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Abstract

Large-scale distributed computing systems can suffer from occasional severe

violation of performance goals; due to the complexity of these systems, manual

diagnosis of the cause of the crisis is too slow to inform interventions taken

during the crisis. Rapid automatic recognition of the recurrence of a problem

can lead to cause diagnosis and informed intervention. We frame this as an

online clustering problem, where the labels (causes) of some of the previous

crises may be known. We give a fast and accurate solution using model-based

clustering based on a Dirichlet process mixture; the evolution of each crisis is

modeled as a multivariate time series.

In the periods between crises we perform full Bayesian inference for the past

crises, and as a new crisis occurs we apply fast approximate Bayesian updat-

ing. These inferences allow real-time expected-cost-minimizing decision making

that fully accounts for uncertainty in the crisis labels and other parameters. We

apply and validate our methods using simulated data and data from a produc-

tion computing center with hundreds of servers running a 24/7 email-related

application.
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1. INTRODUCTION

Commercial distributed computing providers offer remotely hosted processing ser-

vices. The providers accomplish this computing by farming out to servers that may

be spread across geographical and corporate boundaries in centers containing tens of

thousands of machines. For instance, Microsoft offers email processing via an Email

Hosted Service (EHS), in which incoming messages are routed to servers that apply

a set of spam filters before directing remaining emails to the user.

Such systems have performance requirements such as limits on processing times,

set in agreements with clients; violation of these limits (a “crisis”) leads to cash

penalties and potential loss of contracts, so rapid diagnosis and intervention is critical

when a violation occurs. Such problems can happen, for instance, when demand is

high and servers become overloaded, or due to human misconfigurations (e.g., during

software updates) or performance problems in lower-level computing centers on which

the servers rely (e.g., for performing authentication services).

When a crisis occurs, we wish to rapidly identify any previous crises of the same

type, and take the intervention that has been most effective in the previous occur-

rences. Due to the large scale, the interdependence and the distributed nature of

the systems, problems tend to recur and human diagnosis is very slow, so one must
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recognize the recurrence of a problem in an automated fashion. A set of status mea-

surements for the servers, such as CPU utilization and queue length and throughput

for various tasks, are available for this purpose; there can be hundreds of these mea-

surements per server.

We consider the problem of matching a currently occurring (and thus incompletely

observed) crisis to previous crises of mixed known and unknown causes. This is an

online clustering problem with partial labeling that is complicated by the incomplete-

ness of the data for the new crisis. By online clustering we mean the task of grouping

(in real time) observations that arrive in a temporal sequence. Previous work in on-

line crisis/failure identification (Cohen et al. 2005, Yuan et al. 2006, Duan and Babu

2008, Bodik et al. 2009) uses multi-stage approaches combining statistical, machine

learning, or ad-hoc methods. While giving practical solutions, they do not provide

a complete model for the process of interest. They also restrict to either completely

labeled or completely unlabeled data, and do not satisfactorily address the incomplete

nature of the new crisis data.

We provide a solution using online model-based clustering, where the evolution

of each crisis is modeled as a multivariate time series. In the periods between crises

we perform full Bayesian inference for the past crises, and as a new crisis occurs we

apply fast approximate Bayesian updating.

A Dirichlet process mixture model (Escobar 1994; Ishwaran and Zarepour 2002) is

used for the cluster assignments; this allows us to automatically estimate the number

of clusters from the data, and to quantify our uncertainty regarding the number of

clusters. Since the posterior distribution can be highly multimodal, we make the

inference on clusters as efficient as possible by combining parallel tempering (Geyer

1991) with a collapsed-space split-merge Markov chain method (Jain and Neal 2004).

Fully Bayesian inference of this kind is required to perform optimal decision mak-
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ing while accounting for uncertainty in the crisis type assignments and the parameters

of those types. We describe how to use our Bayesian identification of a new crisis to

choose an intervention that minimizes the expected cost of the crisis.

Online clustering based on Dirichlet process or related mixture models has been

previously addressed by Sato (2001), Zhang, Ghahramani and Yang (2004), and

Gomes, Welling and Perona (2008). These papers focus on clustering very large num-

bers of observations, motivated by the need to automatically categorize huge volumes

of news stories and images; Zhang et al. (2004), for instance, cluster 62,962 documents

having 100,000 features. These authors therefore develop fast approximate methods.

Zhang et al. (2004) obtain a single “best” cluster assignment for each observation, not

updating the cluster assignments of existing observations as new observations arrive,

nor quantifying uncertainty regarding the cluster assignment. Sato (2001) and Gomes

et al. (2008) use a variational approximation to the posterior distribution, where the

approximating distribution is completely factorizable and has a simple parametric

form for the marginal distribution of each parameter. Such an approximation can be

useful for very large sample sizes, where more precise inference is intractable, but is

hard to justify otherwise.

In our context the number of observations is small to moderate, and the focus is on

accurate clustering and quantification of uncertainty, including uncertainty regarding

the cluster assignments. For this reason we perform fully Bayesian online clustering

without resorting to a variational approximation. Our Markov chain method simu-

lates accurately from the posterior distribution, updating the cluster assignments of

old observations as more data become available, handling the multimodality of the

posterior distribution, and capturing dependencies between parameters.

Our main contribution is to solve an important applied problem by combin-

ing Dirichlet process mixture models for time series observations with sophisticated
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Markov chain Monte Carlo methods. To our knowledge we are also the first to do fully

Bayesian real-time online clustering without resorting to a variational approximation.

We demonstrate the accuracy of our crisis identification method using simulated

data and comparing with a state-of-the-art maximum likelihood / maximum a pos-

teriori clustering algorithm; our method is far more accurate in these simulations.

Then we apply our method to the Email Hosted Service. Priors for the parameters

are obtained by combining information from experts with information in the data,

and reflect the fact that the server status measurements are chosen with the goal of

being indicative of crisis type.

An alternative to clustering is given by classification methods, which can be ap-

plied by using the available labels and creating a category for crises of unknown cause.

We do not take this approach, since it is less informative than clustering: it can cat-

egorize the new crisis as having unknown type, but cannot identify it as having the

same type as several specific unlabeled past crises. In the typical case where few or

no labels are available (see Sec. 8), the output of classification approaches is not very

meaningful.

The rest of the article is organized as follows. In Section 2 we describe the data

that are typically available for distributed computing centers. Our model for the crisis

evolution and crisis types is given in Section 3. Posterior computation for this model

is described in Section 4, and methods for online prediction and optimal decision

making are given in Section 5. The simulation study is presented in Section 6, while

results for EHS are given in Section 7. In Section 8 we draw conclusions.
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2. MEASURING PERFORMANCE IN DISTRIBUTED

COMPUTING

In distributed computing a common set of measurements from each server capture

its current activity and state, and are typically aggregated over fixed-length time

intervals. EHS handles email traffic, applying a sequence of spam filters, so that

some of the measurements are the number of emails that pass each filter, and the

number blocked by each filter, during the time interval.

Distributed computing systems have a set of performance goals, defined in agree-

ments with clients. An extended period of violation of these performance goals is

considered to be a system crisis. In EHS, for instance, the system is considered to be

in violation if at least a predetermined percentage of the servers are above a threshold

for a “key performance indicator.” Two consecutive violation periods are considered

to define the beginning of a crisis in EHS, and the crisis is considered to continue

until there are four consecutive periods of non-violation.

Traces of several server measurements (“metrics”) for EHS are shown in Figure 1

for a ten-day period; the median value over the servers is plotted. Crisis periods are

highlighted and labeled according to their types, which were diagnosed afterwards.

The first two crises are known to have particular causes “A” and “B”, while the last

four crises are known to have the same cause “C”. It is clear that the third metric

is elevated during crises of type C, but not during crises of type A or B. The second

metric is elevated during crises of type C, but diminished during crises of type A and

B. The first metric appears to be elevated during crises of type C, possibly diminished

during crises of type B, and not strongly affected by crises of type A.

This plot suggests that the medians of the metrics over the servers are very in-

formative as to the crisis type. Furthermore, the median of any particular metric

appears to be consistently either low, normal, or high during crises of a particular
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type. This is supported by the opinion of EHS experts, so we fit our models on the

median values of the metrics, discretizing according to thresholds that define “low”,

“normal”, or “high” values.

We define the normal range of (the median value of) a metric to be the 2nd and

98th quantile of that metric during non-crisis periods. Applying these quantiles to the

EHS data, “high” or “low” values of many of the metrics correspond closely with crisis

periods. We expect similar dimension reduction and discretization to be effective (and

essential) in other distributed computing systems. The number of servers in these

systems is typically huge and is increasing at a rapid pace, so it is important to use

data summaries that do not grow in dimension with the number of servers.

3. CLUSTERING OF SYSTEM CRISES

3.1 Crisis Modeling

We use a time series model for crisis evolution. Denote the vector of metrics for the

ith crisis in the lth time period after the start of the crisis by Yil· = (Yil1, . . . ,YilJ);

for crises of type k, we assume that the initial state vector Yi1· is sampled from a

discrete distribution, and that the state vector Yil· subsequently evolves according to

a Markov chain of order q.

Estimation of the full joint distribution of Yi1· and the full transition matrix is

infeasible when the number of crises I is small and the number of metrics J is moderate

or large, as is typical (for the EHS data I = 27 and J = 18). For such small sample

sizes, extremely parsimonious conditional independence structures have been found

both empirically and theoretically to provide the best accuracy in estimation of a

class variable (Domingos and Pazzani 1997; Friedman, Geiger and Goldszmidt 1997;

Hand and Yu 2001). In particular, naive Bayes models, which assume conditional

independence of all attributes conditional on the class, and augmented naive Bayes
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models that assume only pairwise dependencies conditional on the class, have been

found to have the best accuracy.

We therefore assume independence of all metrics conditional on the crisis type

(dependencies between pairs of metrics can easily be accommodated by replacing

the pair of metrics, having three states each, with a single metric that has nine

states). Conditional on k, Yi1j then has a discrete distribution with probability

vector γ(jk) = (γ
(jk)
1 , γ

(jk)
2 , γ

(jk)
3 ), and Yilj evolves according to a Markov chain of

order q over the three states (1:low, 2:normal, 3:high). For parsimony we take q = 1;

the elements of the row-stochastic Markov transition matrix are denoted by T
(jk)
st

where the subscripts s, t ∈ {1, 2, 3} indicate the states. The resulting complete-data

likelihood function is as follows, where we condition on the unknown type indicators

Zi of each crisis i = 1, . . . , I and where the values nijst are the number of transitions

of the jth metric from state s to state t during crisis i:

π
(
D | {Zi}I

i=1, {γ(jk),T(jk)}j,k

)
=

∏
i,j,t

[(
γ

(jZi)
t

)1(Yi1j=t) ∏
s

(
T

(jZi)
st

)nijst

]
. (1)

For simplicity we will use π to indicate likelihood, prior, and posterior distributions,

as distinguished by their arguments.

3.2 Cluster Modeling

The Dirichlet process mixture (DPM) model provides natural prior specification for

online clustering, allowing estimation of the number of clusters while maintaining

exchangeability between observations (Escobar and West 1995). A DPM can be

obtained as the limit of a finite mixture model with Dirichlet prior distribution on

the mixing proportions (Neal 2000; Rasmussen 2000). In our context the DPM is

parameterized by a scalar α controlling the expected number of types occurring in a

set of crises, and by a prior distribution G0({γ(j·),T(j·)}j) for the set of all parameters

associated with each crisis type k.
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We take G0 to be the product over j of independent Dirichlet distributions for γ(jk)

(with parameter vectors a(j)), times the product over j and s of independent Dirichlet

distributions for the transition matrix rows T(jk)
s· (with parameter vectors b(j)

s ). The

use of such a product Dirichlet prior distribution for the rows of an unconstrained

transition matrix is standard practice (e.g. Carlin, Gelfand and Smith (1992), Diaconis

and Rolles (2006)).

The DPM model for the crisis types {Zi}I
i=1 and crisis parameters γ(jk), T(jk) can

be described as follows, in the case where the causes of the crises are all unknown.

The first crisis has type 1 (Zi = 1) by definition. For subsequent crises,

Pr(Zi = z|Z1, . . . ,Zi−1) =
#{i′ < i : Zi′ = z}

i− 1 + α
for z ∈ {Zi′}i′<i

Pr(Zi 6= Zi′ ∀i′ < i|Z1, . . . ,Zi−1) =
α

i− 1 + α
.

This is called the “Chinese restaurant process”; each observation i is conceptually a

guest who, upon entering a restaurant, either sits at a table that is already occupied,

with probability proportional to the number of guests at that table, or sits at an

empty table.

Conditional on the cluster assignments Zi, the parameters of each cluster k are

independently distributed according to G0. Thus the DPM model can be written

π
(
{Zi}I

i=1

)
= π(Z1)

I∏
i=2

π (Zi|{Zi′}i′<i)

=
I∏

i=1

[
α

α + i− 1
1 (Zi = mi−1 + 1) +

1

α + i− 1

∑
i′<i

1 (Zi = Zi′)

]
(2)

π
(
{γ(jk),T(jk)}j,k|{Zi}I

i=1

)
=

mI∏
k=1

G0

(
{γ(jk),T(jk)}j

)
. (3)

where mi = max{Zi′ : i′ ≤ i} for i > 0 and m0 = 0. In this description the Dirichlet

process has been integrated out, obtaining a generalized Polya urn scheme (Blackwell

and MacQueen 1973).
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When the causes of some of the crises are known (the partially labeled case), this

information can be captured by indicator functions 1(Zi = Zi′) for pairs of crises i, i′

that are known to have the same type (denoted by i ∼ i′) and 1(Zi 6= Zi′) for pairs of

crises i, i′ that are known to have different types (denoted by i 6∼ i′). In this case the

prior π({Zi}I
i=1) is proportional to the expression (2) multiplied by the restriction

∏
i∼i′

1(Zi = Zi′)
∏
i6∼i′

1(Zi 6= Zi′) (4)

while the prior π({γ(jk),T(jk)}j,k|{Zi}I
i=1) is unchanged. Our computational methods

extend trivially to accommodate the partial labels, by simply disallowing configura-

tions that are incompatible with those labels (see Section 4).

3.3 Choice of prior constants

We select the prior hyperparameters α, a(j), and b(j)
s by combining information

elicited from domain experts with information in the data. The former is formal

Bayes, while the latter is empirical Bayes (Carlin and Louis 2009). Sensitivity to

these choices is examined in Section 7.1.

We elicit α from experts; results are remarkably insensitive to the choice of α

(Sec. 6.1 & 7.1). According to the DPM model, the probability that two randomly

chosen crises have the same type is 1/(α + 1). In the EHS example, domain experts

estimate this to be 10%, yielding α = 9. This implies that the expected number of

types in the EHS data is 12.9 (for 27 crises), which the experts agree is reasonable.

For a(j) and b(j)
s one might consider the “default” choice of a

(j)
t = b

(j)
st = 1 for all

j, s, and t; this gives a generalized uniform prior for each of the vectors γ(jk) and each

of the rows T(jk)
s· of the transition matrices, and is a common choice when performing

Bayesian inference on discrete distributions or transition matrices when the number

of parameters is fixed (e.g. Carlin et al. 1992). In our context this prior is very diffuse

relative to the likelihood (explained below). Unfortunately, diffuse priors can be
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problematic when comparing models with parameter spaces of different dimensions,

as is the case in the clustering context where we are comparing different values of the

number of clusters. In particular, such priors can dramatically favor the model with

the smallest number of parameters (cf. Kass and Raftery 1995). We encountered this

problem when attempting to use the generalized uniform prior for the EHS data or

simulated data that mimicked the EHS data; all of the crises were assigned to a single

cluster with very high posterior probability. The generalized uniform prior is not used

for document clustering with DPMs, perhaps for this reason; it is replaced by either

a data-based prior specification or a symmetric Dirichlet distribution with parameter

less than one (Blei, Griffiths, Jordan and Tenenbaum 2004; Zhang et al. 2004).

To explain why the generalized uniform prior is very diffuse relative to the likeli-

hood in the distributed computing context, we note that real data from distributed

computing have very specific properties that are simply not compatible with much

of the parameter space. For instance, the metrics more commonly take the value 2

(“normal”) than the values 1 (“low”) or 3 (“high”); also, the metrics change values

infrequently in the time series, so that any reasonable transition matrix T(jk) must

have diagonal elements close to one.

To create a sensible prior for a(j), we first follow Zhang et al. (2004) in taking the

prior mean of the vector γ(jk) to be the empirical frequencies over the entire dataset,

i.e. the empirical distribution γ∗ = (γ∗
1 , γ

∗
2 , γ

∗
3) of the first value of all metrics in all

crises observed so far. This implies that a(j) = c(j)(γ∗
1 , γ

∗
2 , γ

∗
3) for some constant c(j)

that controls the prior variance of γ(jk). Our choice of this constant will reflect the

fact that the metrics are selected to be indicative of crisis type, i.e. any metric has

non-trivial probability of behaving similarly across crises of a particular type. For this

reason the EHS experts believe that there is a substantial prior probability for any j

and k that one of the values γ
(jk)
t is “close” to one. This is formalized by specifying
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a 50% prior probability that maxt γ
(jk)
t > .9 (results are insensitive to this choice;

Sec 7.1). This choice uniquely determines the value of c∗ = c(j), which can be found

by an iterative numerical procedure that simulates from Dirichlet(cγ∗), checks the

proportion of samples for which one of the values is “close” to one as defined above,

and adjusts c.

Selection of b(j)
s is analogous. We use the data for all metrics and all crises

observed so far to find the empirical transition probabilities T∗
s· from each starting

state s, and set the prior mean of T(jk)
s· equal to T∗

s·. By taking the prior weight

of evidence (the sum of b(j)
s ) to be equal for each row s of the transition matrix,

we must have T(jk) = d(j)T∗ for some constant d(j). To choose d(j), we consider the

limiting distribution r(jk) = (r
(jk)
1 , r

(jk)
2 , r

(jk)
3 ) of a Markov chain with transition kernel

T(jk). Since the metrics tend to behave consistently across crises of a particular type,

there is non-trivial probability that one of the values r
(jk)
t is “close” to one. This is

formalized via a 50% probability that maxt r
(jk)
t > .9. Once again, d∗ = d(j) is found

by simulation.

4. POSTERIOR COMPUTATION

For a fixed set of crises, Markov chain methods can be used to obtain samples from

the posterior distribution π({Zi}I
i=1, {γ(jk),T(jk)}j,k|D) of the clustering model given

in Sec. 3. We use a collapsed-space Markov chain method (Jain and Neal 2004),

modified with parallel tempering (Geyer 1991). The collapsed-space sampler sim-

ulates a Markov chain with target distribution π({Zi}I
i=1|D) on the reduced space

{Zi}I
i=1; this is possible by integrating out the cluster-specific parameters, in our case

{γ(jk),T(jk)}j,k. Posterior samples for the cluster parameters can then be obtained by

sampling from their conditional posterior distribution; details are in the Appendix.

Theoretical and empirical support for the use of collapsed-space Gibbs samplers
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is given in Liu (1994). The author shows that the operator norm of a collapsed-space

Gibbs sampler is less than or equal to that of the corresponding full-space Gibbs

sampler (Liu 1994, Thm.1). This result applies to our context, giving evidence that

a Gibbs sampler over the parameters {Zi}I
i=1 is likely more efficient than a sampler

on the full space that alternates Gibbs updates of {Zi}I
i=1 with Gibbs updates of the

cluster-specific parameters. Liu (1994) also finds improved empirical performance of

a collapsed-space Gibbs sampler over the full-space Gibbs sampler in a context that

has similarities to ours.

Collapsed-space sampler. The basic collapsed-space Gibbs sampler for DPMs con-

sists of Gibbs updates of each Zi in turn; this method was first used by Neal (1992)

and Escobar (1994). In order to address the potential multimodality of the posterior

distribution, Jain and Neal (2004) add a Metropolis-Hastings move that merges two

clusters into one or splits a cluster into two. They give empirical evidence showing

that the addition of this move speeds convergence.

In the distributed computing context, the number of metrics can be large, and

the resulting likelihood can have narrow and well-separated modes corresponding to

distinct cluster assignments. Here even the collapsed-space sampler with split-merge

moves can have difficulty moving between the modes. Additionally, convergence di-

agnostics can be difficult to apply; the parameters are the cluster indicators Zi of the

individual crises, which for a particular crisis may take only one or two values for the

entire simulation even when the mixing is good. Standard convergence diagnostics

such as Geweke’s diagnostic or the Gelman-Rubin diagnostic are degenerate when

applied to a constant-valued time series (Cowles and Carlin 1996), so one could only

apply convergence diagnostics to non-constant Zi or to non-constant summaries of

the parameter vector {Zi}I
i=1, such as the log-likelihood.

13



Parallel tempering. In order to improve the efficiency of the Markov chain, and to

facilitate the use of convergence diagnostics, we modify the Markov chain by apply-

ing parallel tempering. This technique has been proven to dramatically improve

Markov chain efficiency for many multimodal distributions (Woodard, Schmidler

and Huber 2009). It simulates parallel Markov chains indexed by m = 1, . . . ,M

using identical updating strategies but distinct target distributions φm; we take

φm({Zi}I
i=1) ∝ π({Zi}I

i=1)π(D|{Zi}I
i=1)

βm where π(D|{Zi}I
i=1) is the likelihood of the

data conditioned only on the cluster assignments, and where 0 ≤ β1 ≤ . . . ≤ βM = 1.

The first distribution φ1 is close to the prior if β1 ≈ 0, so that chain 1 efficiently

explores the state space, and the other target distributions φm interpolate between

φ1 and the posterior φM = π({Zi}I
i=1|D). The chains share samples in the sense that

swaps are proposed between the states of adjacent chains; these swaps are constructed

to guarantee convergence of the joint process to the product distribution
∏M

m=1 φm.

The samples from chain M converge marginally to the posterior φM , and can be used

for Monte Carlo inference.

The “inverse temperatures” βm are chosen as follows. We take β1 = 0, and select

the smallest set of inverse temperatures βm that gives swap acceptance rates of at least

20%; theoretical and empirical results to support this choice are given in Atchadé,

Roberts and Rosenthal (2009).

Convergence diagnosis. We apply standard convergence diagnostics (Cowles and

Carlin 1996) to assess convergence of the parallel tempering process. Even if for a

particular crisis i the indicator Zi takes only a single value at the lowest temperature

(βM = 1), Zi takes many values at the higher temperatures (βm small), allowing

convergence diagnosis.

To detect any lack of convergence due to multimodality, we simulate the parallel

tempering process multiple times and apply the convergence diagnostic by Gelman
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and Rubin (1992). This requires sampling the initial parameter vectors from a distri-

bution that is “overdispersed” relative to the posterior distribution, so we draw these

from the prior π({Zi}I
i=1).

Handling partial labeling. Extending the above method to the partially labeled

case is simple; first, the Markov chain should be initialized in a configuration that

satisfies the restrictions given in (4). When simulating the Markov chain, the pa-

rameters Zi for crises that are known to have the same type are updated as a single

parameter, which enforces the restriction that Zi = Zi′ for all i ∼ i′. To enforce the

restriction that Zi 6= Zi′ for all i 6∼ i′, only moves that satisfy this restriction should

be considered in the Gibbs and Metropolis-Hastings updates.

5. ONLINE PREDICTION AND DECISION MAKING

We wish to identify a new crisis in real time, given the data D from previous crises and

the data Dnew so far for the new crisis. This consists of estimating the probabilities

π(Znew = Zi|D,Dnew) that the new crisis has the same type as each previous crisis

i = 1, . . . , I and the probability π(Znew 6= Zi ∀i|D,Dnew) of this being a new type of

crisis (Znew is an indicator of the type of the new crisis).

5.1 Exact Prediction

To perform inference for Znew we can apply the Markov chain method from Section 4

to the data from past crises plus the data available so far for the new crisis, i.e. clus-

tering the I + 1 crises. The Markov chain then has parameter vector ({Zi}I
i=1,Znew)

and limiting distribution equal to the posterior distribution π({Zi}I
i=1,Znew|D,Dnew).

Call the iterations of this chain ({Z(l)
i }I

i=1,Z
(l)
new) for l = 1, . . . , L.

Then we have the following Monte Carlo estimates for π(Znew = Zi|D,Dnew) and
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π(Znew 6= Zi ∀i|D,Dnew):

π̂(Znew = Zi|D,Dnew) =
1

L

L∑
l=1

1(Z(l)
new = Z

(l)
i ) (5)

π̂(Znew 6= Zi ∀i|D,Dnew) =
1

L

L∑
l=1

1(Z(l)
new 6= Z

(l)
i ∀i).

The right-hand side of (5), for instance, is simply the proportion of samples from the

Markov chain for which the new crisis is in the same cluster as the ith crisis. Since

the Markov chain converges to the posterior distribution, we have that π̂(Znew =

Zi|D,Dnew) converges to π(Znew = Zi|D,Dnew) as L →∞ (cf. Tierney, 1994).

The more computationally intensive part of this approach is simulating the Markov

chain; having obtained these samples the Monte Carlo computation in (5) is nearly

instantaneous. The above-described approach is practical when the number of past

crises is small (for I = 15, J = 10 simulating the Markov chain for 105 iterations takes

less than 10 minutes on a standard processor), but after many crises is unacceptably

slow for a context requiring rapid decision making.

5.2 Approximate Prediction

We provide an efficient alternative for prediction, based on the approximation:

π(Znew = Zi|D,Dnew) =
∑

{Zi′}I
i′=1

π(Znew = Zi|{Zi′}I
i′=1,D,Dnew)π({Zi′}I

i′=1|D,Dnew)

≈
∑

{Zi′}I
i′=1

π(Znew = Zi|{Zi′}I
i′=1,D,Dnew)π({Zi′}I

i′=1|D) (6)

and the analogous approximation for π(Znew 6= Zi ∀i|D,Dnew). These assume that

the data from the new crisis do not tell us very much about the past crisis types

{Zi′}I
i′=1; this is quite accurate in practice, as demonstrated in Section 6.2.

The conditional distribution π(Znew|{Zi′}I
i′=1,D,Dnew) of Znew is expressed as:

π(Znew|{Zi′}I
i′=1,D,Dnew) ∝ π(Znew|{Zi′}I

i′=1)π(D,Dnew|Znew, {Zi′}I
i′=1) (7)
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where π(D,Dnew|Znew, {Zi′}I
i′=1) is available in closed form as shown in the Appendix,

and where (from the Dirichlet process mixture model in (2))

π(Znew|{Zi′}I
i′=1) ∝ α1 (Znew = mI + 1) +

I∑
i′=1

1 (Znew = Zi′) .

Given these facts, we propose the following two-step method:

Method for Approximate Prediction

1. After the end of each crisis, refit the clustering model by simulating the

Markov chain described in Section 4. This yields sample vectors {Z(l)
i }I

i=1

from the posterior distribution π({Zi}I
i=1|D).

2. When a new crisis begins, use its data Dnew to calculate the Monte Carlo

estimates:

π̂(Znew = Zi|D,Dnew) =
1

L

L∑
l=1

π(Znew = Z
(l)
i |{Z

(l)
i′ }

I
i′=1,D,Dnew)

π̂(Znew 6= Zi ∀i|D,Dnew) =
1

L

L∑
l=1

π(Znew 6= Z
(l)
i ∀i|{Z(l)

i′ }
I
i′=1,D,Dnew).

For each l the discrete distribution π(Znew|{Z(l)
i′ }I

i′=1,D,Dnew) is first com-

puted, by enumerating (7) over the possible values k = 1, . . . ,mI + 1

of Znew and normalizing. Then π(Znew = Z
(l)
i |{Z

(l)
i′ }I

i′=1,D,Dnew) and

π(Znew 6= Z
(l)
i ∀i|{Z(l)

i′ }I
i′=1,D,Dnew) are found by choosing the appropriate

element of the vector π(Znew|{Z(l)
i′ }I

i′=1,D,Dnew).

Part 1 is the slower part of the computation, but takes much less than the hours or

days that typically pass between crises. The computation in part 2 above is O(LIJ),

very manageable in real time.
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5.3 Expected-Cost-Minimizing Decision Making

Given an appropriate cost function, we can use our inferences for a new crisis to per-

form expected-cost-minimizing decision making. In fact, performing optimal decision

making (conditioning only on the data and not on particular parameter estimates),

can only be done using fully Bayesian inference (Robert 2001).

A cost function specifies the total cost of a crisis as a function of the true crisis

type and the intervention taken. Taking an intervention that quickly resolves a crisis

gives low total cost, while taking an intervention that prolongs a crisis leads to high

total cost. The costs of a crisis include, for instance, payouts to clients for violation

of service agreements as well as client dissatisfaction.

More precisely, the total cost of the new crisis is a function C
[
φ,

(
{Z∗

i }I
i=1,Z

∗
new

)]
of the intervention φ and the entire vector of true crisis types

(
{Z∗

i }I
i=1,Z

∗
new

)
, due to

the fact that Z∗
new is only meaningful in the context of {Z∗

i }I
i=1. If we knew C, and

given posterior sample vectors
(
{Z(l)

i }I
i=1,Z

(l)
new

)
as in Section 5.1, the expected cost

of taking φ during the new crisis could be estimated consistently as

E(C) ≈ 1

L

L∑
l=1

C
[
φ, ({Z(l)

i }I
i=1,Z

(l)
new)

]
.

A similar expression is obtained when using the approximation given in Section 5.2.

The expected-cost-minimizing intervention is the value of φ that minimizes E(C).

Although the cost function C is not known in practice, for interventions φ that have

been taken during previous crises the realized costs can be used to estimate C, and

for other interventions expert knowledge can be used to estimate C.

We will evaluate the accuracy of our crisis identification method while keeping

in mind the ultimate goal, namely choosing the optimal intervention. For this rea-

son we will avoid choosing a particular estimate of the crisis types
(
{Zi}I

i=1,Znew

)
,

and instead will consider the accuracy of the soft identification, i.e. the posterior

distribution over
(
{Zi}I

i=1,Znew

)
as given in Sec. 5.1 & 5.2.
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6. A SIMULATION STUDY

We demonstrate the accuracy of our methods on simulated data. We first address

the offline setting, i.e. applying the clustering algorithm described in Sec. 3 & 4 to a

fixed set of crises. Then we consider accuracy of online clustering.

6.1 Offline Accuracy

We examine offline accuracy, varying the number of crises and metrics and comparing

to an alternative model-based clustering algorithm detailed in Fraley and Raftery

(2002) and extended and supported in numerous subsequent analyses (Fraley, Raftery

and Wehrens 2005; Li, Fraley, Bumgarner, Yeung and Raftery 2005; Raftery and

Dean 2006). We also have compared our method with a distance-based clustering

method, which fared extremely poorly due to the difficulty of choosing an appropriate

distance metric; those results are not reported here.

The clustering method of Fraley and Raftery (2002) fits a finite mixture model via

maximum likelihood using the expectation-maximization (EM) algorithm (Dempster,

Laird and Rubin 1977). The initial clustering is obtained using model-based hierar-

chical agglomerative clustering (cf. Banfield and Raftery 1993), and the number of

clusters is chosen using the Bayesian Information Criterion (Schwarz 1978). The

method of Fraley and Raftery (2002), like ours, yields a probabilistic (“soft”) assign-

ment of observations to clusters, but unlike our method chooses a particular number

of clusters and particular values for the cluster parameters, rather than obtaining a

posterior distribution over these quantities.

We sample I crises of equal length M by first drawing the number of clusters

from a uniform distribution on the integers from 1 to I. Conditional on the number

of clusters we sample the vector of cluster probabilities from a generalized uniform

distribution, then sample the cluster indicators according these probabilities (un-

represented clusters are dropped, reducing the number of clusters). We sample the
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cluster parameters γ(jk),T(jk) from finite Dirichlet / product Dirichlet distributions,

then simulate the metrics for each crisis from the time series model given in Sec. 3.1.

In order to simulate data that are as realistic as possible, we take the hyperpa-

rameter values a(j),b(j)
s for the finite Dirichlet distributions to be those obtained for

the EHS data as described in Section 3.3, and take the crisis length to be the median

length in the EHS data (8 time periods).

Twenty datasets are simulated for each of several combinations of I and J , and

the following measures of accuracy are obtained for our method (“DPM”) and for the

method of Fraley and Raftery (2002) (“ML-BIC”):

1. Pairwise Sensitivity: Of the pairs of crises that are of the same type, the

percentage that have probability greater than 0.5 of being in the same cluster.

2. Pairwise Specificity: Of the pairs of crises that are not of the same type, the

percentage that have probability no more than 0.5 of being in the same cluster.

3. Error of No. Crisis Types: The absolute error of the estimated number of

crisis types occurring in the data, divided by the true number of crisis types.

For DPM, the posterior mean is used to estimate the number of types.

These measures have been used, e.g., in Booth, Casella and Hobert (2008).

Values of the accuracy measures are reported in Table 1, averaged over the sim-

ulated datasets and along with their standard errors (when applying DPM we have

chosen α so that the prior mean # clusters is I/4, although multiplying or dividing α

by five gives virtually identical results). The accuracy of DPM is better than ML-BIC

by all measures, and dramatically better in terms of both pairwise sensitivity and es-

timating the number of clusters. The performance of ML-BIC degrades substantially

as the number of metrics increases.
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The main problem is that EM in this context rarely changes the cluster assign-

ments from their initial values; the final cluster assignments are probabilistic, but

typically place nearly all probability mass on the initial cluster assignments. This

means that the initial cluster assignment provided by hierarchical clustering corre-

sponds to a local mode of the likelihood function, so that EM stays in that local

mode. In our context there can be few observations per cluster and the observations

have moderate to high dimensionality; this leads to many such local modes of the

likelihood function.

We altered the ML-BIC algorithm in several ways to attempt to fix this prob-

lem, without success. First, we smoothed the initialization of EM, placing only 80%

of the prior mass for each observation on the cluster assignment from hierarchical

clustering, and the remainder on other cluster assignments. Second, we smoothed

the surface over which the maximization is performed, by placing a prior on the pa-

rameters of the finite mixture model and maximizing the posterior density instead of

the likelihood, as suggested by Fraley and Raftery (2002). We used two prior spec-

ifications for the cluster-specific parameters γ(jk) and T(jk): the generalized uniform

prior (“MAP-UNIF”) and the prior described in Section 3.3 (“MAP-INFO”). For the

cluster probabilities (conditional on the number of clusters) we used a generalized

uniform prior. The resulting algorithms perform better than ML-BIC but still far

worse than DPM for all values of I and J . Results for MAP-UNIF are shown in

Table 1; the accuracy of MAP-INFO was only slightly better than ML-BIC and is

not reported.

While the performance of ML-BIC and its variants degrades as the number of met-

rics increases, the performance of DPM improves by all measures in this simulation.

More metrics means both more noise in the data and more information available to

estimate the clusters. While the performance of the EM-based methods suffers due to
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overfitting the noise, DPM succeeds in taking advantage of the additional information.

The number of crises in the data does not appear to have a strong effect on the

accuracy of DPM. This helps explain the excellent accuracy that we find in the online

context (Section 6.2), where the number of crises starts small and increases over time.

6.2 Online Accuracy

We examine the accuracy of our method in the online context; given a set of sim-

ulated crises in a particular order, we estimate the type of each crisis based on the

data from the previous crises and partial data for the new crisis. Due to the poor

performance of the expectation-maximization approaches in the offline context, we do

not consider these methods further. We instead compare predictive accuracy of the

approximate method given in Section 5.2 (“DPM”) to that of the exact method in

Section 5.1 (“DPM-EX”), in order to justify the approximation. For data simulated

as in Section 6.1, we evaluate several measures of accuracy for DPM and DPM-EX:

1. Full-data misclassification rate: The percentage of crises whose predicted

type is incorrect, using all of the data for the new crisis. Here “correct” predicted

type means that π̂(Znew 6= Zi ∀i|D,Dnew) > 0.5 if Znew 6= Zi ∀i according to the

gold standard (here, the truth), and otherwise that π̂(Znew = Zi|D,Dnew) > 0.5

for some i ≤ I such that Znew = Zi according to the gold standard.

2. p-period misclassification rate: The percentage of crises whose predicted

type is incorrect, using the first p time periods of data for the new crisis.

3. Average time to correct identification: The average number of time pe-

riods required to obtain the correct identification, for crises that are correctly

identified when using the full data for the new crisis.

We do not evaluate the average time to correct identification for DPM-EX, since this

is extremely computationally intensive. The average values of the above accuracy
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measures over five simulated datasets are shown in Table 2 for several combinations

of I and J .

The accuracy is high for both DPM and DPM-EX, correctly classifying over 80%

of crises in every setting we considered. The performance of DPM is not significantly

worse than that of DPM-EX, showing the accuracy of the approximation given in

Section 5.2. There is some evidence that using more metrics shortens the average

time to identification and reduces the misclassification rates.

The accuracy of both methods degrades when using the data from only the first

three time periods of the new crisis, but still over 80% of crises are correctly classified

in all cases. The average time to correct identification for DPM is between one and

two time periods. Such early identification of a crisis is extremely helpful in choosing

an appropriate intervention.

7. APPLICATION TO THE EMAIL HOSTED SERVICE

27 crises occurred in EHS during the first four months of 2008. The causes of some of

these crises have been diagnosed by EHS experts, and are listed in the third column

of Table 3. For confidentiality reasons, the letters assigned to these crisis types do

not correspond with the letters shown in Figure 1. All of the EHS data used here are

free from human interventions.

Preprocessing. We choose a subset of the available metrics by applying the feature

selection procedure in Bodik, Goldszmidt, Fox and Andersen (2009). In cases of pairs

of metrics with correlation greater than 0.95 we remove one, leaving 18 metrics.

To facilitate early crisis identification, it is helpful to include the data from the

half-hour just before the start of each crisis in fitting the model and estimating the

type of a new crisis. Additionally, we do not use data after the first hour and a half

of each crisis, since the metrics are not believed by the EHS experts to be informative
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as to the crisis type after this time.

7.1 Offline Application

To test the accuracy of the offline crisis identification method given in Sections 3 and

4, we apply it to the whole set of EHS crises without the known crisis labels, and

compare our results to those labels.

Markov chain trace plots are shown in Figure 2, illustrating the convergence of

the chains. The samples of Z22 for several values of the inverse temperature β are

shown. The chain with β = 1, which is designed to draw from the posterior distri-

bution π({Zi}I
i=1|D), primarily visits the single value Z22 = 2, while the chains with

smaller values of β visit progressively more values of Z22. This facilitates convergence

diagnosis and exploration of the space. Using 106 iterations, the smallest Geweke

diagnostic p-value for the Markov chains is 0.44 after Bonferroni correction, detecting

no lack of convergence. Here univariate tests are done for each parameter Zi : i 6= 1 at

each inverse temperature (omitting cases where Zi was constant for the entire chain).

Similarly, we obtain a maximum Gelman-Rubin scale factor of 1.01, again evidence of

good convergence. This maximum is taken over Zi : i 6= 1 for inverse temperatures β

less than 0.5 (for β ≥ 0.5 there are numerical difficulties, since some Zi take a single

value for almost all iterations).

The sizes of the clusters from the posterior mode cluster assignment are shown in

the fourth column of Table 3. This cluster assignment has 58% posterior probability,

and along with the second-highest probability assignment accounts for a total of 93.8%

of the posterior probability. This second assignment has only a single difference with

the first, namely a change in the labeling of one crisis, increasing the count of type B

to 15 and decreasing the count of type I to 5. We will summarize the accuracy of the

posterior mode clustering assignment relative to the known causes, but this summary

applies equally well to the second assignment since the crisis for which they differ has
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unknown cause.

Comparison to known causes. The posterior mode crisis labels for the most part

match the known causes, with the exception of four uncommon crisis types that are

incorrectly clustered with more common types. The largest cluster obtained by our

method corresponds to the cause “overloaded back-end”; all eight of the crises known

to be of this type are correctly clustered together, along with six other crises (most of

which have unknown cause). The “overloaded back-end” problem occurs due to poor

performance of another computing center, one on which the servers depend. The EHS

technicians do not have authority to fix the performance of that separate computing

center, explaining why this is the most common type of crisis. It is also the most

important type of crisis to correctly identify, since although the problem cannot be

fixed, the technicians know the best intervention for minimizing the effect of such a

crisis.

The two crises of known cause “overloaded front-end” are also correctly clustered

together. Similarly, the “database configuration error”, “workload spike”, and “re-

quest routing error” clusters are correctly identified.

Four uncommon crisis types are incorrectly clustered with more common types.

For instance, the “configuration error” crisis is clustered with the “overloaded front-

end” crises. This type of mistake occurs partly due to the fact that crises having

different causes (e.g., closely related causes) can have the same patterns in their

metrics. In the most extreme case, the metrics appear to be indistinguishable between

the two crisis types. This result suggests to computing center operators the need for

additional metrics to distinguish between these crisis types.

In the other cases of incorrectly merged crisis types, while the large majority

of metrics are indistinguishable between the two types a few metrics show distinct

behavior. Since we have assumed the parameters of distinct crisis types to be inde-
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pendent a priori, the presence of distinct crisis types with similar patterns for most

metrics is very improbable under the prior. Such crisis types are therefore clustered

together. This issue could be fixed by creating a hierarchical dependence structure

between crisis types in the prior distribution. This structure would be realistic, since

in fact one can define the true crisis “causes” according to a coarse division into a

few main causes, or into finely sub-divided causes.

The tendency to merge small clusters with larger clusters could also be due to our

use of the Dirichlet process, under which the model for the cluster assignments has a

single parameter α. A more flexible approach would be to use the Pitman-Yor process

(Pitman and Yor 1997), which is a generalization of the Dirichlet process that has

two parameters for the cluster assignment model and a richer ability to represent the

distribution of cluster sizes. We expect that the methods given in this paper would

generalize naturally to this process, and leave this as future work.

Sensitivity to Prior Specification. Results are very insensitive to the choice of α;

multiplying or dividing α by up to a factor of 20 does not change the posterior mode

cluster assignment. Results are also not sensitive to the choice of the constants a(j)

and b(j)
s , as long as this choice is not dramatically inconsistent with the data and with

the experts’ belief that the metrics provide substantial information about the crisis

type. For instance, changing the prior median of maxt γ
(jk)
t and maxt r

(jk)
t from 0.90

to 0.99 or 0.85 does not change the posterior mode clustering assignment. Reducing

this value to 0.80 switches the ranks of the two most probable cluster assignments, but

the total posterior probability of these two cluster assignments is still high (89.9%).

Reducing it further to 0.70 gives the same results as 0.80 except that the posterior

probability of these two most probable cluster assignments declines to 66.7%. Note

that even with this large change in the prior, the accuracy results reported in Table 3,

column 5 are unchanged.
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We examine sensitivity to the prior mean of γ(jk) and T(jk)
s· by taking the data-

based prior mean described in Section 3.3 and mixing with a uniform distribution.

When the mixture proportions are 3/4 on the data-based mean and 1/4 on the uniform

distribution, the posterior mode clustering assignment is unchanged. When we reduce

the weight on the data-based mean to 1/2, the ranks of the two most probable cluster

assignments are switched, but they still account for 90.3% of the posterior probability.

Reducing it further to 1/4, clusters A and H become merged. Thus the prior has to

change dramatically before results change in a meaningful way.

7.2 Online Application

We evaluate the accuracy of online clustering for the EHS data, relative to the of-

fline clustering assignment. We apply the online crisis identification method given in

Sec. 5.2 and evaluate the accuracy measures described in Sec. 6.2, treating the poste-

rior mode cluster assignment from the offline context (Sec. 7.1) as the gold standard.

We obtain a full-data misclassification rate of 7.4%, a 3-period misclassification

rate of 14.8%, and an average time to correct identification of 1.81 time periods. This

means that on average the crises are identified correctly even before the technical

start of the crisis. Two-thirds of the crises are identified correctly in the first time

period.

To check whether the good identification performance of our method is specific to

the particular ordering of the crises, we also permute the crises and evaluate perfor-

mance. Taking the average over five random permutations of the crises, we obtain a

full-data misclassification rate of 5.9% (SE=3.4%), a 3-period misclassification rate

of 11.8% (SE=3.2%), and an average time to correct identification of 1.56 (SE=0.07).

These results are even better than for the original ordering.
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8. CONCLUSIONS

We have given a method for fully Bayesian online crisis identification in distributed

computing, and have described how to use this to perform expected-cost-minimizing

crisis intervention. Accuracy has been demonstrated on both simulated data and data

from a production system (EHS); our method dramatically outperforms a state-of-

the-art maximum likelihood / maximum a posteriori clustering method in the offline

setting, and sees very little loss of accuracy in the online setting relative to the offline

setting.

Importantly, our method provides natural solutions to several related problems;

these are explored in Goldszmidt and Woodard (2010). First, during a crisis one can

forecast its evolution. Second, the model-based approach allows for interpretation

of the crisis types, which can aid identification of the causes and suggest promising

interventions. For instance, one can distinguish the system status metrics that are

most strongly associated with crises of a particular type. This question alone has

received considerable attention (Cohen et al. 2004, Zhang et al. 2005), and is resolved

naturally in the context of our time series model. Finally, one could potentially model

not just the evolution of crises of a particular type, but also how this evolution depends

on the intervention taken.

The above uses give our approach an advantage over another potential alternative:

directly learning a mapping from the metrics to the best intervention. Such a mapping

avoids an explicit model for the metrics, and so cannot be used for any of these related

purposes (which are essential to the operators of such systems).

Here we have used a parsimonious model for the crises, due to the small sample

sizes available for inference. Such small sample sizes are characteristic of crisis identi-

fication in the environment of large-scale distributed computing supporting internet

services. The system as a whole undergoes frequent updates and occasional configu-
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ration changes. This is due in part to the constant addition of features and in part

to changes required for long-term crisis resolution. The result is that the learning

process has to be restarted often, so that there are almost never more than fifty rele-

vant past crises, and typically labels are available for only a minority. Thus, although

one could theoretically allow the model to become more complex as the sample size

increases, in practice one almost never reaches sample sizes large enough for this to

be useful.
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APPENDIX: MARKOV CHAIN MONTE CARLO

COMPUTATIONS

The likelihood of the data conditioned only on {Zi}I
i=1 is:

π(D|{Zi}I
i=1) =

∫
π

(
D | {Zi}I

i=1, {γ(jk),T(jk)}j,k

)
π

(
{γ(jk),T(jk)}j,k | {Zi}I

i=1

)
dγ(jk)dT(jk)
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Using (1) and (3) and by multinomial-Dirichlet conjugacy (cf. Gelman, Carlin, Stern,

and Rubin 2004),

π(D|{Zi}I
i=1) =

mI∏
k=1

∏
j


Γ

(∑
t

a
(j)
t

) ∏
t

Γ

(
a

(j)
t +

∑
i:Zi=k

1(Yi1j = t)

)
Γ

(∑
t

[
a

(j)
t +

∑
i:Zi=k

1(Yi1j = t)

]) ∏
t

Γ
(
a

(j)
t

)
×

mI∏
k=1

∏
j,s


Γ

(∑
t

b
(j)
st

) ∏
t

Γ

(
b

(j)
st +

∑
i:Zi=k

nijst

)
Γ

(∑
t

[
b

(j)
st +

∑
i:Zi=k

nijst

]) ∏
t

Γ
(
b

(j)
st

)
 . (8)

The posterior distribution of {Zi}I
i=1 is proportional to the product of π({Zi}I

i=1)

and π(D|{Zi}I
i=1), given in (2) and (8), respectively. A Markov chain can then be

constructed to sample on this reduced space. For instance, a Gibbs sampler for

{Zi} updates each Zi conditional on Z[−i] = {Zi′}i′ 6=i. The posterior distribution

of Zi conditional on Z[−i] is proportional to π({Zi}I
i=1|D); computation consists of

enumerating over the possible values of Zi and normalizing to obtain the conditional

distribution. The possible options are that Zi is equal to one of the values in Z[−i], or

that it is not equal to any of the values in Z[−i]. Notice that any of these possibilities

may require relabeling of the crisis types, to ensure that the first occurrences of the

types are correctly ordered.

Once we have obtained posterior samples of {Zi}I
i=1 by simulating such a Markov

chain, we can also obtain posterior samples of {γ(jk),T(jk)}j,k, by noticing that

π({γ(jk),T(jk)}j,k|{Zi}I
i=1,D) =

mI∏
k=1

∏
j

Dirichlet((γ
(jk)
1 , γ

(jk)
2 , γ

(jk)
3 ); â(j))×

mI∏
k=1

∏
j,s

Dirichlet((T
(jk)
s1 ,T

(jk)
s2 ,T

(jk)
s3 ); b̂

(j)

s )

where â
(j)
t = a

(j)
t +

∑
i:Zi=k

1(Yi1j = t), b̂
(j)

st = b
(j)
st +

∑
i:Zi=k

nijst for t = 1, 2, 3, and

where Dirichlet((γ
(jk)
1 , γ

(jk)
2 , γ

(jk)
3 ); â(j)) is the finite Dirichlet density for γ(jk) with

parameter vector â(j). For each posterior sample of {Zi}I
i=1, generate one sample
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from π({γ(jk),T(jk)}j,k|{Zi}I
i=1,D); this gives joint posterior samples of the full set of

parameters ({Zi}I
i=1, {γ(jk),T(jk)}j,k).
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Table 1: Offline accuracy of DPM and EM-based methods for simulated data.
No. Crises No. Metrics Method Pairwise Pairwise % Error

Sensitivity Specificity No. Types
15 10 DPM 96.6 (1.45) 99.5 (0.29) 5.3 (1.22)

ML-BIC 54.0 (5.21) 98.0 (0.54) 77.4 (27.96)
MAP-UNIF 58.6 (5.14) 97.8 (0.57) 77.4 (27.96)

15 15 DPM 98.5 (0.90) 99.9 (0.05) 8.9 (3.71)
ML-BIC 39.8 (4.81) 99.9 (0.10) 113.0 (32.97)
MAP-UNIF 49.6 (5.80) 99.5 (0.23) 113.0 (32.97)

25 10 DPM 94.6 (2.49) 99.8 (0.10) 7.6 (1.62)
ML-BIC 59.1 (4.78) 98.6 (0.31) 24.2 (6.11)
MAP-UNIF 67.1 (4.89) 97.1 (0.90) 24.2 (6.11)

25 15 DPM 99.7 (0.32) 99.7 (0.19) 2.7 (0.84)
ML-BIC 40.9 (4.11) 99.8 (0.07) 86.0 (15.0)
MAP-UNIF 57.6 (5.14) 99.8 (0.10) 86.0 (15.0)

35 10 DPM 93.1 (1.43) 99.6 (0.09) 8.2 (1.68)
ML-BIC 61.2 (4.04) 98.0 (0.24) 35.0 (9.81)
MAP-UNIF 68.5 (4.07) 97.8 (0.29) 35.0 (9.81)

35 15 DPM 97.9 (0.95) 99.9 (0.06) 3.0 (0.60)
ML-BIC 46.2 (3.56) 99.7 (0.09) 51.8 (9.81)
MAP-UNIF 52.1 (3.77) 99.5 (0.20) 51.8 (9.81)

NOTE: Accuracies are averaged over 10 datasets, with standard errors shown in
parentheses.

Table 2: Online accuracy of DPM and DPM-EX for simulated data.
No. No. Method Full-data 3-period Avg. Time to
Crises Metrics Misclassification Misclassification Identification
15 10 DPM 6.7 (3.0) 10.7 (4.5) 1.31 (0.11)

DPM-EX 8 (2.5) 10.7 (4.5) –
15 15 DPM 6.7 (5.2) 9.3 (6.2) 1.13 (0.08)

DPM-EX 5.3 (3.9) 8.0 (4.9) –
25 10 DPM 13.6 (2.7) 15.2 (2.7) 1.33 (0.13)

DPM-EX 9.6 (2.0) 15.2 (3.4) –
25 15 DPM 2.4 (1.6) 4.0 (1.8) 1.15 (0.06)

DPM-EX 3.2 (1.5) 3.2 (1.5) –

NOTE: Accuracies are averaged over five datasets, with standard errors shown in
parentheses.
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Table 3: Crises types in data from Microsoft’s EHS computing center.
ID Cause No. of known No. identified No. DPM crises

crises by DPM matching known
A overloaded front-end 2 3 2
B overloaded back-end 8 14 8
C database configuration error 1 2 1
D configuration error 1 0 0 (labeled as A)
E performance issue 1 0 0 (labeled as B)
F middle-tier issue 1 0 0 (labeled as I)
G whole DC turned off and on 1 0 0 (labeled as B)
H workload spike 1 2 1
I request routing error 1 6 1

NOTE: The number of crises known to be of each type is given in column 3. The
number of crises identified by DPM as being of this type is given in column 4, and
the number of these that correspond to the crises of known type is given in column
5.

Figure 1: Traces of several metrics for Microsoft’s EHS computing center over a
period of ten days; crisis periods are highlighted and labeled according to known
type.
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Figure 2: Trace plots of the parallel tempering Markov chain samples of Z22. Three
inverse temperatures β are shown; x-axes correspond to the (post-thinning) iterations
of the Markov chain.

be
ta

 =
 1

2.
0

2.
4

2.
8

be
ta

 =
 0

.4
0

1
2

3
4

5
be

ta
 =

 0
.2

0
4

8
12

0 2000 4000 6000 8000 10000

37


	Introduction
	Measuring Performance in Distributed Computing
	Clustering of System Crises
	Crisis Modeling
	Cluster Modeling
	Choice of prior constants

	Posterior Computation
	Online Prediction and Decision Making
	Exact Prediction
	Approximate Prediction
	Expected-Cost-Minimizing Decision Making

	A Simulation Study
	Offline Accuracy
	Online Accuracy

	Application to the Email Hosted Service
	Offline Application
	Online Application

	Conclusions
	Acknowledgements

