
Privacy-friendly Aggregation for the Smart-grid

Klaus Kursawe1, George Danezis2, and Markulf Kohlweiss2

1Radboud Universiteit Nijmegen,
kursawe@cs.ru.nl

2Microsoft Research, Cambridge, U.K.
{gdane, markulf}@microsoft.com

Abstract. The widespread deployment of smart meters for electricity
gas and water consumption to modernise the electricity systems, has been
associated with privacy concerns. In this paper, we present protocols that
can be used to privately compute aggregate meter measurements, allow-
ing for fraud and leakage detection as well as further statistical process-
ing of meter measurements, without revealing any additional information
about the individual meter readings.

1 Introduction.

Smart-grid deployments are actively promoted by many governments, including
the United States as well as the European Union. Yet, current smart metering
technologies rely on centralizing personal consumption information, leading to
privacy concerns. We address the problem of security aggregating meter read-
ings without the provider learning any information besides the aggregate, or to
compare an aggregate with a known value to detect fraud or leakage (the latter
is more relevant for water and gas metering).

Fraud detection is a major issue for electricity metering, and will be one
significant use-case in the upcoming smart grid. A recent FBI report1 states
that spot checks in one state have shown 10% of all smart meters to have been
tampered with. Aggregates of consumption across different populations are also
used for forecasting, tuning production to demand, settling the cost of production
across electricity suppliers, and getting a clear picture on the supply of consumer
generated energy, e.g., through solar panels. Aggregation protocols will also be
used to detect leakages in other utilities, e.g., water (which is a big issue in desert
countries) and gas (where a leakage poses a safety problem).

Privacy in Smart Metering. The area of smart metering for electricity, but also
other commodities such as gas and water is currently experiencing a huge push;
for example, the European commission has formulated the goal to provide 80%
of all households with smart electricity meters by the year 2020 [1], and the
US government has dedicated a significant part of the stimulus package towards

1 Obtained through personal communication.

a smart grid implementation. Simultaneously, privacy issues are mounting – in
2009, the Dutch Senate stopped a law aimed to make the usage of smart meters
compulsory based on privacy and human rights issues [2]. On the US side, NIST
has identified privacy as one of the main concerns in a smart grid implementation,
and proposes using the “privacy by design” approach [3] to alleviate them. While
it is not clear yet how much data can be derived from actual meter readings, the
high frequency suggested (i.e., about 15 minute reading intervals), together with
the difficulty to temporarily hide one’s behaviour (as one can do, for example,
by turning off a mobile phone), gives rise to serious privacy concerns. For water
and gas leakage detection privacy preserving protocols are even more desirable
since measurements need to be frequent to detect potentially dangerous leaks as
soon as possible.

An important aspect in privacy preserving metering protocols is to take into
account the rather limited resources on such meters, both in terms of bandwidth
and in terms of computation. We therefore push as much workload as possible to
the back-end, leaving the minimal work possible on the meter itself. In terms of
communication, the messages sent out by the meters should increase only mini-
mally. Furthermore, meters should ideally act independently, without requiring
interaction with other meters wherever possible and minimal interaction when
not.

For statistical analysis, out protocols support the division of meters into
independent sets over which the aggregation is to be done. This allows for dif-
ferent use-cases that require only statistical accuracy to be combined without
any additional effort on the meters. To validate the practicality of our protocols
in a real setting, a proof-of-concept implementation is currently underway in
collaboration with a meter manufacturer and a Dutch utility.

Related work. Privacy preserving metering aggregation and comparison has been
introduced by Garcia and Jacobs [4]. Their protocol requires O(n2) bytes of inter-
action between the individual meters as well as relatively expensive cryptography
on the meters (Paillier ecnryption). Fu. et all [5], highlight the privacy related
threats of smart metering and propose an architecture for secure measurements,
that rely on trusted components outside of the meter. Rial and Danezis [6] pro-
pose a protocol using commitments and zero knowledge proofs to privately derive
and prove the correctness of bills, but not for aggregation across meters. The
latter techniques have also been extended to protocols that provide differential
privacy guarantees [7].

2 Basic Protocols

The protocols we propose follow the principle of [8] by relying on masking the
meter consumptions ci,j output by meter j for a reading i, in such a way that
an adversary cannot recover individual readings. Yet, the sum of the masking
values across meters sums to a known value (for simplicity we set it to be zero
here; however, in a practical setting, a non-zero value may allow for aggregating

over several different sets of meters and easier group management). As a result
summing the masked readings uncovers their sum or a one-way function of their
sum. To prevent linking masked values, the masks are recomputed for every
measurement either by a symmetric protocol with communication between the
meters, or by an asymmetric one that does not require such. We refer to the
combination of a meter and a user as a metered home, or home in short. We
consider two types of protocols:

In the first, which we refer to as aggregation protocols, metered homes use
masking values xi,j to output blinded values xi,j + ci,j . After the masking values
have canceled each other out, the result of the protocol is

∑
ci,j .

In the second type of protocols, homes output g
xj+ci,j
i and the result of the

protocol is g
∑

ci,j
i . We call the latter protocols comparison protocols, because they

require that the aggregator already knows the (approximate) sum of the values
she is aggregating (through a feeder meter), and needs to determine whether her
sum is sufficiently close to the aggregate obtained from home meters. However,
as shown in Section 4.6, the comparison protocol can easily be turned into a
full aggregation protocol with low overhead. In both cases we assume that the
output of homes that is aggregated preserves the authenticity of ci,j .

2

Comparison protocols offer advantages for cryptographic protocol design, as
protocol values can be exponents in cryptographic groups for which the com-
putation of discrete logarithms are in general hard. One advantage that can be
garnered from this is that in contrast to aggregation protocols, no fresh xi,j are
needed. As part of our security analysis, we show in Appendix A, that for ran-
dom xj and gi, gi

xj are indistinguishable from g
xi,j

i , where the xi,j are chosen
freshly for each gi, under the Decisional Diffie-Hellman assumption.

The basic comparison protocol. Let G be a suitable Diffie-Hellman group, and
H : {0, 1}∗ → G a hash function mapping arbitrary strings onto elements of G.3

Let xj be a pre-shared secret for home j such that
∑

j xj = 0. We assume that
each measurement round has a unique identifier i that is shared by all homes and
the aggregator, e.g., a serial number or the time and date of the measurement.

For each reading ci,j , the home computes a common group element gi = H(i).
It then computes gi,j = gi

ci,j+xj . The value gi,j is then send to the aggregator.
The aggregator collects all values of gi,j , and computes ga =

∏
j gi,j .

By construction, we have
∏

i gi,j =
∏

i g
ci,j
i ·

∏
i g

xi
i = g

∑
i ci,j , i.e., ga is gi

to the power of the aggregated measurements. As the aggregator has it’s own
measurement ca of the total consumption of the connected meters, it now needs
to verify if ga roughly equals gca . This can be done by brute forcing values of
gca , gca−1, gca+1, ... until either a match is found or a sufficiently large interval
has been tested to raise an alarm.

2 This can either be achieved by signing xi,j+ci,j respectively g
xj+ci,j
i with the meters

secret key, or by using cryptographic verifiability as discussed in Section 4.1.
3 For our security analysis we will make use of the random oracle model to guarantee
the randomness of the gi values [9].

3 Concrete Protocols

As we have seen, the general framework of our protocols requires a number of
meters or users to have a secret value xj per meter or xi,j per meter per round,
such that they all add up to zero. Then the aggregation protocols can be used
by each party publishing xi,j + ci,j , or the comparison protocol by publishing

g
xj+ci,j
i . Concrete protocols provide different ways for a number of meters or
users to derive the necessary xi,j or g

xj

i .
We propose four such protocols each with different advantages: (1) a protocol

that offers unconditional security based on secret sharing; (2,3) two protocols
based on Diffie-Hellman key exchange that allow blinding to be verifiably done
outside the meter; (4) finally a protocol based on computations on the meter,
but with negligible communication overhead.

3.1 Interactive protocol.

Our first protocol uses simple additive secret sharing. For each round i of mea-
surements, a subset of the homes is (deterministically) chosen as leaders4; all
parties compute completely random secret shares, encrypt them, and send them
to the leaders. The leaders then computes their final shares in a way that all
shares together sum to zero. Shares at each home are added together with the
meter reading to mask it; an aggregator can sum up all shares such that they
cancel out and reveal the sum of all consumption across the homes.

More formally, we assume an aggregation set of n homes and one aggregator
(substation). We call p the privacy parameter; this is the number of leaders
in a run of the protocol. Note that for p = n the interactive protocol has the
same collusion security as [4]. At system setup, each home has its own private
encryption key Kj , as well as the public encryption keys PK1, . . . , PKn for all
other homes in the same aggregation set.

– To generate masking values, each home j first computes p random values
sj,1, ..., sj,p. It then computes the leader identities ℓ1, ..., ℓp of the p leaders,
and encrypts sj,k with PKℓk , 1 ≤ k ≤ p. The set of p encrypted shares is
sent to the aggregator that sends each leader its corresponding encrypted
shares.

– Each leader ℓk collects n − 1 shares sj,k, 1 ≤ j ≤ n, j ̸= ℓk, and computes
its own share sℓk,k such that all shares together sum to the value 0 (modulo
232).

– Finally, all parties add all their shares sj,1, ..., sj,p to get the main share sj .

For the basic aggregation protocol, xi,j = sj . To update the masking values, the
above steps are repeated with a different set of leaders for each reading i; the
results for each meter is added to it’s current share. To send a reading ci,j , a

4 Alternatively, leaders could be trusted third parties that do not contribute any con-
sumption values themselves.

meter computes bi,j = ci,j + si,j mod 232. The aggregator collects all this data,
and computes

∑
i bi,j =

∑
i ci,j .

The interactive protocol can also be used in combination with the basic
comparison protocol by setting xj = sj , removing the need for updating shares.

3.2 Diffie-Hellman Key-Exchange Based Protocol.

Our second scheme is based on the standard Diffie-Hellman key exchange proto-
col, combined with a modified variant of the Dining Cryptographer’s anonymity
protocol [10, 11]. We assume that each meter j has a secret key Xj , and a cor-
responding public key Pubj .

– For each round i, let gi = H(i) be a generator of a Diffie-Hellman group G.
The generator gi is the same as for the basic comparison protocol.

– In the first phase of the protocol, each home computes a round specific public

key Pubi,j = g
Xj

i , certifies it, and distributes it to all other members of the
aggregation set.

– Homes receive and verify public keys Pubi,1, . . . ,Pubi,n.
– Each home can now compute the following value:

g
xj

i =
∏
k ̸=j

Pub
(−1)k<jXj

i,k ,

where k < j is an indicator variable taking value 1, if the name/index of
meter k is lexicographically smaller than the name of meter j, and zero
otherwise. As required the sum of all xj is equal to 0:∑

j

xj =
∑
j

∑
k ̸=j

(−1)k<jpk · pj = 0 .

– Therefore each meter can compute gi,j as required by the comparison pro-

tocol as: gi,j = g
ci,j
i · gxj

i = g
ci,j+xj

i .

Note that xj cannot be known or recovered by any of the meters. This precludes
the use of this protocol as an aggregation protocol, but is not an impediment to
using it as a comparison protocol.

3.3 Diffie-Hellman and Bilinear-map Based Protocol.

The DH-based scheme can be extended to only require a fixed public key per me-
ter. The construction is similarly to the modified Dining-Cryptographers proto-
cols in [12]. Let G1, G2, and GT be groups in which the Decisional Bilinear Diffie-
Hellman assumption [13] holds with a bi-linear map function e(G1,G2) → GT .

Each meter only has to produce once a fixed public key Pubj = ĝ
Xj

0 where ĝ0 is
a generator of G1. Let H({0, 1}∗) → G2 be a hash function mapping arbitrary
strings onto elements of G2.

– In round i, compute ĝi = H(i) and gi = e(ĝ0, ĝi). Homes can now compute
g
xj

i as:

g
xj

i =

∏
k ̸=j

e(Pubk, ĝi)
(−1)k<j

Xj

,

where k < j is an indicator variable taking value 1 or 0 depending on the
result of the comparison. As required the sum of all xj is 0:∑

j

xj =
∑
j

∑
k ̸=j

(−1)k<jpk · pj = 0 .

– Therefore each meter can compute gi,j as required by the comparison pro-

tocol as: gi,j = g
ci,j
i · gxj

i = g
ci,j+xj

i .

Note that as in the pure Diffie-Hellman protocol xj cannot be known or recovered
by any of the meters. This is not an impediment to using it as a comparison
protocol. As noted by [12], the map e can be instantiated with the Weil pairing
over a suitable elliptic curve.

3.4 Low-overhead protocol.

As for the Bilinear map based scheme, we assume that all meters have a fixed
public key Pubj = gXj where g is a fixed globally known generator of a group
in which the Computational Diffie-Hellman assumption holds.

– Each meter is initialised with the public keys of all other meters, and com-

putes a set of shared keys, as: Kj,k = H(Pub
Xj

k) Once the set of shared
keys have been computed the original public keys of the other meters can be
discarded.

– For each round i of masking value generation each meter j outputs:

xi,j =
∑
k ̸=j

(−1)k<jH(Kj,k∥i) .

For the basic aggregation protocol, only 32 bits of xi,j are needed, and bi,j =
ci,j + xi,j mod 232. The values bi,j are short 4 byte unsigned integers, and the
aggregator can compute the sum simply by adding all the outputs together∑

j ci,j =
∑

j bi,j mod 232.

The low-overhead protocol can also be used in combination with the basic
comparison protocol by setting xj = xi′,j for a fixed i′. This removes the need
for creating additional masking values. To allow for cryptographic verification
of correct computation of gi,j = gi

ci,j+xj , the meter can output a commitment
gxjh

openxj together with a signature σxj on this commitment under the meter’s
secret key.

4 Comparison between concrete protocols.

We proposed four concrete protocol variants to achieve private aggregation or
comparison. In this section we compare them with regards to cryptographic ver-
ifiability, cost & performance, availability, forward secrecy, group management,
interoperability with other protocols and finally their applicability to further ap-
plications.

4.1 Cryptographic Verifiability

The metering setting presented so far includes meters and an aggregator jointly
computing the sum of consumption or comparing it to a known value. In practice
meters are resource constraint devices in terms of memory, bandwidth, latency
and storage, and to a lesser extent computation. Furthermore the architecture
of smart-meters separates the certified metrological core, from other functions
such as any user interface or communications logic, further constraining resources
available for privacy protocols. For these reasons it might be beneficial to perform
the bulk of any computations necessary for the aggregation protocol outside the
meter or at least outside the certified metrological unit. Yet, despite off-loading
those computations on untrusted hardware, under the control of the customer,
we would like to ensure the correctness of the protocols – namely that the sum
extracted through the aggregation protocol is indeed the sum of all readings
from the meters.

Existing privacy-reserving billing protocols [6] have proposed a simple modi-
fication to meters that enables further privacy preserving computations: meters
output commitments to their readings (such as Petersen commitments [14] of
the form Cci,j = gci,jhopeni,j) and a signature over them. The customer associ-
ated with meter can open those commitments but can also use them as input
to certify further computations. Let us evaluate how our proposed protocols are
amenable to such certification.

In the context of verification we consider a meter, a customer, and an ag-
gregator. The meter outputs signed commitments to its readings, as well as the
raw readings to the customer. The customer performs the necessary steps of
the aggregation or comparison protocol, but also outputs a universally verifiable
cryptographic proof that protocol messages are correct. The aggregator receives
the inputs of all customers, and can use the certified readings as well as the proof
of all messages to ensure no customer has deviated from the valid protocol.

We use several existing results to prove statements about discrete logarithms,
such as, proofs of knowledge of a discrete logarithm [15] and proofs of knowledge
of the equality of elements in different representations [16]. These results are
often given in the form of Σ-protocols but with the help of hash functions they
can be turned into non-interactive zero-knowledge arguments in the random
oracle model [17]. When referring to the proofs above, we follow the notation
introduced by Camenisch and Stadler [18].

The interactive protocol can be verified by using a simple version of a ver-
ifiable secret sharing scheme [14] to certify that all protocol messages are well

formed. For every round of aggregation i each customer outputs a commitment
Cxi,j to a random value xi,j , as well as commitments Csj,k to the shares sj,k.
Then it provides a proof in zero-knowledge that the sum of the shares is equal
to the committed random value, and that the output value ci,j + xi,j is indeed
the sum of the random value and the genuine meter reading. Each leader further
proves that their random share si,k added to all the shares they received sums
to the value zero. The proofs only involve statements about revelation of com-
mitments and sums of commitments and are extremely efficient if a commitment
scheme with an additive homomorphism is used, such as Petersen commitments.

The DH based protocol is also amenable to cryptographic verification. The
customer can produce the value gi,j along with a certificate to prove it is correctly
formed given their public key Pubj = gXj and the commitment to the meter
reading Cci,j . First, the customer needs to create a new public key using the
generator gi associated with the reading time i, and prove that it has the same
secret key Xj . This public key Pubi,j is published for all to retrieve.

Then using the public keys Pubi,k of all other customers k, it needs to prove
that the value gi,j is well formed given its own secret key. This involves a standard
zero-knowledge proof that:

NIZK(Xj , ci,j , openi,j){Pubj = gXj ∧ Pubi,j = g
Xj

i ∧ Cci,j = gci,jhopeni,j

∧ gi,j = g
ci,j
i ·

∏
k ̸=j

Pub
(−1)i<j

i,k

Xj

} .

The bilinear map based protocol can also be verified cryptographically. Each
meter has to prove that the value gi,j is formed correctly. This can be done
efficiently with a proof that:

NIZK(Xj , ci,j , openi,j){Pubj = ĝ
Xj

0 ∧ Cci,j = gci,jhopeni,j

∧ gi,j = g
ci,j
i

∏
k ̸=j

e(Pubk, ĝi)
(−1)k<j

Xj

} .

This is similar to the proofs in [12], except that we do not have to worry about
collisions in the Dining Cryptographers protocol. In fact, our protocol presup-
poses that every home contributes some value g

ci,j
i as a contribution to the sum∑

i ci,j .
Finally the low-overhead protocol is based on symmetric key primitives that

do not exhibit the mathematical relations necessary for efficient zero-knowledge
proofs. While it could in theory be cryptographically verified though decom-
posing it into a circuit, this would not be a practical protocol. Therefore this
protocol has to be run within the trusted meter hardware.

When using the low-overhead protocol together with the basic comparison
protocol some amount of cryptographic verifiability is possible. Cryptographic
verifiability can, however, be guaranteed only for the correct construction of gi,j

Initialization Communication Computation

Interactive (agg) O(N2) · PK O(N · p) · Zq O(p) · Enc
Interactive (comp) O(N2) · PK O(N) ·G O(1) · E

+O(N · p) · Zq

DH O(N2) ·G O(N2) ·G O(N) ·M +O(1) · E
Pairing O(N2) ·G O(N) ·G O(N) · P +O(1) · E
Low-overhead (agg) O(N2) ·G O(N) · Z232 O(N) ·H
GC [4] O(N2) · PK O(N2) · Zn2 O(N) · Enc+O(1) · Dec

Table 1. Performance comparison: PK.. size of public keys, |Zx|, G.. size of algebraic
group, Enc, Dec, E, M , H.. cost of encryption, decryption, exponentiation, multiplica-
tion, or hash function evaluation respectively.

from the values committed in signed commitments Cxj and Cci,j . This can be
done efficiently with a proof that:

NIZK(xj , openxj
, ci,j , openi,j){Ccxj

= gxjh
openxj

∧ Cci,j = gci,jhopeni,j ∧ gi,j = g
xj+ci,j
i } .

This might be useful for aggregating values that are not known to the me-
ter (such a demographics, e.g. the number of people sharing a home). In such
cases the meter can provide a signed commitment that is augmented by another
certified item outside the meter.

4.2 Computation & Communication Overheads.

Whether the proposed protocols are executed by meters or by customers our
protocols always impose some overhead over a privacy invasive solution.

The DH based protocol in its most secure form is the most expensive protocol,
requiring O(N2) total messages to be exchanged as all participants need to have
access to a new set of DH public keys Pubi,j for the aggregation of each meter
reading. A related version of the protocol could allow participants to only share
keys with p other participants reducing the communication cost to O(N ·p). The
protocol requires O(N) modular multiplications but only O(1) exponentiations
per participant.

The interactive protocol only requires O(N · p) messages to be sent from the
normal participants to the leaders, and a further O(p) messages from the leaders.
The setup cost requires public key distribution which could cost from O(N2)
messages to O(N ·p) if leader are fixed. Computations are very fast as they only
involve addition over large integers, but secrecy of shares forces each participant
to perform O(p) public key encryptions and each leader O(N) decryptions. Its
cryptographic proof can use homomorphisms involving multiplications and O(1)
exponentiations for each customer.

The pairing based scheme is the most economical in terms of communication
overhead. The key distribution setup requires O(N2) messages for all homes to

be made aware of the long term public keys of all other meters. After that for each
reading onlyO(N) messages are required from the meters to the aggregator. Each
participant needs to perform O(N) pairing operations and O(1) exponentiations.

The low-overhead protocol has to be run within the meter but is extremely
compact and computationally efficient. Key distribution requires a one-off ex-
change of public keys which costs overall O(N2) messages and O(N) exponenti-
ations per participant. Subsequently, only O(N) hash function applications are
required, and only O(N) small integer values are transmitted to the aggregator.
This is the same communication cost as today’s meters – giving the final pro-
tocol its name. We summarize the asymptotic performance of our protocols in
Table 1 and compare it with [4]. We provide an experimental evaluation of this
protocol in Section 5.

4.3 Availability, Privacy & Forward Secrecy

Considerations of whether to run the protocols in the meter or over customer
hardware need to take into account the need for availability, or the principle
“utility robustness” as it is known in the energy industry. The principle means
that all parts necessary for the correct functioning of the energy supply system,
including fraud detection, should be under the control of the energy industry.
The key fear is that the energy supplier may not have the authority to replace
a component when it fails, or is disabled. Therefore when the aggregation and
comparision protocols are used for critical monitoring it is advisable to run them
in the meters. When they are only used for non-critical tasks (such as tuning
seasonal profiles of consumption) they can be off-loaded on customer machines
and performed when the user is on-line.

Privacy is a key property of our protocols and it is maintained as long as
all participants are honest-but-curious and do not collude. In case of passive
collusion different protocols provide different guarantees. The DH based protocol,
the bilinear maps based protocol, and the low-overhead protocol ensure that the
anonymity set within which meter readings are aggregated includes all the non
colluding meter readings. The interactive protocol has a similar property for any
number of colluding nodes that does not include all leaders. If all leaders collude
all privacy is lost.

Active attackers, that can break their meters, can disrupt the protocol so
that the reported aggregate is different than the actual sum of consumptions.
This is, however, at the heart of the fraud detection mechanism: the total may
be different and thus has to be compared with the aggregator meter. Colluding
attackers can also shift their reported consumption to appear as if some are
consuming more or less subject to the sum being equal. While this attack does
not change the total energy consumed it might still be beneficial for customers
with variable tariffs. In case cryptographically verifiable protocols are used active
adversaries should not be able to interfere with the integrity of the protocol
messages unless they have compromised the physical meters, or have physically
bypassed the meter – which is common.

Forward secrecy [19, 13, 20] is desirable to minimize the impact of a poten-
tially leaked private key. The interactive and DH based protocols can be modified
to provide some forward secrecy. The interactive protocol participants can use
ephemeral keys to encrypt shares sent to the leaders, that are forgotten after a
certain epoch. Similarly fresh DH keys can be used for each round of aggrega-
tion using the DH protocol, by signing them with the long term keys instead of
proving they are the same. The overhead to modify the protocols in this man-
ner is not high, since they already require O(N2) messages per round. On the
other hand it is difficult to modify either the Bilinear map based protocol or the
low-overhead protocol to provide forward secrecy while keeping their messages
volumes at a similar level. Re-keying these protocols will require a fresh setup
and O(N2) messages.

4.4 Key Establishment & Group Management

All proposed protocols require participants to be aware of the keys of meters, and
other participants, including signature keys and encryption keys. In all cases we
assume that meters contain a signature key to authenticate genuine messages.
A private decryption key is used by some protocols to either communicate with
leaders or build secure channels. These can be shared with the customers.

In case cryptographic certification is used to off-load computations a further
secure channel is required between customers and meters to ensure only autho-
rised customers can open the certified commitments to readings. In that case
meters do not need to be aware of the keys of other parties, keeping them cheap.

Setup phases when keys are exchanged take from O(l · N) messages for the
interactive protocol to O(N2) messages for the other protocols. For the bilinear
maps based protocol and the low-overhead protocol this is a one-off cost, after
which only O(N) messages need to be exchanged.

In some cases keys will have to be rotated, either to ensure forward secrecy
(as for example when the owner of a house changes) or to introduce or retire
meters to groups. Adding, changing, or removing the key of a meter from a group
only requires O(N) messages, to notify all participants of the new certified key.

The security of the proposed schemes depends on the compositions of the
meter groups. As we have already discussed a single honest participant within
a group that is totally controlled by the adversary cannot expect any privacy.
For this work we assume that the energy industry is in charge of specifying
meter groups, and meters or participants can audit the group composition to
detect whether they are tricked into participating in compromised groups. For
this purpose a tamper evident log of group participants can be kept by the
meters or the certified aggregates can be kept by users to prove any deviation
from the genuine groups. Pragmatically energy providers are likely to be curious
but unlikely to engage in behaviour that can be shown to deviate from their
obligations, be it contractual or regulatory.

Individual customer may wish to opt-out of smart metering all together.
Supporting regions with such customers is not a problem for the aggregation
protocols but a challenge for our comparison protocols. Consider a single meter

within a region not participating in computing the privacy friendly aggregate
that is also metered by the aggregate meter: the difference between two sum of
participating readings and the aggregate meter will end up being the consump-
tion of the meter that has opted out. This is perverse as it results in a privacy
sensitive user being even more vulnerable by opting out than by participating
in the protocol.

4.5 Support for Settlement, Profiling and Forecasting

The primary aim of the aggregation protocol is to detect whether the sum of
meter readings corresponds, or at least is close to, the reading of an aggregate
meter. This allows electricity distributors to detect whether any fraud might be
taking place, in the case the sum of reported readings are substantially below
what is reported by the aggregate meter. In this settling meter groups must
correspond to the physical distribution network since there should be a corre-
spondence between the computed aggregate and the metered aggregate.

Other processes in the energy industry rely on aggregate of readings, which
do not have such a straight forward correspondence. We will concentrate on two
particular processes, namely settlement and profiling, and discuss how our aggre-
gation protocols could be used to solve them in a privacy friendly manner. For
the purposes of the discussion we assume it is practical to extract the aggregate
as from the protocols, and not merely to match it to a known consumption.

First we give an overview of settlement and profiling in the energy industry
– both processes that are buried deep in the infrastructure:

Settlement. The UK energy market works by separating the supply of energy
from its generation. A number of suppliers draft contracts with generators to
produce a certain amount of electricity within a sequence of half-hourly time
periods. Yet, the actual load of the network is monitored by the UK grid,
that may also issue orders to increase or reduce generation in the short term
to meet the actual demand. The settlement process determines whether the
contracts of suppliers with generators covered the actual demand of their
customers, or whether specific suppliers need to pay more for any extra
generation, or under consumption. To determine whether the production of
electricity for each supplier matched their demand an estimate of the total
amount of electricity consumed by customers of each supplier has to be
produced. We therefore discuss how our protocols could be used to supply
such estimates.

Profiling. Both suppliers and national grids need data on which to base electric-
ity models and forecasts. Short term forecasts are related to very short term
demand and whether. Longer term forecasts depend on other factors includ-
ing the effects new devices have on consumption, socio-economical profiles of
users, different patterns of consumption per region or sector of the economy.
When raw data is available an analysts can use them to train their models.
In the absence of raw data volunteers are recruited or payed to construct
profiles. We show that our protocols can be used to extract load profiles for
different populations despite aggregation.

Trivial solutions. Both issues of settlement and profiling boil down to comput-
ing aggregates over different sets of meters. For settlement it would suffice to
compute aggregates of meters associated with each distinct supplier to estimate
the total energy consumption of their user base over time. This would be a far
superior estimate than those produced by current methods (based on aggregate
consumption and average profiles). A trivial solution for profiling would require
meters to be groups according to the profile criteria: different temperatures,
regions, socio-economic class, etc.

The trivial solution could work but might not be practical. For settlement,
there is no uncertainty about the association of meter and supplier. Yet, changing
the meter group requires expensive re-keying in all our protocols. Depending on
how dynamic the energy market is this may happen multiple times every year.
For profiling the task of grouping meters according to pre-determined categories
is even harder. For example analysts may be interested in observing the effect
temperature has on the energy consumption of a household over the winter
holidays. Yet, it is not easy to predict the exact temperatures to group meters
accordingly. Similarly, it is difficult to group meters by family size or composition
of family, as demographics are subject to frequent change. In the case of socio-
economic profiling, the data may simply not be available at an individual level
to assign meters into groups – and further privacy concerns may arise if this is
attempted.

Finally the trivial solution require meters groups to be tuned to extract-
ing particular aggregates, or require them to output readings associated with
multiple groups. Depending on the scheme used this increases computation and
communication costs, while degrading the quality of privacy protection.

Inference on random population meter groups. Meters may be assigned to ar-
bitrary groups, within which readings are aggregated, and yet and regression
analysis can be applied to extract statistics from arbitrary meter populations.
This approach decouples the assignment of meters into groups from any con-
sideration of what statistics are to be extracted at a later time, alleviating the
shortcomings of the trivial solution.

Consider a number N of meter groups Gi which run our protocols to calculate
at each time period an aggregate of their consumption S(Gi). We denote as S
the column (N×1) matrix with elements S(Gi). An arbitrary partition of meters
and a function P that is applied to each group Gi returns the number of meters
P(Gi) in the group within that partition. The domain of P(Gi) is as expected
[0, |Gi|].

The mean consumption of the meters within the partition P can be estimated
from the aggregate readings S(Gi). We constructM aN×2 matrix with elements
P(Gi) and |Gi| − P(Gi), and compute:

R = (MTM)−1(MTS)

The 2×1 matrix R is the least squares estimator of the mean of the consumption
of the population in P (in position 1× 1) and the population of meters not in P

(in position 2×1). This is a standard linear regression, and it can be extended to
estimating mean consumptions of multiple partitions of meters simultaneously.
Efficient techniques based on LU decompositions avoid the need for a matrix
inversion in case multiple population partitions are required.

4.6 Converting a Comparison Protocol back into an Aggregation
Protocol

The scheme as we described allows an aggregator to verify if an aggregate it
already knows corresponds to the sum private measurement values it received.
In many settings, however, an aggregator cannot measure the aggregated value -
for example, a utility may be interested in the aggregate of the power output of
all houses with photovoltaic energy generation, which are not connected to the
same substation. Note that in this case the masking values do not cancel out –
however, the aggregator can simply be provided with the sum of the masking
values and thus effectively get the same effect.

While the comparison protocol supports fraud detection it requires reading
from an aggregate meter. In some settings, such as gathering statistics, one may
need to extract the sum of meter readings instead of comparing it to a known
value.

A typical smart meter reading is a four byte value. If we assume up to 250
devices in one group, that would give us a 40 bit value for the aggregated reading.
However, in most cases, the aggregator has a fairly good idea on the rough total
consumption, as energy usage is fairly predictable - this would easily reduce
the set of possible values into an area a normal computer can brute-force in a
reasonable short time (Note that the brute force will only reveal the aggregate,
while the individual contributions are still secure).

If the either the number of measurements of the measurement domain gets
too big, the meters can easily split the measurement in a high- and low part
and report both parts independently. The aggregator can then brute force both
parts individually, reducing the computational effort on the backend to a level
it can handle in a practical setting. The only setting in which this approach
does not work is if the aggregation is performed over a large number of devices,
e.g., a million meters. In this case, however, the entire protocol can be run
independently on different subgroups of the devices without any loss of privacy.

5 Prototype implementations.

We implemented the low-overhead variant of the proposed scheme (described
in Section 3.4) in the Python language. The code core with the cryptographic
operations spans 89 lines of code. It uses the standard library hash function SHA-
256, and a separate pure-python implementation of Curve25519 [21] for Diffie-
Hellman key generation and derivation yielding 32 byte public keys. Readings
and their cipher texts are represented using 4 bytes.

We tested our protocols in the setting of 100 meters reporting their aggregate
consumption. Key generation took 0.013 s / meter and lead to 4790 bytes of
total storage required for the 100 public keys and their associated meta-data.
Key derivation, i.e. the computation of the secrets shared with other meters,
took 1.371 s / meter. The 100 EC point multiplications using Curve25519 per
meter dominate the cost of this operation. Each subsequent computations of the
blinding factors required for obscuring readings took less than 0.001 s / meter.
All reported figures are averages over 100 experiments.

The pure python implementation of Curve25529 is orders of magnitude slower
than a native or optimised implementation, and dominates the cost of deriving
shared keys. Such key derivation only happens when meter groups are formed,
and can be amortised over an arbitrary period of time when groups are stable.
The recurring cost of calculating blinding factors for readings take a negligible
time as they only require the application of comparatively fast hash functions.

Implementation of regression techniques. The stability of meter groups can be
maintained while extracting statistics about arbitrary partitions of the meters
using the proposed regression based techniques. We partitioned a population
of 1 million meters into 1000 groups of 1000 meters each reporting collectively
their aggregated consumption. We then partitioned meters into two populations
consuming electricity according to a population with different means µa and µb.
We ensured that at least 50 meters from both populations are present in each
meter group, and inferred the means µa and µb using our regression analysis.

The regression algorithm for inferring µa and µb took less than 0.001 seconds
to run, and was implemented in 30 lines of pure python with standard numerical
libraries. As expected it returns the values of the means with negligible error.
(See [22] for a detailed treatment of error analysis in regression.) This demon-
strates that computing statistics from aggregate measurements using regression
analysis is computationally feasible even at a national scale.

6 Conclusion.

A naive way of implementing privacy-friendly aggregation and comparison proto-
cols would involve a trusted party collecting all raw readings to aggregate them.
This is indeed the approach currently discussed for the UK smart-metering de-
ployment and others. We argue this is not necessary and present a family of
protocols to achieve the same functionality without the need to ever disclose
raw meter readings. Different protocols have different advantages we discuss,
in terms of their properties, their cost, their deployment model, and how they
interrelate with other smart-metering privacy technologies. Similar approaches
could be extended to aggregates for other utilities as well as a general set of
techniques to gather real time statistics without revealing private data.

Acknowledgements. We would like to thank Michael John for insightful com-
ments on the reality of smart metering, and Lejla Batina and Jaap-Henk Hoep-

man, for helpful discussions and for taking the patience to read and comment
on early versions of this papers.

References

1. European Parliament: DIRECTIVE 2009/72/EC (2009)
2. Cuijpers, C., Koops, B.J.: Het wetsvoorstel ’slimme meters’: een privacytoets op

basis van art. 8 evrm. Technical report, Tilburg University, oct. 2008. Report (in
Dutch)

3. The Smart Grid Interoperability Panel Cyber Security Work-
ing Group: Smart Grid Cybersecurity Strategy and Require-
ments, US National Institute for Standards and Technology (NIST).
http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628 vol2.pdf (2010)

4. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic en-
cryption. In: 6th Workshop on Security and Trust Management (STM). (2010)

5. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs
of a smart meter. In: 2nd ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings (BuildSys 2010), Zurich, Switzerland (November
2010)

6. Rial, A., Danezis, G.: Privacy-preserving smart metering. Technical Report MSR-
TR-2010-150, Microsoft Research (November 2010)

7. Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing with rebates.
Technical Report MSR-TR-2011-10, Microsoft Research (February 2011)

8. K. Kursawe: Some Ideas on Privacy Preserving Meter Aggregation. Technical
Report ICIS–R11002, Radboud University Nijmegen (February 2011)

9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security. (1993) 62–73

10. Chaum, D.: The dining cryptographers problem: Unconditional sender and recip-
ient untraceability. J. Cryptology 1(1) (1988) 65–75

11. Hao, F., Zielinski, P.: A 2-round anonymous veto protocol. In Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M., eds.: Security Protocols Workshop. Volume
5087 of Lecture Notes in Computer Science., Springer (2006) 202–211

12. Golle, P., Juels, A.: Dining cryptographers revisited. In Cachin, C., Camenisch, J.,
eds.: EUROCRYPT. Volume 3027 of Lecture Notes in Computer Science., Springer
(2004) 456–473

13. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In Biham, E., ed.: EUROCRYPT. Volume 2656 of Lecture Notes in Computer
Science., Springer (2003) 255–271

14. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In Feigenbaum, J., ed.: CRYPTO. Volume 576 of Lecture Notes in Com-
puter Science., Springer (1991) 129–140

15. Schnorr, C.: Efficient signature generation for smart cards. Journal of Cryptology
4(3) (1991) 239–252

16. Chaum, D., Pedersen, T.: Wallet databases with observers. In: CRYPTO ’92.
Volume 740 of LNCS. (1993) 89–105

17. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In Odlyzko, A., ed.: CRYPTO. Volume 263 of LNCS.,
Springer (1986) 186–194

18. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical Report TR 260, Institute for Theoretical Computer Science,
ETH Zürich (March 1997)

19. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2) (1992) 107–125

20. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why
not to use pgp. In Atluri, V., Syverson, P.F., di Vimercati, S.D.C., eds.: WPES,
ACM (2004) 77–84

21. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T., eds.: Public Key Cryptography. Volume 3958
of Lecture Notes in Computer Science., Springer (2006) 207–228

22. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical
Models. 1 edn. Cambridge University Press (December 2006)

A Proof of Basic Comparison Protocol

We will demonstrate protocol security of the basic comparison protocol, with
random but round independent masking xj under the Decisional Diffie-Hellman
assumption in the Random Oracle Model [9].

Proof outline. We will proof correctness in the ideal world/real world model, i.e.,
define an ideal world setting (in which security is obviously given), and proof
indistinguishability from the real world setting. Thus, we construct a simulator
that gives the aggregator either data that is equal to the data generated in a
real run, or equal to the data generated in the idealised one, and proof that the
aggregator cannot tell the difference between the two.

This allows us to use a diagonalisation argument to argue that if an attacker
cannot tell where the switch from ideal world to real world happens, she also
cannot distinguish a fully ideal world from a fully real one. Now taking the later
case and k = 2, we show that it is not

Attack model. Assuming the blinding-keys are generated and distributed se-
curely, the end-user does not need to trust either the meter or the aggregator
at all (in terms of privacy protection). The protocol itself is completely deter-
ministic with no secrets that an end-user would not be allowed to know, so no
information can be hidden inside the messages. It is not even necessary that the
meter does the calculation itself in the first place - given the meter reading, an
external device (e.g., an internet connected PC) could perform this task as well.

Similary, the aggregator only needs to assume that his deblinding key is
proper to guarantee fraud prevention - the only fraud still possible is if two
meters collude in a way that one meter overreports be the same amount another
one underreports 5. We do assume some security in the meter that assure that
the values reported to the fraud detection are the same reported to the billing
system, and that messages from the meter are authenticated (alternatively, if H

5 There are scenarios, especially with variable tarrifs where that actually may make
sense, but we safely can assume this to not be an issue for now

is a keyed hash function, it is sufficient for the meters to keep the corresponding
key private). In this, we assume that attacks on the meter from the customer
are usually done by circumventing the meter, rather than reprogramming the
entire unit. This is a necessary assumption for any fraud detection, as we need
to assure that the values the detection system gets are in some way related to
reality; in the future work section, we direct towards a solutioon that would also
allow completely hacked meters to be included.

While it is easy for an individual meter to cause false alarms – and in this, run
some form of denial of service attack – this is not an issue for our protocol. As
the whole point is to trigger an alarm if something goes wrong, and a certiofied
meter launching a denial of service attrack would certainly qualifty as such, the
protocol will act exactly as desired.

Note that in a practical setting, we can assume that the aggregator will
not behave completely dishonest, but more what can be described as ”flawed
but non-criminal”; that is, data that is or can easily me made available will be
abused, but the aggregator will not commit easy to detect criminal acts (e.g.,
invent hundreds of non-exsiting meters in the setup phase) to be able to spy on
an individual meter; this will make the real-world key- and device management
much easier.

Extra care has to be taken as the measurement values of the meters may come
from a very restricted domain, and thus can easily be predicted in a realistic
setting.

Notations We denote with n the number of honest meters. We assume n ≥ 2,
which is the minimum required for any aggregation. In addition to the n honest
meters, we allow for an unlimited number of dishonest meters. As there is no
communication between meters, the dishonest meters play no real role in the
protocol or the proof. We call m the number of measurements. There is no limit
on m, apart from m being polynomial in the security parameter.

Let G be an appropriate group for Diffie Hellman; the following variables are
elements in G:

xi,j = blinding value for measurement i on meter j
ci,j = measurement value for measurement i on meter j.
In addition, we have a hash function H : ({0, 1}∗ → G. We assume H to have

random oracle properties. For readability, we define gi = H(i). Note that the
domain for the ci,j can be small and predictable, i.e., an attacker can brute–force
ci,j given g and gci,j .

DDH For the simulation, we have a given instance of the Decision Diffie Hellman
problem, i.e., we have given g, h1 = ga, h2 = gb, h3 ∈ G and need to decide if
h3 = gab.

The Ideal and the Real world We first define an idealised protocol, in which
privacy is assured in an information theoretical sense. In this idealised world,
every measurement i at meter j has a unique, independent blinding value xi,j

such that for all i,
∑

j xi,j = 0.

For measurement i, meter j sends mi,j = xi,j + ci,j to the aggregator.
This is information theoretically secure (For everything we send, there are

blinding values for all possible measurements that could have led there). We may
need to be a little careful with the distribution, as the ci,j are poorly distributed.

If we now choose a (public) generator gi of an appropriate group G, sending
instead

gi
xi,j+ci,j ,

is at least as secure as sending mi,j directly. This is our ideal scheme.
Recall thatH : {0, 1}∗ → G is a hash-function with random oracle properties.

We call H(i) = gi.
In the real world, we have xi,j = xi′,j for all i, i′, i.e., a given meter uses

the same blinding values for all measurements. In this case, we also denote xi,j

as xj . Let xj be the blinding value for meter j, and ci,j the measurement i for
meter j. Thus, for measurement i, meter j sends

gi
xj+ci,j .

The Simulation We will now construct a reduction that will use an adversary
which can distinguish the ideal from real world protocol to solve DDH.

To this end, we introduce (ℓ, k)-hybrides ℓ < n and k ≤ m+1, and define that
Meters 1, ..., ℓ− 1 behave ideal. Meters ℓ+ 1, ..., n behave real. Meter ℓ behaves

– ideal for measurements 1, . . . , k − 1
– real for measurements k, . . . ,m.

Note that an (ℓ,m + 1)-hybrid behaves exactly the same as a (ℓ + 1, 1)-hybrid
and that it is not possible to distinguish between (1, k)-hybrides, as

g
xi,1

i =
1∏n

j=2 g
xj

i

.

The randomness of xi,1 is fixed to a unique value by the sum-constraint and the
behavior of the other meters.

We prove that adjacent hybrids for j > 1 cannot be distinguished under the
DDH assumption: We first set gk = H(k) = h1 = ga; this is where the random
oracle property of H is required.

As the next step, we want to set xℓ = b, even though the simulator only
knows h2 = gb. We know that the first meter behaves ideal. All meters can
behave following the description of the hybrid as is, and the first meter uses

g
xi,1

i =
1∏n

j=2 g
xi,j

i

Note that g
xk,j

k = h3.
Now, if h3 = gab, meter ℓ sends gab = gk

b = gk
xℓ as its blinding value,

i.e., meter ℓ behaves real for measurement k. Else, the blinding value it uses
is random, and thus the meter behaves ideal for measurement k. Therefore, we
have the following lemma:

Lemma 1. Given above construction, any attacker that can distinguish whether
meter ℓ behaves real or ideal for measurement k, can also solve DDH.

Given this lemma, we can now use a diagonalisation argument to argue that
full real behaviour is indistinguishable from full ideal behaviour. Suppose we
have an attacker that can distinguish our real- from our ideal world setting with
some advantage ϵ. We then provide that attacker with all our intermediate steps,
where some meters/measurements behave real and the others behave ideal. This
means there is some setup where the one individual measurement is decisive, i.e.,
the attacker will tend towards ’ideal’ if that measurement is ideal, and towards
’real’ otherwise. This is the setting where we can use our above simulator to turn
it into a DDH decider.

