5, 73) of the first value of all metrics in all
crises observed so far. This implies that a¥) = cU) (4}, 4%, 4%) for some constant c\9)
that controls the prior variance of yU*. Our choice of this constant will reflect the
fact that the metrics are selected to be indicative of crisis type, i.e. any metric has
non-trivial probability of behaving similarly across crises of a particular type. For this
reason the EHS experts believe that there is a substantial prior probability for any j

and k that one of the values ’yt(j ") is “close” to one. This is formalized by specifying
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a 50% prior probability that max; %(j Ms 9 (results are insensitive to this choice;

Sec . This choice uniquely determines the value of ¢* = ¢, which can be found
by an iterative numerical procedure that simulates from Dirichlet(cy*), checks the
proportion of samples for which one of the values is “close” to one as defined above,
and adjusts c.

Selection of b\ is analogous. We use the data for all metrics and all crises
observed so far to find the empirical transition probabilities T from each starting
state s, and set the prior mean of Tgk) equal to T%. By taking the prior weight
of evidence (the sum of bgj) ) to be equal for each row s of the transition matrix,
we must have TU® = )T for some constant d¥). To choose d9), we consider the

k) %)y of a Markov chain with transition kernel

limiting distribution r0%) = (rU% 0% L
TUR . Since the metrics tend to behave consistently across crises of a particular type,

there is non-trivial probability that one of the values rﬁj ") is “close” to one. This is

formalized via a 50% probability that max; rgj " > 9. Once again, d* = dV) is found

by simulation.

4. POSTERIOR COMPUTATION
For a fixed set of crises, Markov chain methods can be used to obtain samples from
the posterior distribution m({Z;}__,, {y7®, TUM, ,|D) of the clustering model given
in Sec. 3] We use a collapsed-space Markov chain method (Jain and Neal 2004),
modified with parallel tempering (Geyer 1991). The collapsed-space sampler sim-
ulates a Markov chain with target distribution 7({Z;}!_,|D) on the reduced space
{Z;}_,; this is possible by integrating out the cluster-specific parameters, in our case
{Py(jk), T(jk)}jyk. Posterior samples for the cluster parameters can then be obtained by

sampling from their conditional posterior distribution; details are in the Appendix.

Theoretical and empirical support for the use of collapsed-space Gibbs samplers
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is given in Liu (1994). The author shows that the operator norm of a collapsed-space
Gibbs sampler is less than or equal to that of the corresponding full-space Gibbs
sampler (Liu 1994, Thm.1). This result applies to our context, giving evidence that
a Gibbs sampler over the parameters {Z;}/_, is likely more efficient than a sampler
on the full space that alternates Gibbs updates of {Z;}/_, with Gibbs updates of the
cluster-specific parameters. Liu (1994) also finds improved empirical performance of
a collapsed-space Gibbs sampler over the full-space Gibbs sampler in a context that

has similarities to ours.

Collapsed-space sampler. The basic collapsed-space Gibbs sampler for DPMs con-

sists of Gibbs updates of each Z; in turn; this method was first used by Neal (1992)
and Escobar (1994). In order to address the potential multimodality of the posterior
distribution, Jain and Neal (2004) add a Metropolis-Hastings move that merges two
clusters into one or splits a cluster into two. They give empirical evidence showing
that the addition of this move speeds convergence.

In the distributed computing context, the number of metrics can be large, and
the resulting likelihood can have narrow and well-separated modes corresponding to
distinct cluster assignments. Here even the collapsed-space sampler with split-merge
moves can have difficulty moving between the modes. Additionally, convergence di-
agnostics can be difficult to apply; the parameters are the cluster indicators Z; of the
individual crises, which for a particular crisis may take only one or two values for the
entire simulation even when the mixing is good. Standard convergence diagnostics
such as Geweke’s diagnostic or the Gelman-Rubin diagnostic are degenerate when
applied to a constant-valued time series (Cowles and Carlin 1996), so one could only
apply convergence diagnostics to non-constant Z; or to non-constant summaries of

the parameter vector {Z;}!_,, such as the log-likelihood.
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Parallel tempering. In order to improve the efficiency of the Markov chain, and to

facilitate the use of convergence diagnostics, we modify the Markov chain by apply-
ing parallel tempering. This technique has been proven to dramatically improve
Markov chain efficiency for many multimodal distributions (Woodard, Schmidler
and Huber 2009). It simulates parallel Markov chains indexed by m = 1,..., M
using identical updating strategies but distinct target distributions ¢,,; we take
Gm({Z: Y1) oc T({Z Y7 (D{ Z;} )P where 7(D|{Z;}._,) is the likelihood of the
data conditioned only on the cluster assignments, and where 0 < ) < ... < Gy = 1.
The first distribution ¢, is close to the prior if 3; ~ 0, so that chain 1 efficiently
explores the state space, and the other target distributions ¢,, interpolate between
¢, and the posterior ¢y = 7({Z;}!_,|D). The chains share samples in the sense that
swaps are proposed between the states of adjacent chains; these swaps are constructed
to guarantee convergence of the joint process to the product distribution H%zl -
The samples from chain M converge marginally to the posterior ¢,;, and can be used
for Monte Carlo inference.

The “inverse temperatures” (3, are chosen as follows. We take 3; = 0, and select
the smallest set of inverse temperatures [3,, that gives swap acceptance rates of at least

20%; theoretical and empirical results to support this choice are given in Atchadé,

Roberts and Rosenthal (2009).

Convergence diagnosis. We apply standard convergence diagnostics (Cowles and

Carlin 1996) to assess convergence of the parallel tempering process. Even if for a
particular crisis ¢ the indicator Z; takes only a single value at the lowest temperature
(By = 1), Z; takes many values at the higher temperatures (f3,, small), allowing
convergence diagnosis.

To detect any lack of convergence due to multimodality, we simulate the parallel

tempering process multiple times and apply the convergence diagnostic by Gelman
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and Rubin (1992). This requires sampling the initial parameter vectors from a distri-
bution that is “overdispersed” relative to the posterior distribution, so we draw these

from the prior m({Z;}L_,).

Handling partial labeling. Extending the above method to the partially labeled

case is simple; first, the Markov chain should be initialized in a configuration that
satisfies the restrictions given in . When simulating the Markov chain, the pa-
rameters Z; for crises that are known to have the same type are updated as a single
parameter, which enforces the restriction that Z; = Z; for all i ~ ’. To enforce the
restriction that Z; # Z; for all i # ', only moves that satisfy this restriction should

be considered in the Gibbs and Metropolis-Hastings updates.

5. ONLINE PREDICTION AND DECISION MAKING

We wish to identify a new crisis in real time, given the data D from previous crises and
the data D, so far for the new crisis. This consists of estimating the probabilities
T(Zpew = Z;i|D, Dpey) that the new crisis has the same type as each previous crisis
i =1,...,I and the probability m(Zew # Z; Vi|D, Dyey) of this being a new type of

crisis (Zpew is an indicator of the type of the new crisis).

5.1 Exact Prediction

To perform inference for Z,., we can apply the Markov chain method from Section
to the data from past crises plus the data available so far for the new crisis, i.e. clus-
tering the I + 1 crises. The Markov chain then has parameter vector ({Z;}/_;, Ziew)
and limiting distribution equal to the posterior distribution 7({Z;}/_,, Z,cw|D; Dnew)-
Call the iterations of this chain ({Z"}_,,Z® YforI=1,... L.

Then we have the following Monte Carlo estimates for m(Z e, = Z;i|D, Dyew) and

15



T(Znew 7# Zi Yi|D, Dyew):

7c‘-(Znew = Zi|D7Dnew =

Y Uz, =7") (5)

L
=1
L

Z (29, # 2" vi).

Sk

7 (Zinew 7 Z; Vi|D, Dyery) =

h |

The right-hand side of , for instance, is simply the proportion of samples from the
Markov chain for which the new crisis is in the same cluster as the ith crisis. Since
the Markov chain converges to the posterior distribution, we have that 7(Z,e, =
Z,|D, Dyew) converges to m(Zipew = Zi|D, Dpew) as L — oo (cf. Tierney, 1994).

The more computationally intensive part of this approach is simulating the Markov
chain; having obtained these samples the Monte Carlo computation in is nearly
instantaneous. The above-described approach is practical when the number of past
crises is small (for I = 15, J = 10 simulating the Markov chain for 10° iterations takes
less than 10 minutes on a standard processor), but after many crises is unacceptably

slow for a context requiring rapid decision making.

5.2 Approximate Prediction

We provide an efficient alternative for prediction, based on the approximation:

71-(Znew - Zi|D7Dnew) - Z 7T-(Znew - Z |{Zz’ i = 17D7Dnew) ({Zz’ 1’D Dnew)
{Zﬂ}ézl

~ Z Tr(znew Z |{ZZ’ i'= 17D7Dn6w)7r({zi'}i]’:1|p) (6)
{Zﬂ}ézl

and the analogous approximation for 7(Zy,ew # Z; Vi|D, Dyew). These assume that
the data from the new crisis do not tell us very much about the past crisis types
{Z;/}1_,; this is quite accurate in practice, as demonstrated in Section

The conditional distribution m(Zyew|{Zi },_,, D, Dnew) Of Zpew is expressed as:
T(Zinew|{ Zi }' 1> D, Drew) < T(Zinew|{ Zir iI':l)W(Dapnew‘Znewa{Zi’}z’l':l) (7)
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where 7(D, Dyew|Zinew, {Zir }1_,) is available in closed form as shown in the Appendix,
and where (from the Dirichlet process mixture model in ([2]))
I
W(ZnewHZi’}f’:l) x al (Znew =mr+ 1) + Z 1 (Z"ew - Zi/) :
i'=1

Given these facts, we propose the following two-step method:

Method for Approximate Prediction

1. After the end of each crisis, refit the clustering model by simulating the
Markov chain described in Section . This yields sample vectors {Zgl) i

from the posterior distribution 7({Z;}/_,|D).

2. When a new crisis begins, use its data D, to calculate the Monte Carlo

estimates:

ﬁ-(znew = Zi|D7Dnew = Zﬂ- new — ZEZ)HZEII) 1‘1/:172)7 Dnew)

L
=1
L

e~ =

) (Z
1
#(Zunew # Zi VilD, Docw) = 7 D (Zews # 7 il{ZV | D, Dyew).
=1
For each [ the discrete distribution W(Znew\{Zg) !, D, Dpew) is first com-
puted, by enumerating over the possible values £ = 1,...,m; + 1
of Zpew and normalizing. Then m(Z,e, = ZE’)|{Z§,”}{/:1, D, Dyew) and
T(Zpew # Zgl) Vi|{ZZ(.,l) ! 1D, Dyew) are found by choosing the appropriate

element of the vector W(Znew\{Zg) ! 1D, Dyew)-

Part 1 is the slower part of the computation, but takes much less than the hours or
days that typically pass between crises. The computation in part 2 above is O(LI.J),

very manageable in real time.
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5.3 Expected-Cost-Minimizing Decision Making

Given an appropriate cost function, we can use our inferences for a new crisis to per-
form expected-cost-minimizing decision making. In fact, performing optimal decision
making (conditioning only on the data and not on particular parameter estimates),
can only be done using fully Bayesian inference (Robert 2001).

A cost function specifies the total cost of a crisis as a function of the true crisis
type and the intervention taken. Taking an intervention that quickly resolves a crisis
gives low total cost, while taking an intervention that prolongs a crisis leads to high
total cost. The costs of a crisis include, for instance, payouts to clients for violation
of service agreements as well as client dissatisfaction.

More precisely, the total cost of the new crisis is a function C' ¢, ({Z;},, Z,,,)]

new

of the intervention ¢ and the entire vector of true crisis types ({Z 1> Zzew) due to

the fact that Z_, is only meaningful in the context of {Z }/_,. If we knew C, and

given posterior sample vectors <{Z 1> Zggw) as in Section , the expected cost

of taking ¢ during the new crisis could be estimated consistently as

Zc[ {z"},20,)]

A similar expression is obtained when using the approximation given in Section [5.2]

The expected-cost-minimizing intervention is the value of ¢ that minimizes E(C).
Although the cost function C' is not known in practice, for interventions ¢ that have
been taken during previous crises the realized costs can be used to estimate C', and
for other interventions expert knowledge can be used to estimate C'.

We will evaluate the accuracy of our crisis identification method while keeping
in mind the ultimate goal, namely choosing the optimal intervention. For this rea-
son we will avoid choosing a particular estimate of the crisis types ({Z;}/_}, Znew),

and instead will consider the accuracy of the soft identification, i.e. the posterior

distribution over ({Z;}._;, Zye,) as given in Sec. &
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6. A SIMULATION STUDY

We demonstrate the accuracy of our methods on simulated data. We first address
the offline setting, i.e. applying the clustering algorithm described in Sec. [3| & (]l to a

fixed set of crises. Then we consider accuracy of online clustering.

6.1 Offline Accuracy

We examine offline accuracy, varying the number of crises and metrics and comparing
to an alternative model-based clustering algorithm detailed in Fraley and Raftery
(2002) and extended and supported in numerous subsequent analyses (Fraley, Raftery
and Wehrens 2005; Li, Fraley, Bumgarner, Yeung and Raftery 2005; Raftery and
Dean 2006). We also have compared our method with a distance-based clustering
method, which fared extremely poorly due to the difficulty of choosing an appropriate
distance metric; those results are not reported here.

The clustering method of Fraley and Raftery (2002) fits a finite mixture model via
maximum likelihood using the expectation-maximization (EM) algorithm (Dempster,
Laird and Rubin 1977). The initial clustering is obtained using model-based hierar-
chical agglomerative clustering (cf. Banfield and Raftery 1993), and the number of
clusters is chosen using the Bayesian Information Criterion (Schwarz 1978). The
method of Fraley and Raftery (2002), like ours, yields a probabilistic (“soft”) assign-
ment of observations to clusters, but unlike our method chooses a particular number
of clusters and particular values for the cluster parameters, rather than obtaining a
posterior distribution over these quantities.

We sample [ crises of equal length M by first drawing the number of clusters
from a uniform distribution on the integers from 1 to I. Conditional on the number
of clusters we sample the vector of cluster probabilities from a generalized uniform
distribution, then sample the cluster indicators according these probabilities (un-

represented clusters are dropped, reducing the number of clusters). We sample the
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cluster parameters 7%, TV from finite Dirichlet / product Dirichlet distributions,
then simulate the metrics for each crisis from the time series model given in Sec. 3.1}

In order to simulate data that are as realistic as possible, we take the hyperpa-
rameter values at/), bgj ) for the finite Dirichlet distributions to be those obtained for
the EHS data as described in Section and take the crisis length to be the median
length in the EHS data (8 time periods).

Twenty datasets are simulated for each of several combinations of I and J, and
the following measures of accuracy are obtained for our method (“DPM”) and for the

method of Fraley and Raftery (2002) (“ML-BIC”):

1. Pairwise Sensitivity: Of the pairs of crises that are of the same type, the

percentage that have probability greater than 0.5 of being in the same cluster.

2. Pairwise Specificity: Of the pairs of crises that are not of the same type, the

percentage that have probability no more than 0.5 of being in the same cluster.

3. Error of No. Crisis Types: The absolute error of the estimated number of
crisis types occurring in the data, divided by the true number of crisis types.

For DPM, the posterior mean is used to estimate the number of types.

These measures have been used, e.g., in Booth, Casella and Hobert (2008).

Values of the accuracy measures are reported in Table [I] averaged over the sim-
ulated datasets and along with their standard errors (when applying DPM we have
chosen « so that the prior mean # clusters is /4, although multiplying or dividing «
by five gives virtually identical results). The accuracy of DPM is better than ML-BIC
by all measures, and dramatically better in terms of both pairwise sensitivity and es-
timating the number of clusters. The performance of ML-BIC degrades substantially

as the number of metrics increases.

20



The main problem is that EM in this context rarely changes the cluster assign-
ments from their initial values; the final cluster assignments are probabilistic, but
typically place nearly all probability mass on the initial cluster assignments. This
means that the initial cluster assignment provided by hierarchical clustering corre-
sponds to a local mode of the likelihood function, so that EM stays in that local
mode. In our context there can be few observations per cluster and the observations
have moderate to high dimensionality; this leads to many such local modes of the
likelihood function.

We altered the ML-BIC algorithm in several ways to attempt to fix this prob-
lem, without success. First, we smoothed the initialization of EM, placing only 80%
of the prior mass for each observation on the cluster assignment from hierarchical
clustering, and the remainder on other cluster assignments. Second, we smoothed
the surface over which the maximization is performed, by placing a prior on the pa-
rameters of the finite mixture model and maximizing the posterior density instead of
the likelihood, as suggested by Fraley and Raftery (2002). We used two prior spec-
ifications for the cluster-specific parameters v0% and TU®): the generalized uniform
prior (“MAP-UNIF”) and the prior described in Section [3.3] (“MAP-INFO”). For the
cluster probabilities (conditional on the number of clusters) we used a generalized
uniform prior. The resulting algorithms perform better than ML-BIC but still far
worse than DPM for all values of I and J. Results for MAP-UNIF are shown in
Table [} the accuracy of MAP-INFO was only slightly better than ML-BIC and is
not reported.

While the performance of ML-BIC and its variants degrades as the number of met-
rics increases, the performance of DPM improves by all measures in this simulation.
More metrics means both more noise in the data and more information available to

estimate the clusters. While the performance of the EM-based methods suffers due to
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overfitting the noise, DPM succeeds in taking advantage of the additional information.
The number of crises in the data does not appear to have a strong effect on the
accuracy of DPM. This helps explain the excellent accuracy that we find in the online

context (Section [6.2]), where the number of crises starts small and increases over time.

6.2 Omnline Accuracy

We examine the accuracy of our method in the online context; given a set of sim-
ulated crises in a particular order, we estimate the type of each crisis based on the
data from the previous crises and partial data for the new crisis. Due to the poor
performance of the expectation-maximization approaches in the offline context, we do
not consider these methods further. We instead compare predictive accuracy of the
approximate method given in Section (“DPM”) to that of the exact method in
Section (“DPM-EX?”), in order to justify the approximation. For data simulated

as in Section [6.1], we evaluate several measures of accuracy for DPM and DPM-EX:

1. Full-data misclassification rate: The percentage of crises whose predicted
type is incorrect, using all of the data for the new crisis. Here “correct” predicted
type means that T(Zyew # Z; Vi|D, Dyew) > 0.5 if Zyew, # Z; Vi according to the
gold standard (here, the truth), and otherwise that 7(Z,c., = Z;|D, Dpew) > 0.5

for some ¢ < I such that Z,., = Z; according to the gold standard.

2. p-period misclassification rate: The percentage of crises whose predicted

type is incorrect, using the first p time periods of data for the new crisis.

3. Average time to correct identification: The average number of time pe-
riods required to obtain the correct identification, for crises that are correctly

identified when using the full data for the new crisis.

We do not evaluate the average time to correct identification for DPM-EX, since this

is extremely computationally intensive. The average values of the above accuracy
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measures over five simulated datasets are shown in Table 2] for several combinations
of I and J.

The accuracy is high for both DPM and DPM-EX, correctly classifying over 80%
of crises in every setting we considered. The performance of DPM is not significantly
worse than that of DPM-EX, showing the accuracy of the approximation given in
Section [5.2] There is some evidence that using more metrics shortens the average
time to identification and reduces the misclassification rates.

The accuracy of both methods degrades when using the data from only the first
three time periods of the new crisis, but still over 80% of crises are correctly classified
in all cases. The average time to correct identification for DPM is between one and
two time periods. Such early identification of a crisis is extremely helpful in choosing

an appropriate intervention.

7. APPLICATION TO THE EMAIL HOSTED SERVICE
27 crises occurred in EHS during the first four months of 2008. The causes of some of
these crises have been diagnosed by EHS experts, and are listed in the third column
of Table 3l For confidentiality reasons, the letters assigned to these crisis types do
not correspond with the letters shown in Figure[l] All of the EHS data used here are

free from human interventions.

Preprocessing. We choose a subset of the available metrics by applying the feature

selection procedure in Bodik, Goldszmidt, Fox and Andersen (2009). In cases of pairs
of metrics with correlation greater than 0.95 we remove one, leaving 18 metrics.

To facilitate early crisis identification, it is helpful to include the data from the
half-hour just before the start of each crisis in fitting the model and estimating the
type of a new crisis. Additionally, we do not use data after the first hour and a half

of each crisis, since the metrics are not believed by the EHS experts to be informative
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as to the crisis type after this time.

7.1 Offline Application

To test the accuracy of the offline crisis identification method given in Sections |3l and
[ we apply it to the whole set of EHS crises without the known crisis labels, and
compare our results to those labels.

Markov chain trace plots are shown in Figure [2] illustrating the convergence of
the chains. The samples of Zs, for several values of the inverse temperature 3 are
shown. The chain with g = 1, which is designed to draw from the posterior distri-
bution 7({Z;}!_,|D), primarily visits the single value Zy, = 2, while the chains with
smaller values of (3 visit progressively more values of Zs,. This facilitates convergence
diagnosis and exploration of the space. Using 10° iterations, the smallest Geweke
diagnostic p-value for the Markov chains is 0.44 after Bonferroni correction, detecting
no lack of convergence. Here univariate tests are done for each parameter Z; : i # 1 at
each inverse temperature (omitting cases where Z; was constant for the entire chain).
Similarly, we obtain a maximum Gelman-Rubin scale factor of 1.01, again evidence of
good convergence. This maximum is taken over Z; : ¢ # 1 for inverse temperatures (3
less than 0.5 (for 5 > 0.5 there are numerical difficulties, since some Z; take a single
value for almost all iterations).

The sizes of the clusters from the posterior mode cluster assignment are shown in
the fourth column of Table 3] This cluster assignment has 58% posterior probability,
and along with the second-highest probability assignment accounts for a total of 93.8%
of the posterior probability. This second assignment has only a single difference with
the first, namely a change in the labeling of one crisis, increasing the count of type B
to 15 and decreasing the count of type I to 5. We will summarize the accuracy of the
posterior mode clustering assignment relative to the known causes, but this summary

applies equally well to the second assignment since the crisis for which they differ has
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unknown cause.

Comparison to known causes. The posterior mode crisis labels for the most part

match the known causes, with the exception of four uncommon crisis types that are
incorrectly clustered with more common types. The largest cluster obtained by our
method corresponds to the cause “overloaded back-end”; all eight of the crises known
to be of this type are correctly clustered together, along with six other crises (most of
which have unknown cause). The “overloaded back-end” problem occurs due to poor
performance of another computing center, one on which the servers depend. The EHS
technicians do not have authority to fix the performance of that separate computing
center, explaining why this is the most common type of crisis. It is also the most
important type of crisis to correctly identify, since although the problem cannot be
fixed, the technicians know the best intervention for minimizing the effect of such a
crisis.

The two crises of known cause “overloaded front-end” are also correctly clustered
together. Similarly, the “database configuration error”, “workload spike”, and “re-
quest routing error” clusters are correctly identified.

Four uncommon crisis types are incorrectly clustered with more common types.
For instance, the “configuration error” crisis is clustered with the “overloaded front-
end” crises. This type of mistake occurs partly due to the fact that crises having
different causes (e.g., closely related causes) can have the same patterns in their
metrics. In the most extreme case, the metrics appear to be indistinguishable between
the two crisis types. This result suggests to computing center operators the need for
additional metrics to distinguish between these crisis types.

In the other cases of incorrectly merged crisis types, while the large majority
of metrics are indistinguishable between the two types a few metrics show distinct

behavior. Since we have assumed the parameters of distinct crisis types to be inde-
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pendent a priori, the presence of distinct crisis types with similar patterns for most
metrics is very improbable under the prior. Such crisis types are therefore clustered
together. This issue could be fixed by creating a hierarchical dependence structure
between crisis types in the prior distribution. This structure would be realistic, since
in fact one can define the true crisis “causes” according to a coarse division into a
few main causes, or into finely sub-divided causes.

The tendency to merge small clusters with larger clusters could also be due to our
use of the Dirichlet process, under which the model for the cluster assignments has a
single parameter o. A more flexible approach would be to use the Pitman-Yor process
(Pitman and Yor 1997), which is a generalization of the Dirichlet process that has
two parameters for the cluster assignment model and a richer ability to represent the
distribution of cluster sizes. We expect that the methods given in this paper would

generalize naturally to this process, and leave this as future work.

Sensitivity to Prior Specification. Results are very insensitive to the choice of «;

multiplying or dividing o by up to a factor of 20 does not change the posterior mode
cluster assignment. Results are also not sensitive to the choice of the constants a?)
and bgj ). as long as this choice is not dramatically inconsistent with the data and with
the experts’ belief that the metrics provide substantial information about the crisis
type. For instance, changing the prior median of max; fyt(j " and max; rﬁj " from 0.90
to 0.99 or 0.85 does not change the posterior mode clustering assignment. Reducing
this value to 0.80 switches the ranks of the two most probable cluster assignments, but
the total posterior probability of these two cluster assignments is still high (89.9%).
Reducing it further to 0.70 gives the same results as 0.80 except that the posterior
probability of these two most probable cluster assignments declines to 66.7%. Note

that even with this large change in the prior, the accuracy results reported in Table 3]

column 5 are unchanged.
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We examine sensitivity to the prior mean of V%) and Tgk) by taking the data-
based prior mean described in Section and mixing with a uniform distribution.
When the mixture proportions are 3/4 on the data-based mean and 1/4 on the uniform
distribution, the posterior mode clustering assignment is unchanged. When we reduce
the weight on the data-based mean to 1/2, the ranks of the two most probable cluster
assignments are switched, but they still account for 90.3% of the posterior probability.
Reducing it further to 1/4, clusters A and H become merged. Thus the prior has to

change dramatically before results change in a meaningful way.

7.2 Online Application

We evaluate the accuracy of online clustering for the EHS data, relative to the of-
fline clustering assignment. We apply the online crisis identification method given in
Sec. and evaluate the accuracy measures described in Sec. [6.2] treating the poste-
rior mode cluster assignment from the offline context (Sec. as the gold standard.

We obtain a full-data misclassification rate of 7.4%, a 3-period misclassification
rate of 14.8%, and an average time to correct identification of 1.81 time periods. This
means that on average the crises are identified correctly even before the technical
start of the crisis. Two-thirds of the crises are identified correctly in the first time
period.

To check whether the good identification performance of our method is specific to
the particular ordering of the crises, we also permute the crises and evaluate perfor-
mance. Taking the average over five random permutations of the crises, we obtain a
full-data misclassification rate of 5.9% (SE=3.4%), a 3-period misclassification rate
of 11.8% (SE=3.2%), and an average time to correct identification of 1.56 (SE=0.07).

These results are even better than for the original ordering.
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8. CONCLUSIONS

We have given a method for fully Bayesian online crisis identification in distributed
computing, and have described how to use this to perform expected-cost-minimizing
crisis intervention. Accuracy has been demonstrated on both simulated data and data
from a production system (EHS); our method dramatically outperforms a state-of-
the-art maximum likelihood / maximum a posteriori clustering method in the offline
setting, and sees very little loss of accuracy in the online setting relative to the offline
setting.

Importantly, our method provides natural solutions to several related problems;
these are explored in Goldszmidt and Woodard (2010). First, during a crisis one can
forecast its evolution. Second, the model-based approach allows for interpretation
of the crisis types, which can aid identification of the causes and suggest promising
interventions. For instance, one can distinguish the system status metrics that are
most strongly associated with crises of a particular type. This question alone has
received considerable attention (Cohen et al. 2004, Zhang et al. 2005), and is resolved
naturally in the context of our time series model. Finally, one could potentially model
not just the evolution of crises of a particular type, but also how this evolution depends
on the intervention taken.

The above uses give our approach an advantage over another potential alternative:
directly learning a mapping from the metrics to the best intervention. Such a mapping
avoids an explicit model for the metrics, and so cannot be used for any of these related
purposes (which are essential to the operators of such systems).

Here we have used a parsimonious model for the crises, due to the small sample
sizes available for inference. Such small sample sizes are characteristic of crisis identi-
fication in the environment of large-scale distributed computing supporting internet

services. The system as a whole undergoes frequent updates and occasional configu-
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ration changes. This is due in part to the constant addition of features and in part
to changes required for long-term crisis resolution. The result is that the learning
process has to be restarted often, so that there are almost never more than fifty rele-
vant past crises, and typically labels are available for only a minority. Thus, although
one could theoretically allow the model to become more complex as the sample size
increases, in practice one almost never reaches sample sizes large enough for this to

be useful.
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APPENDIX: MARKOV CHAIN MONTE CARLO

COMPUTATIONS

The likelihood of the data conditioned only on {Z;}L, is:

m(DNZ},) = / 7 (D IHZ (09, TPY0) 7w (009, T} | {Z)L, ) dy 0T
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Using (1) and (3]) and by multinomial-Dirichlet conjugacy (cf. Gelman, Carlin, Stern,
and Rubin 2004),

. e r(al 1(Yq; =t
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(8)

The posterior distribution of {Z;}!_, is proportional to the product of m({Z;}._,)
and 7(D|{Z;}]_,), given in and (§), respectively. A Markov chain can then be
constructed to sample on this reduced space. For instance, a Gibbs sampler for
{Z;} updates each Z; conditional on Z;_;) = {Z;y}y4. The posterior distribution
of Z; conditional on Z_; is proportional to 7({Z;}/_,|D); computation consists of
enumerating over the possible values of Z; and normalizing to obtain the conditional
distribution. The possible options are that Z; is equal to one of the values in Z_;, or
that it is not equal to any of the values in Z_;). Notice that any of these possibilities
may require relabeling of the crisis types, to ensure that the first occurrences of the
types are correctly ordered.

Once we have obtained posterior samples of {Z;}/_; by simulating such a Markov

chain, we can also obtain posterior samples of {yV*), T(jk)}j,k, by noticing that

mr

7({y9%, TUMY; {2}, D) = [ | [ | Dirichlet((47”, 7§, 75™);:a) x
k=1 j
my .
[T Dirichiet((T4?, 7%, T5):5.”)
k=1 j,s

2() _ o 0) _n B 6 _

where &’ = a;”’ + 1(Yy;, =t), by =by + > niya fort =1,2,3, and
k i Zi=k

i Z;=
where Dirichlet((7\7", 75 ~U¥)).a0)) is the finite Dirichlet density for vU*) with

parameter vector a¥. For each posterior sample of {Z;}/_,, generate one sample
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from 7({y*) TUR}, (|{Z;}]_,, D); this gives joint posterior samples of the full set of

parameters ({Z;}._,, {7, T(jk)}j,k)-
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Table 1: Offline accuracy of DPM and EM-based methods for simulated data.

No. Crises | No. Metrics | Method Pairwise Pairwise % Error
Sensitivity Specificity No. Types

15 10 DPM 96.6 (1.45) | 99.5 (0.29) 5.3 (1.22)
ML-BIC 54.0 (5.21) 98.0 (0.54) | 77.4 (27.96)

MAP-UNIF 58.6 (5.14) 97.8 (0.57) | 77.4 (27.96)

15 15 DPM 98.5 (0.90) | 99.9 (0.05) 8.9 (3.71)
ML-BIC 39.8 (4.81) 99.9 (0.10) | 113.0 (32.97)

MAP-UNIF | 49.6 (5.80) 99.5 (0.23) | 113.0 (32.97)

25 10 DPM 94.6 (2.49) | 99.8 (0.10) 7.6 (1.62)
ML-BIC 59.1 (4.78) 98.6 (0.31) 24.2 (6.11)

MAP-UNIF 67.1 (4.89) 97.1 (0.90) 24.2 (6.11)

25 15 DPM 99.7 (0.32) | 99.7 (0.19) 2.7 (0.84)
ML-BIC 40.9 (4.11) 99.8 (0.07) 86.0 (15.0)

MAP-UNIF 57.6 (5.14) 99.8 (0.10) 86.0 (15.0)

35 10 DPM 93.1 (1.43) | 99.6 (0.09) 8.2 (1.68)
ML-BIC 61.2 (4.04) 98.0 (0.24) 35.0 (9.81)

MAP-UNIF 68.5 (4.07) 97.8 (0.29) 35.0 (9.81)

35 15 DPM 97.9 (0.95) | 99.9 (0.06) 3.0 (0.60)
ML-BIC 46.2 (3.56) 99.7 (0.09) 51.8 (9.81)

MAP-UNIF 52.1 (3.77) 99.5 (0.20) 51.8 (9.81)

NOTE: Accuracies are averaged over 10 datasets, with standard errors shown in

parentheses.

Table 2: Online accuracy of DPM and DPM-EX for simulated data.

No. No. Method Full-data 3-period | Avg. Time to
Crises | Metrics Misclassification | Misclassification | Identification
15 10 DPM 6.7 (3.0) 10.7 (4.5) | 1.31 (0.11)
DPM-EX 8 (2.5) 10.7 (4.5) —
15 15 DPM 6.7 (5.2) 9.3 (6.2) | 1.13 (0.08)
DPM-EX 5.3 (3.9) 8.0 (4.9) —
25 10 DPM 13.6 (2.7) 15.2 (2.7) | 1.33 (0.13)
DPM-EX 9.6 (2.0) 15.2 (3.4) -
25 15 DPM 2.4 (1.6) 4.0 (1.8) | 1.15 (0.06)
DPM-EX 3.2 (1.5) 3.2 (1.5) -

NOTE: Accuracies are averaged over five datasets, with standard errors shown in

parentheses.
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Table 3: Crises types in data from Microsoft’s EHS computing center.

ID Cause No. of known No. identified No. DPM crises
crises by DPM matching known

A overloaded front-end 2 3 2

B overloaded back-end 8 14 8

C  database configuration error 1 2 1

D  configuration error 1 0 0 (labeled as A)

E  performance issue 1 0 0 (labeled as B)

F middle-tier issue 1 0 0 (labeled as I)

G  whole DC turned off and on 1 0 0 (labeled as B)

H  workload spike 1 2 1

I request routing error 1 6 1

NOTE: The number of crises known to be of each type is given in column 3. The
number of crises identified by DPM as being of this type is given in column 4, and
the number of these that correspond to the crises of known type is given in column

d.

Figure 1: Traces of several metrics for Microsoft’s EHS computing center over a
period of ten days; crisis periods are highlighted and labeled according to known

type.
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Figure 2: Trace plots of the parallel tempering Markov chain samples of Zgs. Three
inverse temperatures 3 are shown; x-axes correspond to the (post-thinning) iterations
of the Markov chain.
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