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Chapter 1

Introduction

This chapter gives a general overview of the OSD chair, its history, its scientific achievements, and the
roadmap for the next three years.

1.1 Chairs at Ecole Polytechnique

Ecole Polytechnique (X) hosts a certain number of research/teaching chairs1 in its teaching departments
and research laboratories, called X-chairs in the rest of this document. As a general guideline, an X-chair
is a financial endowments over a certain number of years (usually 5), dedicated to support research and
teaching on a specific scientific topic, under the joint responsibility of a senior researcher (the chair’s
director) possessing an X affiliation, its research lab, and X. These endowments are usually supported
by industry and other institutions. They are not to be seen for a provision of services in exchange
of money, but rather as a form of patronage. “Teaching” usually means the organization of a new
master course or the support of an existing master course. “Research” usually means the recruitment of
nonpermanent researchers (typically PhDs and postdoctoral fellows, but also visiting staff permanently
affiliated to other institutions) to pursue fundamental research. The “scientific topic” is decided jointly
by the responsible researcher and the industrial sponsors. To date, there are 19 X-chairs2, five of which
list the word “sustainable” in their name.

1.2 The OSD chair

The Microsoft-CNRS chair for Optimization for Sustainable Development (OSD) is an X-chair based on
a contract involving three partners: Microsoft (MS), CNRS and X. MS actually involves two separate
branches: Microsoft Research (MSR) andMicrosoft France (MSF). The level of the scientific contributions
is guaranteed by two scientific co-directors (L. Liberti andY.Hamadi) and a scientific councillor (D. Krob)
which is part of the steering committee.

1http://www.polytechnique.edu/accueil/entreprises/chaires-enseignement-recherche/.
2In economics: Insurance and Major Risks; Business Economics; Sustainable Development; Sustainable Finance and Respon-

sible Investment; Health, Risk, Insurance. In computer science: Engineering of Complex Systems; Optimization for Sustainable
Development. In applied mathematics: Derivatives of the Future; Finance and Sustainable Development: Quantitative Aspects;
Mathematical Modeling and Biodiversity; Mathematical Modeling and Digital Simulation; Financial Risks. In physics and me-
chanics: Sustainable Energies; Nanoscience and Nanotechnology; Science of Materials for Sustainable Construction; Science of
Materials and Active Surfaces. In humanities and social sciences: Innovation and Regulation of Digital Services; Innovation
Management; Multicultural Management and Business Performance.
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The OSD chair is hosted by the Laboratory (LIX) and the Department (DIX) of computer science at X.
LIX has a hierarchical structure organized in several research teams: the OSD chair is part of the System
Modelling and Optimization (SYSMO) team, headed by Leo Liberti. As such, the OSD chair has privileged
links with the SYSMO team, and the members of SYSMO often contribute research time to the chair’s
topics.

1.2.1 Governance

The chair’s governance is ensured by the director and a steering committee where all the participating
institutions are represented. The steering committee convenes at least once a year. Currently, this com-
mittee includes: Leo Liberti (LIX), Youssef Hamadi (MSR), Pierre-Louis Xech (MSF), Philippe Guédon
(DRIP-X), Daniel Krob (LIX), Florence Sedes (CNRS).

1.2.2 History

The OSD chair was conceived by Youssef Hamadi and the original director (Philippe Baptiste), with the
active efforts of Pierre-Louis Xech at Microsoft France. The contract, initially for two years, was signed
on 30march 2009. Two recruitments weremade during the first year of existence of the OSD chair, under
the responsibility of Ph. Baptiste: Dr. Shmelev and Dr. Touati. The former left after only a couple of
months of employments, wheras the latter has been with the chair for two years.

In February 2010, Ph. Baptiste accepted to be the director of the INS2I institute within the CNRS,
and therefore had to quit the directorship of the OSD chair, leaving this responsibility to Leo Liberti.
Almost immediately, the chair started a politic of candidate searchq, which eventually led to recruit three
postdoctoral fellows (A. Fialho, D. Brockhoff and the renewal of N. Touati’s contract) and a Ph.D. student
(F. Roda, co-sponsored by another X-chair).

In July 2010, a team formed by Vincent Jost, David Savourey (researchers in the SYSMO team who
often work on OSD topics) and others managed to win the first prize of the prestigious EURO/ROADEF
yearly challenge, out of around fifty participating teams all around the world. This marvellous feat has
been instrumental in expanding the awareness of the OSD chair within the optimization community.

1.2.3 Mission

Themissionof theOSDchair is to identify andperformresearchand teachingactionson topics concerning
the application of optimization techniques to real-world problems and issues involving sustainable
development.

1.2.4 Past goals and objectives

The initial goals of the OSD chair were essentially research related:

• produce and divulge knowledge related to sustainable development;

• work with real-world actors to keep research from becoming too abstract;

• identify, model and solve important problems in the domain of sustainable development;

• develop theoretical knowledge in some specific optimization related fields.
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After the 2010 steering committeemeeting, itwas decided to also pursue a teaching action, i.e. supporting
the new Master Parisien en Recherche Operationnelle (MPRO).

The OSD chair employs the following type of actions in order to pursue its goals:

• recruitment of nonpermanent staff for research and teaching purposes;

• funding participation of the chair members to conferences, workshops and meetings on relevant
topics;

• organization of scientific events (e.g. seminars and workshops) on relevant topics;

• co-funding the organization of international conferences on relevant topics;

• funding of fundamental and applied research (pursued by agents external to the chair itself) within
the scope of the chair’s scientific mission;

• acquisition of material necessary to pursue research (e.g. computers, books, software).

The OSD chair is up for renewal on 30th march 2010 (or as soon as possible after this date). After
two years of work, all the objectives listed in Sect. 1.2.3 have been partially attained: we are currently
starting to publish papers in optimization topics applied to sustainable development problems, we have
been establishing contacts with several industrial partners working in sustainable development (such as
EDF, ALSTOM Power and others), we have identified two very promising research themes (i.e. energy
and transportation), and we have been making important contributions in optimization theory and
methodology. To validate all this, the chair was able to secure a comfortable success status by winning
the EURO/ROADEF challenge in 2010.

1.2.5 Scientific achievements

The detailed account of all the scientific output of the first two years of existence is detailed in the main
body of this report. Here follows a résumé.

• Sustainable energy

1. The EURO/ROADEF Challenge. Ourmost prestigious scientific achievement is the first prize in
this industrially sponsored computational competition open to all research teams worldwide,
and supported by the European and French Operations Research Societies. The OSD team
ranked 1st (in the senior category) over around 50 participants. The competition concerned
the planning of outages of nuclear power plants at EDF.

2. Survey on optimization and Smart Grids. There is a lot of talk about Smart (electrical) Grids, and
several informal definitions as to what impediments a smart grid should be able to cope with;
the literature fails to some extent to provide a formal definition concerning what a smart grid
should be able to actually do. Moreover, from the point of view of optimization techniques,
no satisfactory survey of the state of the art was written yet. This survey is preparatory for
working with prospective sustainable energy partners to the OSD chair.

3. Combinatorial optimization for electric vehicles management. Growing concerns about environ-
mental quality of cities are calling for sustainable road transportation technologies. Electric
Vehicles (EV), for public and private transport, can contribute significantly to the lowering
of the current pollution levels. However, the EV use is currently facing several weaknesses
among which are: limited driving range, high cost and overall limited efficiency. This re-
port aims at specifying some key contributions of combinatorial optimization for an efficient
electric vehicles management.
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4. Optimal running of biomass production. This work actually pre-dates the chair by one year, but is
nonetheless interesting insofar as: (a) it was mostly carried out by the current scientific Poly-
technique co-director; (b) it is gaining visibility through citations. It concerns the optimized
production of energy via a set of facilities for transforming biomasses into energy.

5. Optimizing buildings towards higher energy efficiency. We aim at contributing to the issue of
energy consumption by proposing tools to automatically define some aspects of the architec-
tural and structural design of buildings. Our architecture starts with a building design, and
automatically generates and searches a space of acceptable design variations. It outputs a
variation which maximizes energy efficiency, and respect cost constraints. The optimization
stage is done by the combination of an energy consumption simulation program, EnergyPlus
[336], with a state-of-the-art multi-objective evolutionary algorithm.

• Sustainable transportation

1. On green routing and scheduling problem. The vehicle routing and scheduling problem has
been studied with much interest within the last four decades. In this report, some of the
existing literature dealing with routing and scheduling problems with environmental issues
is reviewed, and a description is provided of the problems that have been investigated and
how they are treated using combinatorial optimization tools.

2. The price of equity in the Hazmat Transportation Problem. “Equity” is not an easy term to define.
In the context of transportation of hazardous materials, different definitions of equity lead to
different situations as concerns transportation costs and the risk connected to loss of (quality
of) life following catastrophic accidents. Specifically, regional fairness costs lives with respect
to individual fairness. We discuss a methodology for trying to peg a monetary cost to this
trade-off.

3. Routing of hazardous materials. The routing of vehicles represents an important component
of many distribution and transportation systems and has been intensively studied in the
operations research literature. In this report, particular consideration is given to routing
models for the transportation of hazardous materials. This problem has received a large
interest in recent years, this results from the increase in public awareness of the dangers of
hazardousmaterials and the enormous amount of hazardousmaterials being transported. We
describe here somemajor differences between routing of hazardousmaterials and the classical
vehicle routing problems. We review some general models and optimization techniques and
propose several direction for future research.

4. Evolutionary optimization for themultiobjective risk-equity constrained routing problem. Wepropose
a methodology to find a routing plan for transporting hazardous materials that attempts to
balance costs with safety and green requirements.

5. A branch-and-price algorithm for the risk-equity constrained routing problem. We study a multi-
criteria variant of the problem of routing hazardous material on a geographical area subdi-
vided in regions. The two objective functions are given by a generally defined routing cost
and a risk equity equal to the maximum, over each region, of the risk perceivedwithin a region.
This is amulticommodity flowproblemwhere integer variables are used to define the number
of trucks used for the routing. This problem admits a straightforward path formulation, and
we propose a branch-and-price problem where, for each node of the branch-and-bound tree,
column generation is used to obtain a lower bound. Experimental results on a set of instances
are reported.

• Innovative methods for optimization

1. Multi-Objective Differential Evolution with Adaptive Control of Parameters and Operators. Differ-
ential Evolution (DE) is a simple yet powerful evolutionary algorithm, whose performance
highly depends on the setting of some parameters. In this report, we propose an adaptive
DE algorithm for multi-objective optimization problems. Firstly, a novel tree neighborhood
density estimator is proposed to enforce a higher spread between the non-dominated solu-
tions, while the Pareto dominance strength is used to promote a higher convergence to the
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Pareto front. These two metrics are then used by an original replacement mechanism based
on a three-step comparison procedure; and also to port two existing adaptive mechanisms
to the multi-objective domain, one being used for the autonomous selection of the operators,
and the other for the adaptive control of DE parameters CR and F. Experimental results con-
firm the superior performance of the proposed algorithm, referred to as Adap-MODE, when
compared to two state-of-the-art baseline approaches, and to its static and partially-adaptive
variants.

2. Mirrored Sampling and Sequential Selection in Evolution Strategies. This report presents a refined
single parent evolution strategy that is derandomizedwithmirrored sampling and/or uses se-
quential selection. The paper analyzes some of the elitist variants of this algorithm. We prove,
on spherical functions with finite dimension, linear convergence of different strategies with
scale-invariant step-size and provide expressions for the convergence rates as the expectation
of some known random variables. In addition, we derive explicit asymptotic formulae for
the convergence rate when the dimension of the search space goes to infinity. Convergence
rates on the sphere reveal lower bounds for the convergence rate of the respective step-size
adaptive strategies. We prove the surprising result that the (1+2)-ES with mirrored sampling
converges at the same rate as the (1 + 1)-ES without and show that the tight lower bound
for the (1 + λ)-ES with mirrored sampling and sequential selection improves by 16% over the
(1 + 1)-ES reaching an asymptotic value of about −0.235.

3. Mirrored Sampling in Evolution Strategies With Weighted Recombination. This report introduces
mirrored sampling into evolution strategies with weighted multi-recombination. Pairwise se-
lection selects atmost one of twomirroredvectors in order to avoid a bias due to recombination.
Selective mirroring only mirrors the originally worst solutions of the population. Convergence
rates on the sphere function are derived also yielding lower bounds. The optimal ratio of
mirrored offspring is 1/2 (maximal) for randomly selected mirrors and about 1/6 for selective
mirroring, where the convergence rate reaches a value of 0.390. This is an improvement of
more than 50% compared to the best known convergence rate of 0.25with positive recombina-
tion weights. Selective mirroring is combined with CMA-ES and benchmarked on unimodal
functions and on the COCO/BBOB-2010 testbed.

4. Optimal µ-Distributions for Linear Fronts. To simultaneously optimize multiple objective func-
tions, several evolutionary multiobjective optimization (EMO) algorithms have been pro-
posed. Nowadays, often set quality indicators are used when comparing the performance
of those algorithms or when selecting “good” solutions during the algorithm run. Hence,
characterizing the solution sets that maximize a certain indicator is crucial—complying with
the optimization goal of many indicator-based EMO algorithms. If these optimal solution sets
are upper bounded in size, e.g., by the population size µ, we call them optimal µ-distributions.
Recently, optimal µ-distributions for the well-known hypervolume indicator have been theo-
retically analyzed, in particular, for bi-objective problemswith a linear Pareto front. Although
the exact optimal µ-distributions have been characterized in this case, not all possible choices
of the hypervolume’s reference point have been investigated. Moreover, some of the results
rely on a lower bound for the reference point in order to ensure the extremes of the front
in the optimal µ-distributions. In this report, we revisit the previous results and rigorously
characterize the optimal µ-distributions also for all other reference point choices. In this sense,
our characterization is now exhaustive as the result holds for any linear Pareto front and for
any choice of the reference point and the optimal µ-distributions turn out to be always unique
in those cases. We also prove a tight lower bound (depending on µ) such that choosing
the reference point above this bound ensures the extremes of the Pareto front to be always
included in optimal µ-distributions.

5. Hypervolume-based Multiobjective Optimization. In recent years, indicator-based evolutionary
algorithms, allowing to implicitly incorporate user preferences into the search, have become
widely used in practice to solve multiobjective optimization problems. When using this type
of methods, the optimization goal changes from optimizing a set of objective functions simul-
taneously to the single-objective optimization goal of finding a set of µ points that maximizes
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the underlying indicator. Understanding the difference between these two optimization goals
is fundamental when applying indicator-based algorithms in practice. On the one hand, a
characterization of the inherent optimization goal of different indicators allows the user to
choose the indicator that meets her preferences. On the other hand, knowledge about the
sets of µ points with optimal indicator values—so-called optimal µ-distributions—can be used
in performance assessment whenever the indicator is used as a performance criterion. How-
ever, theoretical studies on indicator-based optimization are sparse. In previous work, we
theoretically investigated the unweighted hypervolume indicator in terms of a characterization
of optimal µ-distributions and the influence of the hypervolume’s reference point for general
bi-objective optimization problems. In this report, we generalize those results to the case of
the weighted hypervolume indicator.

• Promising ideas

1. Architecture evolutions of Information Systems. In the normal lifespan of large enterprises, the
strategic management of IT often evolves. Existing services must be replaced with new ser-
vices without impairing operations. The problem of scheduling such replacement is of critical
importance for the success of the operation. We analyze this problem froma quantitative point
of view, underlining the trade-off nature of its solutions. We formalize this multi-objective
optimization problem as amathematical programming formulation. We discuss its theoretical
properties and show that real-world instances can be solved by standard off-the-shelf tools.

2. DiscretizableMolecular Distance Geometry Problem. Identifying 3D conformation is a crucial step
to synthesizinguseful proteins; inparticular, the conformationof someof theproteins linked to
photosynthesis is still largely unknown. Since photosynthesis allows the production of clean
energy from light, this line of research is relevant to sustainable energy, although our approach
is more general than that. The Molecular Distance Geometry Problem (MDGP) consists in
finding an embedding in R3 of a nonnegatively weighted simple undirected graph with the
property that the Euclidean distances between embedded adjacent vertices must be the same
as the corresponding edge weights. The Discretizable Molecular Distance Geometry Problem
(DMDGP) is a particular subset of the MDGP which can be solved using a discrete search
occurring in continuous space; its main application is to find three-dimensional arrangements
of proteins using Nuclear Magnetic Resonance (NMR) data. The model provided by the
DMDGP is too theoretical for practical exploitation. In the last five years we strove to adapt
the DMDGP to be an ever closer model of the actual difficulties posed by the problem of
determining protein structures from NMR data, whilst always keeping the discrete search
property valid. This survey lists recent developments on DMDGP related research.

3. Sustainable public policies for natural resource access in Senegal. Territorial laws in Senegal for
regulating public access to natural resources are currently being debated. The debate concerns
the trade-off between productivity, fairness, equitability and sustainability. This project aims
to develop a modelling/simulation tool based on optimization techniques to evaluate the
impact of different public policies concerning the assignment of natural resource access to
different actors. Theoretically speaking, our proposal is based on a complex assignment
problem with several objectives. This report concerns the first phase of the work where data
are collected from domain actors (farmers and shepherds on the terrain).

1.2.6 Dissemination effort

The effort of the OSD chair members as concerns dissemination and communication during the period
2009-2011 included dedicated workshops, dedicated sessions in national and international conferences,
and partial sponsorship of international conferences of high visibility.

• Workshops.
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1. Kick-off workshop. This was organized on 3rd june 2009 at Ecole Polytechnique. Guest in-
troductory presentations by Ms. N. Kosciusko-Morizet (state secretary for digital economy
development and now minister for sustainable development), and Mr. Rick Rashid, Senior
Vice President, Research, Microsoft. Scientific presentations by P. van Hentenryck (Brown
University), L. Doyen (CNRS), C. Gollier (Univ. Toulouse I), M. Metaiche (CNRS), C. Le
Pape (Schneider Electric), K. Pruhs (Univ. of Pittsburgh), L. Schmitt (ALSTOM Power). See
http://chaire-osd.polytechnique.fr/accueil/activites/inauguration/ for more de-
tails.

2. OSD day on multi-objective programming. This was organized on 22nd june 2010 with purely
scientific goals. The day included 2 distinguished speakers (A. Tsoukias, CNRS and P. Perny,
Univ. Paris 6) and twomore “junior” speakers (S. Kaci, CRIL and F. Roda, LIX). The talks have
been collected at http://www.lix.polytechnique.fr/˜liberti/multiobjective-100622/.

3. OSD workshop at Microsoft France: “L’innovation au secours de la planète”. This took place on
27 january 2011 and had a three purposes: (a) to invite contributions from decision makers
about sustainable development; (b) to publically announce the winning of the prestigious
EURO/ROADEF Challenge; (c) to summarize the achievements after two years of the OSD
chair’s existence. The workshop attracted around 200 people. The programme included
opening interventions by Mr. E. Boustouller (President of Microsoft France), Gen. X. Michel
(Commander of Ecole Polytechnique), and Dr. Ph. Baptiste (Director of the INS2I CNRS
Institute), a joint presentation by the two scientific co-directors (L. Liberti, LIX and Y. Hamadi,
MSR), an interview to thewinning EURO/ROADEF challenge team, a keynote presentation by
R. Bernard (MS), and a round-table on the integration of sustainable development constraints
in the enterprise decision process. See the corresponding entry in http://chaire-osd.
polytechnique.fr/accueil/evenements-generaux/.

• Sessions.

1. D.BrockhoffandK.Deb, “Session: Evolutionarymultiobjectiveoptimization”. 21st Intl.Conf. on
Multiple Criteria Decision Making, June 13-17, 2011, Jyväskylä, Finland.

2. V. Jost and N. Touati-Moungla, “Session: Transport durable”. 12th annual congress of the
ROADEF, 2011, St. Étienne, France.

3. V. Jost and N. Touati-Moungla, “Stream: Optimization for Sustainable Development”. 24th
European Conference on Operational Research (EURO), July 2010, Lisbon, Portugal. Two
sessions: “Green vehicle routing and scheduling”, “Multi-objective optimization”.

4. N. Touati-Moungla, “Session: VRP and applications”. International Symposium on Combi-
natorial Optimization (ISCO 2010), March 2010, Hammamet, Tunisie.

Individualpresentations are listed inhttp://chaire-osd.polytechnique.fr/accueil/activites/
conferences/.

• Sponsorship.

1. CPAIOR 2010 http://cpaior2010.ing.unibo.it/

2. CP 2010 http://cp2010.cs.st-andrews.ac.uk/

3. TOGO 2010 http://www.lix.polytechnique.fr/togo10/

4. CSDM 2010 http://www.csdm2010.csdm.fr/

The chair also sponsors an invited seminar series. Thedetails are athttp://chaire-osd.polytechnique.
fr/accueil/activites/seminaires/.
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1.3 Roadmap

The general roadmap for the next three years is to keep on attaining the above objective, continue to excel
within the international scientific community, and to start exploiting acquired knowledge for teaching
and education purposes within the realm of sustainable development.

1.3.1 Scientific objectives

We shall devote considerable attention to the two most promising topics identified during the first
two years of work: sustainable energy and sustainable transportation, as well as carrying out innova-
tive methodological work in optimization techniques. We shall also continue to look for potentially
interesting ideas linked to sustainable development, but this will no longer be the focus of our work.

More precisely, the following research topics will be explored in depth.

1. Smart grids and energy production. Smart grids are electrical grids that are supposed to be able
to withstand practically every conceivable breakdown, integrate renewable energy sources, and
adjust tariffs locally by means of a fine-grained interconnected control and counter network (see
Ch. 3, 5, 4). Two industrial partners of coniderable standing (Alstom and EDF) have shown some
interest in working with the OSD Chair on this subject. Specifically, Alstom is interested in solving
the real-time energy market problem at the minute scale, as well as in integrating the different
timescale problems routinely solved to maintain a complex electrical grid. EDF is interested in the
scheduling of downtime in its network of nuclear plants. This line of research will be pursued by
means of two postdoctoral fellowships dedicated to this topic, as well as by inviting field experts
to give seminars.

2. The rational use of energy in new generation buildings. Typically, new buildings integrate sensors and
controllers that work together to try and reduce thermal dissipation without impacting the quality
of life. Such controls regulate temperature, humidity, hot water, and domestic appliances. Sensors
must monitor the building state with respect to the inolved factors. Next generation buildings
also include local energy generation facilities, such as solar cells, wind exploitation technology, or
thermal collection from nearby plants. This generates several decision problems, from the reliable
location of sensors to the rational use of local versus grid energy (in this sense this research is
connected to smart grids). This line of research involves a full-time postdoctoral fellow (Ch. 12),
whose current task is to improve an existing, open source architecture software with a wide
distribution. We hope the visibility of this work to be remarkable, as well as the interest spawned
in the community. This line of research will continue to be pursued by means of one postdoctoral
fellowships dedicated to this topic, as well as by inviting field experts to give seminars.

3. Environment-conscious transportation. Typically, transportationand routingplans areoptimizedwith
respect to cost. Regard for the environment causes trade-offs in the cost-optimal plans, and requires
different solution methodologies, which vary according to the kind of environmental objectives
considered. In general, the decision maker is presented with an efficient set of routing plans
involving several modes of transportations. This line of research involves a full-time postdoctoral
fellow, a part-time Ph.D. student and a permanent researcher (see Ch. 4, 7, 8, 9, 10, 11). This line of
research will continue to be pursued by means of one postdoctoral fellowships dedicated to this
topic, as well as by inviting field experts to give seminars.

4. Innovative methodologies in optimization technology. Identifying and modelling problems is useless
if one cannot solve them. A part of our budget will be dedicated to employing two postdoctoral
fellows to investigate methods for robust multiobjective optimization, as well as TO inviting field
experts to give seminars. Although for the moment we chose to focus on stochastic optimization
methods (Ch. 13, 14, 15, 16), other promising techniques includemathematical programming based
approaches to robustness, chance-constrained programming, and exact methods.
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We shall also endeavour to continue looking for promising ideas that support the sustainable develop-
ment paradigm in all forms (see e.g. Ch. 17, 18).

1.3.2 Didactical objectives

The OSDChair will partially support the forthcomingMaster Parisien de Recherche Operationnelle (MPRO)
http://uma.ensta.fr/mpro/, insofar as the MPRO has an interest in teaching sustainable development
and energy-related topics, in connection to Operations Research, to young graduates aiming to fulfill a
research or professional career in industry or academia. The support will be in the form of payment of
hourly teaching rates, institution of a “bestmaster dissertation” prize, aswell as in the formof facilitating,
through the Chair’s contact network, the match between finishing master students with corresponding
industrial internships.

1.3.3 Dissemination objectives

The OSD Chair members and related co-workers will be encouraged to disseminate their scientific find-
ings to relevant international conferences and workshops, where they will be invited to also organized
special-interest sessions, as well as submit their completed work to high-caliber international scientific
journals. A certain amount of sponsorship for conferences and workshops is also planned.

An important dissemination objective is that of forming tactical partnerships with industries that are
interested in sustainable development, in order to find new problems and test innovative techniques on
the field. Such tactical partnerships may eventually become strategic and long-term.

1.4 Contents of this report

The rest of this document is a collection of scientific reports on the several different research topics the
OSD chair team worked on during the first two years of existence of the chair. The report is organized
in four parts (sustainable energy, sustainable transportation, innovative methods for optimization and
promising ideas), each of which consists of several chapters.
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Part I

Sustainable Energy
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Chapter 2

An ILP Approach to schedule outages of
nuclear power plants

Winning submission of the the EURO/ROADEF Challenge 2010
Vincent Jost, David Savourey

Submitted to Journal of Scheduling

We address the problem of planning outages of nuclear power plants submitted by EDF as the Challenge
EURO/ROADEF 2010. As we won the first prize of the contest in the senior category, our approach
may deserve some interest: it is conceptually simple, easy to program and computationally relatively
fast. The quality of our solutions, although a few percent behind the best known ones, still leaves
hope for our approach to become competitive. Indeed, to fit with the deadline of the contest, we made
several major simplifications without testing alternatives. Several assumptions and choices could be
studied more carefully in further studies. We therefore try to present both our method and some ideas
to improve it.

2.1 Context, motivations

The subject of the Challenge ROADEF/EURO 2010 was proposed by EDF [1]. Nuclear power plants
need to be stopped regularly for maintenance and refuel. The problem mainly consists, over a 5 years
horizon, in deciding when to stop nuclear power plants and by how much to refuel the reactors, so as
to both ensure the ability to robustly fulfil a stochastic demand, while minimizing the expected cost of
production. All details can be found on the web site of the challenge [1]. From now on, we assume that
the reader is familiar with the subject of the challenge, or at least has a global view on the 21 types of
constraints.

Our original motivation to participate to the challenge was to understand the relevance of optimiza-
tion techniques in energymanagementproblems. Within the context of our researchgroup”Optimization
for Sustainable Development”, proving our know-how on a real world problem was also a good way to
promote our visibility and credibility.

Our original motivation was not to produce as good solutions as possible. We wanted to understand
the problem as much as we wanted to solve it. Indeed, when it turned out, less than one month before
the deadline, that our approach had a chance to become competitive, it was to late. We chose to work
on robustness rather than optimality. This choice was also driven by the study of the recent history of
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the challenge: Hidden X-instances might be slightly different, bigger and harder than known instances.
All this explains why we have only some 3000 lines of used code, maybe 2 or 3 times less than the very
competitive teams.

Unfortunately, the problemwas too complex for us to propose a very pure and transparent algorithm.
In order to find acceptable solutions within the deadlines, we had no more time to study insightfully the
following question: “Given fixed dates of outage, how shouldwe choose values of refueling so as to both
ensure feasibility and near-optimality ?” On the other hand, we grasped intuitively more features about
the problem than we had time and abilities to translate them into algorithms as discussed in Section 2.7.

This paper is organized as follows : In Section 2.2, a global presentation of our approach is given. The
Section 2.3 focus on the scheduling sub-problem and the way we modelled it. In Section 2.4, algorithms
used to solve the refueling sub-problem are presented. Numerical results are given into Section 2.5.
Section 2.6 consists in an analysis of the instances: we present some features of the instances that help
designing efficient ways to solve the real world cases of the problem (that is, at least for EDF in France).
Finally, a discussion about our approach and the way it could be improved is given in Section 2.7.

2.2 Overview of the method

Conceptually, our approach consists in a hierarchical decomposition of the problem into three phases :
we fix some variables before working on fixing subsequent other variables.

1. ILP : Fix the dates of outages (variables haik),

2. Dichotomy : Fix the values of refueling (variables rik),

3. Greedy : Fix the production levels (variables pits and p jts).

The first phase is mainly done using an ILP, the second phase using a dichotomised search on the
values of refueling and the third, running greedily the dynamic of the nuclear plants over the time
horizon. Hence, within this paper, “ILP” refers to the first phase while “Dichotomy” refers to the second
phase. However, since we often need to check exactly the feasibility of the decisions taken, we use the
“Greedy” subroutine in various places, and not only in the third phase.

2.2.1 Specifications, utilization and principle of the ILP

The ILP encodes exactly the constraints linking the dates of outages of various nuclear plants (CT14-21),
as well as the bounds on these dates (CT13). The ILP also encodes constraints on minimum distances
between pairs of outages of each given plant (see section 2.3.3). Theses (constraints on) distances are
not given in the subject. We designed them as a way to aggregate approximately the constraints on
the dynamic of production, interruptions and refueling in each nuclear plant (CT3-13) to help our ILP
finding solutions that lead to the global feasibility of the problem.

These distance constraints being only necessary and not sufficient to satisfy (CT3-13), we run the
Greedy routine at the end of the ILP. If the Greedy routine says that (CT3-13) can be satisfied, we go
to the second phase. If not, we increase the minimum date (TOik) on an outage on which we detected
infeasibility (technically this is when we observe a fuel level before outage (i, k) greater than the allowed
AMAXik).

The ILP obviously needs an objective function to find appropriate outages dates that will lead to a
global solution with good objective value. As discussed in section 2.3.3, a binary variable pih serves as
a rough estimate of whether plant i will be able to produce at week h or not (depending on the dates
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of outages of plant i). Having pre-computed some estimate valih on the economical value of producing
on i at h the ILP maximizes

∑
i

∑
h valihpih. Although the variables pih are the only ones in the objective

functions, we only care about the variables xikh so as to fix the dates of outages haik after the solution of
the ILP.

2.2.2 Specifications, utilization and principle of the Dichotomy

Once the dates of outage are fixed, we are looking for refueling values. We say that a set of refueling
values {rik} is feasible if we are able to find a global feasible solution using these values. Our goal is
to maximize the ability to produce with nuclear plant while keeping a global feasible solution. As it
was too hard for us to compute directly feasible refueling with high values, we use a kind of target-
checker search on possible values. This method relies heavily on the monotonic feasibility of refueling
values: If {rik} is an infeasible set and r′

ik
≥ rik for all (i, k), then {r′ik} is also infeasible. The method relies

also on the fact that generally we prefer higher refueling values than smaller. We therefore start with
rik = RMINik. Then, given a feasible vector “low” of refueling values, we try to guess by how much
we can increase them, thus obtaining a vector “high”. If “high” is feasible, “low ← high”. If “high” is
infeasible, “high← (high + low)/2”. These rules are iteratively applied until “low′′ and “high” are almost
equal (for all (i, k)). At the endwe have a feasible set of refueling values, andwe didn’t find opportunities
to improve any value in this set.

2.2.3 Specifications, utilization and principle of the Greedy

Our approach needs ways to make sure, during the first two phases, that we will be able to find feasible
solutions based on the values we chose for dates and values of refueling. To do this, we need to chose
production levels, either for each nuclear plan separately of for nuclear plants together. Therefore, two
different greedy procedures are used.

The first one does not take into account the scenarios, that is to say there is no demand, and no
modulation is required. This procedure is presented in details with Algorithm 1. It is used in order to
check that chosen dates of outages for each plant are not violating the constraints involving only that
plant. It is also used to compute how much modulation we can afford on a cycle of a plant, before
conflicting with constraints involving only that plant.

The second procedure takes into account the demand, it chooses production levels for each scenario,
by modulating if necessary. To do this, a rolling horizon procedure is used. For each scenario, we
follow the dynamic of fuel for each nuclear power plant, producing at PMAXt,s

i
in modulation phase and

following the profile constraint otherwise. Whenever the production exceeds the demand in a scenario,
we modulate on chosen power plants until the production equals the demand. We modulate first on the
plant for which we have the largest estimate of allowed modulation. If there exists a scenario and a time
step on which more modulation would lead to violating some constraints but production is still above
demand, the procedure answers “no”. This method is described more precisely with Algorithm 2.4.

2.3 Scheduling outages

2.3.1 Variables of the ILP

We use the following binary decision variables (which allow exact reformulations of the variables haik).

xikh =


1 if the k-th outage of plant i starts at week h,
0 otherwise;
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We also use the following auxiliary binary decision variables, which allow to express linearly a
heuristic cost function that helps producing values for the x variables which yield a good final solution.

pih =


1 if plant i is likely to be able to produce at week h,
0 otherwise;

Contrary to variables x, the values of variables p are not intended to be used outside of the ILP. They
just help defining (and hence finding) the quality of outages dates.

2.3.2 Reformulation of constraints CT13-21

In the subject, each constraint in the set [CT14-21] is defined relatively to a subset, denotedAm, of nuclear
plants and also relatively to a number of weeks, denoted Sem ∈ Z. Sem describe a minimum distance (if
≥ 0) or a maximum overlapping (if ≥ 0).

Constraint CT13

Each outage (i, k) has at most one starting week h, which must be in within the bounds [TOik,TAik]:

∀(i, k) ∈ I × K,
∑

h∈[TOik ,TAik]

xikh ≤ 1

∀(i, k) ∈ I × K,∀h < [TOik,TAik], xikh = 0

If k ≥ 1 and if the k-th outage of plant i starts at week h, then the k− 1-th outage of plant imust occur,
with a starting week not later than h −DAi,k−11.

∀h ∈ H,∀(i, k),
h−DAi,k−1∑

h′=0

xi,k−1,h′ ≥ xikh

Constraint CT14

This constraints considers outages as intervals (haik, haik+DAik), and requires separation of these intervals.
We reformulate it as a packing constraint:

∀m,∀h,
∑

i∈Am

∑

k s.t.
DAik+Sem−1≥0

h∑

h′=h−DAik−Sem+1
xikh′ ≤ 1

However, the above constraints are not sufficient, because outage for which DAik ≤ −Sem are not
considered. If it exists, each such outage must not interfere with any of the packing described above.

1The following constraints is written in the last paragraph, page 27 of the subject
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∀m,∀i ∈ Am,∀k s.t. DAik ≤ −Sem,∀h,

xikh +
∑

i′∈Am

∑

k′ s.t.
DAi′k′+Sem−1≥0

h+DAik+Sem−1∑

h′=h−DAi′k′−Sem+1
xi′k′h′ ≤ 1

We invite the reader to take time digesting the last constraint. Indeed we completely overlooked it in
the first place. The ILP had to find solutions that were claimed infeasible by the checker of EDF before
considering that something was missing to encode CT14. This is typically the kind of bug that could
have shown up only on X instances. . .

Constraint CT15

It is the same constraint thatCT14, but restricted to outageswhich intersect the interval ofweek [IDm, IFm].

For convenience, we introduce the following notations :

wikm = [IDm −DAik + 1, IFm],

yiki′k′m(h) = [h −DAi′k′ − Sem + 1, h +DAik + Sem − 1].

∀m,∀h ∈ H,
∑

(i,k)∈Am

∑

h′∈[h−DAik−Sem+1,h]
h′∈wikm

xikh′ ≤ 1

Then, the second part of CT15 can be expressed as :

∀m,∀i ∈ Am,∀k s.t. DAik ≤ −Sem,∀h,

xikh +
∑

i′∈Am

∑

k′ s.t.
DAi′k′+Sem−1≥0

∑

h′∈yiki′k′m(h)
h′∈wi′k′m

xi′k′h′ ≤ 1

Constraint CT16

For each week h, the number of decoupling dates in interval [h, h+Sem− 1] must be smaller or equal to 1.

∀m,∀h ∈ H,
∑

(i,k)∈Am

h+Sem−1∑

h′=h

xikh′ ≤ 1

Constraint CT17

For eachweek h, we consider interval [h, h+Sem−1] and impose that atmost one coupling date belongs to
this interval. It is equivalent to say that atmost one decoupling date belongs to [h−DAik, h−DAik+Sem−1].
Thus, we have :
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∀m,∀h ∈ [0,H +max
ik

DAik − 1],
∑

(i,k)∈Am

h−DAik+Sem−1∑

h′=h−DAik

xikh′ ≤ 1

Constraint CT18

Again, we consider interval [h, h+Sem − 1]. There must be at most one coupling date or decoupling with
this interval. Outage (i, k) couples or decouples in [h, h + Sem + 1] iff haik ∈ [h −DAik, h + Sem − 1]. Thus,
CT18 can be rewritten as :

∀m,∀h ∈ [0,H +max
ik

DAik − 1],
∑

(i,k)∈Am

h+Sem−1∑

h′=h−DAik

xikh′ ≤ 1

Constraint CT19

There must be at most Qm decoupling dates within every intervals [h′ + Likm, h
′ + Likm + TUikm] :

∀m,∀h ∈ H,
∑

(i,k)∈Am

h−Likm∑

h′=h−Likm−TUikm+1

xikh′ ≤ Qm

Constraint CT20

For a given week h, the number of outages overlapping this week must be smaller than Nm(h).

∀m,
∑

(i,k)∈Am

h∑

h′=h−DAik+1

xikh′ ≤ Nm(h)

Constraint CT21

Constraints CT21 were almost not reformulated, we expressed it nearly as in the subject :

∀m,∀h ∈ ITm,∀t ∈ h,
∑

i∈Cm

∑

k∈K

h∑

h′=h−DAik+1

PMAXt
i · xikh′ ≤ IMAXm

2.3.3 Minimum distances between the outages within each plant

The variables x do not allow to express the constraints concerning the production of nuclear plants.
Indeed, constraints [CT3-11] imply that, even if refueling at theminimumallowedRMINik andproducing
at PMAXt

i
, the plant needs several weeks for its fuel level to fall below AMAXi,k+1.

Let i ∈ I and C ⊆ [0..K[, we say that a set of week of outage {haik}k∈C is “feasible” is there exists values
{haik}k∈[0..K[\C such that there exists fuel, production and refueling levels such that plant i satisfies the
constraints (involving only itself) [CT3-13].



2.3. SCHEDULING OUTAGES 33

It turns out that a set of outages dates {haik}k∈[0..K[ might be infeasible, while fixing all but one of these
values might still be feasible. One might then wish to write constraints on {haik|k ∈ C ⊆ [0..K[} ”as they
are needed” (for example, when the current solution violates them). But this would lead to an iterative
approach calling the ILP solver as a subroutine.

Concrete values in the data set suggest that feasible outage dates are highly (andmainly) constrained
by minimum distances between (consecutive) pairs. In other words, under constraints involving pairs
of outages of a plant, a set of value {haik}k∈[0..K[ is often feasible or requires shifting outages to the future
by only one week to become feasible.

Our trade-off is thus to rely only on constraints involving pairs. To do so, we pre-compute exactly
the values (with k < k′):

Earl(i, k, k2, h) := first week h2 for which xikh and xik2h2 are feasible together

These values (Earl) are then all encoded in our ILP, with the following constraints:

∀h ∈ H,∀(i, k),∀k′ > k, xikh +

Earli,k,k2 ,h∑

h′=0

xi,k2,h2 ≤ 1

The values Earl(i, k, k′, h) are deduced on each plant i independently, using a dynamic program to first
compute the following quantities.

LetMinFl(i, k, h) be the minimum fuel level that we can achieve at week h, assuming that outage k has
been completed (that is, with h ≥ hai,k +DAi,k). Let MinFuel(i, k, k2, h, h2) be the minimum reachable fuel
level at week h2 such that k2 is the last completed outage, and such that outage k has started at week h.

Assuming these values are computed, one deduces easily earliest feasible week of an outage and
minimum distances between outages of one plant. This amounts to ask whetherMinFl andMinFuel are
lower than AMAX. Notice first that computing valuesMinFuel knowing the valuesMinFl is very similar
to computing MinFl starting form week 0 with fuel level XIi.

The rest of section 2.3.3 describes the dynamic program. Constraint [CT10] implies that the dynamic
of refueling is non-linear (although affine): if t − 1 is the first time step of outage (i, k), then the fuel level
at time t is given by f uel(i, t)Ψi,k( f uel(i, t − 1)) + rik with

Ψi,k(x) :=
Qi,k − 1
Qi,k

.(x − BOi,k−1) + BOi,k

(where Qi,k is equal to 3 or 4 in practice).

Constraint [CT6] says that, if the fuel level is less than a threshold BOi,k, then, until the plant enters an
outage, the production is constrained to a proportion of its capacity PMAXt

i
. This proportion decreases

with the fuel level, and is given by a (piecewise-linear decreasing function PBi,k). We simplify, and
indeed, over-constrain [CT10] (which normally allows a tiny margin) into:

p(i, t) = PMAXt
i ∗ PBi,k( f uel(i, t))

.

To achieve MinFl(i, k, h), we assume that each refueling is done at RMINik and that consumption is
always equal to PMAXt

i
in modulation phase. The second hypothesis is false in general because using

modulation to adjust sharply the fuel level before an outage might help decreasing it at the end of
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the profile phase. Anyway, although not exact, these hypothesis are almost exact given the order of
magnitude of the numbers in the data set.

One concludes that, in order to computeMinFl(i, k, h) we shall use the following equations describing
fuel levels and power.

p(i, t) =



0 if plant i is in outage at t
PMAXt

i
if f uel(i, t) ≥ BOik

PMAXt
i
.PBi,k( f uel(i, h)) if f uel(i, t) < BOik

(2.1)

f uel(i, t) =



XIi if t=0
Ψ( f uel(i, t − 1)) + RMINik if outage k starts at t − 1
f uel(i, t − 1) − p(i, t − 1).D otherwise

(2.2)

Of course, to achieve MinFl(i, k, h), we still need to choose the dates of outages. MinFl(i, k, h) is set to
+∞ at the initialization of the dynamic program. It may remain infinite, indicating that is is impossible
to complete outage k by week h. We start with initial conditions MinFl(i, 0, 0) := XIi.

We compute the following values (as they are needed andwithout storing them): letConso(i, k, h−1, x)
be the quantity of fuel consumed during all time steps of week h − 1 under equations (2.1) and (2.2),
assuming that plant i is in cycle k, and with fuel level x at the beginning of that week.

MinFl(i, k, h) satisfies a Bellman relation. It is the minimum between two values:


MinFl(i, k, h − 1) − Conso(i, k, h − 1,MinFl(i, k, h − 1))
Ψi,k(MinFl(i, k − 1, h −DAik)) + RMINik

(2.3)

The first case is always acceptable, but the second can be chosen only if bothMinFl(i, k−1, h−DAik) ≤
Amaxik and TOik ≤ h −DAik ≤ TAik.

Concerning MinFuel(i, k, k2, h, h2), we don’t go into computational details here. Let us just mention
that MinFuel(i, k, k2, h, h2) satisfies a relation quasi-identical to (2.3) as it is the minimum between:


MinFuel(i, k, k2, h, h2 − 1) − Conso(i, k2, h2 − 1,MinFuel(i, k, k2, h, h2 − 1))
Ψi,k(MinFuel(i, k, k2 − 1, h, h2 −DAik2 )) + RMINik2

(2.4)

2.3.4 Computing an approximate objective function

One first issue that we had to solve, before evaluating costs, is to evaluate the nuclear availability at each
step, or at least at each week. We chose to evaluate the availability of each plant for each week. Actually,
we assume here that a plant either produce at PMAX or is offline (hence neglecting modulation and
profile phase effects !).

Let the following binary variable be

pih =


1 if we forcast a production (at PMAX) on plant i at week h,
0 if we forcast no production on i at h;

Variables p must be constrained to 0 while on outage:
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pih +
∑

k

h∑

h′=h+1−DAik′

xikh′ ≤ 1 ∀i, h

p should be set to 0 in case of fuel shortage. Concerning fuel shortage, we assume that each cycle
starts at levelRMAXik′ and that the fuel is consumed at PMAXi,t. It is therefore immediate to precompute
the number Nikh′ of weeks during which we can produce at PMAX before fuel stock falls below 0. The
following constraints is added to the ILP.

pi,h ≤
∑

k

h−DAik∑

h′=h−Nikh′

xikh′ ∀i, h (2.5)

Now that we have an estimate of the availability of plant i at week h, we can express an objective
function. One of our first idea was

objective = max
∑

h

∑

i

Demh.pih (2.6)

where Demh is the average demand at week h.

Many hypothesis made in this section seem unjustified oversimplifications of the problem. Notice
however the various advantages of the approach. Thanks to the objective function, the ILP is decompos-
able on subsets of plants that are not interacting through [CT14-21]. Assuming fuel levels of RMAX after
outage is an under approximation of the fuel level we can ensure, but often, the maximum fuel allow
SMAX is not much higher than RMAX. Moreover, when RMAX − RMIN >> 0, the objective function
tends to help satisfying constraints 2.3.3 discussed in section 2.3.3, because scheduling the next outage
much before the end of the Nikh allowed weeks results in a loss in the objective function.

2.4 Production and refuelings levels

In all this section, we consider that haik are already set, so they could be considered as implicit inputs of
the algorithms discussed here.

2.4.1 Fuel Levels without modulation

Algorithm 1 computes bounds on fuels levels for a given plan of outages and refuels, without taking into
account the demand. For every nuclear power plant i, the algorithm iterates increasingely every time
slot. At each step, the production is set as follows : if power plant i is in a modulable production period,
then the production is set to PMAXt

i
. If power plant i is in a profiled production period, production is

set by the profile constraint. If power plant i is in outage, production is null. The refuelings are done
according to the input rik. During loop over time steps, several bounds on fuel levels are computed and
stored :

• amaxGapik : difference between AMAXik and fuel level x[i] just before the refueling rik ;

• smaxGapik : difference between SMAXik and fuel level x[i] just after the refueling rik ;

• f amaxik : minimum between amaxGapik and smaxGapik ;

• nomod fuelik : fuel level x[i] at the end of cycle (i, k).
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Algorithm 1: bounds(rik)
Data: rik, i ∈ I, k ∈ K
Result: f amaxik, amaxGapik, smaxGapik,nomodFuelik, i ∈ I, k ∈ K, a set of power plant indexes

toReschedule
begin

for i ∈ I do
initialize state[i], cycle[i], x[i] ;

for i ∈ I do
for t ∈ T do

if state[i] =MOD then
prod[i]← PMAX[t] ;

if state[i] = PROF then
prod[i]← PROF[i, t] ;

if state[i] = OUT then
if t = haik then

compute amaxGapik ;
if x[i] violates AMAX[i][cycle[i]] then

toReschedule+ = i ;
update x[i] with rik ;
if x[i] violates SMAX[i][cycle[i]] then

toReschedule+ = i ;
update smaxGapik ;
update f amaxik ;

prod[i]← 0 ;
x[i]← x[i] − prod[i] ·D ;
if t + 1 = hai,k+1 then

nomod fuelik ← x[i] ;
update state[i], cycle[i] for next time step ;

end
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2.4.2 Exact production level affectation

Algorithm 2: a f f ectScenar(s)
Data: rik, i ∈ I, k ∈ K, scenario index s
Result: boolean value and pits and p jts for i ∈ I, j ∈ J, t ∈ T, s ∈ S
begin

for i ∈ I do
initialize state[i], cycle[i], x[i], f prime[i] ;

for t ∈ T do
dem← DEM[t][s] ;
for j ∈ J do

prod[ j][t][s]← pmin[ j][t][s] ;
dem← dem − prod[ j][t][s] ;

compute puissMax (available nuclear production at time t) ;
if puissMax > dem then

toModul← puissMax − dem ;
for i ∈ I do

capaModul[i]← min(PMAXt,s
i
, f prime[i]) ;

while toModul > 0 do
choose i∗ such that f prime[i∗] ≥ f prime[i]∀i and state[i∗] =MOD and
capaModul[i∗] > 0 ;
if there is no candidate for i∗ then

return f alse ;
modul[i∗]← min(toModul, capaModul[i∗]) ;
update f prime[i∗], capaModul[i∗] ;
toModul← toModul −modul[i∗] ;

for in ∈ I do
if state[i] =MOD then

prod[i]← PMAXt,s
i
−modul[i];

if state[i] = PROF then
prod[i]← PROF[i, t] ;

if state[i] = OUT then
prod[i]← 0 ;

update x[i], cycle[i], state[i], f prime[i] for next time step ;

fill demand for each time step t with type 1 power plants sorted by increasing cost Ct,s
j
;

return true ;
end

Algorithm2affects powerproduction levels for eachpowerplant for a givena scenario s. Outagedates
and refuelings are known. It is a rolling horizon procedure. As for Algorithm 1, several informations
are maintained for each nuclear power plant : the current index of cycle cycle[i], the current state state[i]
and the current fuel level x[i]. In addition, an heuristic lower bound f prime[i] on the remaining capacity
of modulation is also computed. It takes into account the current maximum modulation MMAXi,k and
the current and following gaps to amaxGapik and smaxGapik. This indicator is (re)computed at each
beginning of cycle, and decreased according the modulation already done in the current cycle. At a
given time step t, these steps are followed : affect to type 1 power plants their minimum production
levels and update the demand in consequence ; compute the maximal available nuclear production
capacity puissMax with nuclear power plants in profile production state and in modulation production
state. If puissMax is bigger than the demand, modulation will be necessary at this time step. Quantity
toModul is initialised to puissMax − dem. For each nuclear power plant i, a quantity capaModul[i] is then
computed, as the minimum between current maximum production PMAXt,s

i
and remaining capacity
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of modulation f prime[i]/D. Then, a loop is executed until toModul becomes nul. At each iteration,
the nuclear power plant with the biggest value of f prime is chosen, among plants in modulation state
which a non null instataneous capacity of modulation (ie capaModul[i] > 0). The index pf this chosen
power plant is denoted i∗. Once i∗ is computed, the quantity to modulate on this power plant is set to
min(toModul, capaModul[i∗]). Then,modul[i∗], f prime[i∗], capaModul[i∗] are updated. Once thismodulation
phase is over, all nuclear production levels are affected for nuclear power plants. Then, all informations
maintained over nuclear power plants are updated if necessary. Once this has been done for every time
step, there is a new rolling time procedure to fill if needed the production to stick on the demand. At
each time, type 1 power plants are sorted increasingly according to their costs Ct,s

j
. Then, we use fill the

production on the type 1 power plants, until the demand is reached.

2.4.3 Avoiding lacks of fuel

Algorithm 3: f illIdleProd(rik)
Data: rik, i ∈ I, k ∈ K
Result: new values for rik, i ∈ I, k ∈ K
begin

for k ∈ K do
for i ∈ I do

if outage (i, k) exists and nomod fuelik is null then
increase rik so that fuel level becomes null at the very end of cycle (i, k) ;
adjust rik to satisfy constraints on SMAXik, RMINik and RMAXik ;

Recompute bounds on fuel levels with Algortihm 1

end

It could happens that a power plant can not product at the end of its production period, due to a
lack of fuel. Algorithm 3 aims at avoiding these situations. We are given refuelings rik, i ∈ I and fuel
bounds nomod fuelik, i ∈ I, k ∈ K. Then, this method iterates on cycles. For each cycle k, we consider
successively each nuclear power plant i, and we check if the fuel level is null at the end of cycle (i, k),
with the estimator nomod fuelik. If this quantity is null, we increase rik so that the fuel level becomes null
at the end of cycle (i, k). Once this has been done for every nuclear power plant, we recomputes bounds
on fuel level using Algorithm 1. Then, the next cycle is considered, and so on.

2.4.4 Increasing refuels

We would like to maximize the amount of refuelings over all nuclear power plants, without breaking
the feasibility of the solution. Because it may be hard to ensure this feature, we use an optimistic
algorithm that increase refuelings, and we will deal with the feasibility later. Increasing refuels is done
in Algorithm 4. We consider iteratively every cycles. For each cycle, all nuclear power plant are treated
independently. Given a power plant i and a cycle k, a quantity addik is computed and added to rik. To
compute addik, we need to fulfill the following requirements :

• do not violate SMAXik′ , for k′ ≥ k ;

• do not violate AMAXik′ , for k′ > k ;

• do not violate RMAXik′ , for k′ ≥ k ;

• nomod fuelik ≤ BOik ;

• maximize addik.
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Algorithm 4: incRe fuels(rik)
Data: rik, i ∈ I, k ∈ K
Result: new values for rik, i ∈ I, k ∈ K
begin

for k ∈ K do
for i ∈ I do

if outage (i, k) exists then
Compute maximal value for addik (quantity of fuel to add to rik) so that : no fuel
bounds constraints are violated within the current and the following cycles ; fuel at
the end of cycle (i, k) is no more than BOik ;
rik ← rik + addik ;

Recompute bounds on fuel levels with Algortihm 1

end

Aswe have an heuristic evaluation of fuel levels at the end of every cycles with nomod fuel values, we are
able to estimate the maximal amount of fuel that we can add to rik without breaking bound constraints
over AMAX, SMAX and RMAX. To target being at BOik at the end of cycle (i, k), we just suppose the
power plant i products at PMAX each day of cycle k and get back a quantity of fuel needed at the
beginning of cycle (i, k).

After each power plant has been considered for cycle k, we recompute indicators on distance to fuel
bounds using Algorithm 1.

2.4.5 Optimal refuels : Up&Down refuels

Algorithm 5: a f f ectPowerOk(rik)
Data: rik, i ∈ I, k ∈ K
Result: a boolean indicating if power affecation is feasible
begin

ok← true ;
for s ∈ S do

ok← ok&a f f ectScenar(s) ;
return ok ;

end

Algorithm 5 is very simple. It just tries to affect production levels in evry scenario, and return true iff
a feasible solution has been found.

Algorithm 6 is aimed to find biggest values of refueling such that a feasible solution for the general
problem has been founds with these values. It maintains two sets of refueling values : low and high. The
low set is always feasible (meaning that we are able to build a feasible solution from this set). The high
set is an optimistic increasing based on the low set. The algorithm checks iteratively whether or not high
set is feasible. In the positive case, low takes values from high and a new high set is computed from this
new low set, using Algorithm 4. In the negative case, low does not change and high is decreased. The
algorithm runs until low and high are different enough, or a time limit constraint has been reached. At
the end of this algorithm, the low set is always feasible.
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Algorithm 6: upAndDown(rik)
Data: rik, i ∈ I, k ∈ K
Result: new values for rik, i ∈ I, k ∈ K
begin

low← rik ;
high← incRe fuels(rik) ;
while low ≇ high do

if a f f ectPowerOk(high) then
low← high ;
high← IncRe f (high) ;

else
high← middle(low, high) ;

end

2.5 Numerical Results

Configuration PC : 4 processors Dual Core AMDOpteron(tm) Processor 275 (2.2GHz, 1Mo cache), 16Go
de RAM, ILOGCPLEX 12.1. One of the eight cores was used. NB: CPU time is computed before printing
the solution in a file.

Instance Objective Value CPU time (hh:mm:ss)
0 8.73566e+12 00:00:00
1 1.69937e+11 00:00:08
2 1.46383e+11 00:00:16
3 1.5501e+11 00:00:15
4 1.12643e+11 00:00:29
5 1.26876e+11 00:00:47
6 8.68747e+10 00:01:56
7 8.36859e+10 00:02:20
8 8.7091e+10 00:04:31
9 8.68907e+10 00:14:49
10 8.06461e+10 00:04:28

2.6 Analysis of the data

The subject of the challenge in full generality is highly intractable. However there are structural proper-
ties that can be (robustly) found in all the 16 instances proposed by EDF. These properties are important
to state precisely and formally, because they (might) help finding efficient resolution techniques. Let us
the most structuring properties we were able to find.

Preprocessing PMIN. Studying the subject only and not the instances, observe that minimum power
of type 1 plants can be assumed to be 0. Indeed, as a preprocessing, for all ( j, t, s) one can decrease
PMIN jts, PMAX jts and DEM jts by PMIN jts. To let the cost invariant by this preprocessing, we also need
to increase the cost function by PMIN jts.D/S.
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Monotonic feasibility of refuels. The main structuring characteristic of data is that non-nuclear avail-
ability is large enough so that it always allows to match demand, whatever the nuclear power available.
On the other hand, too nuclear availabilitymight require toomuchmodulation and lead to global infeasi-
bility. These two properties imply that, given fixed outage dates, if {rik} is infeasible andRMINik ≤ rik ≤ r′

ik
for all (i, k) then {r′

ik
} is also infeasible.

Approximation and evaluation of costs. Nuclear production costs are roughly between 15 and 21,
while type 1 plants costs typically vary between 10 and 10k. Most of the time, the most expansive
nuclear plant is cheaper than the cheapest non-nuclear one, but this not always true. The costs of type
1 plants are indicated in Figures 2.1, 2.2 and 2.3. Type 1 completion costs are convex piecewise linear
for each scenario and time step. Hence, associated marginal costs are non-increasing step functions (of
nuclear power available). One should be careful on his hypothesis when aggregating on scenarii and
time steps. However, if we rely on the Figure 2.2, that is, if nuclear availability is assumed uniform in
a given week, we observe that marginal cost is constant (for small value on the x-axis), then piecewise
linear, then strictly convex. This implies that the cost can be sharply approximated on some interval, by
an affine or a quadratic function. Further Log(-log) plots should providemore insight on the nature of the
curves 2.1 and 2.2 for x ≥ 25000. For future investigations we recommend to include (an evaluation) the
cost of nuclear power within such plots. More importantly, one should uses approximate cost functions
that zoom on the range of likely (or possible) nuclear capability of each week.

Laminarity and decomposability of nuclear plant interactions. Insightfully, one can draw the hyper-
graph of constraints CT14-21. To do so, associate a vertex with each nuclear plant, and an hyperedge
(Am) with each constraint. On all instances B, we observe that this hypergraph is roughly the same
(after relabelling the plants). The reason is that that sets Am rely on the geographical positions of french
nuclear plants. the hypergraph has a laminar structure (for any 2 pair of edges Am1 and Am2, either
Am1 ∩Am2 = ∅ or Am1 ⊆ Am2 or Am2 ⊆ Am1). In particular, often constraints CT14 involve only 2 plants
with large Sem, hence strongly linking these 2 plants. The connected components of the hypergraph are
of size 2,4 or 6 (with a total of more than 50 plants), yielding around 9 components. This implies that
demand constraints CT1 are the only one linking these 9 subgroups of nuclear plants in the model, so
that just dualizing CT1 allows to split the problem in much smaller parts. We used this non-connectivity
of the hypergraph only in rescheduling phase of the ILP: if the solution of the ILP doesn’t allow to find
feasible production plans for a subset I∗ of plants, then we rerun the ILP only with plants connected to
at least one plant in I∗.

2.7 Ideas for future work

When participating in such a challenge, it is hard to explore all mathematical and algorithmic ideas
that come to mind. When studying the subject, and even the instance, it is very hard to guess whether
an approach will be fast, robust and or competitive. Because of the time constraint, and because we
spent a huge proportion of our time debugging and being infeasible, we had to make the choice of
extreme simplicity in order to have a chance to produce something within the contest. But the context
has changed. We hope that many subproblems will be studied thoroughly, so has to provide insight and
subroutines aiming at solving them. We want to share our ideas concerning such issues in this section.
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Figure 2.1: Cost of completion by non-nuclear plants as a function of total nuclear availability, averaged
on all steps and scenarii of week 63, instance B6.

Figure 2.2: Marginal cost of completion by non-nuclear plants as a function of total nuclear availability,
averaged on all steps and scenarii of week 63, instance B6.
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Figure 2.3: Marginal cost of completion by non-nuclear plants as a function of the week (x-axis) and
nuclear availability, averaged on all steps and scenarii, instance B6.

Themain characteristic of our approach is its hierarchical decomposition nature. This kind of strategy
might be considered inefficient and not noble. But we gave some arguments showing that subsequent
choices of variables might be evaluated approximately in compact implicit ways. Moreover, since other
resolution techniques are successfully addressed by other competing teams, we prefer to stick to our
approach in this discussion.

Assuming that the hierarchical structure is preserved, there are several issues that need to be ad-
dressed to judge the ability of our decomposition to provide solutions with highly competitive objective
value.

2.7.1 Improving the ILP

Implicit refueling and fuel stocks at the end of cycles. Although simplistic and preliminary, our
work challenges the idea that refueling values should be intimately studied with dates of outages. The
hypothesis that fuel stock after an outage is limited to only RMAX should be improvable using (one)
more dates of outage than only the last one (as done in (2.5)).

Modulation and profile phases. Using variables pikh (production within each cycle) instead of just pih,
there might be some ways to express the possibility of modulation. Moreover, assuming (observing ?)
that the profile phase is convex, there might be ways to impose it using only linear inequalities, that is,
only with upper bounds on the production. Notice that modulation and profile destroy the assumption
that production is binary and constant within each week.
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Evaluating objective costs within the ILP. The problem with the variables xikh is that they don’t allow
to reformulate easily (an approximation of) the objective function of the subject. To evaluate the cost
of a schedule, we should compute the amount of nuclear power dedicated to each pair (t, s). This last
information seems too detailed, because it yields too many variables. One may wish to compute only
an approximation of the completion cost by non-nuclear plants for each week (aggregated on steps and
scenarii). Such values are plotted in section 2.6. We tried such an approach by approximating, for each
week, the function of Figure 2.1 piecewise-linearly. Indeed, we tried both upper and under approxima-
tions, using exponential thresholds (like 20,50,100,200,500,2k,9k) on the derivative (i.e. marginal costs),
as indicated in Figure 2.3. Because the function of Figure 2.1 is convex, minimizing a piecewise linear
approximation can be expressed with linear inequalities only. The methods works, indeed, it works so
well that the optimal value found by CPLEX was only very few percents away from the exact value of
the final solution. However the time taken by CPLEX on instance B9 to find an optimal solution was
around 40minutes. Moreover andmore surprisingly, the quality of the solution was not really improved
(it was a little better or worse depending on the instances). So we closed this way of research during
the challenge. The reason why this nice idea didn’t bring improvements in the solution seems to be that
something else is too roughly taken into account, and should be improved before thinking about cost
evaluation within the ILP.

Polyhedral study and preprocessing constraints. We tried to provide to CPLEX strong constraints,
but further studies on the linear relaxation of our formulation are required to judge its quality. Distance
constraints and CT21 are a priori highly redundant and naively written, bunch of constraints CT21
should be advantageously reformulated in the format of CT20. Assuming we use non-correlating
objective functions (such as 2.6), the ILP could be submitted to CPLEX for each connected components
one at a time (or in parallel).

Using constraint based and local search solvers. After all, why solving the ILP at optimality while
we know it is only an approximation of the global problem ? One might wish to apply other resolu-
tion paradigms originating from the SAT community like pseudo-boolean programming [132]. Local
search [53] seems also a promising way in order to find good solutions faster.

2.7.2 Improving the refueling and the power assignment

Modulation for value. Our approach doesn’t look into the future demand when dealing with a given
scenario at a given time step. Obviously, we lose objective value with this simplification.

Faster greedy procedures. Because computational time wasn’t a key point that needed improvement,
we make intensive use of nuclear power affectation in order to check feasibility. We clearly recompute
again and again similar affectations when adjusting the refueling values. In some instances, the time
to adjust refueling is therefore substantial. In order to accelerate recognizing set of refueling that
are infeasible, it would be useful to identify scenarii and step windows that are the most critical.
Recomputing only (or first) on these critical points would be natural.

Smarter view on good refueling. One thing thatwe overlooked is that although rik cannot be increased,
fuel level might be far bellow BOik at the end of cycle (i, k), yet it might be possible to increase rik−1. More
generally, our view on refueling would benefit visualizing many outputs and comparing with better
solvers to evaluate how much we lose at this point. This idea can be generalized easily, as we explain
now.
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2.7.3 Creating collaboration between solvers of the challenge.

Following our decomposition, one might wish to evaluate each competing solver of the challenge not
on the global aspect of the subject, but only in solving subproblems. The following sketch of protocol
should provide an easy framework. Given solvers S1 and S2, and given an instance I of the problem,
let S1 solve I and obtain solution I1. Gather part of the values in I1 (like {haik} and/or {rik}). Fix these
values in I to obtain a more constrained instance I′. Run S1 and S2 on I′ and compare speeds and values.
Optionally, fix some more parts of the solutions obtained and so on.
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Chapter 3

Modelling and optimization techniques
for smart electrical grids

Paula Leite, Leo Liberti, and NelsonMaculan

Manuscript in preparation

There is a lot of talk about Smart (electrical) Grids, and several informal definitions as to what
impediments a smart grid should be able to cope with; the literature fails to some extent to provide a
formal definition concerning what a smart grid should be able to actually do. Moreover, from the point
of view of optimization techniques, no satisfactory survey of the state of the art was written yet. This
report attempts to provide such a survey, with the explicit aim to direct subsequent research on this
topic towards promising subjects.

3.1 Introduction

The term “smart grid” refers to the design of electrical networks of the next generation, which should
address all the troubles raised by the current state of technology. In particular, smart grids should
avoid large-scale blackouts generated by single points of failure; should integrate different sources of
renewable energy; should be both predictive and reactive with respect to sudden changes in demand;
should be scalable, localized rather than centralized, and organized hierarchically; and should allow
customers to reduce their costs by introducing flexibility and transparency of billing and accounting
procedures. Furthermore, the whole grid should work automatically, even though unsupervised, rely
on an advanced informatic infrastructure, and take smart decisions on critical issues.

The first Conference on Innovative Smart Grid Technologies, sponsored by the IEEE Power & Energy
Society (PES), hosted by the National Institute of Standards and Technology (NIST) and technically co-
sponsored by the IEEE Communications Society (ComSoc), the IEEE Computer Society, the IEEE Power
Electronic Society (PELS), the IEEE Signal Processing Society (SPS) and IEEE-USA , was held January
19-21, 2010 in Gaithersburg, Maryland, USA.

Above all, “smart grid” is nowadays a fashionable term which means different things according to
the context of study. This survey is motivated by an initial literature review on the state of the art of
optimization techniques within the field of smart grids. The result of our initial review was a failure:
too many sources of documentation of extremely diverse nature, most of which would not correspond
to the standard definition of a “survey”. What does exist in the literature is a set papers dealing with
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optimization methods addressed to specific aspects of electrical networks; some of these aspects also
turn up in smart grids. Most existing papers dealing with smart grids are preliminary, in the sense
that they discuss their definition; some of these papers present deeper analyses involving also some
optimization techniques. In this report we present a survey of our findings.

There is no standarddefinition for the term“smart grid”. According to the testimonyofM.W.Howard,
senior VP of the Electric Power Research Institute (EPRI) before the House subcommittee for energy and
air quality (May 3, 2007), a smart grid is an “advanced communication and data acquisition system to
provide real-time analysis by a distributed computing system that will enable predictive rather than
reactive responses to blink-of-the-eye disruptions”. According to the testimony of T. Casey before the
House committee on energy independence and global warming (Feb 25, 2009), a smart grid is in many
ways like an “Internet for Electricity, a network of devices that aremonitored andmanagedwith real-time
communications and computer intelligence. A Smart Grid discovers grid performance and conditions
using intelligent sensors capable of detecting problems and/or opportunities for improvement that are
widely distributed on the electric grid. It makes adjustments locally or communicates back to the central
control center where it is combined with information from other grid devices and utility systems”.
According to R. Brown [89], the electricity distribution system of the past is radial and dumb, whereas
in the future it will be meshed and intelligent.

The idea of Demand Response (DR) between transmission distribution and consumption parts in
a grid supported by advanced metering infrastructure (AMI) is the basis of a smart grid, see [81]. A
smart grid needs to include two-way digital technology to control appliance at costumer’s houses to
save energy, reduce cost and increase reliability and transparency. It overlaps the electricity distribution
grid and net metering systems, see [172].

Smart grids are considered to be “green technology” and aremore environmentally friendly although
often prove to cyber attacks. For the US Dept. of Energy (2006), DR is defined as “charges in electric
usage by end-use customers from their normal consumption patterns in response to changes in the price
of electricity over time, or to incentive payments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized”, see [172].

Demand Response (DR) is a change electricity use by end-use customers within a window time in
response to some type of incentive or price signal. Measurement and evaluation are very important
for DR operations and improvement. If a DR structure operates under a regulated tariff, independent
third-party evaluation will commonly be required, see [164]. An effort to develop measurement and
verification standards for Demand Response (DR) is important to define DR terms and event timing,
and to identify standards methods of evaluating DR performance, see [102].

Smart grids, given their potential for rapid response, are used to demand dispatch resource for plug-
in vehicles. Over the next years the use of Internet will be fundamental for the large number of consumer
devices: from televisions to household appliances to cars. The Internet will be used to real-time control
of demand to help balance generation and load. Optimization models will be useful for organization
and designer of grids, and scheduling plug-in vehicles, see [87].

In the rest of this report we shall illustrating what electrical grids actually do, and how optimization
methods help their design. For each of the sections belowwe give a survey of the papers in the literature,
focussing on those which we deem the most important.

3.2 Basic properties of electrical networks

1. Mathematical studyof veryhighvoltagepower networks I: The optimalDCpower flowproblem
[77]

The optimal power flow problem involves minimizing the power loss over the lines by setting the
voltage and power delivered at the nodes of an alternating current (AC) network. The voltage and
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power distribution must obey Kirchhoff’s and Ohm’s laws and it is subject to certain bounds. This
is the first paper of a series dedicated to mathematical study of the optimal power flow problem.
A very high voltage approximation is used in the methodology, which is an asymptotic analysis
where the small parameter is the inverse of the reference voltage of the network.

Even though the application deals with AC, this paper considers the analogous direct current
problem in order to simplify the equations involved. It must be highlighted that these equations
retain some of the properties of the original problem.

For this paper the perturbation theory for nonlinear programming is the main mathematical tool.
The authors review the equation of the direct current power network and define the problem of
minimizing the loss of power over the network. They introduce the high voltage approximation
and show that, after a proper scaling, the limit problem is well defined. They also review the
mathematical tools from the perturbation theory for nonlinear programming that are needed.
They combine these two results in order to state a third. The limit problem is also analyzed and it
is shown that it has nonqualified constraints, although there exist multipliers associated with the
solution.

The analytic expansion for the optimal value and the solution are shown by the authors and they
give physical interpretations of the expansion of the solution. The most important aspect of the
result is that it suggests a possible extension to the AC power flow problem.

2. Mathematical study of very high voltage power networks II: The AC power flow problem [78]

This is the second paper of a series dedicated to mathematical study of very high voltage power
networks. A very high voltage approximation is used in the methodology, which is an asymptotic
analysis where the square root of one of the small parameters is the inverse of the reference voltage
of the network.

The objective of this work is to apply the recently developed perturbation theory in optimization
in order to compute the expansion of the optimal power flow problem (OPF).

It is shown that the active and reactive parts of the limit problem are decoupled and therefore
justify the so-called direct current approximation. The authors give an analytic expansion for the
solution of the problem and prove the convergence of two decoupled numerical algorithms. For
some specific cases they show that the solutions of the equations may be interpreted as critical
points of some potentials.

This paper focus on the power flow problem (PFP) in alternating current networks, because there
is already much to say about the expansion of the solution of the equation of PFP without any
optimization process.

The authors show the very high voltage approximation (VHVA) and the convergence of two
decoupled numerical algorithms, the classical one and the one of Carpentier in the VHVA setting.
They also show that the limit problem has a unique solution, which is regular and has a block-
diagonal Jacobian and they justify and improve the DC approximation as a by-product of the
computation of the first term of the expansion. This work covers the case in which networks have
negligible resistances and also show that the equations of PFP are those of the critical point of
certain potentials. The active and reactive equations are shown to derive also from a potential. In
the VHVA setting, the solutions of these critical point equations appear to be isolated solutions of
the associated optimization problems.

This paper confirms the existence of an unique solution and, when a set of small parameters is
close to 0, it shows its asymptotic expansion. The scaled first-order expansion of the solution has a
certain decoupling property: phases are determined by inputs of active power. This aspect justifies
the direct current (DC) approximation which relates phases and inputs of active power.

One can find in the literature several methods based on linearization of the PFP equations based
on the observation that, in real world high voltage networks, the difference of phases is small and
the value of voltages is approximately constant. This work complete and justify these heuristics
methods by a strong mathematical framework.
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The high voltage approximation (the combination of the classical approximation with the hypoth-
esis that the nominal voltage is large) allows the DC approximation to be derived and a formula
for the first-order variations of voltages that is also a DC-type problem to be proved.

3. Mathematical study of very high voltage power networks III: The optimal AC power flow
problem [79]

In this paper, it is shown the way to apply the perturbation theory for nonlinear programming
problems to the study of the optimal power flow problem.

In this paper, the small parameter is the inverse of the square root of the reference voltage of the
network and it is called the very high voltage approximation. The authors show how it is possible
to obtain, under natural hypotheses, the second order losses expansion and first order solutions
expansion. The problem of minimizing losses of active power over a very high voltage power
networks is such that the computation of the active and reactive parts are decoupled.

The high order expansion of the value function, solution and Lagrange multiplier is also obtained
and it is shown that the classical direct current approximationmay be justified and improved using
the framework of very high voltage approximation.

The paper covers the optimal power flow problem and the limit problem. It also establishes the
uniform boundedness of solutions to the family of perturbed problems. The first the first order
expansion of solutions and the high order expansions are computed.

The results show that the limiting problem has a unique and explicit solution. The problem of
minimizing losses of active power over a very high voltage power networks may be decomposed
into two independent subproblems (active and reactive parts). Each of these subproblems has an
interpretation in a DC setting.

The high voltage approximation combines the classical approximation with the hypothesis that the
nominal voltage is large. Combining this approximationwith the theory of nonlinear programming
with perturbations, it is possible to obtain an expansion of the value function and the problem
solution. Also the quadratic subproblem splits into two independent subproblems related to the
active variables. This asymptotic analysis justifies the direct current approximation.

4. Minimizing Effective Resistance of a Graph [161]

In a weighted graph, the effective resistance between two nodes is equivalent to the electrical
resistance seen between the nodes of a resistor network with branch conductances given by the
edge weights. Besides the analysis of electrical networks, many other applications and fields use
the effective resistance such as Markov chains and continuous-time averaging networks.

This work focus on studying the problem of allocating edge weights on a given graph in order to
minimize the total effective resistance. It is shown that this is a convex optimization problem and
can be solved efficiently either numerically or, in some cases, analytically. It is demonstrated that
the optimal allocation of the edge weights can reduce the total effective resistance of the graph by
a factor that grows unboundedly with the size of the graph.

The authors give several interpretations to the effective resistance minimization problem (ERMP).
They show that the ERMP is a convex optimization problem, which can be formulated as a
semidefinite program (SDP).

This has several implications, both practical and theoretical. The ERMP can be solved efficiently
and the convexity of this problem allows the authors to form necessary and sufficient optimality
conditions and several associated dual problems (with zero duality gap). A lower bound on Rtot
is obtained, given any feasible allocation of conductances. In an electrical network, Rtot is related
to the average power dissipation of the circuit with a random current excitation. The authors use
the duality gap in a simple interior-point algorithm for solving the ERMP. They describe several
families of graphs for which the solution to this problem can be found analytically, by exploiting
symmetry or other structure. This work shows that of all graphs on n nodes, the optimal value of
the ERMP is smallest for the complete graph and largest for the path and some numerical examples
are shown.
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The authors list some variations on the ERMP that are convex optimization problems and can be
handled using similar methods: minimizing effective resistance between a specific pair of nodes,
minimizing the sum of effective resistances to a specific node and minimizing maximum effective
resistance.

It is shown in [327] that resistance functions are concave. In [46], an analysis of the load flow
equations provide bounds on the number of stable load flows for a given network topology and set of
power injections. The 1990s state of the art in optimal power flow and dispatching is surveyed in [196].
Variational representations of electrical networks by means of factor graphs are discussed in [352].

3.3 Economic issues

1. When to Reap and When to Sow: Lowering Peak Usage With Realistic Batteries [49]

Large clients, in some energy markets, are charged for both total energy usage and peak energy
usage, which is based on the maximum single energy request over the billing period. The problem
of minimizing peak charges was recently introduced as an online problem. In this problem, a
battery (assumed to be perfectly efficient) is used to store energy for later use. The authors extend
the problem to the more realistic setting of lossy batteries, which lose to conversion inefficiency
a constant fraction of any amount charged (e.g. 33%). The authors provide efficient and optimal
online algorithms as well as possibly competitive online algorithms. They evaluate the heuristic
algorithms on real and synthetic data.

This work uses three datasets: a regular business day’s demand from an actual Starbucks store, a
simulated weekday demand of a residential user, and a randomly generated demand sequence.

2. On Computational Issues of Market-Based Optimal Power Flow [355]

The authors study the computational challenges brought up by the deregulation of the electricity
market and present new formulations and algorithms for the robust optimal power flow problem
(OPF) such as the trust-region based augmented Lagrangian method (TRALM), step-controlled
primal-dual interior point method (SCIPM) and constrained cost variable (CCV). They test and
compare these formulations with other existing ones applying large-scale power system models.

The TRALM is more theoretically rigid and the SCIPM is better for real-time applications in terms
of computational performance. CCV is proposed by the authorswith the objective of improving the
scalability of market-based OPF computation. It embeds market-induced piecewise cost functions
into inequality constraints as opposed to the objective function.

The results showed that the methods discussed in this paper are reliable and better than some
existing ones in solving large-scale market-based nonsmooth OPFs, however if they are working
with non-convex cost, in order to reach global optimal solutions, they must be combined with
global optimization techniques.

3. On the Supply Function Equilibrium and its Applications in Electricity Markets [319]

The authors of this paper work with the Supply Function Equilibrium (SFE) as a model of compe-
tition on electricity markets. The authors show that through relaxations of supply functions more
efficient algorithms can be derived. They work with two examples; the demonstration that con-
tinuous equilibrium could be impossible and that it is possible to converge to a linear equilibrium
through learning in linear supply system.

3.4 Power network vulnerability analysis

1. The N − k Problem in Power Grids: New Models, Formulations and Computation [65]
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This work focus on finding small vulnerabilities in a power grid, in other words, whether there
exists a set of arcs whose removal causes the system to fail. Computational and theoretical results
are presented involving a mixed-integer model and a continuous nonlinear model related to this
question.

Two models are presented:

(a) a new linearmixed-integer programming formulation. Itmodels the problemas a competition
between an “attacker” and a grid controller. The fictional attacker wants to disable the
network, and a controller tries to prevent a collapse. This prevention is done by the selection
of which generators to operate and the adjustment of generator outputs and demand levels.

(b) a new continuous nonlinear programming formulation. It aims at compactly capturing the
interaction between the network structure and its underlying physics.

Although both formulations give better results than a pure enumerational approach, the second
formulation appears particularly effective and scalable. The solution to this formulation tend to
concentrate the attack on a relatively small number of lines, while at the same time investing small
portions of the attack budget on other lines. The two models are consistent as the severity of the
attack decrease as the scale increases for both of them.

2. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-
organization [125]

This paper gives an overview of a complex systems approach to large blackouts of electric power
transmission systems caused by cascading failure. The authors study series of blackouts, their
statistics and dynamics, with global models and not just particular blackouts. The data from
worldwide blackouts show that a power law governs the frequency of large blackouts. This fact
makes the risk of large blackouts consequential and it is consistent with the power system being
a complex system designed and operated near a critical point. Power system overall loading or
stress relative to operating limits is a key factor affecting the risk of cascading failure. The models
for power system blackout and cascading failure show critical points with power law behavior as
load is increased. The authors suggest that power system operating margins evolve slowly to near
a critical point and this idea is confirmed by a power system model. The engineering responses to
blackouts that improve the system, the economic pressure to maximize the use of the grid and a
steady increase in electric loading cause the slow evolution of the power system.

The ultimate motivation to the analysis and understanding of blackouts is the primordial impor-
tance of the electrical infrastructure to society. Even though large blackouts dont occur very often,
the observed statistics show that their risk cannot be discarded. This can be explained by the fact
that the increase of the blackout cost is much greater than the decrease of the occurrence probability
of a blackout in a power law manner as the size of the blackout increases.

The authors cover blackout mechanisms; discuss the evidence for a power law in blackout prob-
ability and the consequences for blackout risk; summarizes abstract and power system models of
cascading anddiscuss the observed critical points in thesemodels. They also expand the discussion
to describe and model a power system slowly evolving with respect to engineering and economic
forces and discuss some initial consequences for blackout mitigation.

3. Using Graph Models to Analyze the Vulnerability of Electric Power Networks [190]

In this work the electric power delivery networks are modeled as graphs. The authors study
two power transmission grids (Nordic and the western states in the U.S.). They calculate values of
topological (structural) characteristics of the networks and compare their error and attack tolerance
(structural vulnerability). They also perform a structural vulnerability analysis of a simple and
fictitious electric power network, using different strategies to decrease the vulnerability of the
system.

The article focuses on electric power delivery systems. These systems can often be represented
as networks. The structure of networks is mathematically described in terms of graphs. For an
electric power grid, the vertices can be power plants, stations and power users, and the edges
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power lines. The authors want to study how the performance of networks is affected by the
removal of vertices and edges, to compare the structure of different networks, and to analyze how
the change of structure affects the vulnerability of networks.

The authors introduce concepts and results from graph theory, study two electric power trans-
mission grids (Nordic and the western states), calculate values of topological characteristics of
the networks and compare their error and attack tolerance with two theoretical reference model
networks. They also present a discussion of the pros and cons of the use of graph models when
analyzing the vulnerability of electric power networks.

The work shows that the Nordic grid is more scattered than the grid of the western states. Numer-
ical simulations of the structural vulnerability demonstrate that the two electric power networks
exhibit similar disintegration patterns, both when it comes to random failures and deliberate at-
tacks. All the studied networks disintegrate considerably faster when the vertices are removed
deliberately than randomly. This article shows that in a structural vulnerability analysis of a ficti-
tious network with a simple structure a wider spectrum of threats and hazards can be represented
as the removal of vertices and edges.

4. Cyber Security and Power System Communication — Essential Parts of a Smart Grid Infras-
tructure [140]

This paper highlights the role of the combination of cyber security and power system communi-
cation systems in the infrastructure of a smart grid. It gives an explanation of the facts of the PSC
systems with partly vulnerable structure.

Many power utilities have installed SCADA/EMS and industrial control systems, which were
opened up from the design phase, but they had very limited security incorporated in the system
solutions. The openness of the system was quite appealing, but now there is the problem with
information and IT security. This fact is very serious and must be taken into account for system
daily operation and control by each utility.

PSC and cyber security issues are crucial parts of the information infrastructure, such as a smart
grid system. The integrated SCADA/EMS systems and administrative office IT environments must
now be separated. Cyber security issues become increasingly important, when dealing with smart
grids.

3.5 Optimization of power restoration after a failure

1. Using mixed-integer programming to solve power grid blackout problems [64]

The authors work with the prevention of large-scale cascading blackouts in power transmission
networks throughoptimizationproblems. They considermany thousandsof scenarios of externally
caused damage and present computation with networks with up to 600 nodes and 827 edges.

The paper highlights how large-scale failures of national power systems, such as the ones occurred
inBrazil in 1999 and in theUSandCanada in 2003, affectedpeople overwidegeographical areas and
caused a great economic impact. The problem of minimizing the chances of catastrophic blackouts
in large networks is very complex and involves engineering, economic and political issues. The
authors present twodistinctmodels and algorithmic tools to dealwith the combinatorial difficulties
related to this problem.

The first model is concerned with the decision of which lines must have their capacity increased in
order to guarantee that in each scenario all flows are within capacities after removing some edges
from the network. The authors first describe a natural Mixed Integer Programming formulation of
the problemwhich can be large and impractical depending on the number of scenarios. Because of
that they subsequently present a projected formulation and an algorithm for solving the problem
via this projected formulation using Branch & CUT. The second model considers the dynamics of
a cascade, and assumes that no action is taken during the course of a cascade.
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Both models are essentially static and aim at reinforcing a network so that in the event of some
edge outages the network is better able to avoid a blackout. In a real time problem one desires to
stop a cascade from becoming large-scaled.

2. Analytical tools for power system restoration - conceptual design [370]

This work presents a conceptual framework for executing monitoring and assessment functions
during system restoration. The authors identify analytical tools in system security monitoring that
can undergo a fewmodifications in order to be applied in system restorationmonitoring. A survey
is done to cover the analytical tools that can be applied in restoration assessment and the authors
propose a knowledge-based expert system architecture to accomplish this task. The importance
of this research is highlighted by the increasing threats of blackouts and the fact that systems are
operating closer to their limits nowadays.

3. An Efficient Algorithm for Distribution Network Restoration [290]

The authors have previously proposed in [291] the use of a combination of expert system and
mathematical programming approach for power system restoration. In this more recent work
they propose a fast and efficient algorithm to solve the distribution system restoration based on
a mathematical programming approach. They show that with the division of the problem in two
steps and with the addition of restoration strategies the computation time can be reduced 30% if
compared to [291]. These two steps are: the maximization of available power to the area affected,
and the minimization of the amount of unsupplied energy. They are solved by a mixed integer
programming approach.

3.6 Robust power network design

1. From Hierarchical to Open Access Electric Power Systems [199]

This paper shows the modeling, monitoring and control of electric power systems through large-
scale dynamic systems’ point of view. The author summarizes the current hierarchical operations,
assesses underlying assumptions, presents the challenge of operating electric power systems over
very broad ranges of system conditions as an open sensing, estimation, and control problem. This
work also shows a vision of an information-basedmultilayered Dynamic Energy Control Protocols
(DECPs) framework for facilitating evolution into open access just-in-time (JIT) and just-in-place
(JIP) electricity services of the future.

Toady’s system topologies can be described as large power plants, often located far from load
centers; utilities supplying their customers without depending much on the neighboring utilities;
and utilities interconnecting for reliability reasons, to help each other during major equipment
outages. This causes the electric power grid to have several voltage levels, converted from one
to the other several transformers, leading to an extra high voltage (EHV) meshed transmission
backbone network, and local lower voltage networks closer to the consumers. The overall objective
of traditional electric power system is simple and consists of minimizing total cost subject to
reliability constraints. On the other hand it can be very complex to be implemented if considering
it as a single problem of decision making for very large-scale dynamic systems.

In today’s electric power industry there is a growing concern and focus toward the reliability of the
grid through robust design. The author has formalized more complex models in order to review
the current models. The also presented the class of models for hierarchical automatic generation
control (AGC) in the United States and automatic voltage control (AVC) in Europe.

While the hierarchical and open access operating models are qualitatively different in their com-
plexity, the author has approached both of them by recognizing the underlying structures in these
systems. He affirms that independently fromwhich type of the operating models a lot depends on
the dynamics, monitoring, and control of the interaction variables between different levels of the
system.
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The open-access future paradigm is probabilistic in its basic nature and allows a truly dynamic
interaction between performance objectives, sensing, monitoring, control, and coordination. Its
success depends on aligning uncertainties with the right industry levels and on the adequate man-
agement of interactions under uncertainties. The author suggests that it is essential for Researchers
should work closely with its industry partners to begin transforming both the backbone and local
distribution electric power networks into future smart systems.

The main goal of this work can be summarized as introduction of a model-based decision logic at
the layers of the distribution systems, and the simulation of the performance of future automated
distributiongridswith options to choose betweendistributedgeneration, price responsivedemand,
and dynamic islanding of customers with special needs, a system capable of responding to attacks
on both hardware and software.

2. Economic Impacts of Advanced Weather Forecasting on Energy System Operations [371]

The energy consumption and the performance of industrial and residential facilities are strongly
influenced by weather conditions mostly because energy is used more often for conditioning large
and exposed spaces and for generating industrial-scale utilities.

This work analyzes the impacts at the decision-making hierarchy of the power grid of adopting
advanced weather forecasting systems and this is done through case studies. It is shown that
numerical weather prediction (NWP)models can provide high-precision forecasts and uncertainty
information that can greatly enhance the performance of planning, scheduling, energy manage-
ment, and feedback control systems. The forecasting capabilities of the Weather Research and
Forecast (WRF) model are also analysed in several application domains.

The authors cover an integrative study of weather forecasting, uncertainty quantification, and
optimization-based operations. They first analyze the impact of increasing the forecast horizon on
energy management operations for a multi storage hybrid system and on the temperature control
of a building system then they seek to understand under which conditions weather forecasts are
beneficial and compare the forecasting capabilities of an empirical modeling approach with those
of the Weather Research and Forecast (WRF) model.

The work suggests that costs and power losses can be reduced by incorporating accurate forecasts
and that WRF forecasts significantly outperform those obtained with empirical models, specially
for medium and long-term horizons.

3. Voltage-Drop-Constrained Optimization of Power Distribution Network Based on Reliable
Maximum Current Estimates [145]

This paper aims at achieving tree-shaped power distribution networks optimum design, consider-
ing the voltage drop effect. The width of the power lines is adjusted in a way such that the network
occupies the minimum possible area under specific voltage drop constraints. The authors base
the optimization on precising the maximum current estimates through statistical means (extreme
value theory). In the experiments, the authors designed power grids for different topologies and
voltage drop tolerances in a typical benchmark circuit.

The drop of the effective voltage level supplied may degrade the performance of the circuit or even
cause faulty logic signals and circuit malfunction. The power lines have been built very wide in
order to reduce their resistance and avoid significant voltage level drop.

The design of power networks that occupy smaller areas as possible, but satisfying constraints on
IR-drop requires the knowledge of the maximum possible currents flowing at any time through
the lines of the network.

This paper covers the problem of power network design as a constrained optimization problem,
gives the basic statistical results for the estimation of maximum currents using extreme value
theory and describes the ensuing procedure for the optimum selection of power line widths.

The power grid optimization procedure consists of two main parts:

• obtaining the estimates of maximum currents along each line of interest, using the statistical
concepts
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• the application of a proper optimization algorithm.

4. Cooperative Sensor Networks for Voltage Quality Monitoring in Smart Grids [66]

The authors propose the use of self-organizing sensors networks in order to obtain a fully de-
centralized voltage quality monitoring architecture. In these networks, each node can access the
performances of themonitored site and also the global performances of themonitored grid section,
and by accomplishing this each node may automatically detect local voltage quality anomalies.
Furthermore, the system operator can assess the system voltage quality index for each section of
the gridwithout requiring a central fusion center acquiring and processing all the node acquisitions
which makes the architecture highly scalable, self-organizing and distributed.

3.7 Local and domestic management

1. Smart Demand-Side Energy Management Based on Cellular Technology [2]

The power grids built more than a century ago are not prepared for modern requirements. One
problem that must be highlighted is the lack of information on the consumption of electricity
provided to users and network operators. To upgrade the existing grids to smarter ones is very
expensive and to developing countries it is particularly difficult to benefit from these solutions. The
authors focus on a systemaccessible to these countrieswhich intends to reduce energy consumption
and wastage. This system uses cell phones to display information and allow consumers to control
appliances in their homes.

The authors show an example fromMalta, amicro-statewith an area of only 316- square-kilometers
where IBM and its partners are investing in themonitoring of electricity use in real-time and setting
variable tariffs that reward customers who decrease the consumption of power. It is a $91 million
project.

The GSMA (GSM Association) has estimates that in 2007 there were approximately 270 million
mobile phone users in Africa. These numbers make the cell phones an ideal instrument to provide
feedback about electricity consumption to consumers in this part of the globe. A GSM Modem at
the user’s house will send data from a smart meter about electricity consumption to a server. This
information will then be displayed on the consumers’ mobile phone. The server can also receive
control signals (to switch an appliance ON or OFF ) from the user’s phone. If a control signal is
received, the GSM modem will then issue the command to the appliance via the smart meter.

3.8 Electrical vehicles

1. Optimal Transition to Plug-in Hybrid Electric Vehicles in Ontario-Canada Considering the
Electricity Grid Limitations [171]

The transport sector is growing at a fast rate and demands more energy every day. It also increases
air pollution and the emission of greenhouse gases. In Canada the transport sector represents al-
most 35% of the total energy demand and is the second highest source of greenhouse gas emissions.
Therefore, alternative fuels are so important specially to this country.

Hybrid Electric Vehicle (HEV) technology can be an alternative. It may reduce the consumption
of gasoline and the greenhouse gas emissions. However it depends on a single hydrocarbon fuel
source and has range limitations. The Plug-in Hybrid Electric Vehicle (PHEV) is similar to HEV
but has a larger onboard battery and a plug-in charger and does not depend on a single fuel
source. It can run up to 30 Km on battery power alone. It is important to highlight that this is
a technology still under development. There are a few concerts regarding energy storage costs,
range and durability.
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A multi-interval DC optimal power flow (OPF) model with loss factor considerations was devel-
oped by the authors, based on the 10 zone model of Ontario’s electricity system, during base-load
time intervals, in order to find the maximum volume of extra load due to PHEVs that can be added
to Ontario’s electricity network between the years of 2009 and 2025. With a piecewise linearization
of power losses, the authors have a Mixed Integer Linear Programming (MILP) problem. The
objective of this model is to minimize the total cost.

The result of the study showed that by 2025 500.000 PHEVs can be introduced into Ontario’s trans-
port sector without affecting the reliability of the grid and without the need of a new infrastructure
to cover the electricity requirements.

3.9 Information systems for smart grids

1. Information services for smart grids [218]

The Interconnected and integrated electrical power systems are very complex and may face some
challenges such as an older structure, scarce availability of generation near load centers, distributed
resources, dynamic reactive compensation, congestion management, reliability coordination, sup-
ply and cost of natural resources for generation, etc. The objective of this work is to overcome the
grid management challenges through new information services.

This paper highlights that information semantics is a new approach for handling complex sys-
tems and can be applied to discover knowledge and support the decisions of grid operators by
focusing on making machines more interactive. These software tools are based on semantics and
ontologies that use web-addressable sensors. Information semantics supports systems, data, doc-
uments, agents and spans ontologies, knowledge representations, semantic web, natural language
processing, and knowledge management.

The operational environment of today’s power system is basically composed by many distributed
tools and components. The interfaces of the components must work in a ”plug and play” concept
similar to the hardware used in the substation automation. There has to be data sharing amongst
applications, and integration of functions of various tools for the modeling. One task that should
start now is the integration of the functions of the individual services so that they can performmore
complicated functions. The concepts suggested in this work such as the utilization of information
semantics and integrating data will be required to sustain social and environmental obligations for
the electric utility industry and will be important to guarantee reliability and efficiency of the new
smart grid.

3.10 Scheduling and running the grid

1. Multi objective optimalisation of smart grid structure [213]

This article focus on the future smart grid structure optimization. Investment can be made in
solutions such as: smart gauges, line breakers, redundant secondary network or the total old
network could be replaced. The author highlights that the lack of energy sources and the aging of
the existing power system calls for a smart grid structure.

Power system should supply energy with the guarantee of high reliability for the customer, low
user end price of delivery and sustainability for the global supply.

The MultiObjective optimization described in this work is concerned with the minimization of the
delivery price and also themaximization of the reliability and sustainability. The authorsmaximize
the security and the sustainability by limited investment sources.

There a several ways to raise the network reliability, such as, by adding some control (smart)
gauges, by building in some remotely controlled line breakers, by adding some secondary gauges,
by making a redundant network part and by replacing the old line
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The results of this work showed that putting as many intelligent smart gauges as possible it brings
advantages compared to the replacement of the old network. It also showed that reliability of the
network can be raised by remote controlled line breakers and the self healing auto reconfiguration.
There is no need to change the existing voltage level. A low level network duplication makes
possible the local REN generation (PV) and works as an local micro grid or Uninterruptible Power
Supply, reducing considerably the amount of nondelivered- energy.

2. Optimal operation of dispersed generation under uncertainty usingmathematical programming
[174]

This paper presents a mathematical model including different kinds of dispersed generation units
with respect to their technical characteristics and the optimization technique used. The authors
apply stochastic programming extensions tomixed-integer linear programs. An advanced scenario
decomposition algorithm is used to cope with the resulting stochastic integer programs that are
too big for standard solvers.

3. Smart Grid Design for Efficient and Flexible Power Networks Operation and Control [281]

There is a growing need of a more adaptive and secure power system for the US. Consumers also
demand more power quality and reliability of supply and delivery. Because of that there is an
increase interest in Smart Grids. This paper shows Smart Grid intelligent functions and also a
special case for the development of Dynamic Stochastic Optimal Power Flow (DSOPF) technology
as a tool for the Smart Grid design.

The Smart Grid aims at providing grid observability, creating controllability of assets, enhance
power system performance and security, and reducing costs of operations, maintenance, and
system planning. The authors of this paper develop the Smart Grid functions that improve
interactions of agents (e.g. telecommunication, control, and optimization to achieve adaptability,
self-healing, efficiency and reliability of power systems)

There are some challenges to be faced ahead such as the lack of predictive control signals to operate
devices and lack of energy storage devices which affect deployment of smart devices. Funding is
also necessary to the development of new technologies in this area for the Smart Grid.

The use of Adaptive Dynamic Programming (ADP) as a method to handle complex power system
problemswith prediction under uncertainty has been enhanced by the recent advances in computer
science and the Artificial Intelligence and Applied Mathematics communities.

ADP combines the experience of Optimal Control and Dynamic Programming (DP) in reaching
optimal utility functions and also judgments performance function that evaluates the reliability and
performance of the first stage of ADP optimization. These methods have been used in aerospace,
power systems, and in other management portfolio.

The author has been developing DSOPF. This computational algorithm has controllability and
interoperability, reliability, adaptability and sustainability, anticipatory behavior and affirmation
of Security.

This paper proposes the development of a Research and Learning Center which will provide
researchers with the study of standards and the comparative study on modeling, predictive,
and control tools for electric power industry. It proposes future research, for example, to the
development of advanced techniques for measuring peak load reductions and energy-efficiency
savings from smart metering, demand response, distributed generation, and electricity storage
systems; to the investigation of the feasibility of a transition to time-of-use and real-time electricity
pricing and to the development of algorithms for use in electric transmission system software
applications.

4. Proactive Energy Management for next-generation building systems [372]

This paper shows a day-ahead prediction of disturbances affecting costs and efficiency which
can lead to an accurate forecast of the daily electricity demand profile. This is done through the
on-line solution of mixed-integer nonlinear programming problems. The disturbances involve
weather conditions, fuel prices, heat gains, and utility demands. One advantage of this proactive
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framework is that it can capture occupant behaviors and market interactions by using agent-based
models.

3.11 Open problems in smart grids

Minimization of the time for sensing and responding to signals in an electrical grid [146, 295, 90, 202, 12,
14, 11, 13, 9]

[202] Grid of the Future - A. Ipakchi and F. Albuyeh

Different and antagonist factors modulate the most profound changes the power energy industry
has ever faced: environmental targets, demand response (DR), support to plug-in electric vehicles, dis-
tributed generation and storage. The existing electricity distribution grid faces a challenging transition:
from counting on quasi steady and individually reliable generation sources, dealing with localized de-
cisions and manual operations, to the automatic and dynamic integration of a variety of intermittent
wind, solar and other renewable generation sources, the “smart grid” scenario.

Novel businesses and regulatory drivers are being set, having environmental issues as the main
modulators of such new regulations: renewable portfolio standards (RPS)1 deal with greenhouse gases
limitation, DR and energy conservation measures, defining obligations towards increasing the produc-
tion of energy whilst providing a minimum percentage of the electricity production from renewable
energy sources. About 32 USA states, accounting for approximately half of the energy sales in the
whole country, had established RPS targets by August 2008, with California setting 20% of the energy
production coming from renewable sources by 2010, and 33% by 2020.

As reliability of energy supply is a strategic factor, the evolution of regulatory mechanisms is manda-
tory and the implementation of advanced metering infrastructures (AMI) targeting DR is an ongoing
process. Wind and solar generation are the main actors in the new electricity generation portfolio, with
wind being the fastest growing segment (and the most intermittent form of electricity generation). In a
more complex scenario, even batteries from plug-in electric vehicles could act as energy providers in the
role of distributed storage, a very important subsidiary service in the smart grid. While wind turbines
present a power curve in which typical operation includes a fast ramp, i.e., minutes to be up (in contrast
to seconds to shut down), solar cells have the potential of very localized operation, while still not in
conditions of economically competing with wind farms.

The main issues posed by these renewable energy sources can be summarized as:

• Transmission; placement a non-trivial problem since good sites for wind farms, mainly, and solar
plants, may be in areas having low capacity, or non existing, transmission lines;

• Distribution; new energy flow patterns, including the introduction of bidirectional flows, will
need new and smart protection and control mechanisms;

• Interconnection standards; unification and power scaling will impact interconnection standards;

• Operation; dealing with intermittent energy generation is a challenge;

• Forecasting and scheduling; accurate climate forecasting and smart energy scheduling and dis-
patch is needed.

Due not only to environmental, but also to economical reasons, plug-in electric vehicles are definitely
penetrating the market. Based on the existing specifications of such vehicles, the impact of having
electric cars charging during evening and night will eventually more than double the average residential

1Renewable Electricity Standard (RES) at the United States federal level, and Renewables Obligation in the UK.
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load during such period. Moreover, as existing distribution systems were designed decades ago, the
concurrent chargingof vehicles in a localized situation, e.g., a parking lot,mayoverload and/orunbalance
the distribution system.

Thedeployment ofAMIwill soonallowmuchmoredynamic tariffs to takeplace, togetherwithmarket
-based prices, so that end-use devices, e.g, smart chargers, would be able to decide about a consumption
style by having a view of the grid status and associated dynamic prices. On the other hand, the system
operator will be able to monitor and control demand though price signals. The NIST/Gridwise Archi-
tecture Council is a mentionable initiative towards integrating demand-side resources with distribution
and transmission operations.

Given its geographically distributed nature, the smart grid impacts all operational and enterprise
information systems. The combined application of distributed intelligence, congestion management
strategies andmarket-based dynamic pricing is a almost certain feature of the future IT systems involved
in the smart grid. In fact, one can draw a parallel between (i) the transition from existing electric
generation, transmission and distribution apparatus the to the new smart grid scenario, and; (ii) the
transition from the existing, mostly stand-alone, operational and enterprise information systems to
the integrated (operational and enterprise aspects), distributed, secure and agile computational system
expected in the deployment of a smart grid.

A cloud computing approach seems a natural target since it could not only minimize the need for
the development of new customized applications with the same functionality of the ones already in
use, but also allow for an integrated view of all information and operation systems via a web-based
middleware. Such software design style would accommodate, directly or indirectly, the incremental
transition in course as well as any new operational requirements needed by smart grid.
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Combinatorial optimization for electric
vehicles management
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Growing concerns about environmental quality of cities are calling for sustainable road transportation
technologies. Electric Vehicles (EV), for public and private transport, can contribute significantly to
the lowering of the current pollution levels. However, the EV use is currently facing several weaknesses
among which are: limited driving range, high cost and overall limited efficiency. This report aims
at specifying some key contributions of combinatorial optimization for an efficient electric vehicles
management.

4.1 Introduction

Distribution and transportation systems have been intensively studied in the operations research litera-
ture [347]. 73% of all oil consumed is Europe is used in transport and road transport accounts for 25% of
CO2 emissions of the overall transport activity. From both an environmental and energy points of view,
the introduction of EV should be a first priority for the reduction of primary energy consumption.

Although higher concerns are the opportunities EV provided in terms of efficiency and flexibility in
the use of energy, the EV use however is currently facing several weaknesses among which are: (1) The
low energy density of batteries compared to the fuel of combustion engined vehicles, (2) EV often have
long recharge times compared to the relatively fast process of refueling a tank and (3) The scarcity of
public charging stations.

Electric Vehicles Management (EVM) is a relatively recent problem, its purpose is to expedite the
establishment of a costumer convenient, cost-effective, EV infrastructure. Inspite the relevance of the
problem, a few small research communities in this field work on some aspects of this problem. In this
work, we discuss some important issues of this problem and show how CO tools can be used for solving
some challenging subproblems.

Routing of EV is a major aspect of EVM, it consists of designing routes for maximizing the autonomy
of vehicles, efficient EV routing plays a major role for encouraging EV use. We discuss in this report
this problem, we present a mathematical formulation of the energy shortest path problem and the energy
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routing problem andwe expose some relationships between these problems and otherwell-known routing
problems.

Limited driving distance between battery charges is a fundamental obstacle to broad consumer
adoption of EV. In order to eliminate this fundamental disadvantage and increase consumer acceptance
and usage of EV, a sufficient number of charge stations is required. The objective is to establish a charging
network that is conveniently placed in familiar places to meet consumers needs. The localization of EV
charge stations is known in CO field as the facility location problem, we define here this problem and we
expose some models proposed in the literature.

The Self-Service Electric Vehicles (SS EV) is a key concept for developing urban clean mobility. The
“free” use of EV would cause either overflow or shortage of vehicles at some stations at some times of
the day. This system require a redistribution of EV over the stations, this problem is generally modeled
as a special pick-up and delivery problem, we discuss in this report some of its characteristics and resolution
methods.

The remainder of this report is as follows. In section 4.2 we discuss routing of EV and its relationships
with some routing problems in the literature. In section 4.3 we address the charge stations localization.
We expose redistribution of EV in the context of a SS EV system in section 4.4 and we conclude this
report in section 4.5.

4.2 Routing

The rising and highly-variable cost of fuel, increase the importance of efficient vehicle routing. Key
advantages of EV are their ability to recover braking energy to be restored to the battery (regenerative
braking) and their zero energy consumption in congested environment. Efficient EV routing is critical to
the operational profitability and customer satisfaction of EV use, especially in light of highly concurrence
with fuel of combustion engined vehicles.

4.2.1 Energy shortest path problem

The Energy Shortest Path Problem (EnSPP) consists of finding an optimal origin-destination route for EV
with rechargeable batteries taking into account energy recuperation during deceleration phases. This
problem can be modeled with a directed graph G = (N,A), where N = M ∪ {s, t}, M is the set of nodes
representing the junctions, s and t the source and destination nodes respectively and A represents the
set of arcs. With each arc (i, j) is associated a positive (resp. negative) value ei j indicating consumption
(resp. gain) of energy on arc (i, j). The battery of each vehicle has a maximum capacity C and cannot
be discharged below zero. The EnSPP consists of finding optimal origin-destination routes for EV by
maximizing the vehicles battery charge at the destination node.

Very scarce works interest to this problem in the literature. In [22], the authors formalize the EnSPP
problem as a generalization of the shortest path problem with hard constraints (which impose that the
battery cannot be discharged below zero) and soft constraints (which impose that the battery cannot
store more energy than its maximum capacity). A generic shortest path algorithmwas proposed to solve
the problem. The authors developed a prototypic software system for energy efficient routing where
data is obtained by combining geospatial data (of OpenStreetMap) and elevation data (of the NASA
Shuttle Radar Topographic Mission).

The formulation of the EnSPP is given as follows:
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min ut (4.1)

s.c.
∑

i∈M
xsi =

∑

i∈M
xit = 1 (4.2)

∑

j∈N
xi j −

∑

j∈N
x ji = 0,∀i ∈M (4.3)

xi j(u j − ui − ei j) ≥ 0,∀(i, j) ∈ A (4.4)
0 ≤ ui ≤ C, ∀i ∈ N (4.5)
xi j ∈ {0, 1}, ∀(i, j) ∈ A (4.6)
ui ∈N+, ∀i ∈ N (4.7)

where variables xi j indicate whether arc (i, j) is used or not and ui is the battery remaining storage
capacity at node i. Constraints (4.2)-(4.3) define the path structure for the vehicle. Energy constraints
(4.4) express the fact that if arc (i, j) is used, the battery remaining storage capacity at node j can be
greater than ui + ei j (in the case where ui + ei j < 0).

The EnSPP is a generalization of the shortest path problem with time windows [121] where ei j
represents the travel time on arc (i, j) and the time window at each node is equivalent to [0,C]. Hard
and soft constraints are equivalent to time windows constraints; Hard constraints express the fact that a
vehicle must arrive at the costumer before the end of time window and soft constraints express the fact
that if a vehicle arrives before the beginning of the time window, it wait at no cost. In a more general
case [22], the EnSPP is a generalization of the Shortest Path Problem with Resource Constraints (SPPRC)
[203] where resource consumption represents energy consumption, the amount of available resource is
equal to C, and the residual resource at node i is equivalent to ui.

4.2.2 Energy vehicle routing problem

The Vehicle Routing Problem (VRP) [347] is an important problem in the fields of transportation, dis-
tribution and logistics. It can be modeled with the graph G described at section 4.2.1, where nodes
represent costumers. A set K of identical vehicles are available, each one has a maximum capacity Q.
The VRP consists of finding a set of minimum cost origin-destination routes, such that each costumer
i ∈ M is visited by exactly one vehicle to satisfy a specific demand di. The total customers demand
satisfied by the same vehicle must not exceed the vehicle capacity.

Distribution activities cause major problems with regard to noise and air pollution, so, there is a need
for EV in urban distribution activities. We introduce here the VRPwhere vehicles are electric ones, called
Energy Vehicle Routing Problem (EVRP), its formulation is given as follows:
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min F(x,u) (4.8)
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xki j ∈ {0, 1},∀(i, j) ∈ A,∀k ∈ K (4.15)

uki ∈N+,∀i ∈ N,∀k ∈ K (4.16)

where xk
i j
indicate whether arc (i, j) is used or not by vehicle k and uk

i
is the battery remaining storage

capacity of vehicle k at node i. The objective function (4.8) can be considered as the sum of the remaining
battery storage capacity of all vehicles (

∑
k∈K u

k
t ) or the maximum remaining battery storage capacity of

all vehicles (maxk∈K ukk) at the destination node. Constraints (4.9) ensure that each costumer is visited
exactly once. Constraints (4.10) ensure that demand of each route is within the capacity limit of the
vehicle serving the route. Constraints (4.11)-(4.12) are path constraints. Constraints (4.13)-(4.14) ensure
compatible remaining storage capacity at each node for each vehicle.

As showed in section 4.2.1, the EVRP can be considered as a generalization of the vehicle routing
problem with time windows [214] where the objective is to minimize the total travel time of all vehicles
or the minimization of the makespan (minimization of the maximum total travel time). Additionally,
this problem is a special case of a much studied problem in the literature, the Pick-up and Delivery
Problem (PDP) [301], where pick-up are not hard constraints: partial pick-ups are allowed and pick-up
is not performed when the vehicle is full. Acceleration (resp. deceleration) phase can be considered as a
delivery (resp. pick-up) operation.

Lets Ĝ = (N̂, Â) be a directed graphwhere N̂ is the set of nodes and Â is the set of arcs. Ĝ is constructed
using the graph G as follows: let be P(i) the set of predecessor nodes of node i ∈ N, |P(i)| = li. Each
node i ∈ N is duplicated into li nodes N̂i = {i1, ..., il

i}, so, N̂ = ⋃
i∈N N̂i. For each new node, we assign an

incoming arc from one predecessor node:

Â =
⋃

i∈N{Â( j1, i1)
⋃

Â( j2, i2)...
⋃

Â( jl
i
, il

i
) | j1, ... jl

i ∈ P(i)}.

where A( j1, i1) =
⋃

k∈N̂ j1
{(k, i1)}. For each node i ∈ N, we associate to the duplicated nodes i1, ..., il

i
the

weights q1 = e j1i, ..., q
li = e jli i. Node i ∈ N̂ represents a pick-up (resp. delivery) node if qi < 0 (resp. qi > 0).

Optimizing the vehicle braking routes, through maximization of final remaining energy, can result
in an increase of travel time. To make energy vehicle routing effective, the travel time has to be taken
into account in the optimization model. As our knowledge, no work considers the travel time in energy
routing problem. Such multiobjective problem can be solved using adaptation of multiobjective routing
methods [209, 339].

In practice, the road links have different combinations of energy Consumption/Recuperation (C/R)
levels and delays, associated with road furniture such as traffic lights and roundabouts, and road
topographyandgeometry such as inclines. This causes energyC/Rvariations (resulting fromacceleration
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and deceleration) over links with the same road category and distance. Therefore, instead of constant
values, more realistic considerations of energy C/R have to be established. On one hand, energy C/R can
be a functionof speedvariations over links. Anumber ofworks in the literature interest tomodel/estimate
travel speed [188], these works can be exploited to estimate energy C/R. On another hand, energy C/R
has to be considered as stochastic instead of constant values for assessing the risk of running out of
energy before arriving at the destination. No work in the literature tackle these issues yet.

4.3 Facility location

One ofmajor barriers to EV success have arisen in limited number of refueling stations, due to the limited
range of EV, the establishment of an infrastructure to facilitate EV refueling is a pressing concern. Due
to the large capital costs involved in infrastructure investment, economic factors are very important in
determining the number and location of stations. Therefore, studies must work to provide a theoretical
basis for station deployment, such as with a facility location model, to economically and efficiently serve
EV trips.

Location problems in general are spatial resource allocation problems dealing with one or more
service facilities serving a spatially distributed set of demands. The objective is to locate facilities to
optimize a spatially dependent objective like theminimization of average travel time or distance between
demands and facilities. The most studied practical problem in this context concerns hydrogen station
location. In [273], general criteria are proposed for identifying effective locations for early hydrogen
stations, (1) close to areas with high traffic volume, (2) in places to provide fuel during long distance
trips, (3) at high profile locations to increase public awareness, and (4) in places that are accessible to
individuals who are buying their first fuel-cell vehicle. These criteria are also necessary in EVM to ensure
consumer confidence in the reliability of the refueling network.

In order to develop an overall broad perspective on the facility location literature so that we can
appropriately model EV specific problem we present below three basic models categories that are
related to refueling-station location problem [358]:

Models based on the maximum covering location problem: In [189] was introduced the “flow capturing
location model” to represent the goal of locating facilities to serve passing flows. Any flow that uses
a path that passes through the location of the facility was considered to be captured. The problem is
formalized as a maximum covering location problem, it consists of locating p facilities so as to “capture”
as many of passing flows as possible. This model was extended in [226] to the “flow refueling location
model” for considering a flow refueled only if an adequate number of stations are spaced appropriately
along the path.

Models based on the set covering problem: In [356], the author propose a facility location model for
economically site slow recharging stations at scenic spots in order to conveniently serve all demand
from single origin-destination journeys (via multi-stop refueling), with drivers using electric scooters at
the destination area. This model was extended in [357] for accommodating multiple origin-destination
trips. The purpose of the proposed models is to optimally site the refueling stations to cover overall
passing flows on the paths of interest.

Models based the maximum covering/shortest path problem: This model [107] consists of the minimization
of the path length between a given origin-destination pair of nodes and the maximization of the total
demand covered by the facilities located at the nodes in the path. This model is extended in [48] to
accommodate multiple origins and destinations.



66 CHAPTER 4. COMBINATORIAL OPTIMIZATION FOR ELECTRIC VEHICLES MANAGEMENT

4.4 EV redistribution

A SS EV system represents an efficient alternative to use the private (petroleum fuel) vehicles in terms
of resource sharing, cost and flexibility. This concept is currently very popular in many countries and
should bring two advantages: a net reduction in the number of vehicles (and therefore parking spaces),
and a reduction in air and noise pollution with the use of EV. In this system, a costumer can pickup one
vehicle in a station, use it for a while and return it to another (or the same) station. Indeed, either an
overflow or a shortage of vehicles can happen at one or more stations at some times of the day. This
system must guarantee the availability of the vehicles at the pick-up points.

Redistribution problem consists of redistributing the vehicles among the stations in order tomaximize
their availability to the costumers. Redistribution is provided by a fleet of limited capacity tow-trucks
located at various depots on the network. This problem can be naturally modeled as a pickup and
delivery problem. In [130], this problem is viewed as a generalization of the pickup and delivery
problem, formulated as a mixed integer problem and solved using a number of resolution methods
including constraint programming, Lagrangian relaxation and a modified A∗ heuristic. The problem
seems to be difficult to solve although for small instances, this is due to the splitup of pickups and
deliveries, the small capacities of tow-trucks and non simple paths (a tow-trucks can return to a station
already serviced).

In [96], the authors propose a balancing technique which consists of switching from an unfavorable
state to a favorable one. A favorable state is defined as the distribution of vehicles in the stations that
guarantees that the system can reach a given large horizonwith the highest probability, assuming that no
balancing action is conducted, and an unfavorable state is defined as the distribution of vehicles in the
stations that guarantees that at least one of the station will run out of vehicles or will be overload before
a given small horizon with a probability greater than or equal a given threshold. In [99], the authors
consider the issue of recharge problemwhere an optimal level of charge that makes the vehicle available
for costumers is defined. Because of the battery limited range, two major aspects have to be taken into
account in the redistribution system, the physical and energy availability of vehicles at stations.

4.5 Conclusion

The succeeding of a transition from a conventional gasoline based transportation system towards a
sustainable way of transportation, depends on a quite number of critical factors. The substitution
of conventional vehicles through electric and/or hybrid vehicles involves economical, environmental
and social aspects. The purpose of EVM is to encourage the transition to EV use and to expedite
the establishment of a convenient, cost-effective, EV infrastructure that such a transition necessitates.
Whereas the development of EV through battery autonomy grow extensively, very little research is
dedicated to EV routing, recharge stations localization and vehicles redistribution. We discussed in this
report these major aspects which represent challenging optimization problems.

Routing consists of designing routes for EV for maximizing the autonomy of vehicles, efficient EV
routing plays a major role for encouraging EV use. This problems is much close to a number of well-
studied routing models in the literature.

Compared to fossil fuels, batteries have a low energy content per weight ratio. This limits the radius
of action of EV, making them mostly suitable for urban traffic and special transport applications, such
as shuttle services. Siting sufficient refueling stations along intercity highways is central issue to ensure
the completion of the long-distance travel demands in order to foster the use of EV.

There is an increase on utilization of video surveillance, global positioning systems and commu-
nication equipment installed on vehicles. A topic of interest is the development of a global mobility
information systems throughwhich EV charging station customers can locate EV charging stations prior
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to starting on a trip, and canmaximize their mileage andminimize their risk of running out of electricity.

Problems discussed in this report are subproblems of EVM that can be treated using combinatorial
optimization tools. The global critical problem in the EV promotion is a chicken-and-egg infrastructure
dilemma [359]: consumers will be reluctant to purchase vehicles until a sufficient number of refueling
stations has been installed, while vehicle manufactures will not produce vehicles that consumers will not
buy, and fuel providers will not invest in a new energy infrastructure until there is sufficient demand for
it. Therefore, it is likely that governments will need to play a significant role in promoting any change
to alternative fuels, although public support alone will not ensure the success of this transformation.

Summarizing the paper discussions, it can be stated that EVM systems including the three topics
discussed in this report are a crucial path towards EV mobility. The key functionalities assigned to such
a system are gain of driving range, the flexibility of recharging vehicles and vehicles availability in a
self-service EV system.
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Chapter 5

Optimal running and planning of a
biomass-based energy production
process

Maurizio Bruglieri, Leo Liberti

Published in Energy Policy, 36:2430-2438, 2008

We propose mathematical programming models for solving problems arising from planning and
running an energy production process based on burning biomasses. The models take into account
different aspects of the problem: determination of the biomasses to produce and/or buy, transportation
decisions to convey the materials to the respective plants, and plant site locations. Whereas the
“running model” is linear, we propose two “planning models”, both of which are Mixed-Integer
Nonlinear Programming problems. We show that a spatial Branch-and-Bound type algorithm applied
to them is guaranteed to converge to an exact optimum in a finite number of steps.

5.1 Introduction

Producing energy derived from fossil carbon-based fuels is proving costly to both the environment (in
terms of pollution) and society (in terms of monetary investment). As the prices of crude oil increase,
governments and other institutions are researching the most cost-efficient ways to produce energy from
alternative sources [201]. One of the most popular contendents is energy produced by biomasses of
several kinds [306]. In [270] the competitiveness of biomass-based fuel for electrical energy opposed to
carbon-based fuel is examined using a mathematical programming model. Among the advantages of
this type of energy production, there is the potential for employing wastedmaterials of biological origin,
like used alimentary fats and oils, agricultural waste and so on. A factory producing energy with such
materials would benefit from both the sales of the energy and the gains obtained by servicing waste [18].
In [149] a mathematical program is proposed to localize both energy conversion plants and biomass
catchment basins in provincial areas. Other mathematical models for specific biomass discrete facility
location problems are developed in [155] and [109]. A model that combines detailed energy conversion
plant optimization with energy/heat transportation cost is given in [334].

This report describes an optimization problem arising from the deployment of such an energy pro-
duction process in central Italy. This involves several processing plants of different types (for example,
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a liquid biomass plant, a squeeze plant and a fermentation-distillation plant). Some of these plants
(e.g. liquid biomass plant) produce energy; others (e.g. the fermentation-distillation plant) produce in-
termediate products which will then be routed to other plants for further processing. There are several
possible input products (e.g. agricultural products, biological waste), obtained from different sources
(e.g. direct farming or acquisition on themarkets) at different unit costs. Apart from the energetic output,
there may be other output products which are sold in different markets (e.g. bioethanol obtained from
the fermentation-distillation plant and sold in the bioethanol market). See Fig. 5.1 for a typical process
flowsheet.

There are in fact three optimization problems relating to this description. The first (and simplest)
is that of modelling the production process as a net gain maximization supposing the type of plants
involved and the end product demands are known. The second is that of deciding the type of plants to
involve in the process to maximize the net gain, subject to known end product demands. Although post-
optimal sensitivity analysis may be used to gather hints on how to improve the process, an optimization
model provides the ultimate process planning tool. The second model is in fact a simple variant of the
first, in that we simply let some of the parameters of the first (linear) problem be decision variables in
the second. The third problem is an evolution of the second, taking into account plant installation costs,
some features of electricity production plants, and transportation issues [265, 266, 280]. We remark that
we only carried out computational experiments on the first and second model, since the practical needs
of the industry that commissioned the research were limited. The third model is supplied to show that
this modelling approach can be extended to a more complicated and realistic setup.

Section 5.2 describes the model relating to the production process when the plant types are known
(“runningmodel”). Section 5.3 describes the model relating to the process planning (“planningmodel”),
an exact mixed-integer linear reformulation thereof, and shows that an application of a standard spatial
Branch-and-Bound algorithm (e.g. [320, 333]) yields a finitely convergent exact method. In Section 5.4
we discuss the application of the production process and planning models to a real-life case. Section 5.5
discusses the third model, and Section 5.6 concludes the paper.

5.2 Optimizing the production process

Modelling a flowsheet as that presented in Fig. 5.1 presents many difficulties. Notice that the products
can be inputs, intermediate, outputs, or both (like alcohol, which is both an output product and an
intermediate product). Likewise, processes can be intermediate or final or a combination (like the
fermentation-distillationplant). Consider also that thedecisionmakermaychoose tobuyan intermediate
product from a different source to cover demand needs, thus making the product a combination of
intermediate and input. Of course the input products may be acquired or produced at different locations
and at different prices. Moreover, each flow arrow has an associated transportation cost. The time
horizon for the optimization process is one year.

The central concept in our model is the process site. A process site is a geographical location with
at most one processing plant and/or various storage spaces for different types of goods (commodities).
A place where production of a given commodity occurs is represented by a process site with a storage
space. Thus, for example, a geographical location with two fields producing maize and sunflowers is
a process site with two storage spaces and no processing plant. The fermentation-distillation plant is a
process site with no storage spaces and one processing plant. Each output in Fig. 5.1 is represented by a
process site with just one storage space for each output good. In this interpretation the concepts of input,
output and intermediate products, and those of intermediate and final process, lose importance: this
is appropriate because, as we have emphasized earlier, these distinctions are not always well-defined.
Instead, we focus the attention on thematerial balance and on the transformation process in each process
site. Furthermore, we are able to deal with the occurrence that a given commodity may be obtained at
different costs depending on whether it is bought or produced directly.
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Figure 5.1: A typical process flowsheet.

We represent the process sites by a set V of vertices of a graph G = (V,A) where the set of
arcs A is given by the logistic connections among the locations. To each vertex v ∈ V we asso-
ciate a set of commodities H−(v) which may enter the process site, and a set of commodities H+(v)
which may leave it. Thus, for example, the fermentation-distillation plant is a process site vertex
where H−(fermentation-distillation plant) = {cane, beetroots} and H+(fermentation-distillation plant) =
{alcohol}. Furthermore, we let H =

⋃
v∈V(H−(v) ∪ H+(v)) be the set of all commodities involved in the

production process, and we partition V = V0 ∪ V1 into V0, the set of process sites with an associated
processing plant, and V1 = V\V0.

Fig. 5.2 is the graph derived from the example in Fig. 5.1.

The following parameters define the problem instance:

• cvk: cost of supplying vertex vwith a unit of commodity k (negative costs are associatedwith output
nodes, as these represent selling prices; a negative cost may also be associated to the input node
“waste”, since waste disposal is a service commodity);

• Cvk: maximum quantity of commodity k in vertex v;

• τuvk: transportation cost for a unit of commodity k on the arc (u, v);

• Tuvk: transportation capacity for commodity k on arc (u, v);

• λvkh: cost of processing a unit of commodity k into commodity h in vertex v;

• πvkh: yield of commodity h expressed as unit percentage of commodity k in vertex v;

• dvk: demand of commodity k in vertex v.

It is clear that certain parameters make sense only when associated to a particular subset of vertices,
like e.g. the demands may only be applied to the vertices representing the outputs. In this case, the
corresponding parameter should be set to 0 in all vertices for which it is not applicable.

The decision variables are:
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Figure 5.2: The graph derived from the example in Fig. 5.1.

• xvk: quantity of commodity k in vertex v;

• yuvk: quantity of commodity k on arc (u, v);

• zvkh: quantity of commodity k processed into commodity h in vertex v.

Since the output demands are known a priori, we would like to minimize the total operation costs
subject to demand satisfaction. There are three types of costs:

• cost of supplying vertices with commodities:

γ1 =
∑

k∈H

∑

v∈V
cvkxvk;

• transportation costs:
γ2 =

∑

k∈H

∑

(u,v)∈A
τuvkyuvk;

• processing costs:
γ3 =

∑

v∈V

∑

k∈H−(v)

∑

h∈H+(v)
λvkhzvkh,

so the objective function is

min
3∑

i=1

γi(x, y, z). (5.1)

We need to make sure that some material conservation equations are enforced in each process site
where a plant is installed: ∑

k∈H−(v)
πvkhzvkh = xvh, ∀v ∈ V0, h ∈ H+(v). (5.2)



5.3. PLANNING THE PRODUCTION PROCESS 73

Notice that these constraints do not actually enforce a conservation ofmass, for inmost processing plants
a percentage of the input quantities goes to waste; but it is nonetheless a conservation law subject to the
yield properties of the particular transformation process of the plant.

Secondly, the quantity of processed commodity must not exceed the quantity of input commodity in
each vertex: ∑

h∈H+(v)
zvkh ≤ xvk, ∀v ∈ V0, k ∈ H−(v). (5.3)

Furthermore, we need the quantity of input commodity in each vertex to be consistent with the
quantity of commodity in the vertex itself, and similarly for output commodities:

∑

u∈V:(u,v)∈A
yuvk = xvk, ∀v ∈ V, k ∈ H−(v) (5.4)

∑

u∈V:(v,u)∈A
yvuh = xvh, ∀v ∈ V, h ∈ H+(v). (5.5)

Finally, we have the bounds on the variables:

dvk ≤ xvk ≤ Cvk, ∀v ∈ V, k ∈ H (5.6)
0 ≤ yuvk ≤ Tuvk, ∀(u, v) ∈ A, k ∈ H (5.7)
zvkh ≥ 0, ∀v ∈ V, k ∈ H−(v), h ∈ H+(v) (5.8)

and some fixed variables for irrelevant vertices:

xvk = 0, ∀v ∈ V1, k ∈ H\(H−(v) ∪H+(v)) (5.9)
yuvk = 0, ∀(u, v) ∈ A, k ∈ H\H−(v), (5.10)
yuvk = 0, ∀(u, v) ∈ A, k ∈ H\H+(u). (5.11)

The main advantage to this model is that it can be easily extended to deal with more commodities and
plants in a natural way, by adding appropriate vertices or changing the relevantH−(v),H+(v) and related
parameters.

This problem is a Linear Program, and can be solved by using one of several LP solvers (e.g. CPLEX
[200]).

5.3 Planning the production process

In this section, we suppose no processing plants are yet present at the process sites. At each process
site v ∈ V0, we wish to install an appropriate processing plant chosen from a set P(v) of possible plants
(e.g. there may be different types of liquid biomass plants, each having different yield levels on the input
commodities). We therefore wish to make decisions as regards the plant installation, feasible with the
material balance constraints as in Section 5.2, which minimize the total operation costs.

We re-define the parameters λ, π to make them dependent on a processing plant p as follows:

• λvkhp: cost of using plant p to transform a unit of commodity k into commodity h in vertex v (this
includes a per-unit estimate of the initial investment costs for building the plant);

• πvkhp: yield of commodity h, using plant p, expressed as unit percentage of commodity k in vertex
v.
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We consider the following additional binary decision variables:

wvp =

{
1 if plant p is installed in vertex v
0 otherwise

Moreover, the node capacities Cvk and arc capacities Tuvk, which are considered as parameters in the
previous model, are to be considered as decision variables instead, bounded above and below by
relevant values.

The objective function (5.1) changes in the γ3 term, which becomes:

γ′3 =
∑

v∈V

∑

k∈H−(v)

∑

h∈H+(v)



∑

p∈P(v)
λvkhpwvp


 zvkh.

The material conservation constraints (5.2) become:

∑

k∈H−(v)



∑

p∈P(v)
πvkhpwvp


 zvkh = xvh, ∀v ∈ V, h ∈ H+(v). (5.12)

The following constraints enforce consistency on the assignment variables (we remark that (5.13)
allows a process site to host no plant at all):

∑

p∈P(v)
wvp ≤ 1, ∀v ∈ V0, (5.13)

∑

p∈P(v)
wvp = 0, ∀v ∈ V1. (5.14)

Finally, constraints (5.3)-(5.8) are also part of the formulation.

5.3.1 Solution of the problem

The model described in Section 5.3 is a Mixed-Integer Nonlinear Programming problem (MINLP) with
nonconvex terms in both the objective function and the constraints. Problems of this type are solved
either by employing heuristic methods, like Multi Level Single Linkage (MLSL) [229, 255] or Variable
NeighbourhoodSearch (VNS) [183, 254], or byusing an ε-approximatemethod called spatial Branch-and-
Bound (sBB) [333, 5, 341], which provides a proof of ε-optimality. sBB algorithms are Branch-and-Bound
(BB) type algorithms (i.e. searches on trees where each node represents a restriction of the problem to a
particular subdomain, the union of all the subdomains being the entire search space) where branching is
possible on continuous variables appearing in nonlinear terms (branching on binary variables is carried
out by fixing the variable at 0 in the left subnode and at 1 in the right subnode). Bounding is obtained
by solving a suitable convex relaxation of the problem restricted at the current node’s variable ranges.
We assume that the branching scheme ensures that all binary variables are chosen for branching within
a finite time limit (such a scheme is readily available by e.g. branching on each binary variable in turn).
In general, when ε = 0, the sBB algorithm has no finite termination guarantee. Applied to this particular
problem, however, the sBB yields a finitely terminating exact method, as shown in Thm. 5.3.2.

At each BB node we obtain a lower bound by solving a linear relaxation of the problem, built as
follows.

1. Distribute products over sums, so that all the bilinear terms can be expressed as wvpzvkh (also see
[340]).
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2. Replace each bilinar term wvpzvkh by a new added variable ζvkhp called a linearization variable. More
precisely, the bilinear terms in γ′3 in the objective and in constraints (5.12) should be replaced by
the corresponding linearization variable, yielding:

γ′′3 =
∑

v∈V

∑

k∈H−(v)

∑

h∈H+(v)

∑

p∈P(v)
λvkhpζvkhp

and ∑

k∈H−(v)

∑

p∈P(v)
πvkhpζvkhp = xvh, ∀v ∈ V, h ∈ H+(v). (5.15)

Naturally, to keep the reformulation exact, we must add the bilinear constraints

(ζvkhp = wvpzvkh), ∀v ∈ V, k, h ∈ H, p ∈ P(v) (5.16)

to the formulation. These are called defining constraints. The usefulness of this step is that it isolates
the nonconvex terms in (5.16).

3. Replace (5.16) by their convex envelopes:

(ζvkhp ≥ 0), ∀v ∈ V, k, h ∈ H, p ∈ P(v) (5.17)

(ζvkhp ≥ zvkh + zUvkh(wvp − 1)), ∀v ∈ V, k, h ∈ H, p ∈ P(v) (5.18)

(ζvkhp ≤ zUvkhwvp), ∀v ∈ V, k, h ∈ H, p ∈ P(v) (5.19)
(ζvkhp ≤ zvkh), ∀v ∈ V, k, h ∈ H, p ∈ P(v) (5.20)

where zU
vkh

is a tight upper bound to zvkh for each v ∈ V, k, h ∈ H. Constraints (5.17)-(5.20) are known
as McCormick envelopes [271]. The relaxed problem is a mixed-integer linear relaxation of the
original problem.

4. A linear (and hence convex) relaxation of the problem is readily obtained by relaxing the integrality
constraints on the binary variables.

The linear relaxation thus derived is further tightened by adding Reformulation-Linearization Tech-
nique (RLT) cuts as in [4, 329, 328] by multiplying constraints by appropriate variables and then lineariz-
ing the resulting bilinear terms, as detailed below:

• constraints (5.3) by bound factors wvp and (1 − wvp) for all p ∈ P(v);

• constraints (5.13) and (5.14) by variables zvkh for all k, h, to obtain:
∑

p∈P(v)
ζvkhp ≤ zvkh, ∀v ∈ V0, k, h ∈ H (5.21)

∑

p∈P(v)
ζvkhp = 0, ∀v ∈ V1, k, h ∈ H. (5.22)

Constraints (5.22) are a particular subclass of RLT constraints ([329, 328]) called reduction constraints
[250, 251, 249], with very interesting properties. In particular, although the bilinear defining constraints
(5.16) are not in the formulation, it can be shown that in consequence of (5.21) and (5.22), a certain subset
of them still hold at the relaxed solution. Constraints (5.21) are normal level-1 RLT constraints.

To sum up, the linear relaxation at each sBB node consists in minimizing γ1 + γ2 + γ′′3 subject to (5.15)
and (5.3) with the RLT cuts derived from them, (5.4), (5.5), (5.6)-(5.8), (5.9)-(5.11), (5.13) and (5.14)with the
reduction constraints (5.21) and (5.22) derived from them, and the McCormick envelopes (5.17)-(5.20).
We shall call this linear relaxation L̄.
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5.3.1 Proposition ([328], Prop. 8.11)
LetW ⊆ Rn and Z ⊆ Rm be the two nonempty polytopes (in variables w and z respectively) described in
the planning model above, and consider the set Ω = {(w, z, ζ) | w ∈ W ∧ z ∈ Z ∧ (5.17)-(5.22)}. Then, for
any (w̄, z̄, ζ̄) ∈ Ω, if either w̄ is a vertex of W or z̄ is a vertex of Z, constraints (5.16) hold.

5.3.2 Theorem
As long as the branching scheme ensures that all binary variables are chosen for branching within a
finite time limit, an sBB algorithm applied to the MINLP problem of Section 5.3 ((5.3)-(5.8),(5.12)-(5.14),
excluding the linearization constraints of Sect. 5.3.1) converges to an exact solution or is shown to be
infeasible in a finite amount of time.

Proof. Because of the assumption in the branching scheme, after a finite amount of running time in the
sBB algorithm, a nodeNwill be reachedwhere all binary variables are fixed at either 0 or 1. Let P̄N be the
lower bounding LP at nodeN. P̄N may be infeasible, unbounded or feasible with optimal solution xN. If
P̄N is infeasible, the current Branch-and-Bound tree branch is pruned at the nodeN. If P̄N is unbounded,
the MINLP is also unbounded and the sBB terminates. Otherwise, if P̄N is feasible, since the w variables
have values 0 or 1 by virtue of the branching process, w will be at a vertex of its feasible polyhedron
(which is a sub-polytope of {wvp ∈ [0, 1] | v ∈ V ∧ p ∈ P(v) ∧∑

p∈P(v) wvp ≤ 1 if v ∈ V0 and 0 othw.}). By
Prop. 5.3.1, this implies that xN is feasible w.r.t. the bilinear defining constraints (5.16). Thus, xN is also
an upper bounding solution in the original problem and the node is fathomed, which implies that the
current Branch-and-Bound tree branch is pruned at the nodeN. This also shows that the node is pruned
even with ε = 0. Therefore, no branch of the Branch-and-Bound tree can be infinitely long, which proves
finite convergence. To show exactness, we remark that since the algorithm was shown to converge even
with ε = 0, the solution it provides is exact. Lastly, if no node yields a feasible solution xN, the problem
is infeasible. �

5.3.3 Proposition
Let L be the linear relaxation L̄ subject to the integrality constraints on the w variables. L is an exact
Mixed-Integer Linear Programming (MILP) reformulation of the planning model.

Proof. Let (w∗, z∗, ζ∗) be an optimal solution of L. Since w are either 0 or 1, again by Prop. 5.3.1 we have
that ∀v ∈ V, k, h ∈ H, p ∈ P(v) (ζ∗

vkhp
= w∗vpz

∗
vkh

), which shows that the optimal solution of L is feasible in
the original planning model. �

By Prop. 5.3.3, we can also solve the planning model with a MILP solver (e.g. CPLEX [200]).

5.4 Computational experience

The main driving force for this report was a real-life instance of the production model occurring in
the Marche region of Italy. The owners of an agricultural ground currently producing beetroots and
wheat wanted to switch to a more diversified scheme which could provide enough biomass to fuel
an energy production plant. This instance gave rise to an LP model with fewer than 100 variables
and constraints, the solution performance details are totally irrelevant. The instance was solved by
CPLEX 10.1 [200] to optimality. Most of the material used for this computational study can be found at
http://www.lix.polytechnique.fr/˜liberti/bioenergy.

As for the planning model, we considered two separate sets of instances. The first one is based on the
real-life production instance mentioned above, modified to contain more production sites and potential
plants at each site. The second one consists of randomly generated instances; see Table 5.1 for details.

We solved the instances in Table 5.1 to optimality using several solvers.
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Instance name |V0| max|P(v)| avg|P(v)| Vars (where 0-1) Constrs Noncvx terms

planning1 2 4 3.50 41 7 31 20+13
planning2 10 3 1.50 228 9 161 34+18
planning3 10 3 1.50 228 9 161 34+18
planning4 10 2 1.40 227 8 161 32+16
planning5 4 3 2.00 165 7 106 24+14
planning6 4 3 2.00 165 7 106 24+14
planning7 4 2 1.75 164 6 106 22+12
planning8 2 3 2.50 39 5 31 14+10
planning9 9 3 1.33 198 5 139 8+8
planning10 9 2 1.11 195 2 138 4+4
rnd10 2 6 3.50 179 6 131 72+42
rnd14 1 3 3.00 249 3 154 18+2
rnd16 1 8 8.00 158 8 90 16+16
rnd20 3 12 5.67 913 17 493 4+0
rnd23 4 9 6.50 690 26 406 60+50
rnd24 5 9 5.40 2379 26 1293 0+173
rnd26 7 9 6.14 177 42 101 28+7
rnd33 1 5 5.00 5361 5 2982 0+783
rnd37 3 3 2.00 5491 5 2876 0+384
rnd43 3 11 7.33 3289 22 1741 0+543
rnd47 1 5 5.00 4686 4 2726 23+15
rnd63 5 7 4.20 2681 21 1589 1957+923
rnd96 20 9 5.25 7908 80 4011 46+10

Table 5.1: The planning model instances. The nonconvex terms are expressed in the form o + c where
o is the number of nonconvex terms in the objective, and c is the number of nonconvex terms in the
constraints.

• BARON [320] (under the GAMS [86] interface), a global optimization sBB solver acting on the
original MINLP formulation.

• CPLEX [200] (under the AMPL [154] interface), a BB solver acting on the MILP reformulation as
per Corollary 5.3.3.

• MINLP BB [247] (under the AMPL interface), a BB solver for MINLPs which only branches on
integer variables, acting on the original MINLP formulation — MINLP BB only guarantees opti-
mality if the NLP relaxation of the problem is convex (which is not the case here), but it proves to
be an effective heuristic for nonconvex MINLPs.

Running times were generally very low for all solved instances: well within 2s CPU time for most
instances, with a few exceptions which clocked at under a minute (on a PIV 1.2GHz with 640MB RAM
running Linux). Running times were not deemed to be significant comparative indicators, particularly
in view of the fact that such problems need usually not be solved in real time. The results are given in
Table 5.2.

There are at least two important conclusions that can be drawn from the results in Table 5.2. First,
all the considered methods scale well with the problem size. We feel it is particularly important to
remark that the global optimization solvers perform on this application as well as the CPLEX MILP
solver. Secondly, the experimental results are in line with the conclusion of Theorem 5.3.2 (we note that
all global optimization solvers were run with a convergence tolerance of ε = 0).
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Instance name BARON CPLEX MINLP BB

planning1 -1993500.000006 -1993500.000000 -1993500.000000
planning2 -1487141.062815 -1487141.062815 -1487141.062815
planning3 -1293674.672558 -1293674.672558 -1293674.672558
planning4 -1298674.672558 -1298674.672558 -1298674.672558
planning5 -1592708.399909 -1592708.399909 -1592708.399909
planning6 -1282208.399909 -1282208.399909 -1282208.399909
planning7 -1287208.399909 -1287208.399909 -1287208.399909
planning8 -1688000.000000 -1688000.000000 -1688000.000000
planning9 -656478.709039 -656478.709039 -656478.709039
planning10 -482425.869355 -482425.869355 -482425.869355
rnd10 -10172670.9000 -10172670.900000 -10172670.900000
rnd14 -46793640.7549 -46793640.754903 -46793640.754903
rnd16 -2517826.01334 -2517826.013343 -2517826.013343
rnd20 -74172261.5403 -74172261.540278 -74172261.540278
rnd23 -225161225.148 -225161225.147790 -225161225.147790
rnd24 -24121864.8543 -24130018.218155 -23841483.937430∗

rnd26 -2609446.88325 -2609446.883250 -2609446.883250
rnd33 -720041744.091∗ -922056072.533006 -917574429.510109∗

rnd37 -348612891.222∗ -352566723.200840 -288592249.147212∗

rnd43 -78666258.8413 -78666633.904820 -78666633.904820
rnd57 -28534845.5788 -28534845.578841 -28534845.578841
rnd63 -138429853.758 -143249498.228375 -138391489.573639
rnd96 -14015008.6266 -14015008.626632 -14015008.626632

Table 5.2: Objective function values found by BARON, CPLEX, MINLP BB. Non-optimal values are
marked ∗.

5.5 A more realistic planning model

The models of Sect. 5.2 and Sect. 5.3 rely on several simplifications of real-life conditions. A truer picture
would encompass other realistic features, as detailed below.

• Some of the plants considered in this report produce electricity. These have very specific properties
and behaviours [265, 266], among which:

1. in a true market situation (i.e. no subsidization), electricity prices vary during the course of a
single day, as demand rises and subsides;

2. some electricity production plants are often designed to produce electricity and heat (which
is either stored or conveyed directly into buildings in the area) — such plants are called
Combined Heat Power (CHP) [75];

3. CHPs generate heat and electricity at the same hour and same location.

• Transportation costs do not depend linearly on the distances due to the different means of trans-
portation used [280]. For very short transportation distances, tractors may be used, which have
higher transportation cost than lorries, used formedium to long distances; for very long transporta-
tion distances, trains or ships are used. More generally, the geography of the production process
region deeply influences the costs of the single process activities; [280] suggests a methodology
that combines Geographical Information Systems (GIS) software with process analysis to estimate
these costs.

• All production plants incur a one time installation cost. This varies according to many factors,
the most important of which are production capacity and physical location. A given production
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capacity can be obtained by building a single huge plant or many different small-sized plants.
With respect to the latter choice, the former yields: (a) higher production efficiency but lower total
efficiency (because usually it is difficult to convey auxiliary heat from one single place to many
neighbouring urban areas); (b) lower specific building costs; (c) higher transportation costs due to
distances [280].

It turns out that the planning model in Sect. 5.3 can be extended to accommodate most of the features
above, excluding the electricity price variability over short time periods (point 1 in the list above). For
this wewould need an explicit time dependency in themodel. Since the electricity price variability range
is much shorter than the envisaged time horizon in the planning optimization (one day as opposed to
one year), an hourly time discretization would multiply the number of variables by 8760 (= 365 × 24),
thus yielding a MINLP or MILP whose size is excessive with respect to the current solver state of the
art. It is worth emphasizing, however, that since most of the available biomasses can be easily stored,
the variability of electricity prices can be dealt with by adding biomass storage space near the electricity
plants, which would either add more processing sites or simply reflect on the plant cost parameter.
Storage space is not the only way to deal with the situation: the energyPRO model [265] proposes an
electricity plant planning methodology that locally optimizes each plant over a yearly time horizon with
hourly time-steps. The combined production of electricity and heat (point 2 in the list above) can be
dealt by our model by simply introducing an output process site representing heat, and adapting the
λ and π parameters relative to the CHP, various inputs and heat output to reflect the situation. As a
consequence of point 3 in the list above, this modelling is not wholly satisfactory, as generation of heat
is time-dependent because it is linked to the generation of electricity: but again this time dependency
can be dealt with by using process sites representing heat storage capacity or simply adding to the plant
cost parameter.

Nonlinear transportation costs are already fully dealt with by our model, for with each arc we
associate a transportation cost which is not unitary but rather depends on the vertices adjacent to the
arc. Since the arc length is not used anywhere in the model, each arc can be assigned its proper cost.

In order to cater for the last point, i.e. plant installation costs, we consider the parameters Ivp = cost of
building plant p ∈ P(v) in vertex v ∈ V0. The dependency of the installation cost with the vertex v allows
us to consider geography dependencies as outlined in [280]. We then add the following term λ4 to the
objective function:

λ4 =
∑

v∈V0

∑

p∈P(v)
Ivpwvp. (5.23)

This does not change the convergence results given in Sect. 5.3.1.

We remark that although we treat plants as rather simple entities defined by their input, yields and
outputs much like other nodes, this is a simplistic view. Some refined models that describe these these
energy conversion units are given in [75, 76, 74]; in particular, each of these nodes may sometimes
consist of a set of different plants and utilization points where transportation of energy/heat has an
impact on the overall efficiency. More recently, a full supply-chain model was provided that also cater
for multi-company interactions [335].

5.6 Conclusion

Wedescribe a Linear Programmingmodel for running a biomass-based energy production process and a
Mixed-Integer Nonlinear Programming model for a simplified planning of the installation of processing
plants used in the production process. Although the solution of the first model is readily obtained by any
good quality LP solver, the second (nonlinear) model is nonconvex, exhibits multiple local minima and
therefore needs to be solved using Global Optimization techniques. We show that a spatial Branch-and-
Bound type algorithm converges exactly to the optimum and that theMINLPmodel can be reformulated
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exactly to a MILP; this result is also apparent in the computational results, ranging over a set of realistic
instances and a set of randomly generated ones. Finally, we extend the planning model to deal with
more realistic features.
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We aim at contributing to the issue of energy consumption by proposing tools to automatically define
some aspects of the architectural and structural design of buildings. Our architecture starts with a
building design, and automatically generates and searches a space of acceptable design variations. It
outputs a variation which maximizes energy efficiency, and respect cost constraints. The optimization
stage is done by the combination of an energy consumption simulation program, EnergyPlus [336],
with a state-of-the-art multi-objective evolutionary algorithm. The latter explores the design search
space, automatically generating new feasible design solutions, which are then evaluated by the energy
simulation software.

6.1 Introduction

The continuous rising of energy consumption is a current (and global) concern. On the one hand, there is
the fact that energy is still mainly coming from non-renewable and limited sources. On the other hand,
the more energy is consumed, the more carbon emissions are released in the atmosphere. According
to a recent report from the World Business Council for Sustainable Development [360], the building sector
is responsible for the most important energy consumption rate, estimated at around 40% of the total
energy used worldwide. Surprisingly, the resulting carbon emissions are even higher than those of
all the transportation sector combined. Reducing energy consumption, while not compromising the
rising living standards of the ever-growing population, has become thus a matter of extreme importance
towards a global sustainable future.

In this work, we aim at contributing to this issue by proposing tools to automatically define some
aspects of the architectural and structural design of buildings, in order to passivelymaximize their energy
efficiency, whilemaintaining the construction costs and occupants’ thermal comfort at a reasonable level.
It is important to note that, for the sake of simplicity, we are currently considering only the period during
which the building is in “operation”. This corresponds to around 80% of the total energy consumption
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during the life cycle of a building [360], the other 20% being spent on its construction (including the
manufacturing of the materials used) and demolition.

The optimization of the building designs is done by the combination of an energy consumption
simulation program, EnergyPlus [336], with a state-of-the-art multi-objective evolutionary algorithm.
The latter explores the design search space, automatically generating new feasible design solutions,
which are then evaluated by the energy simulation software. This generate-and-test cycle is repeated
until a satisfactory design is found, or another stopping condition is achieved.

This document is structured as follows. Section 6.2 surveys some related work. In Section 6.3,
the EnergyPlus simulation program is briefly described, while Section 6.4 overviews the evolutionary
algorithm employed. Finally, Section 6.5 presents the results of some preliminary experiments, while
Section 6.6 concludes with some perspectives for further work.

6.2 Related Work

In [303], the authors optimize the shape of the building envelope in order to maximize solar efficiency
at its façade, which directly affects the daylighting and the Heating, Ventilation and Air Conditioning
(HVAC) energy consumption. Both variables are computed using the EnergyPlus software. As an extra,
the authors suggest the use of CFD analysis to, for example, analyze the wind flow in the internal space
of the building.

In [124], the objective is to minimize costs while maximizing energy efficiency. As choices for the
optimization method, there are the type of windows and the type and quantity of the insulation material
used in the walls. The thermal transmittance and the conductivity of each material are taken from the
ASHRAE database [10], and the prices are artificially simulated according to the performance of the
material.

In [91], many different applications are considered, with growing levels of complexity, which can be
summarized as follows:

1. Starting with box-like offices facing each cardinal direction (squared one-floor buildings), the first
objective is tomaximize the energy efficiency by finding the best window dimension for each office
and orientation.

2. In the second case, the geometry of the building and the space layout are fixed, the objective is
to optimize its façade, mainly the size and placement of the windows, aiming at maximizing the
energy efficiency.

3. In the following case, the objective is two-fold: minimize the cost of the materials used in the
construction of the building, while also maximizing the energy performance. In a second step,
not only the cost of the materials is considered, but also the energy saved during the construction
phase and the energy spent to manufacture these materials.

4. In the last case, the objective is to automatically generate/evolve complete 3D architectural forms
that are energy-efficient, while at the same time being in agreement with the architectural design
intentions expressed by the architect (represented in terms of a well-defined set of rules).

Besides the building design, another component that significantly affects the energy consumption
is the HVAC system. The optimization of the design of the HVAC system is the focus of the works
presented in [367, 17].
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6.3 EnergyPlus

EnergyPlus is a very complete energy analysis and thermal load simulation program, which is available1

free of charge for all the main computer platforms. It can be seen as an ameliorated extension of the
BLAST and DOE-2 energy simulation programs, which were developed after the 1970s energy crisis.
Many enhancements have been continuously aggregated to it since its first release in 2001, mainly
supported by the U.S. Department of Energy.

This software enables the evaluation of the energy consumption behavior of almost any kind of
building, as defined by the user via an input file containing the design parameters, according to the
meteorological trends (weather data) of the region where it is planned to be built. It is primarily a
simulation engine, with both input and output being made via text files. Some GUIs and special plugins
are provided by third-party developers in order to facilitate and extend its use. It is mainly used by
“design engineers” and architects to, for instance, appropriately size the HVAC equipments, develop
retrofitting projects, evaluate and/or optimize energy performance, etc.

In this work, we use it to evaluate the energy consumption of the design solutions automatically
generated by a search/optimization algorithm, which will be described in the following.

6.4 Multi-Objective Optimization with Evolutionary Algorithms

As previously discussed, for the optimization of the buildings, the main objective in terms of sustainable
development here is the reduction of energy use (while also possibly generating some energy, e.g., solar
or eolic energy, but this is out of the scope for the time being). But the more energy-efficient is the
building, the more expensive tends to be its construction. One might thus find a compromise between
energy efficiency and construction costs.

Another well-known trade-off in this context is the exploration of natural daylighting versus thermal
isolation. The bigger the windows, the more daylight will possibly come in; but windows are usually
much less efficient in terms of thermal insulation than walls. Then, some savings in the use of electricity
for lighting might be (even over-)compensated by a higher need of the HVAC mechanisms, which are
usually the most energy-demanding equipments in a building. The non-use of these equipments, or
their use at a smaller power rate, might significantly affect the total energy consumption; but at the
same time it will also affect the thermal comfort of the people living/working in the given building, most
probably in a negative way.

Based on these examples, it is clear that multiple objectives need to be taken into account in order to
do a more realistic optimization of building designs. Evolutionary algorithms are very popular meta-
heuristics for multi-objective optimization, mainly due to the fact that they are population-based, i.e., a
set of solutions is continuously evolved in parallel. This enables the decision-maker to choose, in the
end of the process, between many solutions that are optimal w.r.t. the considered objectives in different
ways, not being comparable between each other, the so-called Pareto front.

A current trend to evaluate the quality or fitness of a solution in multi-objective optimization is the
use of the hyper-volume measure [385]. Briefly, the fitness of a solution is equal to its contribution to the
hyper-volume computed between the current Pareto front and a reference point in the search space. In
this work, we are using the current state-of-the-art hyper-volume-based algorithm, referred to as Hype
[45], which will now be briefly described in turn.

1EnergyPlus is available at http://apps1.eere.energy.gov/buildings/energyplus/
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6.4.1 The Hype Algorithm

Besides the proposal of a new approximate way of calculating the hyper-volume, based on sampling,
the Hype algorithm [45] differs from the other available variants of hyper-volume-based multi-objective
evolutionary algorithms mostly in two aspects: its fitness assignment and its replacement/survival
selection mechanism.

Concerning the former, as in the other existing algorithms, the fitness assigned to a solution is equal
to its contribution to the current hyper-volume. The main difference is that each solution receives
partial “credit” for the regions of the hyper-volume that are dominated by more than one solution, as
exemplified in Figure 6.1.

Figure 6.1: Illustration of the Hype credit assignment, extracted from [45].

And for the replacement or survival selection mechanism, Hype proposes a special way of doing it,
as follows.

1. Starting from the merged parents+offspring population, it firstly divides it into non-dominance
partitions (using the non-dominance sorting concept from the NSGA-II [117] algorithm). The first
partition is the set of non-dominated solutions (the Pareto front) of the given population. By
removing these solutions from the population, we have a new Pareto front, which is the second
partition (or depth) of non-dominance, and so on. These partitions are then included one by one
in the new population, whenever there is space available for the entire partition.

2. At some point, one partition will not entirely fit. It is then considered using the Hype fitness
assignment method, as follows. Let k be the number of individuals that needs to be removed from
this partition so it can included in the new population. Briefly, at each iteration from 1 to k, the
fitness (the contribution to the hyper-volume) of each individual of the given sub-population (the
partition) is calculated, and the worst individual is removed.

This process is exemplified in Figure 6.2. All the solutions are represented by a red cross. The ×
marks the first partition of non-dominated solutions, which has 5 individuals, and thus can be entirely
included in the new population (of size 8 in this case). The ×marks the second partition (the new Pareto
front when removing the first partition). It does not fit entirely in the new population, and only 3 out of
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5 individuals are kept, marked with a black square, according to their contribution to the hyper-volume
formed by this sub-population.
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Figure 6.2: Example of the Hype replacement mechanism in action. The solutions marked with a black
square are the ones chosen to remain for the next generation, while the others will be discarded.

6.5 Preliminary Experiments

This is a currently on-going work, still on its early stages. Some experiments were done in order
to validate our experimental framework and to empirically verify the possible gains that might be
achieved with it. These experiments will be described in the following.

6.5.1 The Building

The first building design tackled was taken from [138, Exercise 2C]. The description taken from the IDF
file is the following:

Building: Single floor rectangular building 30.5 m (100 ft) x 15.2 m (50 ft). 5 zones - 4 exterior, 1
interior, zone height 2.4 m (8 ft). Exterior zone depth is 3.7 m (12 ft). There is a 0.6 m (2 ft) high
return plenum. The overall building height is 3m (10 ft). There are windows on all 4 facades; the
south and north facades have glass doors. The south facing glass is shaded by overhangs. The walls
are woodshingle over plywood, R11 insulation, and gypboard. The roof is a gravel built up roof with
mineral board insulation and plywood sheathing. The floor slab is 0.1 m (4 in) of heavy concrete. The
windows and glass doors are double pane Low-e clear glass with argon gap. The window to wall ratio
is approximately 0.3.

The building is oriented with the long axis running east-west.

Floor Area: 463.6 m2 (5000 ft2)

Internal: Lighting is 16 W/m2 (1.5 W/ft2), office equip is 10.8 W/m2 (1.0 W/ft2). 1 occupant per 9.3
m2 (100 ft2) of floor area. The Infiltration is 0.25 air changes per hour.
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HVAC: Single-zone unitary with DX cooling and gas heating serving NORTH PERIMETER zone.
VAV with hot water reheat, return plenum, chiller, boiler, and tower serving the other four occupied
zones.

Environment: Chicago, IL, USA, TMY2

Different 3D visualizations of this building are shown in Figure 6.3.

Figure 6.3: Different views of the building used in the first experiments.

6.5.2 The Problem

These preliminary experiments are considering two conflicting objectives: the minimization of both the
energy consumption and the construction costs of the building. The former is taken from the “Total Site
Energy” variable in the “Annual Building Performance Summary” output report, in kW/h. For the latter,



6.5. PRELIMINARY EXPERIMENTS 87

we consider the sum of the costs of the insulation materials used, in e/m2, taken from a french retailer.
Three problem variables are considered here, as follows.

The first one is the orientation angle of the building, expressed in degrees with respect to the real
North axis. It is being currently considered as a real value between 0 and 360, although in practice some
physical constraints might exist.

The other two represent the choice of material used for each insulation layer of the external walls.
These walls are finally constituted by the aggregation of these insulation layers with two other layers,
the external and the internal ones, which are not modified. Our current database of insulation materials
contains 33 different kinds of material, with their corresponding thermal insulation performance and
price. So, these are categorical variables, ranging between 1 and 33 (the “index” of each material),
with partial ordering: materials #5 to #10 might be of the same kind but with different thickness (and
consequently different performance), while material #11 might be a totally different one.

6.5.3 Evolutionary Algorithm

The implemented evolutionary algorithm uses the Hype [45] fitness assignment and replacement mech-
anisms, briefly described in Section 6.4.1. For the mating selection, it uses tournament with t = 2: for the
generation of each new solution, two solutions are randomly selected from the main population, and
the best between them (in terms of contribution to the hyper-volume, as defined by Hype) is selected for
the mating.

Very simple variation operators are being currently used: a 1-point Crossover, and a Gaussian
Mutationwithmean zero and standard deviation 1 (mutiplied by 10 for theOrientation variable, because
there is no meaning in doing very small variations on the building orientation). Crossover is applied at
a fixed rate of 0.8, and Mutation at 0.1, an identical copy of the solution is done otherwise.

6.5.4 Analysis of Results

The results presentedhere are extracted froma single run, considering “cost versus energy consumption”,
using a (8+32)-EA: at each generating, 32 new solutions are created out of 8 solutions, and the population
for the next generation is composed by the 8 best (according to theHype procedure) of the (8+32)merged
population. The stopping condition was fixed to 5000 fitness function evaluations.

Figure 6.4 shows the population (of size 8) after every 10 generations. The solutions marked with a
black square represent the final Pareto front. As it can be seen, the algorithm seems to have converged
to this solution set many generations before the end. In the near future, we could eventually look into
how to on-line detect convergence, as in [354], in order to save computational time.

This set of final solutions is described in Table 6.1. The two rightmost columns show the energy
consumption and the cost per square meter for each combination of angle and insulation materials.

For the sake of comparison, the original design of this building, using Orientation=0 (i.e., aligned
with the real North axis) and thematerials cited on its description in Section 6.5.1, achieves a total energy
consumption of 65735.2 kWh per year, considering the meteorological data of the OHare International
Airport in Chicago, USA (the same used in these experiments). In case there are no budget constraints,
the most energy efficient solution (#1) will represent a reduction of around 5% in terms of energy
consumption.

These results become more interesting when considering both objectives. We could read it in the
following way: given a target energy consumption, for instance 63600 kW/h, the cheapest solution
found (#4) will cost 5.34 e/m2. In the opposite direction, given a budget of 8 e/m2, the most energy-
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Figure 6.4: The populations after every 10 generations, up to the final Pareto..

efficient solution will be the number #3.

As it can also be seen, all these solutions use around the same value for the orientation angle of the
building. This is intuitive, and now empirically verified: if we use the same combination of materials for
all the external walls of the building, the optimization of the orientation angle becomes an independent
problem. In order to further check it some extra experiments were done considering solution #1, varying
the angle ∈ [0 : 5 : 360]. The results are shown in Figure 6.5. As it can be seen, in this case the optimum is
really around 265 degrees, and up to 700kW/h (around 1% in this case) can be saved only by optimizing
the orientation angle.

6.6 Conclusion and Further Perspectives

The experiments presented, although being very preliminary, showed to be very useful in order to
validate the experimental framework, besides demonstrating that this project has a great potential in
terms of contribution to sustainable development.

There are many other design aspects that shall be considered in the near future. For instance, we are
currentlyworking on including the size and placement of thewindows as problemvariables, considering
an additional objective in this case, the absorptance of natural daylighting. Besides, for the time being,
we are currently taking into account only objectives related to minimize the energy consumption in a
passive way. Further work might also address the choice of HVAC systems that should be used, as well
as their control parameters.

Additionally, for the moment we have considered only a single (and simple) building, while many
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S Angle Layer 1 Layer 2 kWh/year ⇓ e/m2

1 265.248 coated glass wool KIC 200
4.5x1.2M

coated glass wool KIC 200
4.5x1.2M

62833 11.64

2 265.037 coated glass wool KIC 200
4.5x1.2M

coated glass wool KIC 100
8x1.2M

63068.8 8.49

3 265.037 comfort coated glass wool
45mm 15.6X0.6M

coated glass wool KIC 200
4.5x1.2M

63267.4 7.49

4 264.917 glass wool IBR nu 100
7X1.20M

glass wool IBR nu 100
7X1.20M

63503.9 5.34

5 264.917 glass wool IBR nu 100
7X1.20M

glass wool IBR nu 100
7X1.20M

63503.9 5.34

6 264.811 comfort coated glass wool
45mm 15.6X0.6M

coated glass wool KIC 100
8x1.2M

63994.5 4.34

7 263.956 comfort coated glass wool
45mm 15.6X0.6M

comfort coated glass wool
60mm 12X0.6M

64642.1 4.15

8 263.956 comfort coated glass wool
45mm 15.6X0.6M

comfort coated glass wool
45mm 15.6X0.6M

65031.6 3.34

Table 6.1: Final set of solutions, ordered by the energy consumption.

other buildings should be tackled in order to further validate our approach. The plan is to create a
benchmark set containing several building of very different nature, such as office buildings, warehouses,
churches, hospitals, schools, etc, with different geometries (e.g., L-shape, U-shape), number of floors,
HVAC systems, etc.

Finally, in order to make all this more realistic, we are currently starting a collaboration with an
architecture company. They will assist us with all their expertise in what concerns architecture in the
real-world, and possibly provide us the project of a real building to be optimized.
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Figure 6.5: Energy consumption evaluation, in kW/h averaged over an year, for different orientation
angles of the most energy-efficient building.
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On green routing and scheduling
problem
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The vehicle routing and scheduling problem has been studied with much interest within the last four
decades. In this report, some of the existing literature dealing with routing and scheduling problems
with environmental issues is reviewed, and a description is provided of the problems that have been
investigated and how they are treated using combinatorial optimization tools.

7.1 Motivation

During the last few years, Operations Research (OR) has extended its scope to include environmental
applications [70, 110, 324]. Because in Europe 73% of the oil is used for transportation purposes, the
need to design efficient plans for sustainable transportation is evident. Advances in the transportation
planning process and in the efficiency of transportation systems are key components of the development
of sustainable transportation.

The routing of vehicles represents an important component of many distribution and transportation
systems and has been intensively studied in the OR literature [347]. In this report, particular consid-
eration is given to routing and scheduling models that relate to environmental issues, we will denote
this class of problems as Green Routing and Scheduling Problems (GRSP). In [324], the authors discuss
different problems that relate to sustainable logistics, they focus on reverse logistics, waste management,
and vehicle routing and scheduling problems. Some variants of routing and scheduling problems in
connection with environmental considerations were described: the arc routing problem, which is con-
sidered as a major component in waste management, and the time-dependent vehicle routing problem
which allows one to indirectly decrease gas emissions involved by transportation activity by avoiding
congested routes.

We present in this report some general tools for transportation decision-making under assumptions
related to economic, environmental and social considerations. An exhaustive review of sustainable
transportation problems and their treatment by OR tools is out of scope here given the generality of this
area of research. Most of thework in this domain is still verymuch indevelopment and some applications
have only just started. The aim of this survey is to provide a clear presentation on how combinatorial
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optimization can contribute to sustainable transportation as well as a comprehensive survey covering all
known green routing and scheduling problems and their variants. Therefore, we list some GRSPs that
are studied in the literature [324] and identify some other problems which can be added to this class, we
describe some models and solution methods that can be exploited for these problems, and we expose
some multiobjective optimization methods which are essential for solving these particular problems.

7.1.1 Green routing and scheduling

Usually, routing and scheduling models are concerned with objectives of minimizing economic costs,
but due to growing concerns about public health, global warming and economic safety, it is necessary to
consider in the cost function the factor of environmental and social costs. The additional environmental
and social constraints and objectives that must be taken into consideration often make the problemmore
difficult to both model and solve. We study in this report the best known routing and scheduling related
problems arisen from sustainable transportation field:

• Routing ofHazardousMaterials (RHM):Theobjective is theminimization of the risk on thepopulation
and the environment caused by the transportation of hazardous materials. The research area that
investigates this problem is most advanced, while less research taking into account explicitly
environmental impacts is dedicated to the other problems cited bellow.

• Routing and Scheduling in Time-Dependent Environment (RS TDE): This class of problems contributes
indirectly to reduce vehicles gas emission. The main objective is the minimization of a more
realistic travel time by avoiding congested routes.

• Waste Collection Vehicle Routing Problem (WCVRP): This problem is a major component of waste
management.

• Multi-Modal Vehicle Routing problem (MMVRP): This problem permits to manage many transporta-
tionmodes and allows to performpriority-based routing for clean transportation (as rail transport).

• Dial-a-Ride Problem (DARP): This problem contributes indirectly to decrease the global taxis gas
emission by promoting grouped transportation (grouped taxis) for decreasing the transportation
fleet size and routes congestion, particularly in large cities.

• Pick-up and Delivery Vehicle Routing Problem (PDVRP): Permits the integration of the backward flow
of waste in distribution systems for recycling for example.

• Energy Routing Problems (ERP): This problem is one of the least studied one in the context of
sustainable transportation. It permits to promote the use of electric vehicles by maximizing the
vehicle autonomy.

• Air Traffic Management (ATM): This problem can contribute to decrease the fuel consumption in
planes.

These problems are very different from their structure, their contribution to transportation sustain-
ability and their dedicatedmodels and solutionmethods. Works on these problems are often unbalanced,
this generally depends on the problem characteristics, for example RHM includes many aspects as risk
definition and model, risk equity and uncertainty while the major aspect of RS TDE is the travel time.

7.1.2 Limitations

A very large literature cover routing and scheduling problems presented in this survey, we do no give
mathematical models of the presented problems since they are already well defined in the literature.
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However, an exception concerns energy routing problems for which no model is given in the literature.
For each problem, we describe its characteristics, how it contributes to sustainable transportation, some
models and resolution methods related to problems taking into account environmental considerations
only. For example, in pick-up and delivery vehicle routing problem, the pick-up can concern materials
or goods, we only interest to works in the literature which consider the pick-up of waste for recycling
for example.

expluding for reason of space.

7.1.3 Structure of the survey

This report is structured as follows. Section 7.2 describes the classical vehicle routing and schedul-
ing problem. In Section 7.1.1, we describe the problems cited above, why they can be considered as
green routing and scheduling problems, their particularity compared to the standard vehicle routing
and scheduling problem, some related models and solution methods. We adress in Section 7.11 the
caractreristics of green routing and scheduling problems and some classification schemes. Finally, we
conclude in Section 7.12.

7.2 Vehicle routing and scheduling problem

The Vehicle Routing Problem (VRP) can be stated as follows: Consider a fleet of K identical vehicles of
fixed capacity C available at a given depot to serve a set of costumers with fixed demand. We are given
an oriented graph G = (N,A), where N is the set of nodes including the costumers and the depot, and A
the set of arcs connecting the nodes. Each arc (i, j) is associated with a cost ci j and each costumer i ∈ N
has a demand di. The goal is to find a set of minimum cost vehicle routes that service every costumer
such that:

• Each vehicle route originates and terminates at the depot.

• Each vehicle services one route and each costumer is visited by exactly one vehicle.

• The demand of each costumer is satisfied and the capacity of each vehicle is not exceeded.

The VRP is an important sub-problem in a wide range of distribution systems and a lot of effort has
been devoted to research on different variants of this problem. Indeed, in practice, additional constraints
or changes in the structure of the basic model are taken into account. We cite for example the VRP
with time windows which involves time window constraints restricting the times at which a customer is
available to receive a delivery, in the VRP with Pick-up and Delivery, each vehicle must visits the pick-up
location before the corresponding delivery location, in the VRP with Backhauls customers can demand or
return some commodities, in the multiple depot VRP the company may have several depots from which it
can serve its customers and in the open VRP each vehicle is not required to return to the central depot after
visiting the final customer (see [347] for a description of these VRPs). Many other variants of the VRP
exist, however we focus in this work on vehicle routing and scheduling problems taking into account
environmental considerations.
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7.3 Routing problem for hazardous materials

7.3.1 Description

The transportation of hazardous materials (hazmat from here on) has received much interest in recent
years, this results from the increase in public awareness of the dangers of hazmats and the enormous
amount of hazmats being transported. The main target of this problem is to select routes from a given
origin s to a given destination t such that the risk for the surrounding population and the environment is
minimized, without producing excessive economic costs. The study of hazmat transportation problems
can be classified in four main subjects: risk analysis [141], routing and scheduling [159], facility location
[159], and treatment and disposal of waste [292], we focus in this section on routing and scheduling.

7.3.2 Environmental contribution

This problem is naturally a GRSP, since it contributes to minimizing the risks of release accidents on the
population and the environment in hazmat transportation activities.

7.3.3 Related works

The difference between hazmat transportation and other transportation problems is mainly the risk. The
risk makes this problemmore complicated by its assessment, the related data collection and the solution
of the induced formulations.

Problem characteristics

Weaddress in the following threemajor particularities of RHMproblem: risk assessment and risk equity:

(a) Risk assessment: Although the fact that the major target of RHM is the minimization of the risk,
there is no universally accepted definition of risk (for a survey on risk assessment, see [143]). The risk on
population caused by hazmat transportation depends onmany factors, the most important of which are:
the site of the accident, the meteorological conditions, the distribution of the population in the wider
area under consideration and the transported hazmat type. It is pointed out in [159] that the evaluation
of risk in hazmat transportation generally consists of the evaluation of the probability of an undesirable
event, the exposure level of the population and the environment, and the degree of the consequences
(e.g., deaths, injured people, damages). In practice, these probabilities are difficult to obtain due to the
lack of data and generally, the analysis is reduced to consider the risk as the expected damage or the
population exposure.

As the risk is a part of the objective function, it is quantifiedwith a path evaluation function [143]. This
function is not additive since the probability of a release accident on a link depends on the probability
of a release accident on the traveled links of the path. This important property leads to non-linear
integer formulations which can not optimized using a classical shortest path algorithm. Generally
approximations are needed by considering additive functions (Usually considering independent release
accident probabilities on links) for obtaining tractable models.

(b) Risk equity: When many vehicles have to be routed between the same origin-destination nodes,
these vehicles are routed on the same path, hence the risk associated to regions surrounding this path
could be high. In this case, one may wish distribute the risk in an equitable way over the population and
the environment. The computationof routeswith a fairlydistributed risk consists ingeneratingdissimilar
origin-destination paths, i.e paths which relatively don’t impact the same zones. Solution approaches
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ca be classified in tow sets, resolution-equity-based methods and model-equity-based methods. In resolution-
equity-basedmethods, equity constraints are taken into account in the resolution process. Thesemethods
are based on a dissimilarity indexwhich permits to indicate when two paths are considered as dissimilar.
We present on Table 7.1 some of these methods.

Table 7.1: Resolution-equity-based methods

Method Principle dissimilarity index
Iterative Penalty
Method [208]

Compute iteratively a shortest path and penalize its arcs by in-
creasing their weights for discouraging the selection of the same
arc set in the generated paths set in the next iteration.

Gateway shortest-
paths method [263]

Generate dissimilar paths by forcing at each time a new path to
go through a different node (called the gateway node).

The absolute difference between ar-
eas under the paths (areas between
paths and the abscissa axis).

Minimax method [227] Select k origin-destination shortest-paths and select among them
iteratively a subset of Dissimilar Paths (DP) bymeans of an index
that determines the inclusion or not of candidate paths in DP.

The length of common parts between
the paths.

p-dispersion method
[6]

Generate an initial set U of paths and determining a maximal
dissimilar subset S, i.e., the one with the maximum minimum
dissimilarity among its paths.

The length of common parts or the
common impact zones between the
paths.

Model-equity-based methods consists of taking into account equity constraints in the model formu-
lation. In [166, 167], the authors propose an equity shortest path model that minimizes the total risk
of travel, while the difference between the risks imposed on any two arbitrary zones does not exceed a
given threshold ǫ. In [92] was proposed a multi-commodity flow model for routing of hazmat, where
each commodity is considered as one hazmat type. The objective function is formulated as the sum of the
economical cost and the cost related to the consequences of an incident for each material. To deal with
risk equity, the costs are defined as functions of the flow traversing the arcs, this imposes an increase of
the arc’s cost and risk when the number of vehicles transporting a given material increases on the arc.

Routing and scheduling

Hazmat routing is multiobjective in nature, since risk minimization accompanies the cost minimization
in the objective function. In addition, other pertinent objectives can be considered as the travel time for
minimizing the exposure of the driver to risk. Therefore, a set of alternative (Pareto optimal) solutions
have to be computed (see section 7.11.2). Solution methods for hazmat routing can be classified in two
categories:

Local hazmat routing: Consists of a one origin-destination hazmat routing and aims at selecting
routes between a given origin-destination nodes for a given hazmat, transport mode and vehicle type.
We present in Table 7.2 some works on local routing.

Global hazmat routing: A substantial work in the literature focuses on the selection of a single
commodity routes between only one origin-destination pair. In practice, a better suited model is global
routing, where different hazmats have to be shipped simultaneously among different origin-destination
pairs. In [387], a multiobjective routing model that considers equity constraints is proposed. The
model considers the following criteria: the general risk, the risk of special population, the travel time,
the property damage, and the risk equity which is imposed using capacity constraints on the network
links. The obtainedmodel is equivalent to the capacitated assignment problem and a goal programming
method is used to solve it. A pertinent model for global routing was proposed in [92] and described
in section 7.3-(b), unfortunately the multicommodity flow model is mono-objective in nature. As our
knowledge, the multiobjective aspect of this model is not yet studied for the considered problem.
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Table 7.2: Local hazmat routing

Author Objective Method
Shobrys (1981) [330] Min. ton-miles traveled Weighting method

Min. population exposure-tons
Robbins (1981) [316] Min. the total length of shipment Weighting method

Min. the size of the population brought
into contact with the shipment

Current, ReVelle and Cohon Min. the population affected Weighting method
(1988) [108] around the path

Min. the length of the path
Abkowitz and Cheng Min. ton-miles travelled Weighting method
(1988) [3] Min. population exposure-tons
Turnquist (1993) [350] Min. of incident rates related to Stochastic dominance

the release of hazardous material
Min. of the population exposed to the risk
Min. of the route length

Karkazis and Boffey (1995) [215] Min. expected damage effects Branch-and-bound
I. Giannikos (1998) [163] Min. Operating cost Goal Programming,

Min. Total perceived risk Penalty Functions
Min. Maximum individual perceived risk
Min. Maximum individual disutility

Zografos and Androutsopoulos Min. Total travel time Objectives aggregation,
(2004) [386] Min. Total transportation risk Insertion heuristic

7.3.4 Summary

Transportation of hazardous materials is a complex and seemingly intractable problem, principally
because of the inherent trade-offs between social, environmental, ecological, and economic factors.
Several important directions for future challenging research can be stem from this problem.

There is no common conceptual model for the RHM problem. Works in this field takes generally
account of different considerations (economic, environmental and social) and significant simplifications
are necessary to obtain tractable models. We present in the following some important characteristics of
the RHM:

• Risk categories: explosion, toxicity, radioactivity, corrosiveness, infectious risk and burns risk.

• Transportation modes: most studies on RHM in the literature deal with road transportation mode
[142]. Although rail transportation is safer (automatic control system, do not cross populated
zones), and more capacitated, it received less attention. Works on marine, air and pipeline trans-
portation of hazardous materials are scarce.

• Affected agents: the risk can affect population (the population leaving the area, employees work-
ing in the area, people present in facilities like schools and people crossing the area), territorial
infrastructures (railways, electric lines) and natural elements (water bodies, green areas).

• Meteorological conditions: is an important factor which impacts considerably on the dispersion of
material [215].

• Temporal factor: many factors can change as a function of time, as the population distribution
on day and night [95] for example. New technological advances in communication systems and
Global Positioning System (GPS) are challenging researchers to develop routingmodels and robust
optimization procedures that are able to respond quickly to changes in the data.

Many difficulties follow from the transportation of hazardous materials, it can be classified into two
major components, the definition of the problem and the solution of the formulations induced. An
accurate model for hazmat transportation must be technically and computationally tractable.

The definition of the transportation of hazardous materials problem is based on risk assessment,
which can be qualitative or quantitative. Qualitative risk assessment deals with the identification of
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possible accident events and attempts to estimate the undesirable consequences and quantitative risk
assessment deals with the numerical assessment of frequencies and consequences of incidents [142].

According to the characteristics presented above, it is possible to consider the RHM problem as
a multiobjective problem on stochastic dynamic networks. However, the multiobjective routing of
hazardousmaterials on stochastic dynamic networksdidnot receivemuch attentiondespite its relevance.

7.4 Routing and scheduling in a time-dependent dependent environ-

ment

The main difference between this class of problems and the classical VRP is the definition of travel time.
When in classical VRP, the travel time is a function of the distance, in RS TDE problems, the travel
time is variable and depends on many factors among which are weather conditions, congestion and the
time of the day. We describe in this section three VRPs dealing with more realistic considerations of
the travel time, the Time-dependent Vehicle Routing Problem (TDVRP), the Dynamic Vehicle Routing
Problem (DVRP) and the Real-Time Vehicle Routing Problem (RTVRP). These problems are important
not just because the consideration of the travel time variations affects considerably the objective values,
but also because the best solutions known for non time-dependent problem are in general infeasible
when applied in time-dependent world.

7.4.1 Environmental contribution

Most traffic networks in large cities face high utilization levels and congestion. As a result, the road
traffic conditions and its resulting variability can not be ignored in order to carry out a good quality
route optimization. When taking into account congestion, RS TDE problems can be considered as
major components for dealing with urban freight transportation problems associated with negative
environmental impacts such as air pollution and noise.

7.4.2 Time-dependent vehicle routing problem

When the VRP assumes that the costs or travel times are a scalar transformation of distance, the TDVRP
is more adapted to real applications by taking into account variations of the travel time resulting from
periodic cycles in the average traffic volumes. It is considered in this problem that the principal variation
in travel time results from the time-of-day variation, the travel time between two points i and j is a
function of the time of the day at the origin point i. A variety of models for the TDVRP are considered
in the literature. We present briefly a classification of these models [197]:

1. Basic Models (BM): Time-dependency is integrated in the model using simple rules like multiplier
factors associated with different periods of the day. Unfortunately, these assumptions are weak
approximations of the real-world conditionswhere travel times are subject tomore subtle variations
over time.

2. Models based on Discrete Travel time and Cost Functions (MDTCF): In this kind of formulations, the
horizon of interest is discretized into small time intervals. The travel time and cost functions
for each link are assumed to be step functions of the starting time at the origin node. However,
the assumption that travel times vary in discrete jumps is just an approximation of real-world
conditions since travel times change continuously over time. Many of these models are dedicated
to time-dependent shortest path problem [96] and time-dependent traveling salesman problem
[268]. In [224], the authors consider the problem of path planning in networks including multiple
time dependent costs on the links and use the dynamic programming algorithm principle.



100 CHAPTER 7. ON GREEN ROUTING AND SCHEDULING PROBLEM

3. Models based on Continuous Travel time and Cost Functions (MCTCF): Continuous travel time func-
tions seem to be more appropriate to model real-world conditions. Unfortunately, the models
obtained are difficult to solve without simplifying assumptions, so these models consider again an
approximation of the real travel time variations.

4. Queueing Models (QM): Here, the traffic congestion component is based on queueing theory. This
allows one to capture the stochastic behavior of travel times by generating an analytical expression
for the expected travel times [364].

Works in this field show experimentally that the total travel times can be improved significantly by
explicitly taking into account congestion during the optimization. Very few comparative framework on
different models and solution methods are found. We show on Table 7.3 some works on the TDVRP.

Table 7.3: Some works on the time-dependent vehicle routing problem

References Models Models characteristics Solution methods
Brown, Ellis, Graves and
Ronen (1987) [88]

BM A solution where travel time fluctuations are
ignored is first produced. Then, the loads for
each truck are resequenced “manually” to take
into account various factors such as traffic con-
gestion during rush hours, road and weather
conditions.

A collection of integer programmingmethods.

Malandraki and Daskin
(1992) [268]

MDTCF The problem is formulated as a mixed integer
programming problem.

Nearest-neighbour (greedy) heuristic is pro-
posed, as well as a branch-and-cut algorithm
for solving small problems with 10-25 nodes.

Hill and Benton (1992) [188] MDTCF The model was based on time-dependent
travel speed.

Experimentations based on a small example
with a single vehicle and five locations are
given.

Ichoua, Gendreau and
Potvin (2003) [197]

MDTCF The model was based on time-dependent
travel speed.

A taboo search heuristic is proposed and ex-
perimentations are performed on Solomon’s
100-costumers problems.

Woensel, Kerbache, Pere-
mans and Vandaele (2007)
[364]

QM - Both the static and the dynamic TDVRP were
solved using ant colony optimization.

Hashimoto, Yagiura and
Ibaraki (2008) [184]

MDTCF Travelling time and cost functions values are
time-dependent.

A local search algorithm.

Donati, Montemanni,
Casagrande, Rizzoli and
Gambardella (2008) [126]

MDTCF The model was based on time-dependent
travel speed.

A multi-Ant Colony System.

provides a more complete list of references.

7.4.3 Dynamic vehicle routing problem

The DVRP is the dynamic counterpart of the VRP, where information relevant to the planning of the
routes can change after the initial routes have been constructed. This class of problems have arisen
thanks to recent advances in communication and information technologies that allow information to be
obtained and processed in real time.

Traditionally, the DVRP is solved in one of two ways: when problem parameters become (customers,
speed, travel time) known throughout the run, oblivious online algorithms are used. Alternatively,
when all parameters are available but with uncertainties in their properties, stochastic optimization is
used, which build the routing plan a priori, and then modifies it when changes in parameters properties
occur. Most research in this area has focused on dynamic routing and scheduling that considers the
variation in customer demands. However, there has been limited research on routing and scheduling
with congestion and travel times variation. We present below some models for the DVRP proposed in
the litterature:

1. Models based on Simulations (MS):Avehicle routing and scheduling plan is obtained by revisiting the
vehicle routing and scheduling plan computed on the previous day by using real-time information
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of present link travel times, whenever a vehicle arrives at a customer. This real-time information
is provided by dynamic traffic simulation based on the current conditions of the day [338].

2. Queueing Models (QM): To capture travel times, these models introduce a traffic congestion com-
ponent based on queueing theory. A major advantage of using these queueing models is that the
real-life physical characteristics of the road network can be mapped immediately into the param-
eters of the queueing model. Moreover, the inherent stochasticity of travel times can explicitly be
taken into account via the analytical queueing models [365].

3. Stochastic Models (SM): The travel times are subjected to stochastic variations [304].

Due to the complexity of this problem, heuristic methods are often used to obtain good solutions,
tabu search algorithms were used to solve QM [365], genetic algorithms to solve MS [338] and local
search heuristics to solve SM [304]. A discussion of the DVRP solution methods can be found in [308].

7.4.4 The real-time vehicle routing problem

A new generation of VRP are proposed in the literature for vehicle routing in more realistic settings.
The RTVRP considers more accurate information about the travel times compared to the DVRP by
considering real-time variations in travel times [296, 375]. Dynamic vehicle routing models imply that
a vehicle en route must first reach its current destination and only after that can it be diverted from its
route. However, an unpredicted congestion or other traffic impediment can be encountered on the way
to its immediate destination. Using mobile technology, vehicle routing can be modeled in more realistic
settings:

• Allows locating vehicles in real time.

• Enables the online communication between the drivers and the dispatching center.

• Capable to capture varying traffic conditions in real time and in the short run predict with high
accuracy the travel time between a pair of nodes.

All these factors allow to send new instructions to drivers at any time, regardless of their location
and status. These modeling approaches enable a better approximation of the real-world conditions.

7.4.5 Summary

It was established that the highest emissions of carbon dioxide occur in congested, slow moving traffic.
RS TDEmodels can contribute indirectly todecrease fuel consumption andgas emissions [324]. In reality,
the links have different combinations of congestion levels, and delays associated with road furniture
such as traffic lights and roundabouts, and road topography and geometry such as inclines. This causes
speed variations (resulting from acceleration and deceleration) and therefore produces different times
over links with the same road category and distance. In addition, these speed variations would lead to
fuel consumption and therefore gas emissions variations. Therefore, there is a need to calculate vehicle
routes which minimize gas emissions, not just to calculate routes minimizing by time or distance.
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7.5 Multi-modal routing problem

7.5.1 Description

This problem is defined as follows: given a set of origin-destination transport requests, one must
optimally route these requests in amulti-modal network including a heterogeneous set of transportation
services. These services are generally classified by according to two main characteristics: the departure
time and the cost function. By the departure time characteristic, we can differentiate between timetable
services (rail and short sea shipping) and time-flexible services (trucks). The cost (and duration) of
routes depends on the departure time, the transportation mode, the distance and the waiting time in
transshipment nodes. These constraints make the problem even more difficult.

7.5.2 Environmental contribution

Negative impacts caused by the transportation activities such as gas emission and noise can be reduced
by using cleaner and silent alternative transportation modes. Multi-modal transportation strategies are
studied in the operations research literature through the multi-modal routing problem.

7.5.3 Related works

In [98], the authors consider a multiobjective multimodal multicommodity flow problem with time
windows and piecewise linear concave cost functions. Based on Lagrangian relaxation technique,
the problem is broken into a set of smaller and easier subproblems and the subgradient optimization
procedure is applied to solve the Lagrangian multipliers problem. Authors in [279] proposed an origin-
destination integer multi-commodity flow formulation with non-convex piecewise linear costs and use
column generation based heuristic that provides both lower bounds and good quality feasible solutions.
The author in [278] deals with two objectives: the cost and the risk and develops a chance-constrained
goal programming method to solve the problem.

Multi-modal transportation models need to define the optimization methods from the view of eco-
nomic and environmental performances. When we are interested in multi-modal transportation, it is
essential to make an adapted choice of transportation modes in such a way that the environmental
impacts of the transportation system are minimized. In [80], the authors underlined the importance of
choosing the transportation modes but little work is known on the calculation of transportation cost,
taking environmental impacts into account. In [15], the transportation mode is considered within the
framework of a green supply chain, the environmental impacts of the means of transport are integrated
into the model as a cost aspect.

Inmulti-modal transportation, specific characteristics must be taken into account for each transporta-
tion mode. For example, the impact of variation in travel time on rail transport links and road transport
links is very different, as rail transport mode is not subject to congestion. For determining efficiently the
transportation mode for minimizing the environmental impacts, it is important to consider stochastic
travel time. The multi-modal transportation network can be assumed in this case to be mixed, where
the travel time on some arcs is stochastic.
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7.6 Waste collection vehicle routing problem

7.6.1 Description

Waste Collection Vehicle Routing Problem (WCVRP) can be classified as variation of the VRP but with
additional constraints. The major difference between WCVRP and the classical VRP are landfills con-
straints. When a vehicle is full, it needs to go to the closest available disposal facility. Each vehicle can
make multiple disposal trips per day. Three categories of waste are considered in the literature: com-
mercial waste (involves servicing customers such as restaurants and small office buildings), residential
waste (involves servicing private homes) and roll-on-roll-off waste (commonly used for construction
site waste), these three categories bring about three different waste collection strategies. While works
on the VRP consider the major objective of minimizing the travel cost, this problem also considers route
compactness (a solution in which many routes cross over each other is less compact than one in which
no routes overlap) and work balancing among vehicles.

7.6.2 Environmental contribution

In recent years waste management has become an area of concern for municipalities worldwide due to
population growth, environmental concerns and the progressive increase in waste management cost.
Waste collection is one of its main components. Note here that authors in [324] have discussed the
importance attached to waste management and collection in terms of the “green logistics” agenda.

7.6.3 Related works

The particularity of residential routes compared to commercial and roll-on-roll-off ones is themandatory
adherence to driving on one side of the street. Unlike drivers on commercial or roll-on-roll-off routes,
those on residential routes are permitted to serve only customers on the right side of the street. Very few
exceptions are granted for alleys and one-way streets. Commercial and roll-on-roll-off waste collection
differ principally from the size of the container.

Routing problems in waste collection applications cannot typically be modelled with a unique rout-
ing model. As commercial and roll-on-roll-offwaste routing consists of point-to-point collections, it can
be modeled by node routing (VRP) models. Commercial waste routing problem can be characterized
as a VRP with time windows (VRPTW) (Section 7.2) since commercial waste collection stops may have
time windows. A special VRP variant known as rollon-rolloff vehicle routing problem was dedicated
to roll-on-roll-off waste. However, residential routes require arc routing models, where costumers are
located on the arcs. The periodic vehicle routing problem is also studied in the context of waste collection
when collection operations are periodic on the time horizon. As these problems are computationnaly
veryhard, and cannot be solvedbyoptimal (exact)methods in tractice, heuristics areused in this purpose.

Vehicle routing problemwith time windows: The majority of papers in the literature are case study
papers, focusing on results obtained when algorithms are applied to real-world data [294, 321, 349].
Only a few of these papers report computational experience with publicly available waste collection test
instances [217]. More references are given in these cited papers.

The periodic vehicle routing problem: This problem has a horizon T, and there is a frequency for
each customer stating how often within this T period this customer must be visited. A solution to
the problem consists of T sets of routes that jointly satisfy the demand constraints and the frequency
constraints [16].
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The capacitated arc routing problem: In this problem [129], a fleet of vehicles, all of them located at
a central depot and with a known capacity, must serve a set of streets network, with minimum total cost
such that the load assigned to each vehicle does not exceed its capacity.

The rollon-rolloff vehicle routing problem: In this problem, tractors move large trailers between
locations and a disposal facility. The trailers are so large that the tractor can only transport one trailer at
a time [47, 73, 274].

7.6.4 Summary

Waste collection real-life problems have almost been studied in a off-line context, where it is assumed that
all data about the problem are known in advance. However, this is not necessarily the case when some
information might not be readily available when the vehicles start their routes. When new information
is available as the routes are executed, the problem becomes dynamic, this problem have not attracted
yet the attention of waste collection research community.

7.7 Dial-a-ride problem

7.7.1 Description

The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and schedules for n costumers
from their pickup point to their delivery point. The costumer requests the service by calling a central
unit and specifying the origin and destination points, the number of passengers and some limitations in
service time (the earliest departure time for example). The transport is supplied by a fleet of m identical
vehicles based at the same depot. The aim is to plan a set of minimum cost vehicles routes capable of
accommodating as many requests as possible, under a set of constraints. The DARP can be static or
dynamic. In the first case, the costumer asks for service in advance and the vehicles are routed before
the system starts to operate. In the second case, requests are gradually revealed throughout the day and
vehicle routes are adjusted in real-time to meet demand.

7.7.2 Environmental contribution

The main original target of the DARP is to offer the comfort and flexibility of private cars and taxis at
a lower cost. This problem is suited to service sparsely populated areas, to low demand periods or to
special classes of passengers with specific requirements (elderly, disabled). In addition, this problem
considers indirectly environmental savings, indeed in opposition to individual taxis, the grouped ones
can decrease the traffic density particularly in large cities.

7.7.3 Related works

The DARP is characterized by multiple objectives such as the maximization of the number of costumers
served, the minimization of the number of vehicles used and the maximization of the level of service
provided on average to the costumer (costumer waiting time, total time spent in vehicles, difference
between actual and desired drop-off times). The DARP can be formulated as multiobjective mixed
integer program. Exact algorithms for the single-vehicle DARP have been developed in [122, 307].
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Recently, a branch-and-cut algorithm has been proposed in [105]. Heuristics and meta-heuristics are
proposed for dealing with the dynamic problem with time-dependent network [160]. For a recent
overview of the DARP, see [106].

In [302], the authors propose a heuristic two-phase solution procedure for the dial-a-ride problem
with two objectives. The first phase consists of an iterated variable neighborhood search-based heuristic,
generating approximate weighted sum solutions and the second phase is a path relinking module,
computing additional efficient solutions.

7.8 Pick-up and delivery vehicle routing problem

7.8.1 Description

In the Pick-up and Delivery Vehicle Routing Problem (PDVRP), a set of routes has to be constructed in
order to satisfy transportation requests. A fleet of vehicles is available in a central depot to operate the
routes and each vehicle has a given capacity. Each transportation request specifies the size of the load to
be transported, the locations where it is picked up and the locations where it is delivered. Each load has
to be transported by one vehicle from its set of origins to its set of destinationswithout any transshipment
at other locations. The DARP (Section 7.7) generalizes the PDVRP [106], the main difference between
these problems is the human perspective; the level of service criteria is more important in the DARP.

7.8.2 Environmental contribution

As mentioned in section 7.6, more and more countries have devoted considerable investments to waste
reduction and material recycling. The existence of a backward flow of objects to be collected, stored,
disassembled and recycled makes unprofitable to manage separately the forward flow of goods, from
the producer to the consumer, and the backward flow of waste or used-up devices, from the consumer to
recycling or dumping facilities. In addition, when the reuse of products and materials becomes cheaper
than simply disposing them, both of the opposite flows concern the producer, instead of being managed
by independent subjects. When pick-ups concernwaste, the PDVRP can be considered as a green routing
and scheduling problem. This model derive from the development of reverse logistics, which consists
of the efficient integration of the forward flow of goods with the backward flow of waste [151]. In
their survey [324] underline the importance of reverse logistics in green Logistics, but the transportation
aspect was not discussed.

7.8.3 Related works

A comprehensive survey on the PDVRP can be found in [301] where different variants of the problem,
models and resolution methods are presented. As our knowledge, no work in the literature treat real
world pick-up and delivery problem in the context of recuperation of waste for recycling.

7.8.4 Discussion

We present here some applications of this problem:

• The door-to-door delivery of mineral water bottles and the simultaneous collection of empty
bottles.
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• The laundry service for hotels (collecting dirty clothes and delivering clean clothes).

• Medical Waste.

It is important to attach more interest to real problems for evaluate economical and environmental
savings induced by these systems. The study of economical impacts of the integration of waste collection
with products distribution can encourage industrials to recuperate the unused waste of their products
and permits to the reduction of amounts of waste treated by municipalities and environmental saves.

7.9 Energy routing problems

7.9.1 Description

The Energy Routing Problem (ERP) was defined in the context of electric vehicles routing in [22]. One of
the major characteristics of electric vehicles is their ability to recover braking energy to be restored to the
battery. This problem consists of designing routes of maximum autonomy for vehicles with rechargeable
batteries taking into account energy recuperation during deceleration phases.

7.9.2 Environmental contribution

Electric vehicles are generally considered as the cleanest transportation option due to their zero local
and potentially minor green house gas emissions.

Advantages: electric vehicles provide zero local gas emission in congested environment, this is why
electric vehicles can be deployed to reduce pollution and noise in large cities.

Inconvenient: The global electric vehicle use. Pollution due to batteries and the resource energy used
for producing electricity. Example: a good alternative in France, 3/4 of electric production uses nuclear
energy.

Efficient EV routing is critical to the operational profitability and customer satisfaction of EV use,
especially in light of highly concurrence with fuel of combustion engined vehicles. Whereas the de-
velopment of clean transportation (hydrogen and fuel cells, biofuel powered vehicles, hybrid vehicles,
low-carbon fueled vehicles. . . ) grow extensively, much less research is dedicated to the energy efficient
routing problem for clean vehicles (electric vehicles, cycles).

7.9.3 Related works

Very scarce works interest to this problem in the literature. Electric vehicles can be used on two
different contexts, (1) for the transportation of persons, where maximum autonomous routes have
to found for traveling between origin-destination nodes. In [22], the authors formalize the ERP as
a generalization of the shortest path problem with hard constraints (which impose that the battery
cannot be discharged below zero) and soft constraints (which impose that the battery cannot store more
energy than its maximum capacity). A generic shortest path algorithm was proposed to solve the
problem. The authors developed a prototypic software system for energy efficient routing where data
is obtained by combining geospatial data (of OpenStreetMap) and elevation data (of the NASA Shuttle
Radar Topographic Mission), (2) for an alternative transportation mode use in distribution systems,
this problem can be formulated as vehicle routing and scheduling problem (section 7.2) with additional
objectives and constraints related to energy consumption.
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Because the ERP is a relatively new problem, we develop its mathematical formulation and show its
interactions with other routing and scheduling problems. This problem can be modeled with a directed
graph G = (N,A), where N = M ∪ {s, t}, M is the set of costumers, s and t the source and destination
nodes respectively and A represents the set of arcs. A set K of identical vehicles are available, each
one has a maximum capacity Q. With each arc (i, j) is associated a positive (resp. negative) value ei j
indicating consumption (resp. gain) of energy on arc (i, j). The battery of each vehicle has a maximum
capacity C and cannot be discharged below zero. The ERP consists of finding a set of minimum cost
origin-destination routes, such that each costumer i ∈ M is visited by exactly one vehicle to satisfy a
specific demand di. The total customers demand satisfied by the same vehicle must not exceed the
vehicle capacity. The formulation of the ERP can be given as follows:

min F(x,u) (7.1)

s.c.
∑

k∈K

∑

j∈M
xki j = 1,∀i ∈ N (7.2)

∑

(i, j)∈A
dix

k
i j ≤ Q,∀k ∈ K (7.3)

∑

i∈M
xksi =

∑

i∈M
xkit = 1,∀k ∈ K (7.4)

∑

j∈N
xki j −

∑

j∈N
xkji = 0,∀i ∈M,∀k ∈ K (7.5)

xki j(u
k
j − uki − ei j) ≥ 0,∀(i, j) ∈ A,∀k ∈ K (7.6)

0 ≤ uki ≤ C,∀i ∈ N,∀k ∈ K (7.7)

xki j ∈ {0, 1},∀(i, j) ∈ A,∀k ∈ K (7.8)

uki ∈N+,∀i ∈ N,∀k ∈ K (7.9)

where xk
i j
indicate whether arc (i, j) is used or not by vehicle k and uk

i
is the battery remaining storage

capacity of vehicle k at node i. The objective function (7.1) can be considered as the sum of the remaining
battery storage capacity of all vehicles (

∑
k∈K u

k
t ) or the maximum remaining battery storage capacity of

all vehicles (maxk∈K ukk) at the destination node. Constraints (7.2) ensure that each costumer is visited
exactly once. Constraints (7.3) ensure that demand of each route is within the capacity limit of the vehicle
serving the route. Constraints (7.4)-(7.5) are path constraints. Constraints (7.6)-(7.7) ensure compatible
remaining storage capacity at each node for each vehicle. As energy constraints can be considered as
particular resource constraints, we can identify some relationships between ERP and other routing and
scheduling problems:

• The ERP can be considered as a generalization of the vehicle routing problem with time windows
where the objective is to minimize the total travel time of all vehicles or the minimization of the
makespan (minimization of themaximum total travel time). ei j represents the travel time on arc (i, j)
and the time window at each node is equivalent to [0,C]. Hard and soft constraints are equivalent
to time windows constraints; Hard constraints express the fact that a vehicle must arrive at the
costumer before the end of time window and soft constraints express the fact that if a vehicle
arrives before the beginning of the time window, it wait at no cost. In a more general case [22],
the EVRP is a generalization of the routing problemwith resource constraints [203] where resource
consumption represents energy consumption, the amount of available resource is equal to C, and
the residual resource at node i is equivalent to ui.

• this problem is a special case of a much studied problem in the literature, the Pick-up and Delivery
Problem (PDP) [301], where pick-up are not hard constraints: partial pick-ups are allowed and
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pick-up is not performed when the vehicle is full. Acceleration (resp. deceleration) phase can be
considered as a delivery (resp. pick-up) operation.

Lets Ĝ = (N̂, Â) be a directed graph where N̂ is the set of nodes and Â is the set of arcs. Ĝ is
constructed using the graph G as follows: let be P(i) the set of predecessor nodes of node i ∈ N,
|P(i)| = li. Each node i ∈ N is duplicated into li nodes N̂i = {i1, ..., il

i }, so, N̂ = ⋃
i∈N N̂i. For each new

node, we assign an incoming arc from one predecessor node:

Â =
⋃

i∈N{Â( j1, i1)
⋃

Â( j2, i2)...
⋃

Â( jl
i
, il

i
) | j1, ... jl

i ∈ P(i)}.
where A( j1, i1) =

⋃
k∈N̂ j1
{(k, i1)}. For each node i ∈ N, we associate to the duplicated nodes i1, ..., il

i

the weights q1 = e j1i, ..., q
li = e jli i. Node i ∈ N̂ represents a pick-up (resp. delivery) node if qi < 0

(resp. qi > 0).

Optimizing the vehicle braking routes, through themaximization of final remaining energy, can result
in an increase of the travel time. To make energy vehicle routing effective, the travel time has to be taken
into account in the optimization model. As our knowledge, no work considers the travel time in energy
routing problem. Such multiobjective problem can be solved using adaptation of multiobjective routing
methods [209, 339].

7.9.4 Discussion

In practice, the road links have different combinations of energy Consumption/Recuperation (C/R) levels
and delays, associated with road furniture such as traffic lights and roundabouts, and road topography
and geometry such as inclines. This causes energy C/R variations (resulting from acceleration and
deceleration) over links with the same road category and distance. Therefore, instead of constant values,
more realistic considerations of energy C/R have to be established. On one hand, energy C/R can be a
function of speed variations over links. A number of works in the literature interest to model/estimate
travel speed [188], these works can be exploited to estimate energy C/R. On another hand, energy C/R
has to be considered as stochastic instead of constant values for assessing the risk of running out of
energy before arriving at the destination. No work in the literature tackle these issues yet.

The global critical problem in the electric vehicles promotion is a chicken-and-egg infrastructure
dilemma [359]: consumers will be reluctant to purchase vehicles until a sufficient number of refueling stations
has been installed, while vehicle manufactures will not produce vehicles that consumers will not buy, and fuel
providers will not invest in a new energy infrastructure until there is sufficient demand for it. Therefore, it is likely
that governments will need to play a significant role in promoting any change to alternative fuels, although public
support alone will not ensure the success of this transformation.

7.10 Air traffic management

Air traffic management (ATM) consists of two important components: the traffic planning and the traffic
control. Traffic planning deals with the balance between demand and the available capacity and traffic
control has to guide aircraft safely to their destinations.

7.10.1 Environmental contribution

Given the forecast growth in aviation over the next decade there is an urgent need of air traffic control
decision-support to address theproblemof congestion in the airspace. Air traffic delaysdue to congestion
are a source of unnecessary cost for airline companies andpassengers. Delays also have an environmental
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cost. Because of congestion, aircraft are often forced to fly far from the cruise altitude and/or the cruise
speed for which they are designed, this results in unnecessary fuel burn and gas emissions.

7.10.2 Related works

An aircraft conflict occurs when the distance between two ormore aircrafts falls below a given threshold.
In this case, a minimum separation is required. Aircraft conflict detection and resolution has been
widely studied in the literature [228]. In [299], the authors propose an integer programming model that
minimizes the maximum deviation in the changes made, by assuming that aircraft can perform either a
speed change or a heading change. Authors in [101] studied the traffic control problem by maintaining
separation while considering associated fuel costs with any heading deviation or speed changes. Safety
requirements are considered as hard constraints that must bemaintained. The objective function focuses
on minimizing fuel costs, and hence the resulting environmental impact. In [58], the authors address
the problem of determining how to reroute aircrafts in the air traffic control system when faced with
dynamically changing weather conditions. The overall objective of this problem is the minimization of
delay costs.

The multiobjective aspect of the problem was considered in [346] where a multi-objective genetic al-
gorithm has been designed to solve the model. Three objectives have been considered: the minimization
of the sum of the flights which exceeds the capacities of all the sectors, the minimization of the sum of
the maximum flights which exceeds the capacities of all the sectors and the minimization of the total
delay time including the ground delay time and air delay time. In [365] the authors take into account
the weather-related flight delays and investigate the problem of generating optimal weather avoidance
routes under hazardous weather conditions. The proposed model minimizes the fuel usage, weather
conditions, customer comfort and traffic density and is solved using a hybrid ant colony optimization
method with a multi-agent approach.

7.11 Green vehicle routing and scheduling class problems

The GVRSP was defined in Section 7.1.1 as a classical VRP with additional environmental and social
objectives and constraints, this radically changes the problem structure, so different and generally dedi-
cated solution methods are developed. As a consequence, we envision a new era in which optimization
systems will not only allocate ressources for optimizing economical costs: they will react and adapt to
external events efficiently under environmental constraints and objectives. The GVRSP can be defined
as the computation of a set of origin-destination paths optimizing a set of objectives F by satisfying a
set of constraints C. We summarize in Table 7.4 some general characteristics of the presented variants of
the GVRSP.

7.11.1 Classification

Green routing and scheduling class includes a large variety of problems, which differ by their envi-
ronmental contributions and the associated models and resolution methods. This makes difficult their
classification, we present in the next three classifications of GRSP:

• Environmental contributions: We distinguish two categories:

1. Problems which are in nature green routing and scheduling problems: RHM, RS TDE, DARP,
CARP, ERP and ATM. These problems ensure directly (RHM, CARP, ERP) or indirectly
(RS TDE, DARP, ATM) environmental savings.
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2. Problems whose some applications are green routing and scheduling problems: MMVRP and
PDVRP. TheMMVRP can be exploited for choosing the cleanest transportation modes during
the transportation process and in the PDVRP, pick-up can concern backward flow of waste
that are collected and recycled.

• Models induced: We dstinguish two major models. Routing and scheduling problems without
intermediate stops (includes THM and an ERP version) and routing and scheduling problemswith
intermediate stops (includes RS TDE, CARP, DARP, MMVRP, PDVRP, ATM and an ERP version).

• Transportation type: We distinguish four classes: road transportation (THM, RS TDE, CARP,
DARP, PDVRP and ERP), airline transportation (ATM), sea transportation and multimodal trans-
portation (MMVRP).

7.11.2 Optimization

Due to the conflicting nature of the criteria in sustainable transportation problems (economic, environ-
mental and social), multiobjective optimization represents amajor component. The particularity of these
problems is that a unique feasible solution optimizing all the criteria does not exist. To obtain the optimal
solutions, one just needs to consider Pareto optimal solutions. We can find in the literature two classes
of multiobjective optimization methods, based on the problem elements type: deterministic methods are
the most studied in the literature and consider that all problem elements are deterministic and stochastic
methods consider that some elements of the problem are uncertain, these elements are modeled using
random variables.

The unpredictable nature of transportation leads to many stochastic elements in the problem like the
travel time, speed, traffic congestion, weather conditions, the amount of population present near a route
and the effects of an accident. Deterministic methods use approximations of these elements and forcasts
and sometimes lead to infeasible schedules and poor decisions. Recent research [186] shown the benefits
of adaptability for vehicle routing and scheduling, exploiting stochastic information to produce better
solutions.

Generally, the uncertainty can be in the presence or absence of the customers, in the quantity of
the their orders, and in the travel and service times. Routing and scheduling when demands are
stochastic have been extensively studied when less attention is given to the case of stochastic travel
time or stochastic speed. Especially with respect to travel times, variability is generally reduced te be
nearly constant within time periods in a day. Such a characterisation of travel times leads to the TDVRP
variant (section 7.4.2). The stochastic version of multiobjective routing and scheduling is more studied
in the context of transportation of hazardous materials [97, 246, 277, 350, 362], and essentially for the
computation of shortest path problems. Very scarce work in the literature interest on the stochastic
version of multiobjective vehicle routing and scheduling problem [216, 234].

As we can observe in table 7.4, heuristic and metaheuristic methods are the most used for solving
multiobjective problems, we observe also that multiobjective problems are less studied than single
objective problems (as our knowledge, no work in the literature leads with the multiobjective RTVRP
and the multiobjective ERP). Evolutionary algorithms are one of the most popular methods for solving
multiobjective routing problems [209, 210, 337], thesemethods have been hybridizedwith local searches,
heuristics, and/or exact methods for the problem resolution [210, 337]. Other optimizationmethodswere
proposed in the literature for the resolution of multiobjective problems, based on genetic algorithms,
lexicographic strategies, ant colony mechanisms, or specific heuristics [209], but a very limited works
deal with the stochastic version of the problem.
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7.12 Conclusion

This report aims at specifying the contribution of Combinatorial Optimization (CO) to environmental
transportation. To this purpose a framework for identifying relevant related problems treated in the CO
field is proposed, some of the literature has been reviewed anddiscussedwith respect to bothmodels and
optimization aspects. It can be observed that during the last few years, CO for transportation problems
has extended its scope to include environmental applications.

It can be deduced that relationship between CO and environmental transportation is interactive in
the sense that from the complexity of the issues examined stems the need to develop and adapt specific
methodological tools. We synthesize in this section the material we have reviewed for the green routing
and scheduling by summarizing some fundamental characteristics of this class of problems.

A recent research area. Green routing is a relatively recent problem since the consideration of envi-
ronmental impacts in the models is a new issue. Several small research communities in this field work
on their own problems, this causes a lack of common problem definitions, hypothesis, definitions and
concepts. Decision-making in environmental transportation can be complex and seemingly intractable,
principally because of the inherent trade-offs between socio-political, environmental, ecological, and
economic factors. A balance has to be found between the complexity of the real world operation and the
level at which the model is developed and also takes into account model accuracy and computational
efficiency.

Evaluation of environmental impacts. The integration of the environmental costs of transportation is
rarely quoted in the literature. Fuel consumption and emissions are complex to estimate and are a
function of several variables (type of vehicle, speed, acceleration rates, and meteorological conditions).

Uncertainty. Many authors recognized the uncertain nature of some characteristics in transportation
area (the number of incidents on a road and the travel time for example), these characteristics can be
modeled by means of random variables whose distributions may vary over time. However, variable
distributions are hard to determine in many cases due to the scarcity of data. The exact probabilistic
expressions are usually too complicated, which results in the use of approximations for optimization.
Hence, expertise is needed for understanding well probabilistic modeling to capture the important
aspects of the activity, in addition, competence is also needed on optimization techniques to decide
which approximations are necessary andwhich tools to use. Due to uncertainty, the path attribute values
may not be simply additive across arcs in the path, causing the criterion to be non-order-preserving.
This prevents the use of traditional dynamic programming techniques in the solution method. To deal
with this, methods have to be developed that work with non-order-preserving criterion.

Speed variations. The existing research and methods (TDVRP and DVRP for example) that address
the issue of congestion for decreasing the fuel consumption are limited to calculations that only produce
estimates based on the travel time. It was shown in [300] that this does not produce a realistic estimate
of CO2 emissions, nor does it produce routes which minimize these emissions. As the consideration
of uncertainty is a predominant aspect to be considered in GVRSP, the speed variations is also a major
aspect, it is important to consider methods that improve the accuracy of road speeds and incorporate
speed variability as a factor in the model for the construction of better routes in both time and fuel
efficiency. Since gas emissions depends on speed, acceleration and traffic volume along a link, it is
therefore necessary to understand the relationships between these characteristics in order to obtain a
good estimate of gas emissions.

Multi-criteria approaches. The green vehicle routing problem is a typicalmultiobjective problem. When
we deal with multiple routes (which is the case in practice), multiobjective shortest path problems are of
limited efficiency, because we relax the interaction between vehicles (whereas it uses the same network).
More adapted models are global routing where a fleet of vehicles (identical or heterogeneous) have to
be routed through the network. With environmental issues assuming greater importance, it is desirable
to consider global multiobjective methods with uncertain and time-varying criterion as travel time and
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speed.

Real-time information. There is an increase on utilization of video surveillance, global positioning
systems and communication equipment installed on all vehicles. It allows the implementation of more
efficient real-time decision-making. A topic of interest in green routing and scheduling is the potential
for real-time rerouting in order to react to changing conditions.
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“Equity” is not an easy term to define. In the context of transportation of hazardousmaterials, different
definitions of equity lead to different situations as concerns transportation costs and the risk connected
to loss of (quality of) life following catastrophic accidents. Specifically, regional fairness costs lives
with respect to individual fairness. We discuss a methodology for trying to peg a monetary cost to this
trade-off.

8.1 Introduction

We consider the problem of the transportation of hazardous materials on a road network (Hazardous
Materials Transportation Problem). We can figure it this way: there areN trucks which have to transport
some kind of dangerous material from one or many production points to one or many garbage dumps
and we have to select a set of paths which is optimal from the point of view of risk, cost and equity. The
optimization of cost and risk on a network leads quite spontaneously to shortest path and flow problems
which are milestones of Operational Research, but equity is somehow unsual and hard to define. We
consider and compare two different ideas. The first approach simply requires that all the areas involved
in the transportation network share the same level of risk. This is a fair and intuitive idea but it could
also lead to “improper” solutions where risk is equal but uniformly high. The second (more interesting)
definition of equity we use is inspired by the concept of fairness of J. Rawls [312, 313, 314]. Basically, in
this context, the difference principle means that we may introduce disparities only if they advantage the
worst-off, namely reduce the risk of the less favourite area (the most exposed to the risk).

The aim of this work is to provide rational elements to be able to estimate the cost of choosing
a particular definition of equity (for hazmat trasportation). We investigate the relation between each
definition of equity and the cost it generates. This can be used as a first criterion to make a choice.
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8.2 Mathematical programming formulation

Let G = (V,A) be a directed graph, modelling a road network.
We consider many origin-destination pairs (s, t) ∈ C ⊆ V × V. For every pair (s, t) there is a commodity
to be trasported from a source s to a destination t to respond to a specific demand which we indicate
with dst. We look for a global route planning given by a multicommodity flow function x : C × A→ R+
(the situation involving only one origin and one destination is a special case). Typically we can imagine
that the road network covers a geographic area which is divided into zones; in particular each arc (road)
belongs to a zone ζ ∈ Z. For the sake of simplicity we assume that each arc belongs to only one zone.
Each arc (i, j) has a positive traversal cost ci j, a probability pi j of an accident occurring on that arc, a value
of damage (in monetary units) ∆i j caused by a potential accident on that arc and a capacity χi j.

1. Sets:

• C ⊆ V × V is the set of all pairs (s, t);

• Z is the set of all zones;

• ζl ⊆ A is a zone (1 ≤ l ≤ |Z|);

2. Parameters:

• 1 ≤ l ≤ |Z| = zone index

• pst
i j
: probability of accident on an arc;

• ∆st
i j
: damage (in monetary units) caused by an accident on an arc ;

• cst
i j
: cost on an arc;

• s : source;

• t : destination (target);

• dst : demand of commodity (st);

We call pst
i j
∆st
i j
traditional risk and we indicate it, alternatively, as rst

i j
.

3. Decision variables:

∀(i, j) ∈ A, ∀(s, t) ∈ C xst
i j
: flow of the commodity (st) on the arc (i, j)

4. Constraints.

• (capacity)
∑

(st)∈C xst
i j
≤ c(i j)

• (demand)
∑

(i)∈V xst
it
= dst

• (flow conservation) ∀(st) ∈ C ∑
(i, j)∈A

xst
i j
− ∑

( j,i)∈A
xst
i j
=



1 if i = s
−1 if i = t
0 otherwise

5. Objective function 1 (Cost): minimize total cost

min
∑

(i, j)∈A

∑

(s,t)∈C
csti jx

st
i j (8.1)

6. Objectives concerning equity, two possible versions:
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• Objective function 2 (a) (Risk sharing): minimize the difference of traditional risk between
two zones

min




∑

∀(ζl,ζm)∈Z×Z

∣∣∣∣∣∣∣∣



∑

(i, j)∈ζl

∑

(s,t)∈C
rsti jx

st
i j


 −




∑

(h,l)∈ζm

∑

(s,t)∈C
rsthlx

st
i j




∣∣∣∣∣∣∣∣


 (8.2)

• Objective function 2 (b) (Rawls’ principle): minimize the traditional risk of the least advan-
taged zone

min


max
ζ∈Z

∑

(i, j)∈ζ

∑

(s,t)∈C
rsti jx

st
i j


 (8.3)

8.3 Methodology and Tests

The problemwe are considering belongs to the special class of optimization problems calledMulticriteria
Optimization Problems (MOP) [133, 134, 275]. There are many methods we can apply to MOP, but a full
examination of all of them is out of the scope of this work. We briefly recall only the main features of
the ǫ-constraint method which we use in our investigation. The basic idea of this method consists in the
trasformation of all the objectives in constraints, out of one which is minimized (or maximized). Varying
ǫi, alternative solutions are obtained (even if it is known that it is difficult to chose proper values for the
vector ǫ and arbitrarily ones produce no feasible solutions).

We consider first small instances of the problembased on networks composed by a kept downnumber
of nodes and involving a few zones and shipments and only one origin and destination. We used the
AMPLmodelling environment and the off-the-shelf CPLEX 10.1 solver running on a 64-bit 2.1 GHz Intel
Core2 CPU with 4GB RAM. The results we got using an instance composed by 15 nodes distributed in 2
zones, with 10 shipments show that both kind of equity have a negative impact on the cost and make it
grow, which is the awaited outcome. The aim is to establish which one makes it increase most. In order
to solve this question we introduce some methodological expedients. In fact, even if we solved either C1
and C2 applying the ǫ-constraint method, we can not simply compare the cost for a fixed equal threshold
of ǫ because it has a different meaning in the two situations. We have to normalize the comparison to
“equal levels” of equity and to map the cost to the share of equity instead of its absolute value. For
example, we compare the cost we get when we have the peak of equity in Risk Sharing and Rawls sense,
then when we get the 99% of equity (independently from the different corresponding values of ǫ which
are different in C1 and C2), the 98% . . . and so on. Thus we establish first the maximal possible level of
equity and then we (can) define the values corresponding to its fractions. We measure the increment of
cost while equity varies from its possible minimum to its possible maximum and we map it on the share
of equity. We discover that the raise of cost induced by equity in the sense of Rawls is weaker that the
one induced by the “naive” one. We report some sample results (in the format [Equity Share; Cost of
Risk Sharing; Cost of Rawls’ Principle] : [0;40;40], [50;41;41], [60;42;42], [70;43;43], [80;45;44], [90;50;45],
[95;53;49], [96;55;52], [97;57;54], [98;58;55], [99;60;58], [100;67;67]). Fig.1 shows the corresponding plot.
The tests are partial since we use small artificial instances. We plan to use real data and different multi
objectives methods in future work to corroborate our conclusions.
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Figure 8.1: Comparison between Risk Sharing and Rawls’ Principle
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The routing of vehicles represents an important component of many distribution and transportation
systems and has been intensively studied in the operations research literature. In this report, particular
consideration is given to routing models for the transportation of hazardous materials. This problem
has received a large interest in recent years, this results from the increase in public awareness of the
dangers of hazardous materials and the enormous amount of hazardous materials being transported.
We describe here some major differences between routing of hazardous materials and the classical
vehicle routing problems. We review some general models and optimization techniques and propose
several direction for future research.

9.1 Introduction

Hazardous Materials Management (HMM) has received a large interest in recent years, this results from
the increase in public awareness of the dangers of hazardous materials and the enormous amounts of
hazardous materials being transported. HMM is concerned with four main subjects: risk analysis [141],
routing and scheduling [159], facility location [144, 159] and treatment and disposal of waste [292]. We
focus here on Routing of Hazardous Materials (RHM). The main target of this problem is to select routes
from a given origin ’s’ to a given destination ’t’ such that the risk for the surrounding population and
the environment is minimum, without producing excessive economic costs. The risk associated with
the hazardous materials makes these problems more complicated by its assessment, the collection of the
related data and the resolution of the associated formulations.

In analyzing the routing of hazardousmaterials problem, it is important to includemultiple objectives,
this results from the presence of multiple interested parties or stakeholders. In this case, it is not possible
to identify a single “best” route, generally “Pareto optimal” routes represent the available tradeoffs
explicitly. Another important aspect of the transportation of hazardous materials is uncertainty, this
is a result of the difficulty of risk measurement and the lack of data. We present in this report some
characteristics of routing of hazardous materials problem and describe some models and the most used
resolution methods for this problem.
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9.2 Routing for hazardous materials

The difference between RHM and other routing problems is mainly the risk. We present in this section
some methodologies in RHM problem consisting essentially of modeling and resolution frameworks.

9.3 The risk

Because of the risk, a network related to this problem is generally different from other transportation
networks. In RHM, the arcs do not necessarily connect junctions, in the case where a road between two
junctions goes through a set of different density population regions, this arc is divided into a set of arcs
in such a way that these new arcs have the same incident probability and the same consequences.

Although the fact that the major target of the RHM problem is the minimization of the risk, there
is no universally accepted definition of risk [143]. It is pointed in [159] that the evaluation of risk
in transportation of hazardous materials generally consists of the evaluation of the probability of an
undesirable event, the exposure level of the population and the environment, and the degree of the
consequences (e.g., deaths, injured people, damages). In practice, these probabilities are difficult to
obtain due to the lack of data and generally, the analysis is reduced to consider the risk as the expected
damage or the population exposure.

As the risk is a part of the objective function, it is quantified with a path evaluation function [143].
Some risk models (the conditional risk model for example, see [332]) lead to non-linear binary integer
formulations which can not optimized using a simple labeling algorithm (the associated models violate
a path selection optimality principle). Generally, these models are based on approximations which
lead to tractable formulations. Three axioms are introduced in [143] for prescribing properties for path
evaluation functions. These axioms allow to check the monotonicity of the links attribute and to check
if the path selection model verifies Bellman’s optimality principle.

9.4 Models and optimization

RHM problem is multi-objective in nature, nevertheless, some papers deal with single-objective prob-
lems. These models often fail to handle the conflict between transportation risk and cost. A number
of multi-objective models have been proposed in the literature. With multiple objectives, all objectives
usually cannot be optimized simultaneously. Generally, a set of alternative (Pareto-optimal) solutions
are computed. As the number of Pareto-optimal solutions can be exponential as a function of the net-
work size, one might wish to compute a subset of these solutions “approximating well” the set of all
Pareto-optimal solutions.

Resolution methods of hazardous materials routing can be classified in two categories. The “local
routing” which consists in selecting routes between only one origin-destination pair and transporting
a single commodity at a time. The “global routing” where different hazardous materials have to be
shipped simultaneously among different origin-destination pairs.

9.4.1 Local routing of hazardous materials

The one origin-destination routing consists of selecting a route between a given origin-destination nodes
for a given hazardous materials, transport mode and vehicle type.

Weighting methods are widely used due to their simplicity and computational efficiency. They are
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based on optimizing aweighted linear combination of the objectives. This can be done using the classical
shortest path algorithm. The drawback of these methods is that they are able to identify only a subset
of Pareto-optimal solutions. Since some solutions of interest might be ignored, a method which can
identify them is desirable. However, in some cases when the decisionmaker is able to express additional
a priori knowledge and preferences on the objectives, the problem can be reduced to a single objective
optimization problem.

The goal programming formulations offers considerable flexibility to the decisionmaker, the purpose
is to minimize the deviation between the achievement of objectives (goals) and their aspiration level (the
acceptable achievement level for the objective). This method is able to compute Pareto-optimal solutions
that can not be obtained with the weighting method.

9.4.2 Global routing of hazardous materials

Anon-negligiblework in the literature focuses on the selection of a single commodity route between only
one origin-destination pair. In practice, a more adapted model is global routing. When many vehicles
have to be routed between the same origin-destination nodes, these vehicles are routed on the same
path, so, the risk associated to regions surrounding this path could be hight. In this case, we sometimes
wish to distribute the risk in an equitable way over the population.

Risk equity

Different techniques was proposed to handle equity on the transportation network. In [166], the authors
guarantee equity by constraining the differences of the risks associated to every pair regions, to be less
than or equal to a given threshold. The computation of routes with a fairly distributed risk consists in
generating dissimilar origin-destination paths. The dissimilar path generation problem has been dealt in
the literature in many ways, we cite the Iterative Penalty Method, the Gateway Shortest-Paths method,
the Minimax Method and the p-dispersion Method.

Multi-commodity flow models

The transportation of hazardous materials can be naturally modeled by a multi-commodity flow model
[92]. Given an origin-destination pair and the amount of commodities to be transported between such an
origin and a destination, the multi-commodity minimum cost flowmodel finds the optimal distribution
of such quantities minimizing the total transportation cost.

9.5 Uncertainty in routing of hazardous material

It is important to classify the nature of uncertainty in transportation of hazardous materials problems.
In particular, three types of uncertainty concern the amount of population present near a route, traffic
congestion and weather conditions. The effect of the release of hazardous materials and the travel
time can be modeled by means of random variables whose distributions may vary over time [350] over
a stochastic and time-dependent network [97]. Optimal routing on time-dependent networks can be
classified into three categories [142]:

•A priori optimization: Optimal routes are definitively computed before the travel begins, the random
arc travel time is reduced to its expected value and a standard shortest path problem is applied.
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• Adaptive route selection: The optimal route depends on intermediate informations concerning past
travel time, road congestion and weather conditions. The adaptive road specifies the road link to be
chosen at each intermediate node, as a function of the arrival time at the node [293]. The multi-objective
version of the adaptive route selection was proposed in [276].

• Adaptive route selection with real-time updates: In this case, recent technologies such as automatic
vehicle location and mobile communication systems permits to guide the route of vehicles based on
real-time informations. Estimation of future values of some network attributes such as travel times,
incident probabilities and population in the impact area are updated using the real-time informations.

9.6 Conclusion

Transportation of hazardous materials is a complex and seemingly intractable problem, principally
because of the inherent trade-offs between social, environmental, ecological, and economic factors. An
model for the routing of hazardous materials problem not only needs to be accurate but also technically
and computationally tractable. There is no common conceptual model for the RHM problem. Works in
this field take generally into account different considerations (economic, environmental and social) and
significant simplifications are necessary to obtain tractable models. Several challenging directions for
future research can be stemmed from this problem:

• A common resolution approach for multi-objective shortest path problems consists of computing
Pareto optimal solutions. As the number of Pareto optimal solutions can growexponentiallywith the size
of the network, one can propose to the decision maker a subset of Pareto optimal solutions representing
a good approximation of the Pareto optimal solutions set or compute preferred solutions by exploiting
some preferences of the decision maker.

• An important issue of the RHM is the treatment of the stochastic phenomena, indeed, some or all
attributes of this problem are stochastic.

• Considerable advances are needed to appropriately treat the stochastic phenomena when some
transformation of measures (cost and risk) are nonlinear.

• New technological advances in communication systems and Global Positioning System (GPS) are
challenging researchers to develop routing models and robust optimization procedures that are able to
respond quickly to changes in the data.

• Most studies on RHM in the literature deal with road transportation mode [142]. Although rail
transport is a safer transportation mode (automatic control system, cross less populated zones), and
more capacitated, it has received less attention.
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This report proposes a methodology to find a routing plan for transporting hazardous materials that
attempts to balance costs with safety and green requirements.

10.1 Introduction

The transportation of hazardous materials (hazmat from now on) has received a large interest in recent
years, which results from the increase in public awareness of the dangers of hazmats and the enormous
amount of hazmats being transported [92]. Themain target of this problem is to select routes froma given
origin-destination pair of nodes such that the risk for the surrounding population and the environment
is minimized—without producing excessive economic costs.

When solving such a problem by minimizing both cost and the total risk, typically several vehicles
share the same (short) routes which results in high risks associated to regions surrounding these paths
whereas other regions are not affected. In this case, one may wish to distribute the risk in an equitable
way over the population and the environment. Several studies consider this additional minimization
of the equity risk, but most of them consist of a single origin-destination hazmat routing for a specific
hazmat, transport mode and vehicle type (see for example [6, 92]).

A more realistic multi-commodity flow model was proposed in [92] where each commodity is con-
sidered as one hazmat type. The objective function is formulated as the sum of the economical cost and
the cost related to the consequences of an incident for each material. To deal with risk equity, the costs
are defined as functions of the flow traversing the arcs which imposes an increase of the arc’s cost and
risk when the number of vehicles transporting a given material increases on the arc.

The majority of all hazmat routing studies deal with a single-objective scenario although the problem
itself is multiobjective in nature and it is important to study the trade-offs among the objectives. Evolu-
tionary Multiobjective Optimization (EMO) algorithms are able to compute a set of solutions showing
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these trade-offs within a single algorithm run which is the reason why we propose to use them for the
problem of hazmat routing in this study (Sec. 10.3). Before, we formalize the routing of hazmat problem
with three objectives (minimize total routing cost, total routing risk and risk equity) as amulticommodity
flow model as in [92] since this model is the most realistic one permitting to manage several hazmat
types simultaneously (Sec. 10.2).

10.2 The multiobjective risk-equity constrained routing problem

Let the transportation network be represented as a directed graph G = (N,A), with N being the set of
nodes and A the set of arcs. Let C be the set of commodities, given as a set of point-to-point demands to
transport a certain amount of hazmats. For any commodity c ∈ C, let sc and tc be the source node and
the destination node respectively, and let Vc be the number of available trucks for the transportation of
commodity c. Each commodity is associated with a unique type of hazmat. We assume that the risk is
computed on each arc of the network and is proportional to the number of trucks traversing such an
arc. We consider a set Q of regions, and we define r

cq

i j
as the risk imposed on region q ∈ Q when the

arc (i, j) ∈ A is used by a truck for the transportation of hazmat of type c. We remark that we employ
a notion of spread risk, in that an accidental event on arc (i, j) within region q ∈ Q may strongly affect
another region q′ ∈ Q. With each arc (i, j) ∈ A a cost cc

i j
is associated, involved by the travel of a truck of

commodity c on this arc.

The problem of transporting hazmat is multiobjective in nature: one usually wants to minimize the
total cost of transportation, the total risk of transportation imposed on all regions and the distributed risk,
which can be defined as a measure of risk that is shared among different regions. More specifically, for
a given solution, each region q ∈ Q will be affected by a risk ωq which depends on the transportation
patterns in all other regions. The third objective will then be maxq∈Q ωq, and has to be minimized.

We introduce the integer variable yc
i j
for the number of trucks that use arc (i, j) for transporting

commodity c. We assume a fixed number of trucks and that all trucks have the same load. The proposed
model is defined as follows:

min
∑

c∈C
∑

(i, j)∈A cc
i j
yc
i j

(10.1)

min
∑

c∈C
∑

q∈Q
∑

(i, j)∈A r
cq

i j
yc
i j

(10.2)

min maxq∈Q
{∑

c∈C
∑

(i, j)∈A r
cq

i j
yc
i j

}
(10.3)

s.t.
∑

j∈δ+(i) y
c
i j
−∑

j∈δ−(i) y
c
ji
= qc

i
∀i ∈ N, c ∈ C (10.4)

yc
i j
∈ {0, 1, 2, . . .} ∀(i, j) ∈ A, c ∈ C. (10.5)

The first objective in (10.1) is a cost function and is to be minimized. The second objective, given by
(10.2), minimizes the total risk on all regions and objective (10.3) minimizes the maximum risk imposed
on all regions. Constraints (10.4) are conservation constraints, where δ−(i) = { j ∈ N : ( j, i) ∈ A} and
δ+(i) = { j ∈ N : (i, j) ∈ A} are the direct successors and predecessors of node i, and qc

i
= Vc if i = sc,

qc
i
= −Vc if i = tc and qc

i
= 0 otherwise.

10.3 Evolutionary multiobjective optimization

Evolutionary algorithms (EAs) and Evolutionary Multiobjective Optimization (EMO) algorithms in
particular are general-purpose randomized search heuristics and as suchwell suited for problemswhere
the objective function(s) can be highly non-linear, noisy, or even given only implicitly, e.g., by expensive
simulations [115, 103]. Since the third objective in the above problem formulation is nonlinear, we
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propose to use an EMO algorithm for the multiobjective risk-equity constrained routing problem here.
Our EMO algorithm follows the standard iterative/generational cycle of an EA of mating selection,
variation, objective function evaluation, and environmental selection and is build upon the state-of-the-
art selection scheme in HypE [44] as implemented in the PISA platform [67]. The variation operators as
well as the representation of the solutions, however, have to be adapted to the problem at hand in the
following way in order to fulfill the problem’s constraints at all times.

10.3.1 Representation

We choose a variable length representation as it has been theoretically shown to be a good choice for
multiobjective shortest paths problems [191]: A solution is thereby represented by a list of paths of
variable lengths with one path per truck. For the moment, we consider a fixed amount of trucks for each
commodity and therefore a fixed number of paths through the network. In order to have every variable
length path represent an uninterrupted path from source to destination at any time (see the constraints in
(11.3)), we ensure all paths to always start with the source sc for the corresponding commodity c, ensure
with the variation operator that all neighbored vertices in the path are connected by an arc, and complete
each path by the shortest path between the path’s actual end node and the commodity’s destination
node tc.

10.3.2 Initialization

Initially, we start with a single solution where the paths p for all trucks are empty (p = (sc)). This
corresponds to the situationwhere all trucks choose the shortest sc–tc path for their assigned commodity—
implying the smallest possible overall cost but a high risk along the used route(s). Nevertheless, the
initial solution is already Pareto-optimal and is expected to be a good starting point for the algorithm.

10.3.3 Variation

As mutation operator, we suggest to shorten or lengthen the path of one or several trucks. In order to
generate a new solution s′ from s, for each truck path, we draw a binary value b ∈ {0, 1} uniformly at
random and create the new path p′ from the old one p = (v1 = sc, v2, . . . , vl) as in [191]:

• if b = 0 and l =: length(p) ≥ 2, set p′ = (sc, . . . , vl−1)

• if b = 1 and |Vrem = {v ∈ V | (vl, v) ∈ A}| , ∅, choose vl+1 from Vrem uniformly at random and set
p′ = (v0, . . . , vl, vl+1).

• otherwise, use the same path p also in the new solution s′.

10.4 Conclusions

The transportation of hazmats is an important optimization problem in the field of sustainable devel-
opment and in particular the equitable distribution of risks is of high interest. Within this study, we
formalize this transportation problem as the minimization of three objectives and propose to use an
evolutionary algorithm to cope with the non-linear equity risk objective.

The third objective function of our problem can be rewritten by minimizing the additional variable
z as third objective and adding the constraints ∀q ∈ Q : z ≥ ∑

c∈C
∑

(i, j)∈A r
cq

i j
f c
i j
. Although this equiva-

lent formulation makes the problem linear (with additional linear constraints), classical algorithms are
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expected to have difficulties with this formulation as well and our algorithm is supposed to be more
efficient in the current formulation due to the fewer number of constraints. Note that, for the moment,
the proposed EMO algorithm exists on paper only and an actual implementation has to prove in the
future which additional algorithm components (such as problem-specific initialization, recombination
operators, or other exact optimization (sub-)procedures) are necessary to generate solutions of sufficient
quality and whether adaptively changing the number and capacity of trucks is beneficial.
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We study a multi-criteria variant of the problem of routing hazardous material on a geographical area
subdivided in regions. The two objective functions are given by a generally defined routing cost and
a risk equity equal to the maximum, over each region, of the risk perceived within a region. This
is a multicommodity flow problem where integer variables are used to define the number of trucks
used for the routing. This problem admits a straightforward path formulation, and we propose a
branch-and-price problem where, for each node of the branch-and-bound tree, column generation is
used to obtain a lower bound. Experimental results on a set of instances are reported.

11.1 Introduction

The transportation of hazardous materials (hazmat from now on) has received a large interest in recent
years, this results from the increase in public awareness of the dangers of hazmats and the enormous
amount of hazmats being transported. The main target of this problem is to select routes from a given
origin-destination pair of nodes such that the risk for the surrounding population and the environment
minimum, without producing excessive economic costs. The risk associated to the hazmats makes this
problems more complicated by it assessment [143], the related data collection and the resolution of the
induced formulations [159, 348].

A non-negligible work in the literature focuses on local routing, where a single commodity routes
between one origin-destination pair have to be selected. In practice, a more adapted model is global
routing where many vehicles have to be routed between the same origin-destination nodes (see [92, 142]
for a survey on these models). In global routing, vehicles are routed on the same path, so the risk
associated to regions surrounding this path could be high; In this case, one may wish distribute the risk
in an equitable way over the population. Routing of hazmat shipments can be defined as the problem of
findingminimum cost/risk routeswhile spreading equitably the risk in any zone of the network area, this
problem is a “many-to-many” routing problemwith multiple origins and destinations. In the sequel, we
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refer to this problem as Risk-Equity Constrained Routing Problem (RECRP). The research in the latter
include two main classes:

1. Methods based on the generation of dissimilar origin-destination paths: In [7, 227, 263], the authors
used different dissimilarity indexes between paths by considering common parts of the paths. The
main principle of these methods consists in two phases: (1) the computation of an initial set of
routes R, (2) the selection of a subset of dissimilar paths D ⊂ R. A drawback of these methods is
that aiming to compute dissimilar paths by considering common parts of the paths can be useless.
In fact, it can happen that two paths, without any part in common, are parallel but very close, these
paths would be considered by this model as having maximum dissimilarity.

2. Methods based on the uniformly risk distribution among all the zones of the geographical crossed
region: In [167] the authors propose an integer programming formulation for the RECRP, they
handle equity by imposing that the difference between the risks imposed on any two arbitrary
zones does not exceed a given threshold ǫ. The problemwas solved using heuristic that repeatedly
solves single-trip problems: a Lagrangian dual approach with a gap-closing procedure is used to
optimally solve single-trip problems. The major drawback of using this model is that the paths
computed can impact the same zones when ǫ is large and the problem can be infeasible when ǫ is
small.

In [92] was proposed a multi-commodity flow model for the RECRP where each commodity can
be considered as one hazmat type. The capacity associated to each arc for a given commodity can
be considered as the maximum amount of risk tolerated along the considered arc resulting from
the transportation of a unit of hazmat type and the capacity associated to each arc for the global
commodities can be considered as the totalmaximum risk tolerating on the given arc. The objective
function is formulated as the sum of the economical cost and the cost related to the consequences
of an incident for each material k. This model is well adapted to manage simultaneously different
materials that have to be routed over the network, but with this model one can compute a spatially
dissimilar path set, and, therefore, does not guarantee the equity target. To deal with risk equity
[92], the costs were defined as functions of the flow traversing the arcs, this imposes an increase of
the arc’s cost and risk when the number of vehicles transporting a material k increases on the arc,
a linear version of this model was proposed. This model can allow to prevent arc saturation, by
discouraging the use of a few arcs to transport a commodity k between its origin and destination
nodes.

Our problem is similar to that proposed in [92]. We consider the problem where a set of given
quantities of hazmats has to be routed over a transportation network from specific origin points to
specific destination points. Our goal is the minimization of the total routing cost and of the risk equity,
the latter broadly defined as the risk shared by a set of regions that compose the geographical area under
consideration. Thus our focus is a multi-criteria optimization problem which we describe more in detail
below. The originality of our work is the integration of the objective of minimization of the maximum
of risk imposed on all regions during the transportation activity into the multi-commodity flow model
which is solved using a Branch-and-Price algorithm.

11.1.1 Description of the problem

Let the transportation network be represented as a directed graph G = (N,A), with N being the set of n
nodes and A the set of m arcs. Let C be the set of commodities, given as a set of point-to-point demands
to transport a certain amount of hazmats. For any commodity c ∈ C, let sc and tc be respectively the
source node and the destination node, and let Dc be the amount of hazmats to be shipped, by means of
a set of trucks of given capacity Fc, from sc to tc. We for now assume that each commodity is associated
with a unique type of hazmat.
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We assume that the risk is computed on each arc of the network and is proportional to the flow
traversing such an arc. We consider a setQ of regions, each given as subsetsNq of nodes for each q ∈ Q of
the transportation network, and we define rcq

i j
as the risk imposed on region q ∈ Qwhen the arc (i, j) ∈ A

is used for the transportation of one unit of hazmats of type c. We remark that we employ a notion of
spread risk, in that an accidental event on arc (i, j) within region q ∈ Qmay strongly affect another region
q′ ∈ Q.

11.1.2 Multiple objective functions

The problem of transporting hazmat is multi-objective in nature: one usually wants to minimize two (or
more) objectives, namely the total cost of transportation, computed as a function of the amount of hazmat
transported throughout the network and the trucks used for the transportation, and the distributed risk,
which can be defined as a measure of risk that is shared among different regions. More specifically, for
a given solution each region q ∈ Q will be affected by a risk which is dependent on the transportation
patterns in all other regions, and which can be summarized by a quantity ωq. The second objective will
then be maxq∈Q ωq, and has to be minimized.

11.1.3 An optimization model

We introduce a flow variable f c
i j
defining the portion of commodity c being transported on arc (i, j). These

variables are subject to flow conservation constraints
∑

j∈δ+(i)
f ci j −

∑

j∈δ−(i)
f cji = bci ∀i ∈ N, c ∈ C

where δ−(i) and δ+(i) are the forward and backward star of i, i.e.,

δ−(i) = { j ∈ N : ( j, i) ∈ A}, δ+(i) = { j ∈ N : (i, j) ∈ A},

and

bci =



1 if i = sc

−1 if i = tc

0 otherwise.

Also, yc
i j
defines the number of trucks to be used on arc (i, j) for commodity c. The link between variables

f and y is given by the constraint

Dc f
c
i j ≤ Fcy

c
i j ∀(i, j) ∈ A, c ∈ C.

The first objective is a function of both f and y variables and is to beminimized:
∑

c∈C
∑

(i, j)∈A(αci j f
c
i j
+βc

i j
yc
i j
),

with α and β suitable cost coefficients which we assume nonnegative. We define the risk ωq imposed on
a region q ∈ Q as a linear combination of the flow variables:

ωq :=
∑

c∈C

∑

(i, j)∈A
r
cq

i j
f ci j

and add a new variable z := maxq∈Q ωq, which therefore is subject to the constraints

z ≥
∑

c∈C

∑

(i, j)∈A
r
cq

i j
f ci j ∀q ∈ Q.

The y variables represent trucks that transport hazmat from each source to each destination, and are
therefore subject to flow conservation constraints. We write such constraints here for each commodity
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and for all intermediate nodes of each commodity, as the source anddestinationflowbalance is redundant
here (i.e., it is strictly dependent on the flow variables f ):

∑

j∈δ+(i)
yci j −

∑

j∈δ−(i)
ycji = 0 ∀i ∈ N \ {sc, tc},∀c ∈ C

The optimization model is therefore as follows:

min
∑

c∈C
∑

(i, j)∈A(αci j f
c
i j
+ βc

i j
yc
i j
) (11.1)

min z (11.2)
s.t.

∑
j∈δ+(i) f

c
i j
−∑

j∈δ−(i) f
c
ji
= bc

i
, ∀i ∈ N, c ∈ C (11.3)

∑
j∈δ+(i) y

c
i j
−∑

j∈δ−(i) y
c
ji
= 0 ∀i ∈ N \ {sc, tc},∀c ∈ C (11.4)

Dc f
c
i j
≤ Fcy

c
i j

∀(i, j) ∈ A, c ∈ C (11.5)

z ≥ ∑
c∈C

∑
(i, j)∈A r

cq

i j
f c
i j

∀q ∈ Q (11.6)

f c
i j
∈ [0, 1] ∀(i, j) ∈ A, c ∈ C (11.7)

yc
i j
∈ Z ∀(i, j) ∈ A, c ∈ C. (11.8)

Notice that constraints (11.4) and (11.5) guarantee that a sufficient number of trucks is allocated for each
commodity regardless of the flow of hazmat. The path formulation described below is unable to provide
such a guarantee and will therefore have to be modified.

11.1.4 A path formulation

The above arc-flow formulation is polynomial in |N|, |A|, |Q|, and |C|, but its size canmake it impractical to
solve real-world instances of our problem. A common approach is to use a path-flow formulation [57]. In
these formulations, for each commodity c a variable is associated with every path from sc to tc. We denote
by Pc the set of paths from sc to tc for a commodity c ∈ C and by Pc

i j
the set of paths in Pc containing

arc (i, j) ∈ A. A new path variable fp, ∀p ∈ Pc,∀c ∈ C, represents the portion of commodity transported
on path p. We drop the upper bound on fp variables as it is redundant, i.e., it is easy to prove that it is
satisfied by any optimal solution.

As for the flow of hazmat, in this formulation the number of trucks, previously denoted by variables
yc
i j
, might be dependent on path variables fp. They are by definition the number of trucks to be used

on arc (i, j) ∈ A for commodity c ∈ C. Unless (but this does not seem viable) in practice every truck is
required to drive on a single arc (i.e. there is a transfer of hazmat from a truck to another at every node
of G), intuition suggests that each of them drives on the whole path p, hence there should be a variable
yp that counts the number of trucks is simply related to variable fp as follows:

Fcyp ≥ Dc fp ∀p ∈ Pc, c ∈ C. (11.9)

This constraint substitutes the flow conservation constraint (11.4) and the “capacity” constraint (11.5).
Let us write this path formulation for completeness:

min
∑

c∈C(
∑

p∈Pc αp fp +
∑

(i, j)∈A βi jy
c
i j
) (11.10)

min z (11.11)
s.t.

∑
p∈Pc fp ≥ 1 ∀c ∈ C (11.12)

Fcyp −Dc fp ≥ 0 ∀p ∈ Pc, c ∈ C (11.13)

z −∑
c∈C

∑
p∈Pc r

q
p fp ≥ 0 ∀q ∈ Q (11.14)

fp ≥ 0 ∀p ∈ Pc, c ∈ C (11.15)
ycp ∈ Z ∀p ∈ Pc, c ∈ C, (11.16)
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where αp =
∑

(i, j)∈p α
c
i j
are cost coefficients on the path p ∈ Pc and r

q
p =

∑
(i, j)∈p r

cq

i j
is the risk imposed

on region q ∈ Q when the path p ∈ Pc is used for the transportation of one unit of hazmats of type c.
Constraint (11.12) is the path-flow counterpart of the flow conservation constraint (11.3) and requires
that, regardless of the set of paths used, each commodity is fully routed. Constraints (11.13) and (11.14)
are straightforward extensions of (11.5) and (11.6) respectively, given that the flow of commodity c ∈ C
on arc (i, j) ∈ A is equal to

∑
p∈Pc

i j
fp.

When restricting to a single-objective optimization problem, thismodel is an integermulticommodity
flow problem. Regardless of considering only one objective, problem (11.11)-(11.16) contains V =∑

c∈C |Pc| variables, which can be exponential in |N|. Therefore, solving it by introducing all path variables
is in general impractical using the usual combinatorial optimization methods.

Column generation algorithms are very well suited for solving this kind of problems [123]. They use
a relatively small initial set of columns to solve a problem, and iteratively introduce a new columnwhen
necessary to improve the objective function. Specifically, given a set of columns with negative reduced
cost (among those that haven’t been considered yet), one can introduce one or more such variables and
apply a primal simplex method to resolve the amended problem. The problem with an initially small
subset of columns is called the restricted master problem, while the problem of finding a variable (column)
with negative reduced cost is called the pricing problem.

Constraint (11.13) introduces a major issue in the problem. In principle, introducing y variables
indexed on paths rather than arcs and commodities allows to further reduce the number of columns,
as we only need 1 + 2

∑
c∈C |Pc| variables. However, analogously to columns, we do not want to have

exponentially many rows (there are exponentially many paths). The above constraint could be dynami-
cally generated, hence instead of column generation we would need row-column generation. One huge
problem here is that to dynamically generate paths one needs to know all dual variables σp, for each
p ∈ Pc and for all c ∈ C, to solve a pricing problem, and most of these dual variables are not available
since we didn’t generate all of them.

One possible way to deal with this is to use surrogate constraints: rather than impose all such con-
straints or generate them dynamically, we consider a cover of such set of constraints and impose conic
combinations thereof (see for instance [297]). More specifically, for each (i, j) ∈ A, consider all constraints
(11.9) summed up for all paths containing (i, j). We obtain

Fc
∑

p∈Pc
i j

yp ≥ Dc

∑

p∈Pc
i j

fp ∀(i, j) ∈ A, c ∈ C. (11.17)

The problem has now |C|(1 + m) + |Q| rows and 1 + 2
∑

c∈C |Pc| variables. Since we relax all of the path
constraints (11.9), the model (11.10)-(11.16) constitutes a relaxation of (11.1)-(11.8). Column generation
can be applied safely now, although it has to be applied to both f and y variables, and it converges to a
dual feasible solutionwhich gives a lower bound but not necessarily an optimal solution of the continuous
relaxation of (11.1)-(11.8).

Suppose an integer solution is found as the optimal solution of the LP relaxation (solvedwith column
generation). If at least one of the constraints (11.13) is violated, we are stuck with a solution that has no
physical value but that cannot be proven primal infeasible unless a constraint is added. What we can
do is therefore to create a second branching rule which discriminates between integer feasible solutions
and eliminates the integer (but infeasible) solution just found. We will detail this procedure later in this
report, and instead provide insight on how to generate variables.
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11.1.5 Column generation applied to one objective only.

Weconsider fromnowona continuous relaxation of (11.11)-(11.16) amendedby the surrogate constraints:

min z (11.18)
s.t.

∑
p∈Pc fp ≥ 1 ∀c ∈ C (11.19)

Fc
∑

p∈Pc
i j
yp ≥ Dc

∑
p∈Pc

i j
fp ∀(i, j) ∈ A, c ∈ C (11.20)

z −∑
c∈C

∑
p∈Pc r

q
p fp ≥ 0 ∀q ∈ Q (11.21)

fp ≥ 0 ∀p ∈ Pc, c ∈ C (11.22)

We associate the dual variables vector µ ∈ R|C|+ with constraints (11.12), σ ∈ Rm|C|
+ with constraints (11.20),

and λ ∈ R|Q|+ with constraints (11.14). We first analyze this problem considering the single objective
(11.11). Let us define the subset of paths P̄c ⊂ Pc,∀c ∈ C. The restricted master problem (RMP from now
on) of (11.11)-(11.16), generated on a restricted subset of variables fp, p ∈ P̄c, c ∈ C, is as follows:

min z (11.23)
s.t.

∑
p∈P̄c fp ≥ 1 ∀c ∈ C (11.24)

Fc
∑

p∈Pc
i j
yp −Dc

∑
p∈P̄c

i j
fp ≥ 0 ∀c ∈ C, (i, j) ∈ A (11.25)

z −∑
c∈C

∑
p∈P̄c r

q
p fp ≥ 0 ∀q ∈ Q (11.26)

fp ≥ 0 ∀p ∈ Pc, c ∈ C. (11.27)

It is barely worth noting here that (11.23)-(11.27) is a restriction of the continuous relaxation of (11.11)-
(11.16), which therefore provides neither a lower nor an upper bound. Only by applying column
generation to (11.23)-(11.27), i.e., by iteratively amending columns with negative reduced cost, can we
find a lower bound of (11.11)-(11.16). The reduced cost of variables fp, for each c ∈ C, p ∈ Pc, is as follows:

h( fp) = −µc +Dc

∑
(i, j)∈p σ

c
i j
+

∑
q∈Q r

q
pλq

= −µc +Dc

∑
(i, j)∈p σ

c
i j
+

∑
q∈Q

∑
(i, j)∈p r

cq

i j
λq.

(11.28)

Suppose an optimal primal solution ( f̄ , ȳ, z̄) and an optimal dual solution (µ̄, σ̄, λ̄) is given. At each
iteration of the column generation algorithm, we look for a negative reduced cost variable by solving
the problem:

min
c∈C,p∈Pc

h( fp),

which provides the column with most negative reduced cost. The pricing problem consists of finding
the path p that minimizes (11.28), and is equivalent to solving a shortest path problem on a graph G
where each arc (i, j) ∈ A has weight wi j = Dcσ̄ci j +

∑
q∈Q r

cq

i j
λ̄q. The path must have an origin-destination

pair among those defined by the commodities in C. Suppose that, for the shortest path obtained,
−µ̄c + DcLc +

∑
q∈Q r

q
pλ̄q < 0. Then variable fp has a negative reduced cost and can be introduced in the

model.

One may also look for a negative reduced cost variable for each commodity, and add at most |C|
such variables. Although this usually speeds up convergence in terms of number of iterations, adding
many column every time slows the primal simplex used to obtain a new solution. We obtain |C| origin-
destination shortest path problems, therefore the pricing problem becomes |C| times slower — this is
negligible given that most of the CPU time is usually spent on the primal simplex.

Notice that y variables do not need to be generated for the risk-objective problem: they only appear
in the surrogate constraint, which makes them completely useless given that their value can be decided
from an optimal f . This only happens if we consider the second objective function, while the first does
contain those variables and would force us to generate them as well. Actually, no f variable is needed
either as long as the y variables are only contained in the capacity constraint. The next subsection should
shed light on this and introduce another use for y variables.
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11.1.6 Risk on trucks

Another consideration is on risk equity associated to trucks: is the risk (especially the perceived one)
only related to the real quantity, or portion, of hazmat transported, or is it also related on the trucks?
If both quantity of hazmat and number of trucks should be considered, then the risk equity constraint
would change. In this case, we could probably use a parameter scq

i j
with an analogous meaning to that

of parameter r, i.e., the influence of one truck driving through (i, j), transporting commodity c ∈ C, on
region q, and modify (11.26) as follows:

z ≥
∑

c∈C

∑

p∈P̄c

(rqp fp + s
q
pyp) ∀q ∈ Q.

where, similarly to r, we define s
q
p :=

∑
(i, j)∈p s

cq

i j
. This provides a motivation for the generation of both

f and y variables. In fact, now the procedure to generate y variable can be defined as one that aims at
finding a path p such that the reduced cost of the corresponding yp is minimum:

min
c∈C,p∈Pc

h(yp) = min{−Dc

∑

(i, j)∈p
σci j +

∑

q∈Q
s
q
pλq : p ∈ P}

which provides a more difficult problem given that now the shortest path has to be found on a network
with possibly both positive and negative weights.

11.2 Branch-and-price for single objective problems

In order to find an optimal integer solution to problem (11.10)-(11.16), the column generation approach
outlined above must be coupled with a branch-and-bound algorithm. This class of algorithms, better
known as branch-and-price, solve each branch-and-bound node by applying column generation on each
lower bounding (continuous) subproblem [50]. For the single objective routing problem, we outline
below an implementation of a branch-and-price, which we have implemented in AMPL.

11.2.1 Branching rules

If only integer variables yc
i j
are not dynamically generated (but this no longer seems to be the case), the

branching rule is rather simple: consider an optimal solution ( f̄ , ȳ, z̄) obtained after column generation at
a branch-and-bound node. If, for all c ∈ C and (i, j) ∈ A, we have ȳc

i j
∈ Z, then the node can be fathomed

as the solution is integer feasible. Otherwise, we select an arc (i, j) ∈ A and a commodity c ∈ C such that
ȳc
i j
< Z and generate two new branch-and-bound nodes with the amended constraints yc

i j
≤

⌊
ȳc
i j

⌋
and

yc
i j
≥

⌈
ȳc
i j

⌉
, respectively.

If we use yp variables instead, we need to take special care in branching rules: given that these
variables are generated, the branching rules have dual variables that need to be taken into account in
the pricing problem. Furthermore, simple branching rules would not work and the branch-and-bound
algorithm would not converge: the branching rule yp ≤ k, with k ∈ Z, does not impose anything on the
pricing problem, which might generate another variable that uses the same path as pwith reduced cost.
Another issue is making sure that the pricing problem remains a shortest path problem. One common
branching rule for these cases is that used by Barnhart et al. [50]:

I am currently working on another class of branching rules, which we didn’t test yet [52]. The report
is still in draft version, but if we see that Barnhart’s branching rule doesn’t work we can try them.
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11.2.2 Accelerating techniques

A common drawback of column generation techniques is the so-called tailing off, i.e., the tendency of the
objective function of the RMP to decrease very slowly although at least one column is generated at each
iteration. Stabilization or acceleration techniques for column generation can be used to this purpose
[131, 351]. The simplest of them requires perturbing the RMP in such a way that large changes of the
dual variables within an iteration are penalized.

11.2.3 Computational experiments

Ideas to be implemented and tested independently:

• implement the path formulation and the column generation in AMPL (I have some examples of it
and a shortest path module)

• accelerate using duMerle’s method

• implement a simple branch-and-bound algorithm in AMPL (not easy...)

• mix the BB and the accelerated column generation

11.3 Column generation in multi-criteria problems

To do:

• Search the literature for previous work. From a brief search not much comes up, which is not so
surprising given that column generation is a method to test optimality on a single objective, while
trying to characterize or generate all Pareto-optimal solution is orthogonal to this.

• Given a multi-objective problem min c⊤x,min d⊤x : Ax ≥ b, consider the two parametric single
objective problems

zα = min c⊤x zβ = min d⊤x
d⊤x ≤ zβ c⊤x ≤ zα
Ax ≥ b Ax ≥ b

and consider the following (trivial?) question: when the column generation does not improve
either linear relaxations, i.e., neither zα nor zβ improve, do we have a Pareto-optimal solution? This
approach is analogous to a well-known method by Konno [223] for bilinear programming.

• Apply Lagrangian relaxation to either problem and see what the Lagrangian duals look like.
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Chapter 12

Multi-Objective Differential Evolution
with Adaptive Control of Parameters
and Operators

Ke Li, Álvaro Fialho, Sam Kwong

Manuscript in preparation

Differential Evolution (DE) is a simple yet powerful evolutionary algorithm, whose performance highly
depends on the setting of some parameters. In this report, we propose an adaptive DE algorithm for
multi-objective optimization problems. Firstly, a novel tree neighborhood density estimator is proposed
to enforce a higher spread between the non-dominated solutions, while the Pareto dominance strength is
used to promote a higher convergence to the Pareto front. These twometrics are then used by an original
replacement mechanism based on a three-step comparison procedure; and also to port two existing
adaptive mechanisms to the multi-objective domain, one being used for the autonomous selection
of the operators, and the other for the adaptive control of DE parameters CR and F. Experimental
results confirm the superior performance of the proposed algorithm, referred to as Adap-MODE, when
compared to two state-of-the-art baseline approaches, and to its static and partially-adaptive variants.

12.1 Introduction

Differential Evolution, proposed by Storn and Price [305], is a popular and efficient population-based,
direct heuristic for solving global optimization problems in continuous search spaces. The main benefits
brought by DE are its simple structure, ease of use, fast convergence speed and robustness, which
enables it to be widely applied to many real-world applications. For the generation of new solutions
(trial vectors), each individual (target vector) is combined with others by means of different forms of
weighted sums (mutation strategies). Originally, in case the newly generated solution has a better fitness
value than its corresponding parent, it replaces its parent in the population for the next generation. The
aim of these iterations is basically to find a proper direction for the search process towards the optimum,
by following the quality distribution of the solutions in the current population.

Oneof thepossible applicationdomains ofDEare theMulti-objectiveOptimizationProblems (MOPs),
which exist everywhere in real-world applications, such as engineering, financial, and scientific com-
puting. The main difficulty in these cases lies in providing a way to compare the different solutions,
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as the involved multiple criteria might compete with one another, besides possibly not being directly
comparable. Multi-Objective Evolutionary Algorithms (MOEAs) tackle this issue by searching for the
set of optimal trade-off solutions, the so-called Pareto optimal set: the aim is not only to approach the
Pareto optimal front as closely as possible, but also to find solutions that are distributed over the Pareto
optimal front as uniformly as possible, in order to better satisfy all the different objectives considered.
Needless to say, to be applied to MOPs, the DE original scheme needs to be adapted according to the
mentioned aims.

Many different types of DE variants proposed to tackle MOPs can be found in the literature, such
as GDE3 [230], and DEMO [317]. We refer the reader to [112] for a recent comprehensive survey of
DE, including its application to MOPs. But the performance of DE largely depends on the definition of
some parameters. Besides the crossover rate CR, and the mutation scaling factor F, there is the need of
choosing which mutation strategies, from the many available ones, should be used for the generation of
new solutions, and at which rate each of the chosen strategies should be applied. The setting of these
parameters is usually a crucial and very time-consuming task: the optimal values for them do not only
depend on the problem at hand, but also on the region of the search space that is being explored by
the current population, while solving the problem. Following the intuition of the Exploration versus
Exploitation (EvE) balance, exploration tends to be more beneficial in the early stages of the search
(consequently more exploratory mutation strategies, high values for F and CR), while more exploitation
should be promoted when getting closer to the optimum (respectively, more fine-tuning operators, and
a smaller value for F).

A prominent paradigm to automate the setting of these parameters on-line, i.e., while solving the
problem, is the so-called Adaptive parameter control. It constantly adapts the values of the parameters
based on feedbacks received from the search process. Some algorithms have been recently proposed for
the on-line adaptation of CR and F, and for the autonomous control of which of the strategies should
be applied at each instant of the search, the latter being commonly referred to as Adaptive Operator
Selection (AOS). Some DE algorithms using adaptive methods can be found in the literature, such as
SaDE [311], JADE [374], jDE [83] and ISADE [206]. Regarding DE for MOPs, there also exists some
pioneering works, such as JADE2 [373] and OW-MOSaDE [192]. However, to the best of our knowledge,
the employment of both adaptive parameter control of CR and F, and adaptive operator (mutation
strategy) selection, is still relatively scarce in the domain of MOPs.

In this work, we employ an adaptive parameter control of CR and F slightly different from the one
employed by the JADE method [374], which adapts their values based on the recent success rate of the
search process; and an AOS mechanism inspired from the PM-AdapSS-DE method [165], which uses
the Probability Matching mechanism to select between the available mutation strategies, based on the
normalized relative fitness improvements brought by their recent applications. Themain contribution of
this work lies in the porting of these adaptive methods to the multi-objective domain. More specifically,
a novel method is proposed to partially evaluate the fitness of the solutions, referred to as Tree Neigh-
borhood Density (TND) estimator. The aggregation of the TND with the Pareto Dominance Strength
(brought from the SPEA2 [380] method) is the information used by the AOS mechanism to keep its
operator preferences up-to-date, and by a novel replacement mechanism based on a three-step compar-
ison scheme. Lastly, the output of this replacement mechanism defines the success rates used for the
adaptive parameter control of CR and F. The resulting algorithm, referred to as AdaptiveMulti-Objective
DE (Adap-MODE), is assessed in the light of a set of multi-objective benchmark functions, and shows
to achieve significantly better results than other state-of-the-art approaches (NSGA-II [118] and GDE3
[230]) and than its static and partially-adaptive variants in most of the cases.

The remainder of this report is organized as follows. Firstly, the background and some related work
are briefly reviewed in Section 12.2. Then, our proposed algorithm is described in detail in Section 12.3.
After that, some experimental results are analyzed in Section 12.4. Finally, Section 12.5 concludes this
report and gives possible directions for further work.
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12.2 Related Work

The performance of an Evolutionary Algorithm (EA) strongly depends on the setting of some of its
parameters. Section 12.2.1 will briefly overview the different ways of doing parameter setting in EAs,
focusing on the kind of approach used in this work, referred to as Adaptive Parameter Control. Then,
Section 12.2.2 will survey more specifically the Adaptive Operator Selection (AOS) paradigm.

12.2.1 Parameter Setting in Evolutionary Algorithms

There are different ways of doing parameter setting in EAs, as acknowledged by the well-known taxon-
omy proposed by Eiben et al. in [135]. In the higher level, there is the separation between Parameter
Tuning and Parameter Control methods. Parameter Tuning methods set the parameters off-line, based
on statistics over several runs; besides being computationally expensive, it provides a single parame-
ter setting, that remains static during all the run. Parameter Control methods continuously adapt the
parameters on-line, i.e., while solving the problem; these methods are further sub-divided into three
branches, as follows.

TheDeterministicmethods adapt the parameter values according to pre-defined (deterministic) rules;
but the definition of these rules already defines a complex optimization problem per se, besides hardly
adapting to different problems. The Self-Adaptive methods adapt the parameter values for free, by
encoding them within the candidate solution and letting the evolution take care of their control; in this
case, however, the search space of the parameter values is aggregated to that of the problem, what
might significantly increase the overall complexity of the search process. Lastly, the Adaptive methods
control the parameter values based on feedback received from the previous search steps of the current
optimization process.

In this work, we use an adaptive method very similar to the one proposed in the JADE algorithm
[374], which controls the values of DE crossover rate CR and mutation scaling factor F based on the
recent success rate (more details in Section 12.3.4). Another example of adaptive method proposed for
the same aim is the SaDE [311] algorithm. Furthermore, another kind of adaptive method is also used
in our algorithm, the AOS, surveyed in the following.

12.2.2 Adaptive Operator Selection

A recent paradigm, referred to as Adaptive Operator Selection (AOS), proposes the autonomous control
of which operator (or mutation strategy in the case of DE) should be applied at each instant of the search,
while solving the problem, based on their recent performance. A general AOSmethod usually consists of
two components: the Credit Assignment scheme defines how each operator should be rewarded based
on the impacts of its recent applications on the search progress; and the Operator Selection mechanism
decides which of the available operators should be applied next, according to their respective empirical
quality estimates, which are built and constantly updated by the rewards received. Each of these
components will now be briefly overviewed in turn.

Credit Assignment

The most common way of assessing the impact of an operator application is the fitness improvement
achieved by the offspring generated by its application, with respect to a baseline individual. In [165],
the fitness improvement with respect to its parent is considered, while [113] use as baseline individual
the best individual of the current population.
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Based on this impact assessment, different ways of assigning credit to the operators can be found,
in addition to the common average of the recent fitness improvements. In [361], a statistical technique
rewards the operators based on their capability of generating outlier solutions, arguing that rare but
highly beneficial improvements might be more important than frequent small improvements. Along the
same line, in [148] each operator is rewarded based on the extreme (or maximal) fitness improvement
recently achieved by it. In the quest for a more robust rewarding, in [147] a rank-based scheme is
proposed. In multi-modal problems, however, the diversity is also important; in [269], both diversity
variation and fitness improvement are combined to evaluate the operator application.

Operator Selection

TheOperator Selectionmechanismusually keeps an empirical quality estimate for each operator, built
by the received rewards, which is used to guide its selection. The most popular method for Operator
Selection is referred to as Probability Matching (PM) [345]: basically, the probability of selecting each
operator is proportional to its empirical quality estimate with respect to the others; this is the method
used in this work, more details in Section 12.3.3.

Other more complex Operator Selection methods worth to be mentioned are: the Adaptive Pursuit
(AP) [345], originally proposed for learning automata, employs a winner-takes-all strategy to enforce a
higher exploitation of the best operator; and the Dynamic Multi-Armed Bandit (DMAB) [148], which
tackles the Operator Selection problem as yet another level of the Exploration vs. Exploitation dilemma,
efficiently exploiting the current best operator, while minimally exploring the others, inspired from the
multi-armed bandit paradigm.

12.3 Adaptive Multi-Objective DE

The general framework of the proposed adaptive Differential Evolution (DE) algorithm for multi-
objective problems is illustrated in Fig. 12.1. As can be seen, it is divided into three modules. In
the middle, there is the main cycle of the DE algorithm, represented here by only three steps for the
sake of brevity: once after every generation, the fitness (see Section 12.3.1) of each offspring is evaluated
by the sum of its Pareto Dominance (PD) strength and its Tree Neighborhood Density (TND). While
the PD enforces convergence towards the Pareto front, the TND promotes diversification between the
non-dominated solutions. These twomeasures are separately used by the Replacement mechanism, that
decides which of the individuals should be maintained for the next generation by means of an original
three-step comparison procedure (Section 12.3.2).

Figure 12.1: The framework of the proposed adaptive Differential Evolution algorithm
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Two adaptive mechanisms are employed in parallel. On the right side, there is the AOS module,
inspired from the PM-AdapSS-DE algorithm [165]. And on the left side, there is the Adaptive Parameter
Control module slightly modified from the JADE algorithm [374]. Both adaptive mechanisms are
described, respectively, in Sections 12.3.3 and 12.3.4. Although these are adaptive mechanisms brought
from the literature, it is worth noting that in this work they are originally ported to the multi-objective
domain, by receiving inputs based on the special aggregation between the PD and the novel TND
measures.

12.3.1 Fitness Evaluation

In multi-objective optimization, the aims of the search can be said to be two-fold. On the one hand,
the solutions found should approach as much as possible to the Pareto front. On the other hand, the
non-dominated solutions should be distributed over the Pareto front as uniformly as possible, in order
to have satisfiable solutions for all the different objectives. In this work, we use the Pareto Dominance
(PD) strength proposed in the SPEA2 algorithm [380] to enforce the first issue (convergence). For the
second issue, we propose a novel measure to promote spread between the non-dominated solutions,
referred to as the Tree Neighborhood Density (TND). The fitness of each individual is assessed by an
aggregation of these two criteria, as described in the following.

Pareto Dominance Strength

In order to calculate the Pareto Dominance (PD) strength, we use the mechanism proposed in the
SPEA2 algorithm [380]. The only difference is that the external archive to store elite individuals is not
implemented here. Briefly, a strength value S(i) is assigned to each individual i in the population P,
representing the number of solutions it dominates. If solely based on this criterion, the fitness of each
individual i, referred to as PD(i) here, would be calculated as:

PD(i) =
∑

j∈P, j≻i
S( j) (12.1)

i.e., the sum of the strengths of all the individuals that dominate individual i. Intuitively, the smaller the
better, with PD(i) = 0 corresponding to a non-dominated solution; whereas a large PD(i) means that the
individual i is dominated by many others.

Tree Neighborhood Density

As previously mentioned, the Tree Neighborhood Density (TND) is a novel estimation proposed to
enforce ahigher level of spreadbetween thenon-dominated solutions. For the sakeof a clearerdiscussion,
some definitions and terminologies are firstly given as follows.

Tree crowding density: Let T be a minimum spanning tree connecting all the individuals of population
P. For any individual i in P, let di be the degree of i in T, i.e., the number of edges of T connected to i;
and let these edges be {li,1, li,2, . . . , li,di }. The tree crowding density of i is estimated as:

Tcrowd(i) =
di∑

j=1

li, j/di (12.2)
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Tree neighborhood: Let ri = max{li,1, li,2, . . . , li,di }. A circle centered in individual i, with radius ri, is
defined as the tree neighborhood of i.

Membership of individual on the tree neighborhood: Let the Euclidean distance between individuals
i and j be denoted as disti, j. The individual j is considered as a member of the tree neighborhood of i if
and only if disti, j ≤ ri (denoted as i ⊲T j).

Based on these definitions, the calculation procedure for the Tree Neighborhood Density (TND) is
implemented as follows:

1. The Euclidean distance between each individual of the population P with the other NP − 1 indi-
viduals is calculated;

2. A minimal spanning tree T connecting all individuals is generated;

3. The tree crowding density for each individual i in T is assessed, and the corresponding tree
neighborhood is generated;

4. For each individual i, thedegrees of the individuals pertaining to its treeneighborhoodare summed:

sumdegrees(i) =
∑

j∈U
d j, where U = { j| j ∈ P, i ⊲T j} (12.3)

5. Then, the Tree Neighborhood Density of individual i is calculated as:

TND(i) =

∑
j∈U(1/Tcrowd j)

sumdegrees(i)
(12.4)

6. Finally, the TND values of all individuals are normalized:

nTND(i) =
TND(i) − TNDmin

TNDmax − TNDmin
. (12.5)

where nTND(i) is the normalized TND of individual i, and TNDmax and TNDmin indicate, respec-
tively, the maximum and minimum TND in the current population.

In the sameway as for the PDmeasure, the smaller TND the better. The underlyingmotivation for its
proposal can be explained as follows. The whole set of solutions in the population can be regarded as a
connected graph, with the Euclideanminimum spanning tree of this graph being an optimized structure
that reflects the distribution of the solutions of the current population in the search space. Then, for a
given individual, the corresponding neighborhood can be defined by the other individuals connected to
it, and finally, the crowdedness of this neighborhood can be said to represent its density.

Aggregated Fitness Evaluation

Based on the aforementioned discussion, the fitness value (to be minimized) of each individual i is
calculated as the sum of both criteria:

f (i) = PD(i) + nTND(i) (12.6)
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It is worth noting that only the TNDmeasure is normalized between 0 and 1. Hence, evolution proceeds
by firstly minimizing PD, i.e., approaching the Pareto front; and then, as soon as some non-dominated
solutions (i.e., with PD = 0) are found, nTND becomes significant in the fitness evaluation, and a higher
spread between the non-dominated solutions is promoted.

12.3.2 Replacement Mechanism

At each generation, each of the NP parental solutions is used to generate other NP offspring solutions.
In the original DE algorithm, the offspring replaces its parent in the next generation if it has a better
fitness value. In the case ofmulti-objective optimization, a different replacementmechanism is needed in
order to incorporate the already mentioned properties of this kind of problem. To this aim, a three-step
comparison method is proposed in this work, as follows.

Starting from the mixed population of size 2 ×NP, containing the NP parental and the NP offspring
individuals, firstly, the Pareto dominance relationship is considered: each pair (parent, offspring) is
compared at a time, and the dominated one is immediately rejected.

In case the mixed population is still bigger than NP, the replacement mechanism proceeds to the
second step, which uses the non-dominated sorting method proposed in the NSGA-II algorithm [118].
Briefly, at each round, the non-dominated individuals of the mixed population are chosen to survive
to the next generation, and are removed from the mixed population. This is done iteratively up to
the completion of the population for the next generation (i.e., NP chosen individuals after the first and
second steps), or until there are no less thanNP individuals with assigned rank values in the population.

If there are still individuals to be filtered for the next generation, the third step finally considers the
TNDvalues. At each iteration, the individual that has the lowest TND (i.e., themost crowded individual)
ismaintained, until the exact number of individuals for the completion of the newpopulation is achieved.

12.3.3 Adaptive Operator Selection

As surveyed in Section 12.2.2, to implement the AOS paradigm, there is the need of defining two
elements, the Credit Assignment and the Operator Selection mechanisms. The approaches used in this
work will be now detailed in turn.

Credit Assignment: Normalized Relative Fitness Improvement

The Credit Assignment scheme is inspired from the one used in the PM-AdapSS-DE algorithm [165];
the differences are the use of a different and normalized calculation of the relative fitness improvements
(which showed to perform better after some preliminary experiments) and in the already described
fitness evaluation, specially designed for multi-objective optimization.

The impact of each operator application i is evaluated as the normalized relative fitness improvement
ηi achieved by it, measured as:

ηi =
|p fi − c fi|
| fbest − fworst|

(12.7)

where fbest (respectively fworst) is the fitness value of the best (respectively the worst) solution in the
current population; p fi and c fi are the fitness values of the (parent) target vector and its offspring,
respectively. As in [165], in case no improvement is achieved i.e., p fi − c fi ≥ 0, ηi is set to zero.
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All the normalized relative fitness improvements achieved by the application of operator (mutation
strategy in this case) a ∈ {1, . . . ,K} during each generation g are stored in a specific set Ra. Following
[165], at the end of each generation g, a unique credit (or reward) is assigned to each operator, calculated
as the average of all the normalized relative fitness improvements achieved by it:

ra(g) =
|Ra |∑

i=1

Ra(i)
|Ra|
· (12.8)

Operator Selection: Probability Matching

TheOperator Selectionmechanismused is the ProbabilityMatching (PM) [345]. Formally, let the strategy
pool be denoted by S = {s1, . . . , sK}whereK > 1. The probability vectorP(g) = {p1(g), . . . , pK(g)}(∀t : pmin ≤
pi(g) ≤ 1;

∑K
i=1 pi(g) = 1) represents the selection probability of each operator at generation g. At the end

of every generation, the PM technique updates the probability pa(g) of each operator a based on the
received reward ra(g), as follows. Firstly, the empirical quality estimate qa(g) of operator a at generation
g is updated as [345]:

qa(g + 1) = qa(g) + α
[
ra(g) − qa(g)

]
(12.9)

where α ∈ (0, 1] is the adaptation rate; the selection probability is updated as:

pa(t + 1) = pmin + (1 − K · pmin)
qa(g + 1)

∑K
i=1 qi(g + 1)

. (12.10)

where pmin ∈ (0, 1) is the minimal selection probability value of each operator, used to ensure that all the
operators have a minimal chance of being selected. The rationale for this minimal exploration is that the
operators that are currently performing badly might become useful at a further moment of the search
[345].

12.3.4 Adaptive Parameter Control of CR and F

The parameter adaptation method used here is similar to that used in the JADE algorithm [374]. Let CRa
i

denote the crossover rate for the individual i using operator a ∈ {1, . . . ,K}. At each generation, CRa
i
is

independently generated according to a normal distribution with mean µa
CR

and standard deviation 0.1:

CRa
i = norm(µaCR, 0.1) (12.11)

being regenerated whenever it exceeds 1. All successful crossover rates at generation g for operator a are
stored in a specific set denoted as Sa

CR
. The mean µa

CR
is initialized to a user defined value and updated

after each generation as:
µaCR = (1 − c) · µaCR + c ·mean(SaCR) (12.12)

where c is a constant and mean(Sa
CR
) is the arithmetic mean of values in Sa

CR
.

An analogous adaptation mechanism is used for the scaling factor Fa
i
. After some preliminary

experiments, a difference with respect to the JADE algorithm [374] at this point is that the mean value
µa
F
is calculated by the root-mean-square of the values in Sa

F
, instead of Lehmer mean.

12.4 Performance Comparison

In this section, three different empirical comparisons are presented. Firstly, the proposed Adap-MODE
is compared with two state-of-the-art MOEAs, namely, NSGA-II [118] and GDE3 [230]. Then, in order
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to assess the benefits brought by the combined use of both adaptive parameter control modules, Adap-
MODE is compared with four static variants, each using one of the four mutation strategies and a fixed
values for control parameters (CR = 0.5,F = 1.0). Lastly, we compare Adap-MODE with its “partially-
adaptive” variants, namely, the same MODE but using only AOS (and CR = 0.5,F = 1.0), and the same
MODE but using only the adaptive parameter control of CR and F (and the mutation strategies being
uniformly selected). This latter is done in order to evaluate the gain achieved by the combination of both
modules, compared with each of the modules being independently applied.

12.4.1 Experimental Settings

For the sake of a fair empirical comparison, the parameters of the two state-of-the-art MOEAs are set
as in the respective original papers. For the NSGA-II [118], ηc = ηm = 20, pc = 0.9, pm = 1/D, with D
representing the dimension of the problem; and for GDE3 [230], CR = 0.5,F = 1.0. For the parameters
of the proposed Adap-MODE method, the PM adaptation rate is set to α = 0.3 and minimal probability
pmin = 0.05, as in [165]; and the parameter c for the adaptive parameter control of CR and F is set to 0.1,
as in [374], with CR and F being both initialized to 0.2. Lastly, the DE population size is set to 100.

In this work, the AOS mechanism implemented in Adap-MODE is used to select between the fol-
lowing four DE mutation strategies: (1) DE/rand/1/bin, (2) DE/current-to-rand/1/bin, (3) DE/rand/2/bin,
and (4) DE/rand-to-best/2/bin. These are the same strategies used in some previous works [311, 165]; no
theoretical or empirical analysis was preliminary performed for their choice. It is worth highlighting
that the AOS scheme is generic: any other set of mutation strategies could be considered here.

In order to compare the performance of the proposed and baseline approaches, ZDT [377] and DTLZ
[120] test suites are considered as benchmark functions. The maximum number of generations is set to
300 for ZDT, and to 500 for DTLZ.

Two assessment metrics are used to quantitatively evaluate the performance of each algorithm at the
endof each run, averagedover 50 runs. TheUniformAssessment (UA)metric [248] is used to evaluate the
spread of the solutions, while the Hyper-Volume (HV) [382] is a comprehensive performance indicator.
Generally, for the values of both UA and HV, the larger the better.

12.4.2 Experimental Results

The comparative results, for each of the are presented in Tables 12.1 to 12.3. Following the central limit
theorem,we assume that the samplemeans are normally distributed; therefore, the paired t-test statistical
test at 95% confidence level is adopted to compare the significance between two competing algorithms,
with the † indicating thatAdap-MODE is significantly better than all its competitors in the corresponding
Table, and ‡ representing that the best competitor significantly outperforms Adap-MODE. Moreover,
the best results for each metric on each problem function are highlighted in boldface.

Starting with the comparison between Adap-MODE and the two state-of-the-art MOEAs, namely
NSGA-II and GDE3, the results are presented in Table 12.1. These results clearly show that Adap-MODE
is the best choice when compared to its competitors: it achieves the best results in 23 out of the 24
performance metrics, performing significantly better in 22 of them. The only exception is for the UA
metric in the DTLZ4 problem, in which NSGA-II wins. It is worth noting that Adap-MODE performs
around two times better than its competitors w.r.t. the uniformity metric UA in most of the functions,
what might be largely attributed to the use of the proposed tree neighborhood density estimator by the
fitness assignment.

Table 12.2 compares the performance of Adap-MODE with four static variants of it, each using one
of the four available mutation strategies, without any adaptive parameter control. From these results, it
becomes clear that there is no singlemutation strategy that is the best over all the functions. For example,
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Table 12.1: Comparative results of NSGA-II, GDE3 and Adap-MODE
NSGA-II GDE3 Adap-MODE S

ZDT1 UA 4.433e-1/3.56e-2 2.359e-1/4.42e-2 8.080e-1/1.62e-2 †
HV 3.65960/3.00e-4 3.65990/3.55e-4 3.66193/3.15e-5 †

ZDT2 UA 4.391e-1/4.68e-2 2.551e-1/4.98e-2 8.069e-1/1.89e-2 †
HV 3.32618/3.21e-4 3.32673/3.06e-4 3.32853/4.19e-5 †

ZDT3 UA 4.252e-1/4.49e-2 2.069e-1/4.17e-2 7.660e-1/1.98e-2 †
HV 4.80650/5.13e-2 4.81433/1.95e-4 4.81463/4.81e-4 †

ZDT4 UA 4.173e-1/4.69e-2 2.403e-1/4.64e-2 8.055e-1/1.85e-2 †
HV 3.65413/4.04e-3 3.63033/1.84e-1 3.66201/5.33e-4 †

ZDT6 UA 4.529e-1/4.86e-2 2.226e-1/4.67e-2 7.896e-1/2.27e-2 †
HV 3.03090/1.51e-3 3.04029/2.67e-4 3.04183/1.62e-5 †

DTLZ1 UA 3.742e-1/4.44e-2 5.256e-1/3.58e-2 8.246e-1/1.48e-2 †
HV 0.967445/1.95e-3 0.965469/9.45e-4 0.973582/2.75e-4 †

DTLZ2 UA 3.688e-1/3.78e-2 4.868e-1/3.30e-2 8.236e-1/1.84e-2 †
HV 7.33017/2.70e-2 7.31392/9.05e-3 7.40523/1.14e-2 †

DTLZ3 UA 3.353e-1/7.92e-2 4.857e-1/4.09e-2 8.304e-1/1.72e-2 †
HV 6.41853/1.80e+0 5.85267/2.37e+0 7.32465/5.76e-1 †

DTLZ4 UA 4.404e-1/9.19e-2 2.532e-1/3.91e-2 2.654e-1/2.99e-2 ‡
HV 6.90792/7.55e-1 5.46000/1.10e+0 7.02943/5.46e-1 †

DTLZ5 UA 3.930e-1/4.63e-2 4.379e-1/3.85e-2 7.866e-1/1.82e-2 †
HV 6.10048/1.42e-3 6.08543/1.83e-3 6.10548/4.40e-3

DTLZ6 UA 2.939e-1/5.19e-2 2.652e-1/4.33e-2 7.759e-1/2.18e-2 †
HV 5.86932/7.09e-2 6.10187/2.12e-3 6.10732/4.88e-3 †

DTLZ7 UA 4.102e-1/3.96e-2 4.491e-1/3.70e-2 7.723e-1/1.86e-2 †
HV 13.15151/8.55e-2 13.19772/9.29e-2 13.46486/7.43e-2 †

for the ZDT2 function, strategy 2 is the best in terms of HV, while strategy 1 is the winner for ZDT3. It is
also worth noting that strategy 4 performs worst, while strategies 1 and 3 are the most competitive ones.
This kind of situation motivates the use of the AOS paradigm. And indeed, Adap-MODE remains the
best option in most of the functions, while achieving very similar performance in others.

Table 12.2: Comparative results of Adap-MODE and its pure versions, following the same order of the
problems as in Table 12.1

Str.1 Str.2 Str.3 Str.4 Adap-MODE S
UA 7.9e-1/1.9e-2 7.9e-1/1.9e-2 7.4e-1/2.6e-2 4.1e-1/5.2e-2 8.1e-1/1.6e-2 †
HV 3.662/3.4e-5 3.662/3.4e-5 3.656/2.2e-3 1.902/3.9e-1 3.662/3.1e-5
UA 7.9e-1/1.5e-2 8.0e-1/1.9e-2 7.2e-1/2.7e-2 3.6e-1/6.3e-2 8.1e-1/1.9e-2
HV 3.328/3.4e-5 3.328/3.9e-5 3.319/4.6e-3 1.905/2.4e-1 3.328/4.2e-5 ‡
UA 7.7e-1/2.1e-2 7.5e-1/2.7e-2 5.1e-1/8.0e-2 3.4e-1/2.7e-2 7.6e-1/1.9e-2
HV 4.815/6.4e-5 4.814/1.6e-3 4.775/1.3e-2 1.781/3.4e-1 4.814/4.8e-4 ‡
UA 8.1e-1/1.7e-2 8.0e-1/1.6e-2 8.0e-1/1.9e-2 3.3e-1/3.9e-2 8.0e-1/1.8e-2
HV 3.636/1.0e-1 3.662/3.8e-5 3.649/8.6e-2 0.0/0.0 3.662/5.3e-4
UA 7.9e-1/1.9e-2 8.1e-1/2.0e-2 8.2e-1/1.9e-2 7.6e-1/4.6e-2 7.9e-1/2.2e-2 ‡
HV 3.042/1.7e-5 3.042/2.4e-5 3.042/1.5e-5 3.041/3.1e-3 3.042/1.6e-5
UA 8.3e-1/2.1e-2 8.2e-1/1.7e-2 8.2e-1/1.5e-2 4.7e-1/4.3e-2 8.2e-1/1.5e-2
HV 0.97/1.0e-3 0.97/5.6e-4 0.969/7.1e-4 0.0/0.0 0.973/2.7e-4 †
UA 8.1e-1/1.8e-2 8.0e-1/2.0e-2 8.0e-1/1.9e-2 7.9e-1/2.5e-2 8.2e-1/1.8e-2
HV 7.348/1.4e-2 7.337/1.4e-2 7.335/7.8e-3 7.303/8.8e-3 7.405/1.1e-2 †
UA 8.0e-1/1.8e-2 3.5e-1/3.9e-2 3.4e-1/3.2e-2 4.0e-1/3.9e-2 8.3e-1/1.7e-2 †
HV 6.538/2.0 0.0/0.0 0.0/0.0 0.0/0.0 7.324/5.7e-1 †
UA 2.5e-1/3.8e-2 2.4e-1/3.3e-2 2.5e-1/3.0e-2 2.3e-1/3.0e-2 2.6e-1/2.9e-2 †
HV 5.58/1.1 6.639/4.8e-1 6.359/7.7e-1 5.971/1.1 7.029/5.4e-1 †
UA 7.4e-1/2.2e-2 7.2e-1/2.3e-2 7.2e-1/2.1e-2 7.3e-1/2.8e-2 7.8e-1/1.8e-2 †
HV 6.073/3.4e-3 6.067/3.4e-3 6.065/3.9e-3 6.052/5.3e-3 6.105/4.4e-3 †
UA 7.9e-1/2.0e-2 7.9e-1/2.1e-2 7.9e-1/1.7e-2 7.6e-1/2.5e-2 7.7e-1/2.2e-2 ‡
HV 6.107/4.4e-3 6.106/4.2e-3 6.108/5.4e-3 5.764/1.0 6.107/4.9e-3
UA 7.6e-1/1.8e-2 7.7e-1/1.6e-2 7.4e-1/2.2e-2 5.1e-1/1.3e-1 7.7e-1/1.8e-2
HV 13.412/5.6e-2 13.427/4.8e-2 13.346/7.3e-2 7.735/3.7 13.46/7.4e-2 †

The last comparative results, shown inTable 12.3, presents theperformanceofAdap-MODEcompared
with its “partially”-adaptive variants, one using only the AOS, and the other using only the adaptive
parameter control of CR and F. From these results, it is not clear which of the adaptive modules is the
most beneficial for the performance of Adap-MODE: at some functions, the “AOS only”method is better
than the “parameter control only” one, while in others the opposite occurs. But these results clearly
demonstrate that the combined use of both adaptive modules is better than their sole use, what is shown
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by the fact that Adap-MODE significantly outperforms them in most of functions, in terms of both UA
and HV.

Table 12.3: Comparative results of Adap-MODE, Adap-MODE with AOS only and Adap-MODE with
parameter control only

CR/F(fixed)+AOS CR/F(adapt.)+Unif.OS Adap-MODE S

ZDT1 UA 7.860e-1/2.08e-2 7.851e-1/2.42e-2 8.080e-1/1.62e-2 †
HV 3.66162/2.97e-4 3.66066/2.69e-4 3.66193/3.15e-5 †

ZDT2 UA 7.809e-1/2.02e-2 7.793e-1/1.71e-2 8.069e-1/1.89e-2 †
HV 3.32840/3.13e-4 3.32612/5.27e-4 3.32853/4.19e-5 †

ZDT3 UA 7.538e-1/2.83e-2 7.487e-1/1.52e-2 7.660e-1/1.98e-2 †
HV 4.81448/1.18e-3 4.81228/1.18e-3 4.81463/4.81e-4

ZDT4 UA 8.127e-1/2.30e-2 7.486e-1/6.12e-2 8.055e-1/1.85e-2
HV 3.64150/1.43e-1 3.65409/4.26e-2 3.66201/5.33e-4 †

ZDT6 UA 7.626e-1/2.34e-2 8.078e-1/2.34e-2 7.896e-1/2.27e-2 ‡
HV 3.04179/3.22e-5 3.04183/4.93e-5 3.04183/1.62e-5

DTLZ1 UA 8.247e-1/1.80e-2 8.200e-1/1.73e-2 8.246e-1/1.48e-2
HV 0.969925/5.41e-4 0.917842/1.25e-1 0.973582/2.75e-4 †

DTLZ2 UA 8.096e-1/2.01e-2 8.224e-1/1.56e-2 8.236e-1/1.84e-2
HV 7.33762/1.10e-2 7.40368/9.20e-3 7.40523/1.14e-2

DTLZ3 UA 6.365e-1/1.44e-1 8.289e-1/1.42e-2 8.304e-1/1.72e-2
HV 7.13704/3.70e-1 4.59535/2.92e+0 7.32465/5.76e-1 †

DTLZ4 UA 2.092e-1/3.32e-2 9.814e-2/4.33e-3 2.654e-1/2.99e-2 †
HV 6.78321/6.03e-1 4.66216/1.09e+0 7.02943/5.46e-1 †

DTLZ5 UA 7.334e-1/2.26e-2 7.792e-1/1.95e-2 7.866e-1/1.82e-2 †
HV 6.07005/3.69e-3 6.10649/3.78e-3 6.10548/4.40e-3

DTLZ6 UA 7.739e-1/2.32e-2 7.876e-1/2.00e-2 7.759e-1/2.18e-2 ‡
HV 6.10841/5.67e-3 6.10640/4.14e-3 6.10732/4.88e-3

DTLZ7 UA 7.621e-1/1.83e-2 7.634e-1/1.70e-2 7.723e-1/1.86e-2 †
HV 13.42436/6.19e-2 13.43145/7.25e-2 13.46486/7.43e-2 †

12.5 Conclusion

In this report, we propose a new DE algorithm for multi-objective optimization that uses two adaptive
mechanisms in parallel: the Adaptive Operator Selection mechanism, to control which operator should
be applied at each instant of the search; and the Adaptive Parameter Control, that adapts the values
of the DE parameters CR and F while solving the problem. A tree neighborhood density estimator
is proposed and, combined with the Pareto dominance strength measure, is used in order to evaluate
the fitness of each individual. Additionally, a novel replacement mechanism is proposed, based on a
three-step comparison procedure. As a consequence, the adaptive methods employed by the proposed
algorithm, inspired from recent literature, are originally ported to the multi-objective domain.

Numerical experiments demonstrate that the proposedAdap-MODE is capable of efficiently adapting
to the characteristics of the region that is currently being exploredby the algorithm, by efficiently selecting
appropriate operators and their corresponding parameters. Adap-MODE is shown to outperform two
state-of-the-artMOEAs, namelyNSGA-II [118] andGDE3 [230], inmost of the functions. It also performs
significantly better, in most of the functions, than the same MODE with static parameters, and than the
partially-adaptive variants using each of the two adaptive modules.

But there is still a lot of space for improvements. Firstly, for the fitness evaluation, more sophisticated
schemes to control the balance between both convergence and spread could be analyzed. Regarding the
AOS implementation, other schemes have already shown to perform better than PM in the literature
and should also be analyzed in the near future, such as the Adaptive Pursuit [345] and the Dynamic
Multi-Armed Bandit [148]; a more recent work, that also use bandits, reward the operators based on
ranks [147], thus achieving a much higher robustness w.r.t. different benchmarking situations. In the
same way, there are different alternatives for the adaptive parameter control of CR and F that could be
further explored.
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Another issue that deserves further exploration is related to the (hyper) parameters of the adaptive
modules. In the case of Adap-MODE, the AOS requires the definition of the adaptation rate α and the
minimum probability pmin, while the adaptive parameter control requires the setting of c. In this work,
these parameters were set as in the original references, but further analysis of their sensitivity should be
done. Ideally, Adap-MODE and the other methods used as baseline should also be all compared again,
after a proper off-line tuning phase. Another important baseline would be the sameMODEwith off-line
tuned CR, F, and mutation application rates.

Lastly, the extra computational time resulting from the use of these adaptive schemes should be
further analyzed; although it is true to say that, in real-world problems, the fitness evaluation is usually
the most computationally expensive step, all the rest becoming negligible.
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This report presents a refined single parent evolution strategy that is derandomized with mirrored
sampling and/or uses sequential selection. The paper analyzes some of the elitist variants of this
algorithm. We prove, on spherical functions with finite dimension, linear convergence of different
strategies with scale-invariant step-size and provide expressions for the convergence rates as the
expectation of some known random variables. In addition, we derive explicit asymptotic formulae for
the convergence rate when the dimension of the search space goes to infinity. Convergence rates on the
sphere reveal lower bounds for the convergence rate of the respective step-size adaptive strategies. We
prove the surprising result that the (1+2)-ES with mirrored sampling converges at the same rate as
the (1+1)-ES without and show that the tight lower bound for the (1+λ)-ES with mirrored sampling
and sequential selection improves by 16% over the (1+1)-ES reaching an asymptotic value of about
−0.235.

13.1 Introduction

Evolution Strategies (ESs) are robust search algorithms designed to minimize objective functions f that
map a continuous search space RN into R. In a (1 +, λ)-ES, λ candidate solutions, the offspring, are
created from a single parent, Xk ∈ R

N. The λ offspring are generated by adding λ independent random
vectors (N i

k
)1≤i≤λ to Xk. Then, the best of the λ offspring Xk +N

i
k
in case of comma selection or of the λ

offspring plus parent in case of plus selection is selected to become the next parent Xk+1. The (1+1)-ES is
arguably the most local, and the locally fastest, variant of an evolution strategy.

Derandomization of random numbers is a general technique where the independent samples are
replaced by dependent ones with the objective of accelerating algorithm convergence. Derandomiza-
tion by means of antithetic variables for isotropic samples was first introduced within general ESs in
[344]. Mirrored samples, as used in this report, are a special case, where the number of independent
events is reduced by a factor of two only. In [343], the sequence of uniform random numbers used for
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sampling a multivariate normal distribution was replaced by scrambling-Halton and Sobol sequences.
These sequences achieved consistent improvements of CMA-ES (covariancematrix adaptation evolution
strategy) mainly on unimodal test functions, typically with ≤30% speed-up and most pronounced in
dimension 2. The improvements are however difficult to attribute to a cause for at least two reasons.
First, in CMA-ES with µ > 1, quasi-random numbers possibly introduce a (strong) bias on the step-size.
For mirrored samples and Sobol sequences, we have verified this bias empirically (shown for mirrored
sampling in [85]). The bias can improve convergence rates,1 but violates the demand on a stochastic
search algorithm to be unbiased [181, 175]. Second, random rotations of the quasi-random vector sets
in [343] lead to a significant loss of the advantage. The investigated functions were however unrotated.
This makes the identity as initial covariance matrix, represented in the given coordinate system and in
connection with the quasi-random numbers, presumably a choice that is unintentionally biased towards
the function testbed.

Consequently, it remains to be investigated to what extend the improvements can be attributed to a
bias on the variance of the sum of selected vectors (leading to the bias on the step-size), to a coordinate
system dependency, or to the quasi-random structure itself.

Our own experiments with derandomizations beyond mirroring, similar to those in [344], revealed
the most pronounced effects (unsurprisingly) by mirroring and in small populations. We have not con-
sidered algorithms that are—by themselves or in combination with CMA-ES—biased or not rotationally
invariant.

Mirrored sampling is a derandomization technique similar to antithetic variables that was recently
introduced within (1+λ) and (1, λ)-ESs [85]. In addition, mirrored sampling has been coupled with
sequential selection, a modification of the (1, λ) and (1+λ) selection schemes where the offspring are
evaluated sequentially and the iteration is concluded as soon as one offspring is better than its current
parent [85].

Sequential selection and mirrored sampling have been implemented within the CMA-ES and ex-
tensively empirically studied on 54 noiseless [178] and noisy [179] functions in a series of papers
[27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38]. In summary, the variants with mirrored mutation and se-
quential selection improved their baseline algorithms (without these two ideas) on almost all functions
for almost all target valueswhere the combination of the two conceptswas never statistically significantly
worse than the standard algorithms. In particular for the elitist (1+1)-CMA-ES, additional mirrored mu-
tation and sequential selection improved the performance by about 17% on the non-separable ellipsoid
function, by about 20% on the ellipsoid, the discus, and the sum of different powers functions, and by
12% on the sphere function while no statistically significant worsening of the performance was reported
[29].

So far, theoretical investigations of mirrored sampling and sequential selection is restricted to comma
selection [85]. Convergence rates of the scale-invariant step-size (1, λ)-ES with mirrored sampling and
sequential selection on spherical functions have been derived and lower bounds for the convergence of
the different strategies were compared. Those results hold for finite dimensions of the search space. In
this report, we aim at generalizing those theoretical results to plus selection: we extend finite dimension
convergence proofs to plus selection and complement those results with asymptotic estimates of the
convergence rates when the dimension goes to infinity.

The paper is structured as follows. In Section 13.2, we describe the (1 +, λ)-ES with mirrored sampling
and sequential selection and derive general properties. In Section 13.3, we derive the linear convergence
of the (1+λ)-ES with mirrored sampling and sequential selection with scale-invariant step-size on
spherical functions. We express the convergence rate in terms of the expectation of a random variable.
In addition, we establish that the (1+1)-ES and the (1+2m)-ES with mirrored sampling exhibit the same
convergence rate. In Section 13.5, we derive some simple expressions for the asymptotic normalized
convergence rate of the different algorithms, where asymptotic refers to the dimension tending to infinity.

1For mirrored sampling this most probably happens if random vectors with different lengths are realized, which is the case in
particular in small dimensions.
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In Section 13.6, we numerically simulate the convergence rates for different dimensions and appraise
quantitatively the improvements brought by mirrored sampling and sequential selection.

Notations: In this report, a multivariate normal distribution with mean vector zero and covariance
matrix identity will be called standard multivariate normal distribution. The first vector (1, 0, . . . , 0) of
the canonical basis will be denoted e1.

13.2 (1 +, λ)-ES with Mirrored Sampling and Sequential Selection

In this section, we introduce the (1 +, λ)-ES with mirrored sampling and sequential selection and derive
general theoretical results on those algorithms.

13.2.1 Algorithm Description

Mirroredmutations and sequential selection have been introduced in [85] and are two independent ideas
for improving simple local search strategies such as (1 +, λ)-ESs. Algorithm 7 shows the pseudocode of
a combination of both concepts within the (1+λ)-ES and the (1, λ)-ES. Note that we describe the algo-
rithms without specifying which sampling distribution is used—though most of the time, for Evolution
Strategies, multivariate normal distributions are used. However, since we will derive some results that
are independent of the choice of the sampling distribution, we keep the description general and indicate
when a standard multivariate normal distribution is required.

Mirrored sampling: The idea behind mirrored sampling is to derandomize the generation of new
sample points. Instead of using two independent random vectors to create two offspring, with mirrored
sampling only a single randomvector instantiation is used to create two offspring: one by adding and the
other by subtracting the vector from the current search point. The two instantiations are called mirrored
or symmetric with respect to the parent Xk at iteration k if they take place in the same iteration. For odd
λ, every other iteration, the first offspring uses the mirrored last vector from the previous iteration, see
j in Algorithm 7. Consequently, in the (1+1m)-ES, a mirrored sample is used if and only if the iteration
index is even (given skip mirror in Algorithm 7 is false).

When evaluating a sampled solution and its mirrored counterpart, sometimes unnecessary function
evaluations are performed: for example, on unimodal objective functions with convex sub-level sets,
{x | f (x) ≤ c} for c ∈ R, such as the sphere function, f (x) = ‖x‖2, the mirrored solution Xk − N is always
worse than the parent Xk if Xk +N was better than Xk, see Fig. 13.1 and Proposition 13.2.4 below. Setting
skip mirror to true in Algorithm 7 prevents these mirrored samples from being realized.2

Note that in the (1+λm)-ES, two mirrored offspring are entirely dependent and, in a sense, comple-
mentary, similar to antithetic variables for Monte-Carlo numerical integration [173]. Mirrored sampling
is also similar to using a symmetric difference quotient instead of the standard one-sided difference
quotient. The technique has been applied to Evolutionary Gradient Search (EGS) with good success [19].

Sequential selection: In sequential selection, the offspring are evaluated one by one, compared to their
parent, and the iteration is concluded immediately if one offspring is better than its parent. Sequential
selection has been introduced in the context of comma selection, where it aims to combine the robustness
advantage of comma selectionwith the speed advantage of elitist plus selection [85]. Sequential selection
and mirrored sampling are independent of each other and can be employed separately within ESs, see
Algorithm 7. We will see that sequential selection, in the elitist context, essentially comes down to the
(1+1)-ES. The (1+λ)-ES variant employing sequential selection is denoted by (1+λs)-ES.

Combining mirrored sampling and sequential selection: Sequential selection has been combined

2In the (1+1m)-ES, these unnecessary mirrored solutions fall closely together with the previous parental solution.
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Algorithm 7: Pseudocode for the (1+λ)-ES and the (1, λ)-ES with all combinations with/without
mirrored sampling and/or sequential selection. Xk ∈ R

N denotes the current search point and σk
the current step-size at iteration k. (N

m
)m∈N is a sequence of random vectors. In this report, skip

mirror is true whenever sequential selection is true.

given: f : RN → R, X0 ∈ RN, σ0 > 0, λ ∈ N+, (Nm)m∈N

m← 0 number of random samples used
j← 0 use previous sample if j is even
k← 0 iteration counter for notational consistency
while stopping criterion not fulfilled do

i← 0 offspring counter
while i < λ do
i← i + 1, j← j + 1
if mirrored sampling and j ≡ 0 (mod 2) then

Xi
k = Xk − σkNm

use previous sample
else

m← m + 1
Xi
k = Xk + σkNm

if f (Xi
k) ≤ f (Xk) then

if skip mirror then
j← 0 continue with a fresh sample

if sequential selection then
break

end while
if plus selection then

Xk+1 = argmin{ f (Xk), f (X
1
k ), . . . , f (X

i
k)}

else
Xk+1 = argmin{ f (X1

k ), . . . , f (X
i
k)}

σk+1 = update(σk)
k← k + 1 iteration counter

end while

with mirrored sampling in the (1, λ)-ES and, although not explicitly mentioned, skip mirror was in
this case always applied [85]. Both concepts complement each other well for the (1, λ)-ES. Sequential
selection tends to reduce the realized population size to aminimumandmirrored sampling improves the
performance in particular for very small population sizes. In this report as well, skip mirror is set to true
when sequential selection andmirrored sampling are combined. With sequential selection, it is important
that independent and mirrored offspring are evaluated alternately in order to profit immediately from
the increased probability of the mirrored offspring being better after the independently drawn offspring
was worse than the parent [85].

The (1+λ)-ES with mirrored sampling and sequential selection is denoted as (1+λsms)-ES where the
superscript refers to sequential selection and the subscript to mirrored sampling with skip mirror set to
true. All results in this report refer to strategies where skip mirror is true when sequential selection is
applied.

13.2.2 General Properties of Mirrored Sampling and Sequential Selection

In this section, we derive general results on evolution strategies using mirrored sampling and sequential
selection. Let us first recognize that the (1+λs)-ES is essentially a (1+1)-ES with smaller iteration counter.
In both strategies, the parent is updated if and only if the currently sampled offspring is better (but see
also Remark 13.2.2). Now, we also establish for mirrored sampling that (1+1ms)-ES and (1+λsms)-ES
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Figure 13.1: Mirrored sampling on an objective function with convex sub-level sets. The shaded region
represents the set of solutions with a better objective function value than the parent solution (black dot).
Not both mirrored offspring can be better than the parent solution at the same time: shown are two examples
of an offspring (black) and its mirrored version (gray) where either one or both offspring are worse than
the parent.

all evaluate the same points, provided they use the same (constant or scale-invariant) step-size and the
same random instance for generating the offspring.

13.2.1 Proposition
The (1+λsms)-ES is for any λ ≥ 1 the same algorithm—with possibly different iteration counter, given the
same random vectors and the same step-sizes are used (for example the step-size σk is either constant or
scale-invariant, i.e., σk = σ‖Xk‖with σ constant).

Proof. We prove that the state of the algorithm (apart from the iteration counter) does not depend on λ.
Independently of λ, because of sequential selection applied in combination with plus selection, any new
evaluated offspring is sampled from the best ever evaluated point so far. Since step-size only depends on
the parent or is constant, the same offspring will be sampled provided the random samples used are also
independent of λ. However, the samples used are taken one by one from (Nm,−Nm)m∈N where because
skip mirror is true, some mirrored vectors −N are skipped. But the decision of whether or not to skip
the mirroring of a sample is also independent of λ since it only depends on a comparison between the
single last offspring and the parent. �

Due to this result, the notations (1+1ms)-ES, (1+2sms)-ES and (1+λsms)-ES refer, in this report, all to the
same strategy. However, this might not be the case in practice.

13.2.2 Remark
In practice, the behavior of ESs with sequential selection depends on λ, because the step-size is typically
updated at the end of each iteration and therefore more often with small λ.

13.2.3 Remark
For µ = 1, sequential selection and/or mirroring have been combined with CMA-ES and extensively
studiedwith plus and comma selection anddifferent step-size rules [27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38].

We derive now some results on objective functions with convex sub-level sets. We first establish that
on objective functions with convex sub-level sets twomirrored offspring cannot be both better than their
parent (see also Fig. 13.1).

13.2.4 Proposition
Let f be an objective function with convex sub-level sets, then two mirrored offspring cannot be simul-
taneously strictly better than their parent.
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Proof. Considering the convex sub-level set, given by the parent solution, and the tangent hyperplane
in this solution, the two mirrored offspring can never lie on the same side of the tangent hyperplane, see
Fig. 13.1. At the same time, due to the convexity of the sub-level set and the definition of the tangent
hyperplane, all solutions that are better than the parent solution lie on the same side of the tangent
hyperplane such that not both mirrored offspring can have better objective function values at the same
time. �

A consequence of Proposition 13.2.4 is that on objective functions with convex sub-level sets, sequen-
tial selection applied with two mirrored offspring has no effect on the sequence of accepted solutions. In
this case, sequential selection combinedwith skipmirror only reduces the number of evaluated solutions.

13.2.5 Corollary (Identical trace for λ = 2)
On objective functions with convex sub-level sets, the (1+2m)-ES and the (1+2sms)-ES deliver the same
sequence of parental solutions (given they use the same random vectors and step-sizes). The same holds
for the (1, 2m)-ES and the (1, 2sms)-ES.

Proof. We consider the iteration step k and assume that m = k at the beginning of the inner while loop.
According to Proposition 13.2.4, it can never happen that both offspring are better than the parent and
only two remaining cases need to be investigated. (i) In case of both offspring being worse than the
parent, both plus-selection algorithms will keep the parent whereas the better of the two offspring is
taken as the new parent by both comma-strategy algorithms. (ii) In case that one of the two offspring is
not worse than the parent, the other must be worse and all algorithms will take the better offspring as
their new parent solution—there is only a difference between the algorithms if the first offspring is not
worse than the parent. Only in this case, the algorithms with sequential selection will directly accept the
first offspring as next parent while the other variants evaluate unnecessarily the second (worse) offspring
as well. Since either both offspring are evaluated or the sample associated to the non-evaluated offspring
is skipped, in the next iteration, a fresh sampleNm+1 will be used for the first offspring thus m = k + 1 at
the beginning of the next inner while loop. �

Because sequential selection evaluates sometimes only one solution per iteration, the corollary implies
that on functions with convex sub-level sets, the (1+2sms)-ES (or (1, 2sms)-ES) will converge faster than the
(1+2m)-ES (or (1, 2m)-ES) in case of convergence and diverge faster in case of divergence.

We can additionally establish that for all strategies with two offspring and sequential selection, the
number of offspring evaluated per iteration is the same, independent of mirroring and elitism:

13.2.6 Lemma
Assume the (1 + 2s), (1, 2s), (1+2sms), (1, 2sms)-ESs start at iteration k from the same parent Xk, sample the
same first offspring Xk +N , and optimize the same objective function. Then the number of evaluated
offspring at iteration k will be the same for all strategies.

Proof. In all the cases, the number of evaluated offspring will be 1 if Xk +N is not worse than Xk and 2
otherwise. �

Finally, we find that for λ to infinity, comma strategies using sequential selection without or with
mirroring converge to the (1+1)-ES or the (1+1ms)-ES, respectively:

13.2.7 Lemma (Equivalence of (1,∞s)-ES and (1+1)-ES)
Using scale-invariant or constant step-size, the (1,∞s)-ES is equivalent to the (1+1)-ES and the (1,∞s

ms)-ES
is equivalent with the (1+1ms)-ES.
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Proof. The proof follows directly from the algorithm descriptions, similar to the proof of Proposi-
tion 13.2.1. �

13.3 Linear Convergence and Lower Bounds

Evolution Strategies are rank-based search algorithms and as such cannot exhibit a faster convergence
than linear [342]. We here define linear convergence as the logarithm of the distance to the optimum
decreasing linearly with the increasing number of function evaluations. An example of linear conver-
gence is illustrated in Fig. 13.2 for three different instances of the (1+1)-ES with scale-invariant step-size.
Formally, for the (1+1)-ES, let Xk be the estimate of the solution at iteration k. Almost sure (a.s.) linear
convergence takes place if there exists a constant c , 0, such that

1
k
ln
‖Xk‖
‖X0‖

→ c a.s. (13.1)

Literally, convergence of Xk takes place only if c < 0 and for c > 0 the term divergence is more appropriate.
If the above expression goes to zero, the strategy might still converge sub-linearly [42]. In this report, we
analyze algorithms that do not have a constant number of function evaluations per iteration and we will
use the following generalization of (13.1) that accounts for the actual number of function evaluations:
let Tk be the number of function evaluations performed until iteration k. Almost sure linear convergence
takes place if there exists a constant c , 0, such that

1
Tk

ln
‖Xk‖
‖X0‖

→ c a.s. (13.2)

For the (1+1)-ES both equations are equivalent and for the (1 +, λ)-ES we have Tk = kλ. The constant
c is called the convergence rate and it corresponds to the slope of the curves in Fig. 13.2. The dynamics
and thus the convergence rate of a step-size adaptive ES obviously depends on the step-size rule. The
fastest convergence rates for adaptive step-size ESs are in general reached for a specific step-size rule in
the so-called scale-invariant step-size ES where the step-size σk at time k is proportional to the distance to
the optimum. Assuming the optimum w.l.o.g. in 0, the scale-invariant step-size is σk = σ‖Xk‖ for σ > 0
on spherical functions g(‖x‖) for g ∈ M whereM denotes the set of functions g : R 7→ R that are strictly
increasing [204]. ESs with scale-invariant step-sizes are artificial algorithms as they use the distance to
the optimum to adapt the step-size. However, they are interesting to study as (1) they are a realistic
approximation of step-size adaptive isotropic ESs where ‖Xk‖/σk is usually a stable Markov Chain, here
modeled as a constant, and (2) they achieve, for the right choice of the constant, optimal convergence
rates. In addition, the simplification of ‖Xk‖/σk being a constant induces in general much simpler
theoretical analysis. We now state formally the linear convergence of a (1+1)-ES with scale-invariant
step-size and give an implicit expression for the convergence rate:

13.3.1 Theorem (Linear convergence of (1+1)-ES [204])
The (1+1)-ES with scale-invariant step-size (σk = σ‖Xk‖) converges linearly on the class of spherical
functions g(‖x‖), g ∈ M, and

lim
k→∞

1
k
ln
‖Xk‖
‖X0‖

= CR(1+1)(σ), (13.3)

with
CR(1+1)(σ) = −

1
2
E
[
ln−

(
1 + 2σ[N ]1

︸  ︷︷  ︸
gain if negative

+ σ2‖N‖2
︸  ︷︷  ︸

loss

)]
,

where ln− is the negative part of the function ln, i.e., ln−(x) = −min(ln(x), 0),N is a standardmultivariate
normal distribution and [N ]1 is the projection ofN onto the first coordinate e1.
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Figure 13.2: Distance to optimum versus number of function evaluations for three different instances of
a (1+1)-ES minimizing the sphere function g(‖x‖), g ∈ M and with scale-invariant step-size σk = σ‖Xk‖
forN = 20 and σ = 0.6/N. Linear decrease is observed, the convergence rate corresponds to the slope
of the curves.

The function σ 7→ CR(1+1)(σ) gives for each σ > 0 the convergence rate of the (1+1)-ES with step-size
σk = σ‖Xk‖. The function has been studied in [204] and is plotted in Fig 13.4 (left) for different dimensions.
The minimum of σ 7→ CR(1+1)(σ) gives for a given dimension the lower bound for the convergence rate
of (1+1)-ES with offspring sampled with a standard multivariate normal distribution and any step-size
adaptation mechanism on any objective function as formally stated now:

13.3.2 Theorem (Lower Bound for (1+1)-ES [204])
Let f : RN 7→ R be a measurable objective function and x∗ ∈ RN. Assume that at each iteration k, the
standard multivariate normal distribution used to sample the offspring is independent of σk and Xk and
that E[| ln ‖X0 − x∗‖|] < ∞, then the convergence of the step-size adaptive (1+1)-ES is at most linear and

inf
k∈N

E[ln ‖Xk − x∗‖/‖X0 − x∗‖] ≥ inf
σ
CR(1+1)(σ) .

Objective for the rest of the paper: In the rest of the paper, we investigate the linear convergence of
mirrored and sequential variants of the (1+λ)-ES with scale-invariant step-size. As for the (1+1)-ES,
the minimum of the convergence rate in σ will represent lower bounds for the convergence rate of
step-size adaptive methods with a standard multivariate normal sampling on any objective function.
Before tackling the linear convergence of the different variants, we explain the main proof idea behind
the linear convergence proofs.

How to prove linear convergence of scale-invariant step-size ESs? We sketch the proof idea in the case
of the (1+1)-ES and we will explain in the core of the paper how to generalize this proof in particular
for the case of a non-constant number of evaluation per iteration. The first step of the proof expresses
the left-hand side (LHS) of (13.1) as a sum of k terms exploiting standard properties of the logarithm
function:

1
k
ln
‖Xk‖
‖X0‖

=
1
k

k−1∑

i=0

ln
‖Xi+1‖
‖Xi‖

. (13.4)

We then exploit the isotropy of the sphere function, the isotropy of the standardmultivariate normal dis-
tribution and the scale-invariant step-size rule toprove that all terms ln(‖Xi+1‖/‖Xi‖) are independent iden-
tically distributed
(i.i.d.). A law of large numbers3 (LLN) therefore implies that the right-hand side (RHS) of (13.4)
converges when k goes to infinity to E[ln(‖Xi+1‖/‖Xi‖)] almost surely.

3Verifying some technical conditions such that the expectation and the variance of ln(‖Xi+1‖/‖Xi‖) are finite.
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13.4 Convergence Rate on Spherical functions in Finite Dimension

In this section, we analyze the linear convergence of the (1+2m)-ES and the (1+λsms)-ES for a fixed
dimensionN of the search space. Before to establish the main results, we derive some technical results
and introduce some useful definitions.

13.4.1 Preliminary Results and Definitions

We establish first a lemma that simplifies the writing of the acceptance event of mirrored offspring.

13.4.1 Lemma
Let Xe1

= e1 + σN and Xm
e1
= e1 − σN be two mirrored offspring sampled from the parent e1 = (1, 0, . . . , 0).

On spherical functions, the acceptance event {‖e1 + σN‖ ≤ 1} can be written as {2[N ]1 + σ‖N‖2 ≤ 0}.
Similarly, the acceptance event of Xm

e1
satisfies {‖e1 − σN‖ ≤ 1} = {−2[N ]1 + σ‖N‖2 ≤ 0}.

Proof. We remark first that ‖e1 + σN‖ ≤ 1 is equivalent to ‖e1 + σN‖2 ≤ 1. We now develop ‖e1 + σN‖2
as 1 + 2σ[N ]1 + σ2‖N‖2 and we immediately obtain that 1 + 2σ[N ]1 + σ2‖N‖2 ≤ 1 is equivalent to
2σ[N ]1 + σ2‖N‖2 ≤ 0. We proceed similarly for the acceptance event of Xm

e1
. �

In the sequel, we will need to use the indicator function of the acceptance events of mirrored offspring
sampled from e1. For that reason we define the random variables W1 and Wm

1 in the following way:

13.4.2 Definition
Let W1 = 2[N ]1 + σ‖N‖2 and Wm

1 = −2[N ]1 + σ‖N‖2.

We can now express the indicator of the acceptance event of Xe1
as

1{Xe1
is better than e1} = 1{W1≤0} , (13.5)

and the indicator of the acceptance of Xm
e1
as

1{Xm
e1
is better than e1} = 1{Wm

1 ≤0} . (13.6)

Using the expression ofW1 and a straightforwardderivation, wefind the following alternative expression
for the convergence rate of the (1+1)-ES:

CR(1+1)(σ) =
1
2
E
[
ln(1 + σW11{W1≤0})

]
. (13.7)

We now establish two technical lemmas that will be useful to prove the equality of the convergence rate
of the (1+1)-ES and the (1+2m)-ES.

13.4.3 Lemma
LetN be a standard multivariate normal distribution, the following equality holds

E
[
ln(1 + (2σ[N ]1 + σ2‖N‖2)1{2[N ]1+σ‖N ‖2≤0}

]
=

E
[
ln(1 + (−2σ[N ]1 + σ2‖N‖2)1{−2[N ]1+σ‖N ‖2≤0}

]
(13.8)

or, using the notations W1 andWm
1

E
[
ln(1 + σW11{W1≤0})

]
= E

[
ln(1 + σWm

1 1{Wm
1 ≤0})

]
(13.9)
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Proof. Since N is a standard multivariate normal distribution, −N follows the same distribution as N
and thus (13.8) follows. �

13.4.4 Lemma
The following equation holds

E
[
ln

(
1 + σW11{W1≤0} + σW

m
1 1{Wm

1 ≤0}
)]

= 2E
[
ln

(
1 + σW11{W1≤0}

)]
(13.10)

where W1 = 2[N ]1 + σ‖N‖2 and Wm
1 = −2[N ]1 + σ‖N‖2 with N a random vector following a standard

multivariate normal distribution.

Proof. According to Proposition 13.2.4, two mirrored offspring cannot be simultaneously better than
their parent on the sphere function. Since {W1 ≤ 0} and {Wm

1 ≤ 0} are the acceptance events of mirrored
offspring started from e1 on the sphere function ((13.5) and (13.6)), we know that they are incompatible
such that 1{W1≤0} and 1{Wm

1 ≤0} are not simultaneously equal to 1. Consequently

ln
(
1 + σW11{W1≤0} + σW

m
1 1{Wm

1 ≤0}
)
=

ln(1 + σW11{W1≤0}) + ln(1 + σWm
1 1{Wm

1 ≤0}) .

Using the linearity of the expectation, we obtain that

E
[
ln

(
1 + σW11{W1≤0} + σW

m
1 1{Wm

1 ≤0}
)]
=

E
[
ln(1 + σW11{W1≤0})

]
+ E

[
ln(1 + σWm

1 1{Wm
1 ≤0})

]
.

We now use Lemma 13.4.3 and obtain that the RHS of the last equation equals 2E
[
ln(1 + σW11{W1≤0})

]
.

Hence the result. �

13.4.2 Convergence Rate for the (1 + 2m)-ES

In this section, we prove the linear convergence of the (1+2m)-ES with scale-invariant step-size and
prove the surprising result that the convergence rate of the (1+2m)-ES equals the convergence rate of
the (1+1)-ES. In a (1+2m)-ES with scale-invariant step-size, two mirrored offspring Xk + σ‖Xk‖N and
Xk − σ‖Xk‖N are sampled from the parent Xk where N is a standard multivariate normal distribution
independent of Xk and of the past (we omit the dependence in k for the sampled vectors for the sake
of readability). Since on the sphere function, the offspring cannot be simultaneously better than their
parent (see Proposition 13.2.4), the update equation for ‖Xk‖ reads:

‖Xk+1‖ = ‖Xk + σ‖Xk‖N‖ × 1{‖Xk+σ‖Xk‖N ‖≤‖Xk‖} +

‖Xk − σ‖Xk‖N‖ × 1{‖Xk−σ‖Xk‖N ‖≤‖Xk‖} +

‖Xk‖ × 1{‖Xk+σ‖Xk‖N ‖>‖Xk‖,‖Xk−σ‖Xk‖N ‖>‖Xk‖} . (13.11)

Before to prove the linear convergence of the (1+2m)-ES with scale-invariant step-size, we need to
establish the following lemma:

13.4.5 Lemma
Let Zk be the sequence of random variables

Zk =
1
2
ln

[
‖Yk + σN‖21{‖Yk+σN‖≤1}+

‖Yk − σN‖21{‖Yk−σN‖≤1} + 1{‖Yk+σN‖>1,‖Yk−σN‖>1}
]
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where Yk = Xk/‖Xk‖with Xk defined with (13.11). Then Zk are independent identically distributed as

Z(1+2m) =
1
2
ln

[
1 + σW11{W1≤0} + σW

m
1 1{Wm

1 ≤0}
]
.

Moreover E[|Z(1+2m)|] < ∞.

Proof. Because of the isotropy of the distribution of N and of the sphere function, in distribution Zk
equals

Zk
d
=

1
2
ln

[
‖e1 + σN‖21{‖e1+σN‖≤1}+

‖e1 − σN‖21{‖e1−σN‖>1} + 1{‖e1+σN‖>1,‖e1−σN‖>1}
]

(13.12)

where we have replaced Yk by e1. The independence of Zk comes from the fact thatN is independent of
Yk and from the isotropy of the sphere. The detailed proof of those two points is rather technical and
we refer to [34, Lemma 1 and Lemma 2] to see how to have a fully formal proof. We are now going to
simplify the following term

‖e1 + σN‖21{W1≤0} + ‖e1 − σN‖21{Wm
1 ≤0} + 1{W1>0,Wm

1 >0}

that comes into play in the RHS of (13.12). Developing ‖e1 +σN‖2 as 1+ 2σ[N ]1 +σ2‖N‖2 and ‖e1 −σN‖2
as 1 − 2σ[N ]1 + σ2‖N‖2, we can simplify the previous equation into

1{W1≤0} + σW11{W1≤0} + 1{Wm
1 ≤0} + σW

m
1 1{Wm

1 ≤0}

+ 1{W1>0,Wm
1 >0} .

Since 1{W1≤0} + 1{Wm
1 ≤0} + 1{W1>0,Wm

1 >0} = 1 we can simplify the previous equation into

1 + σW11{W1≤0} + σW
m
1 1{Wm

1 ≤0} .

Injecting this in (13.12), we obtain the result. The proof of the fact that E[|Z(1+2m)|] < ∞ comes from the
proof of the integrability of ln[1 +W11{W1≤0}] that has been shown in detail in [204]. �

We are now ready to prove the linear convergence of the (1+2m)-ES and express its convergence rate as
the expectation of the random variable Z(1+2m) introduced in the previous lemma divided by 2.

13.4.6 Theorem
For the (1+2m)-ES with scale-invariant step-size on the class of spherical functions g(‖x‖), g ∈ M, linear
convergence holds and

lim
k→∞

1
Tk

ln
‖Xk‖
‖X0‖

= CR(1+2m)(σ) (13.13)

where

CR(1+2m)(σ) =
1
2
E[Z(1+2m)]

=
1
4
E
[
ln

(
1 + σW11{W1≤0} + σW

m
1 1{Wm

1 ≤0}
)]

(13.14)

where W1 = 2[N ]1 + σ‖N‖2 and Wm
1 = −2[N ]1 + σ‖N‖2 with N a random vector following a standard

multivariate normal distribution.
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Proof. We start from (13.11), square it, normalize the equation by ‖Xk‖ and take the logarithm. We obtain

1
2
ln
‖Xk+1‖2
‖Xk‖2

=
1
2
ln

[
‖Yk + σN‖21{‖Yk+σN‖≤1}+

‖Yk − σN‖21{‖Yk−σN‖≤1} + 1{‖Yk+σN‖>1,‖Yk−σN‖>1}
]

where Yk = Xk/‖Xk‖. According to Lemma 13.4.5, by isotropy of the standard multivariate normal
distribution, the random variables in the RHS of the previous equation are independent and identically
distributed as

Z(1+2m) =
1
2
ln

[
1 + σW11{W1≤0} + σW

m
1 1{Wm

1 ≤0}
]

In addition, by Lemma 13.4.5, E[|Z(1+2m)|] < ∞, and we can thus apply the LLN for independent random
variables to

1
Tk

ln
‖Xk‖
‖X0‖

=
1
2k

ln
‖Xk‖
‖X0‖

=
1
4k

k−1∑

i=0

ln
‖Xi+1‖2
‖Xi‖2

and we obtain (13.14). �

Putting together (13.7), Lemma 13.4.4 and the expression of the convergence rate of the (1+2m)-ES found
in the previous theorem, we immediately obtain that the (1+1)-ES and the (1+2m)-ES converge at the
same rate. This result is stated in the following corollary.

13.4.7 Corollary
On the class of spherical functions, the (1+1)-ES and (1+2m)-ES with scale-invariant step-size converge
at the same convergence rate, i.e.

CR(1+1)(σ) = CR(1+2m)(σ) for all σ .

Weclose this sectionwith a geometrically based argumentation for the corollary. Consider the tangent
hyperplane at the parent location that divides the space into two half spaces and only one of the half
spaces contains better solutions. The (1+1)-ES samples isotropically into both half spaces integrating
over the entire space. The (1+2m)-ES samples one offspring into one half space and the second one into
the other. Together, the offspring integrate over exactly the same region as the single offspring in the
(1+1)-ES. The worse offspring is never successful, while the better offspring realizes twice the expected
improvement of the offspring in the (1+1)-ES.

13.4.3 Convergence Rate for the (1 + λs
ms
)-ES

In this section, we analyze the convergence rate of the (1+λsms)-ES. According to Proposition 13.2.1,
for all λ, the (1+λsms)-ES with scale-invariant step-size evaluate the same points in the search space
provided they use the same independent random sequence (N

m
)m∈N. Therefore, also the convergence

rate of the (1+λsms)-ES is independent of λ. Note that this is true because we investigate the convergence
rate defined as log-progress per function evaluation and not per iteration. Though we could think that
the easiest algorithm to analyze is the (1+1ms)-ES, we investigate the (1+2sms) for which iterations are
independent—contrary to the (1+1ms)—allowing thus to apply directly the LLN for independent random
variables.

13.4.8 Theorem
For the (1+λsms)-ES with scale-invariant step-size on the class of spherical functions g(‖x‖), g ∈ M, linear
convergence holds and for all λ

lim
k→∞

1
Tk

ln
‖Xk‖
‖X0‖

=
2

2 − ps(σ)
CR(1+1)(σ) (13.15)
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where ps(σ) = Pr(2[N ]1 + σ‖N‖2 ≤ 0) is the probability that the offspring Xe1
= e1 + σN is better than its

parent e1 whereN is a standard multivariate normal distribution.

Proof. We have seen in Proposition 13.2.1 that the (1+λsms)-ES with scale-invariant step-size evaluates
the same points for all λ. Therefore for all λ, the (1+λsms)-ESs with scale-invariant step-size have the
same convergence rate. Let us analyze the (1+2sms)-ES. Let us write 1

Tk
ln ‖Xk‖
‖X0‖

as AkBk with Ak = k/Tk and

Bk =
1
k ln(‖Xk‖/‖X0‖). We are going to handle both terms separately. For Bk, we exploit Corollary 13.2.5

where we have seen that, starting from the same parent, the (1+2m)-ES and (1+2sms)-ES have the same
parent for the next iteration for objective functions with convex sub-level sets. Thus the sequence of
parents Xk is the same for a (1+2m)-ES and a (1+2sms)-ES and thus the expected relative improvement per
iteration will be the same for both algorithms. By Corollary 13.4.7, we have that Bk goes to 2CR(1+1)(σ)
(the factor 2 comes from the normalization by evaluations for the convergence rate of the (1+2m)-ES). For
the term Ak, we denote by Λi the number of offspring evaluated at iteration i. Then, Tk = Λ1 + . . . + Λk

and 1/Ak =
1
k

∑k
i=1Λi. Similarly to [34, Lemma 8], the Λk are independent and identically distributed. In

addition, according to Lemma 13.2.6, the number of evaluated offspring for the (1+2sms) is the same as
for the (1, 2s), we can therefore use the result shown in [29, Lemma 8] and obtain that 1/Ak converges
almost surely to 2 − ps(σ).

Therefore Ak times Bk converges to

2
2 − ps(σ)

CR(1+1)(σ) .�

�

Wesee in (13.15) that the convergence rate of the (1+λsms)-ES is expressed as the product of the convergence
rate of the (1+1)-ES times 2/(2−ps(σ)). The term 2/(2−ps(σ))—which is always larger or equal one—is the
gain brought by sequential selection. Indeed, as sketched in the proof of the theorem, the gain brought by
sequential selection in strategies with two offspring (with mirrored or non-mirrored sampling) always
equals 2/(2 − ps(σ)).

We give a useful expression for the success probability ps(σ) for a single offspring on the sphere
function.

13.4.9 Lemma
For all σ > 0, we have

ps (σ) = Pr
(
[N ]1 ≤ −

d

2
σ
‖N‖2
d︸︷︷︸

close to 1

)
(13.16)

Proof. The lemma follows from the definition of ps(σ) = Pr
(
2[N ]1 + σ‖N‖2 ≤ 0

)
�

The expression suggests that σ ∝ 1/d achieves a fairly d-independent success probability. A typical, close
to optimal value is σ ≈ 1.2/dwith ps ≈ 1/4 and 2/(2 − ps) ≈ 1.16.

Finally, we can give the upper bound for the speed-up brought by sequential selection, when λ = 2.

13.4.10 Corollary (Speed-up for λ = 2)
The upper
bound for the speed-up brought by sequential selection for λ = 2 is given by

2
2 − ps

<
4
3
= 1.333 . . . (13.17)
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Proof. From Lemma 13.4.9 we find for σ > 0 that ps < Pr([N ]1 ≤ 0) = 1/2 which implies (13.17). For
σ = 0 we have no speed-up. �

This upper bound holds equally well for savings by sequential selection whether or not skip mirror is
applied.

13.5 Asymptotic Convergence Rates

So far, we have proven the linear convergence of some scale-invariant step-size ESs for a fixed dimension
of the search space. In this section, we want to study how the finite dimension convergence rates derived
previously behave when the dimension goes to infinity. We have observed that the convergence rate of
the (1+1ms)-ES is a function of the convergence rate of the (1+1)-ES and of the probability of success
ps. We therefore study those two quantities asymptotically in order to obtain the asymptotic behavior of
CR(1+1ms). Both asymptotic estimates were already (less rigorously) derived in [315].

13.5.1 Asymptotic Probability of Success

We first derive the limit of the probability of success ps(σ/d) when d goes to infinity.

13.5.1 Lemma
For all σ > 0

lim
N→∞

ps

(
σ

d

)
= Pr([N ]1 ≤ −σ/2)

= Φ

(
−σ
2

)
(13.18)

where Φ is the cumulative distribution of a standard normal distribution, i.e. Φ(x) = 1√
2π

∫ x

−∞ e−t
2/2 dt or,

with the error function erf, Φ(x) = 1
2

[
1 + erf

(
x√
2

) ]
.

Proof. We start from the expression of ps(σ/d):

ps(σ/d) = Pr
(
2[N ]1 +

σ

d
‖N‖2 ≤ 0

)
(13.19)

= E
[
1{2[N ]1+ σd ‖N ‖2≤0}

]
(13.20)

From the LLN, we know that

lim
N→∞

1
N
‖N‖2 = lim

N→∞

1
N

d∑

i=1

N2
i = 1

almost surely, whereNi are i.i.d. standard normal distributions that are the coordinates of the vectorN .
Thus

2[N ]1 +
σ

d
‖N‖2 −−−−→

N→∞
2[N ]1 + σ

and therefore we have that
1{2[N ]1+ σd ‖N ‖2≤0} −−−−→N→∞

1{2[N ]1+σ≤0}a.s.

Since 1{2[N ]1+ σd ‖N ‖2} ≤ 1, we can apply the Lebesgue dominated convergence theorem that implies that

E
[
1{2[N ]1+ σd ‖N ‖2≤0}

]
−−−−→
N→∞

E
[
1{2[N ]1+σ≤0}

]
.
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We can rewrite the RHS of the last equation as

E
[
1{2[N ]1+σ≤0}

]
= Pr(2[N ]1 + σ ≤ 0) = Pr([N ]1 ≤ −σ/2) .

Moreover, Pr([N ]1 ≤ −σ/2) = Φ(−σ/2). �

13.5.2 Asymptotic Convergence Rate of the
(1+1)-ES

We will derive now the asymptotic convergence rate of the (1+1)-ES with scale-invariant step-size and
find that it coincides with the negative of the well-known progress rate of the (1+1)-ES [315]. We first
need to derive the following technical lemma:

13.5.2 Lemma
LetN be a standard normal distribution, the following equation holds

E[N1{N≤−σ/2}] = −
1√
2π

exp(−σ
2

8
) , (13.21)

for all σ > 0.

Proof. In a first step we write the LHS of (13.21) using the density of a normal distribution

E[N1{N≤−σ/2}] =
1√
2π

∫ −σ/2

−∞
x exp(−x

2

2
)dx . (13.22)

By integrating the RHS of (13.22) we obtain the result. �

We are now ready to derive the limit of the convergence rate of the (1+1)-ES.

13.5.3 Theorem
Let σ > 0, the convergence rate of the (1+1)-ES with scale-invariant step-size on spherical functions
satisfies at the limit

lim
N→∞

d × CR(1+1)

(
σ

d

)
=
−σ√
2π

exp
(
− σ

2

8

)
+
σ2

2
Φ

(
−σ
2

)
(13.23)

where Φ is the cumulative distribution of a normal distribution.

Proof. We are going to investigate the almost sure limit of the random variable inside the RHS of

CR(1+1)(σ/d) =
1
2
E
[
ln(1 +

σ

d
min(2[N ]1 +

σ

d
‖N‖2, 0))

]
. (13.24)

The following equation holds almost surely

lim
N→∞

d × 1
2
ln(1 + σ/dmin(2[N ]1 +

σ

d
‖N‖2, 0))

−−−−→
N→∞

1
2
σmin(2[N ]1 + σ, 0) . (13.25)

Assuming the uniform integrability of

d × 1
2
ln(1 + σ/dmin(2[N ]1 +

σ

d
‖N‖2, 0)) ,
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Figure 13.3: Theoretical limit results of the convergence rate for the (1+1)-ES (solid line) and for the
(1+λsms)-ES (any λ ≥ 1, dashed line) if d goes to infinity. Left: versus σ · d in log scale; right: versus σ · d
in linear scale.

we deduce that

lim
N→∞

d × CR(1+1)(σ/d) =
σ

2
E[min(2[N ]1 + σ, 0)] .

Moreover,

E[min(2[N ]1 + σ, 0)] = E[(2[N ]1 + σ)1{2[N ]1+σ≤0}]

= 2E[([N ]1)1{2[N ]1+σ≤0}]

+ σPr(2[N ]1 + σ ≤ 0)
= 2E[([N ]1)1{[N ]1≤−σ/2}]

+ σPr([N ]1 ≤ −σ/2) .

Thus,

lim
N→∞

d × CR(1+1)

(
σ

d

)
= σE[[N ]11{[N ]1≤− σ2 }] +

σ2

2
Φ

(−σ
2

)
.

Using now Lemma 13.5.2, we obtain the result. �

This limit of the normalized convergence rate of the (1+1)-ES found in the previous theorem equals to
the negated progress rate of the (1+1)-ES on the sphere function [315].

13.5.3 Deriving the Asymptotic Convergence
Rate of the (1+λs

ms
)-ES

We can now combine Lemma 13.5.1 and Theorem 13.5.3 to derive the asymptotic convergence rate of
the (1+λsms)-ES with scale-invariant step-size. Note again that the (1+λsms)-ES is here the same as the
(1+1ms)-ES.

13.5.4 Theorem
Let σ > 0, the convergence rate of the (1+1ms)-ES with scale-invariant step-size on spherical functions
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satisfies

lim
N→∞

d × CR(1+1ms)

(
σ

d

)
=

2
2 −Φ(−σ/2) × (

−σ√
2π

exp(−σ
2

8
) +
σ2

2
Φ

(
−σ
2

))
. (13.26)

Proof. Since the convergence rate of the (1+1ms)-ES equals the convergence rate of the (1+1)-ES times
2/(2 − ps) we have that the limit forN to infinity satisfies

lim
N→∞

d × CR(1+1ms)

(
σ

d

)

= lim
N→∞

(
2

2 − ps

)
× lim
N→∞

(
d × CR(1+1)

(
σ

d

))
.

Using Lemma 13.5.1 for the limit of 2/(2 − ps) and Proposition 13.5.3, we obtain the result. �

Figure 13.3 represents the limit of the normalized convergence rates of the (1+1)-ES and the (1+1ms)-
ES. The minimal value of the convergence rate of the (1+ 1)-ES and (1+ 1ms)-ES respectively equal
approximately −0.202 and −0.235. Mirrored sampling and sequential selection speed up the fastest
single-parent evolution strategy asymptotically by a factor of about 1.16.

13.6 Numerical simulation of convergence rates

To conclude on the improvements that can be brought by mirrored samples and sequential selection,
we now compare the different convergence rates. However, those convergence rates are expressed only
implicitly as the expectation of some random variables. We therefore simulate the convergence rate
with a Monte-Carlo technique. For each convergence rate expression, we have simulated 107 times
the random variables inside the expectation and averaged to obtain an estimate of the expectation and
therefore of the convergence rate for different σ. Here, σ has been chosen such that 0.01 ≤ σ ·N ≤ 10 and
with steps of 0.01 in σ ·N. Theminimum of themeasured convergence rates over σ ·N is used as estimate
of the best convergence rate for each algorithm and dimension—resulting in a slightly (systematically)
smaller value than the true one, due to taking the minimal value from several random estimates.

The plots of Fig. 13.4 show the resulting convergence rate estimates versus σ in several dimensions.
Overall, mirroring and/or sequential selection do not essentially change the picture. The (1+1)-ES
realizes the largest optimal step-size of all variants, also compared with comma selection (not shown).
Figure 13.5 shows the relative improvement. For small step-sizes the (1+λsms)-ES is up to about
33% faster (compare (13.17)). For large step-sizes, both, (1 + 1)- and (1+λsms)-ES, show very similar
convergence rates. For close to optimal step-sizes (somewhat above one), the (1+λsms)-ES is about 15%
to 20% faster.

Figure 13.6 presents the estimated best convergence rates for several algorithms versus dimension.
Here, the (1, 4sms)-ES is shown additionally.4 The convergence rate of the (1, λsms)-ES is monotonically
increasing in λ (not shown) and in the limit for λ → ∞, the (1, λsms)-ES coincides with the (1+1ms)-ES.
In small dimension, already for λ = 4 the convergence rate is very close to the convergence rate of the
(1+1ms)-ES. In all cases, the convergence rate of the (1, 4sms)-ES is closer to the (1+1ms)-ES than to the
(1+1)-ES. The difference between the original (1+1)-ES and the (1+1ms)-ES is roughly between 15 and
20%. In dimension 320, the values are very close to the limit value.

4Note that in previous publications such as [27, 28, 85], the slightly different notation (1, 4sm)-ESwas used for the same algorithm.
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Figure 13.4: Convergence rate c(σ) for different dimensions d and the (1+1)-ES and (1+2m)-ES (both have
the same convergence rate, left figure), and the (1+λsms)-ES (the same for all λ ≥ 1, right figure), all with
scale-invariant step-size. The dashed (uppermost) line shows the limit result for d to infinity.
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13.7 Discussion

In this report we have analyzed the (1+λ)-ES with mirrored sampling and/or sequential selection. With
sequential (plus) selection, the parameter λ loses most of its meaning. Given that the step-size (and all
other variation parameters) are updated in an identical way, the (1+λs)-ES, where s denotes sequential
selection, and also the (1,∞s)-ES depict the same strategy for all λ ≥ 1. The same holds analogously
for the (1+λsms)-ESs, where the subscript ms denotes mirrored sampling with skip mirror applied (on
success).

We have obtained tight lower bounds for the convergence rate of the (1+2m)-ES and of the (1+1ms)-ES
that coincides with the (1+λsms)-ESs for any λ ≥ 1. These bounds are also the convergence rate with
scale-invariant optimal step-size on the sphere function. The (1+2m)-ES has the same convergence rate
as the (1+1)-ES, asymptotically with the dimension to∞ being ≥ −0.202 . . . The asymptotic convergence
rate of the (1+1ms)-ES is ≥ −0.235 . . . and the relation

CR(1+λsms)(σ) = CR(1+1ms)(σ) (13.27)

=
2

2 − ps(σ)
CR(1+2m)(σ) (13.28)

=
2

2 − ps(σ)
CR(1+1)(σ) (13.29)

holds, where ps(σ) is the probability that an offspring, sampled isotropically with step-size σ, is better
than its parent. The factor 2/(2 − ps(σ)) < 4/3 is the improvement brought by sequential selection for
λ = 2, with plus as well as comma selection.

As to our knowledge, the (1+λsms)-ES is now the single-parent evolution strategy with the fastest
known convergence rate, more than 15% faster than the (1+1)-ES, but no more than 5% faster than the
(1, 4sms)-ES. Only strategies with weighted recombination can exhibit even faster convergence rates (also
denoted as serial efficiencies), namely ≥ −0.25 when positive recombination weights are used [20].

The convergence rates derived assume that the step-size equals a constant times the distance to the
optimum. This assumption simplifies the linear convergence derivation as the law of large numbers for
independent random variables can then be used. For real adaptation schemes however, the analysis on
spherical functions is in general more complicated, as σk/‖Xk‖ is not a constant but a Markov chain. Law
of large numbers for Markov chains can be used to prove linear convergence, the difficult task being to
prove that σk/‖Xk‖ is stable enough to satisfy a LLN [23, 42].
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This report introducesmirrored sampling into evolution strategieswithweightedmulti-recombination.
Pairwise selection selects at most one of two mirrored vectors in order to avoid a bias due to
recombination. Selective mirroring only mirrors the originally worst solutions of the population.
Convergence rates on the sphere function are derived also yielding lower bounds. The optimal ratio
of mirrored offspring is 1/2 (maximal) for randomly selected mirrors and about 1/6 for selective
mirroring, where the convergence rate reaches a value of 0.390. This is an improvement of more
than 50% compared to the best known convergence rate of 0.25 with positive recombination weights.
Selective mirroring is combined with CMA-ES and benchmarked on unimodal functions and on the
COCO/BBOB-2010 testbed.

14.1 Introduction

Derandomization of random numbers is a general technique where independent samples are replaced
by dependent ones. Recent studies showed, for example, howderandomization viamirrored sampling can
improve (1, λ)- and (1 + λ)-ES [85, 39]. Instead of generating λ independent and identically distributed
(i.i.d.) search points in iteration k as Xk + σkN

i where Xk is the current search point, σk the current step
size, and N i a random sample from a multivariate normal distribution, the (1 +, λ)-ES with mirrored
sampling always pairs samples one by one and produces λ/2 independent search points Xk + σkN

i and
λ/2 dependent ones as Xk − σkN

i (1 ≤ i ≤ λ/2). In the end, the best out of these λ search points is
used as next search point Xk+1 in the (1, λ)-ES (and in the (1+λ)-ES the best out of the λ new and the
old Xk). Several ES variants using mirrored mutations showed noticeable improvements over their
unmirrored counterparts—not only in theoretical investigations on simple test functions such as the
sphere function, but also in exhaustive experiments within the COCO/BBOB framework [85, 39]. Up to
now, the results were restricted to single-parent (1 +, λ)-ESs though the idea is, in principle, applicable
in a straight-forward manner to population-based ESs such as the (µ/µw, λ)-ES where the µ best out of
the λ offspring are used to compute the new search point Xk+1 via weighted recombination. However,

169
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the direct application of mirrored mutations in population-based ES, as for example proposed in a more
general way by Teytaud et al. [344], results in an undesired bias on the step size, as was argued already
in [85].

The purpose of this report is to introduce mirrored mutations into ESs with weighted recombination
without introducing a bias on the length of the recombined step. Themain idea hereby is pairwise selection
that allows only the better solution of a mirrored/unmirrored solution pair to possibly contribute to the
weighted recombination. In detail, the contributions of this report are

• the introduction of several ES variants that combine mirrored mutations and weighted recombi-
nation without a bias on the recombined step,

• a theoretical investigation of the algorithms’ convergence rates (in finite and infinite dimension)
on spherical functions,

• the computation and estimation of optimal recombination weights,

• experimental results comparing estimated convergence rates with only positive recombination
weights and in particular evaluating the impact of mirrored mutations, and

• numerical results on the performance of the (µ/µw, λ)-CMA-ES [180] combined with mirrored
mutations on unimodal functions and on the COCO/BBOB-2010 test bed.

The paper is organized as follows. After introducing the baseline (µ/µw, λ)-ES, Sec. 14.2 explains
in detail how mirrored mutations can be introduced in this algorithm. Section 14.3 theoretically inves-
tigates the convergence rate of three variants in finite and infinite dimension. Section 14.4 presents a
comparison of the algorithms based on the numerical estimation of their convergence rates on the sphere
function. Section 14.5 applies the mirroring idea to the (µ/µw, λ)-CMA-ES and shows performance re-
sults on unimodal functions and the COCO/BBOB-2010 test function suite. Section 14.6 summarizes and
concludes the paper.

Notations For a (random) vector x ∈ Rn, [x]1 will denote its first coordinate. The vector (1, 0, . . . , 0) will
be denoted e1. A random variable following a multivariate normal distribution with mean vector zero
and covariance matrix identity will be called standard multivariate normal distribution.

14.2 Mirroring and Weighted Recombination

14.2.1 The Standard (µ/µw, λ)-ES

As our baseline algorithm, we briefly recapitulate the standard (µ/µw, λ)-ES with weighted recombina-
tion and show its pseudocode in Algorithm 8. Given a starting point X0 ∈ RN, an initial step size σ0 > 0,
a population size λ ∈ N+, and weights w ∈ Rµ with

∑µ
i=1 |wi| = 1 for a chosen 1 ≤ µ ≤ λ, the (µ/µw, λ)-ES

generates at iteration k λ independent search points from a multivariate normal distribution with mean
Xk and variance σ2

k
and recombines the best µ of them in terms of a weighted sum to become the new

mean Xk+1 of the next iteration.

Typically, µ is chosen as ⌊λ/2⌋ and wi = ln(λ+12 ) − ln(i) > 0 in the scope of the CMA-ES [181]. As
update rule for the step size σk in the (µ/µw, λ)-ES, several techniques such as self-adaptation [326] or
cumulative step size adaptation [298] are available. Of theoretical interest is the so-called scale-invariant
step size σk = σ‖Xk‖ which depends on the distance to the origin and which allows to prove bounds on
the convergence rate of evolution strategies with any adaptive step size update, see Sec. 14.3.
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Algorithm 8: (µ/µw, λ)-ES

1: given: f : RN → R, X0 ∈ RN, σ0 > 0, λ ∈ N+, (N r)r∈N, weights w ∈ Rµ, ∑µ
i=1 |wi| = 1 and 1 ≤ µ ≤ λ

2: r← 0 number of random samples used
3: k← 0 iteration counter for notational consistency
4: while stopping criterion not fulfilled do
5: /* offspring generation */
6: i← 0 offspring counter
7: while i < λ do
8: i← i + 1
9: r← r + 1
10: Xi

k = Xk + σkN
r

11: end while
12: X1:λ, . . . ,Xλ:λ = argsort( f (X1

k ), . . . , f (X
µ

k
))

13: /* weighted recombination */
14: Xk+1 =

∑µ
i=1 wi Xi:λ

15: σk+1 = update(σk, f (X1
k ), . . . , f (X

µ

k
))

16: k← k + 1 iteration counter
17: end while

Figure 14.1: Illustration of i.i.d. mutations (left) and mirrored mutations with dependent (middle) and
i.i.d. lengths (right). Independent samples are shown as solid and mirrored samples as dashed lines.
Dotted lines connect search points with equal function value.

14.2.2 The Mirroring Idea

Derandomized mutations [344] and more recently mirrored mutations [85, 39] have been proposed to
replace the independent mutations in evolution strategies by dependent ones in order to reduce the
probability of “unlucky events”—resulting in an increase in the convergence speed of the algorithms.
Instead of sampling the λ offspring i.i.d. as in line 10 of Algorithm 8, an algorithm with mirrored
mutations samples only ⌈λ/2⌉ i.i.d. offspring as Xi

k = Xk + σkN
i (1 ≤ i ≤ ⌈λ/2⌉) and the remaining ⌊λ/2⌋

offspring depending on the already drawn samples as Xi
k = Xk − σkN

i−⌈λ/2⌉ (for ⌈λ/2⌉ + 1 ≤ i ≤ λ), see
Fig. 14.1, left and middle.

When usingmirroredmutations in evolution strategieswithweighted recombination and cumulative
step-size adaption, the mirrored mutations cause a bias towards smaller step sizes [85], see Fig 14.2.
The bias can cause premature convergence of the algorithm. The reason for the bias is that if both
samples Xk + σkN

i and Xk − σkN
i are considered within weighted recombination, they partly cancel each

other out and the realized shift of Xk will be smaller than with independent mutations. Consequently,
derandomized step-size control like cumulative step size adaptation (CSA, [298]) will cause the step size
to shrink.

In this report, we therefore introduce pairwise selection which prevents this bias: unmirrored and
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Figure 14.2: Illustration of the bias towards smaller step sizes under random selection introduced by
recombination of mirrored vectors in the CMA-ES. Shown is the step-size σ versus the number of
function evaluations of 20 runs on a purely random fitness function in dimension 10. The upper ten
graphs show the (5/5w, 10)-CMA-ES revealing a random walk on log(σ). The lower ten graphs show the
(5/5w, 5 + 5m )-CMA-ES without pairwise selection of mirrored samples.
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mirrored offspring are paired two-by-two and only the better among the unmirrored sample Xk + σkN
i

and its mirrored counterpart Xk −σkN
i is used within the weighted recombination but never both. Here,

we introduce the following notations: the number of independent offspring per iteration is denoted
by λiid and the number of mirrored offspring per iteration is denoted by λm, where each iteration
λ = λiid + λm solutions are evaluated on f . As a result 0 ≤ λm ≤ λiid which results in the standard
(µ/µw, λ)-ES in case λm = 0. We call the new algorithm (µ/µw, λiid + λm)-ES.

Note that the idea of sequential mirroring of [85, 39], i.e., stopping the generation of new offspring
as soon as a better solution than the parent is found, is not applied here. With recombination, the
meaning of a comparison with “the parent” is not unique and additional algorithm design decisions
were necessary1. Instead, selective mirroring is introduced.

We consider twovariants of the (µ/µw, λiid+λm)-ES2 that differ in the choice ofmirrored offspring. The
(µ/µw, λiid + λrandm )-ES, where λm randomly chosen offspring are mirrored, and the (µ/µw, λiid + λselm )-ES
with selective mirroring, where only the λm worst offspring are selected for mirroring.

14.2.3 Random and Selective Mirroring

The reason behind the latter variant of selecting the worst offspring for mirroring is the following: in
particular on objective functions with convex sublevel sets3 we do not expect the best of λiid offspring
to improve by mirroring. For an offspring that is better than the current search point Xk, the mirroring
would always result in a worse solution since never both an independently drawn solution and its
mirrored counterpart can be better than the parent in case of convex sublevel sets [39, Proposition 2]4.

Regarding the comparison of random and selective mirroring, two questions arise: (i) how much
faster than with random mirroring can an ES become if selective mirroring is used and (ii) what is
the optimal choice for the number λm of mirrored offspring. Both questions will be answered in the
following by theoretical investigations of the algorithms’ convergence rates.

14.2.4 Random Lengths of Mirrored Offspring

Within the (µ/µw, λiid + λselm )-ES, solutions might be bad and selected for mirroring for two reasons: on
the one hand, the solution could be bad because of a wrong direction and mirroring the point makes
perfectly sense. On the other hand, a comparatively large distance of the new solution to the current
mean might cause a bad function value. In this case, also mirroring will more likely produce a bad
solution. Hence, we consider a variant of mirroring where the lengths of the mirrored vectors σkN r are

i.i.d. resampled, i.e., where Xk+1 = Xk − σkN
r is replaced by Xk+1 = Xk − σk

‖Ñ r‖
‖N r‖N

r with ‖Ñ r‖ the newly
sampled length of the mirrored vector, cp. Fig. 14.1.

We refer to this last variant as (µ/µw, λiid+λselm )-ES with i.i.d. mirrored mutation lengths. Algorithm 9
shows the pseudo code of all variants with random/selective mirroring and with/without independent
lengths of the mirrored offspring. Theoretical results in the next section will not only show how much
improvement in the convergence rate can be gained by the i.i.d. lengths but also that the variants with
andwithout i.i.d. lengths are the same if the dimension goes to infinity. Later, wewill apply independent
lengths only to selective mirroring.

1The super-parent and distribution mean Xk, resulting from the weighted recombination, is not directly comparable to the
offspring, because depending on N, µ and λ with a large probability all i.i.d. sampled offspring might be worse. However, a
feasible heuristic could be to compare with the best offspring from the last iteration.

2Adaptive variants with a variable number of mirrored offspring that depends on the observed fitness function values have
also been considered but are not included here.

3The sublevel set Sl contains all search points with an objective function value of at most l: Sl = {x ∈ RN | f (x) ≤ l}.
4In the case of random selection, even half of the λiid independently generated offspring are in expectation better than the old

mean such that only the mirroring of the λiid/2 worst of them will result in a further improvement.
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14.2.5 Algorithm Parameters

The algorithms we have described involve several parameters, the number λiid of independent samples,
the number λm of mirrored offspring, the number of offspring to be recombined, µ, and the weights w
for the recombination. The convergence rates depend on the choice of these parameters. In the sequel,
we are going to investigate the optimal choice of the different parameters by investigating lower bounds
for the convergence rate on spherical functions g(‖x‖), g ∈ M where M denotes the set of functions
g : R 7→ R that are strictly increasing.

14.3 Convergence Rate Lower Bounds on Spherical Functions

In order to find optimal settings for the different parameters, we investigate convergence rates on
spherical functions having WLOG the optimum in zero, i.e., g(‖x‖), g ∈ M. Convergence rates depend
on the step-size adaptation chosen. We study the case of the scale-invariant step-size where σk = σ‖Xk‖,
that leads, for an optimal choice of the constant σ, to lower bounds for convergence rates achievable by
any strategy with step-size adaptation on spherical functions (see below). For the different algorithm
variants with scale-invariant step-size, we prove linear convergence in expectation in the following
sense: there exists a CR ∈ R such that for all k, k0 ∈ N with k > k0

1
Λ

1
k − k0

E

[
ln
‖Xk‖
‖Xk0
‖

]
= CR , (14.1)

where Λ is the number of evaluations per iteration introduced to define the convergence rate per
function evaluation. The constant CR5 is the convergence rate of the algorithm and depends on the
different parameters (σ, λ, µ, . . .). The previous equation defining the convergence rate is compatible
with the almost sure convergence that we will be proving as well [41]. Almost surely we will prove that
with scale-invariant step-size

1
Λ

1
k
ln
‖Xk‖
‖X0‖

−−−→
k→∞

CR . (14.2)

14.3.1 The (µ/µw, λ)-ES

To serve as a baseline algorithm for a later comparison with algorithms using mirrored mutations, we
first investigate the convergence rate of the scale-invariant version of the standard (µ/µw, λ)-ES (see
Algorithm 8 for the pseudo code).

Finite Dimension Results

At each step, λ independent vectors following a standard multivariate normal distribution N i are
sampled to create the offspring Xi

k = Xk + σ‖Xk‖N
i. The offspring are ranked according to their fitness

function value. We denote (Z[1 : λ], . . . ,Z[λ : λ]) the sorted multivariate normal distribution, namely
the best offspring equals Xk + σ‖Xk‖Z[1 : λ], the second best Xk + σ‖Xk‖Z[2 : λ], etc. The distribution of
(Z[1 : λ], . . . ,Z[λ : λ]) depends a priori on Xk. However, in the scale-invariant step-size case on spherical
functions the distribution is independent of Xk and is determined by ranking of ‖e1 + σN

i‖ for i = 1 . . . λ,
that can be simplified by ranking 2[N i]1 + σ‖N i‖2. Those results are stated in the following lemma.

5Convergence takes place if and only if CR < 0, however in general we are not able to investigate theoretically the sign of CR.
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14.3.1 Lemma
For the scale-invariant (µ/µw, λ)-ES minimizing spherical functions, the probability distribution of the
vector (Z[1 : λ], . . .Z[λ : λ]) is independent of Xk and equals

(Z[1 : λ], . . . ,Z[λ : λ]) = argsort{hσ(N1), . . . , hσ(Nλ)} (14.3)

where hσ(x) = 2[x]1 + σ‖x‖2 and (N i)1≤i≤λ are λ independent standard multivariate normal distribution.

Proof. All proofs can be found in the appendix. �

In the (µ/µw, λ)-ES, the µ best offspring Xk + σ‖Xk‖Z[i : λ] for i = 1, . . . , µ are recombined into the new
parentXk+1 = Xk+σ‖Xk‖

∑µ
i=1 wiZ[i : λ] where (w1, . . . ,wµ) ∈ Rµ and

∑µ
i=1 |wi| = 1. The next theorem gives

the expression of the convergence rate associated to the (µ/µw, λ)-ES with scale-invariant step-size as a
function of σ and w = (w1, . . . ,wµ).

14.3.2 Theorem
For the (µ/µw, λ)-ES with scale-invariant step-size on g(‖x‖), g ∈ M, (14.1) and (14.2) hold and the
convergence rate equals

CR(σ,w) =
E ln

[
1 + 2

∑µ
i=1 σwi [Z[i : λ]]1 +

∥∥∥∑µ
i=1 σwiZ[i : λ]

∥∥∥2
]

2λ
,

where wi ∈ R and
∑µ

i=1 |wi| = 1.

The convergence rate of the (µ/µw, λ)-ES is a function of σ and the weights. However, defining the
function

D(µ/µw,λ)(y) =
1
2λ

E ln


1 + 2

µ∑

i=1

yi [Z[i : λ]]1 +

∥∥∥∥∥∥∥

µ∑

i=1

yiZ[i : λ]

∥∥∥∥∥∥∥

2 ,

where y = (y1, . . . , yµ) and the distribution ofZ[i : λ] is determined with (14.3) and σ =
∑µ

i=1 |yi|, we have
that

CR(µ/µw,λ)(σ,w) = D(µ/µw,λ)(σw) .

The optimal convergence rate of the scale-invariant (µ/µw, λ)-ES is defined as the solution of the mini-
mization problem

CRopt
(µ/µw,λ)

= min
y∈Rµ
D(µ/µw,λ)(y) . (14.4)

Optimal weights will then be obtained as

w
opt
i
=

y
opt
i∑µ

i=1 |y
opt
i
|
with yopt = argminD(µ/µw,λ)(y)

and the optimal step-size equals
∑µ

i=1 |y
opt
i
|. The convergence rate of the scale-invariant step-size

(µ/µw, λ)-ES corresponds to a lower bound for the convergence rate of any step-size adaptive (µ/µw, λ)-ES
with isotropic distribution on spherical functions [205, Theorem 1].

Asymptotic Results

In the following, we investigate the limit of the convergence rate when the dimension of the search space
goes to infinity.
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14.3.3 Theorem
The convergence rate of the (µ/µw, λ)-ESwith scale-invariant step size andweightsw ∈ Rµwith

∑µ
i=1 |wi| =

1 on the class of spherical functions g(‖x‖), g ∈ M satisfies

lim
d→∞

dCR
(
σ

d
,w

)
=

1
λ



σ2

2

µ∑

i=1

w2
i + σ

µ∑

i=1

wiE(Ni:λ)




where Ni:λ is the ith order statistic of λ independent normal distributions with mean 0 and variance 1,
i.e., the ith smallest of λ independent variablesNi ∼ N(0, 1).

We define the limit in the previous theorem, multiplied by (−1), as the function

ϕ(µ/µw,λ)(σ,w) := −
1
λ



σ2

2

µ∑

i=1

w2
i + σ

µ∑

i=1

wiE(Ni:λ)




corresponding to the asymptotic progress rate of the (µ/µw, λ)-ES [21]. As for the finite dimension case,
we consider the variable y = σ · w ∈ Rµ and introduce the function

G(y) = 1
λ



1
2

µ∑

i=1

y2i +

µ∑

i=1

yiE(Ni:λ)


 (14.5)

that satisfies G(σ · w) = −ϕ(µ/µw,λ)(σ,w). Optimal asymptotic convergence rates realize the minimum of
(14.5) that is reached for yopt

i
= −E(Ni:λ) and equals

CRopt,∞
(µ/µw,λ)

:= min
y∈Rµ
G(y) = − 1

2λ

µ∑

i=1

E(Ni:λ)2 , (14.6)

as already found in [21]. Optimal weights are proportional to y
opt
i

and their absolute value sum to one.
Thus wopt,∞

i
= −E(Ni:λ)/

∑µ
i=1 |E(Ni:λ)|. Whether or not negative weights are allowed does not effect the

optimal positiveweight values, besides from a different normalization factor.

14.3.2 The (µ/µw, λ)-ES With Random and Selective Mirroring

Following the same approach than in the previous section, we analyze the convergence rate of the
different mirroring variants first for finite dimension and then asymptotically in the dimension. We
define as (Z[1], . . . ,Z[λiid]), the vector of ordered steps to be recombined, namely for a given variant, the
best point to be recombined (for which the highest weight will be given) is Xk + σ‖Xk‖Z[1], the second
best Xk + σ‖Xk‖Z[2], . . . . Among the different variants, the distribution of the vector of ordered steps is
changing. We express in the sequel this distribution for the variants with random mirroring, selective
mirroring and selective mirroring with independent length.

Selected vector for random mirroring In random mirroring, we randomly mirror λm vectors among
the λiid independent ones. Without loss of generality, we canmirror the λm last vectors. For the mirrored
pairs, only the best of the two vectors is recombined. The distribution of the resulting vector of ordered
steps is expressed in the following lemma:

14.3.4 Lemma
In the (µ/µw, λiid + λrandm )-ES with scale-invariant step-size on spherical functions, the distribution of the
vector of ordered steps to be recombined is given by

(Z[1], . . . ,Z[λiid]) = argsort{hσ(N1), . . . , hσ(Nλiid−λm ),
min{hσ(Nλiid−λm+1), hσ(−Nλiid−λm+1)}, . . . ,

min{hσ(Nλiid), hσ(−Nλiid )}} (14.7)
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where hσ(x) = 2[x]1 + σ‖x‖2.

Selected vector for selective mirroring In selective mirroring, we mirror the worse offspring, the first
step is then to sort the λiid offspring to determine which offspring to mirror. LetY be defined as

Y := (Y1, . . . ,Yλiid ) := argsort{hσ(N1), . . . , hσ(Nλiid )}

where hσ(x) = 2[x]1 + σ‖x‖2. Then for the worst λm vectors of Y, we select the pair-wise best among
offspring and mirrored one and we keep the other vectors unchanged:

Ysel
i = Yi, i = 1, . . . , λiid − λm (14.8)

Ysel
i = argmin{hσ(Yi), hσ(−Yi)}, λiid−λm + 1 ≤ i ≤ λiid (14.9)

Finally, as expressed in the following lemma, thedistributionof theλiid ordered steps tobe recombined
is the result of the sorting of the Ysel

i vectors:

14.3.5 Lemma
In the (µ/µw, λiid + λselm )-ES with scale-invariant step-size on spherical functions, the distribution of the
vector of ordered steps to be recombined is given by

(Z[1], . . . ,Z[λiid]) = argsort{hσ(Ysel
1 ), . . . , hσ(Ysel

λiid
)} , (14.10)

where Ysel
i is defined in (14.8) and (14.9).

Selected vector for selectivemirroringwith independent length The selectivemirroringwith random
length algorithm differs from the previous one for the mirroring step where only the direction is kept
and the length is changed by sampling an independent length (distributed according to a χ-distribution
with d degrees of freedom). Assuming that sorting of the λiid offspring has been made according to Y
as described above, the Ysel vector is given by

Ysel
i = Yi for i = 1, . . . , λiid − λm (14.11)

and for i = λiid − λm + 1, . . . , λiid,

Ysel
i = argmin

{
hσ(Yi), hσ

(
−‖Ñ i‖

Yi
‖Yi‖

)}
(14.12)

where Ñ i are independent vectors following a standard multivariate normal distribution. As for the
previous algorithm, the distribution of the λiid ordered steps to be recombined is the result of the sorting
of the Ysel

i vectors:

14.3.6 Lemma
In the (µ/µw, λiid + λselm )-ES with scale-invariant step-size on spherical functions, the distribution of the
vector of ordered steps to be recombined is given by

(Z[1], . . . ,Z[λiid]) = argsort{hσ(Ysel
1 ), . . . , hσ(Ysel

λiid
)} , (14.13)

where Ysel
i is defined in (14.11) and (14.12).

Similarly as for the (µ/µw, λ)-ES, we find that the convergence rate of the (µ/µw, λiid+λrandm )-ES and the
(µ/µw, λiid+λselm )-ES with and without i.i.d. mirroredmutation lengths can be expressed in the following
way
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14.3.7 Theorem
The convergence rate of the (µ/µw, λiid + λrandm )-ES and the (µ/µw, λiid + λselm )-ES with and without i.i.d.
mirrored mutation lengths equals

CR(σ,w) =
E ln

[
1 + 2

∑µ
i=1 σwi [Z[i]]1 +

∥∥∥∑µ
i=1 σwiZ[i]

∥∥∥2
]

2(λiid + λm)
,

where wi ∈ R and
∑µ

i=1 |wi| = 1 and the distribution of the random vector (Z[1], . . . ,Z[λiid]) are defined
in Lemma 14.3.4, 14.3.5 and 14.3.6 respectively.

As for the (µ/µw, λ)-ES, optimal convergence rates are solutionsof theminimizationproblemminy∈RµD(y)
where

D(y) =
1

λiid + λm

1
2
E ln


1 + 2

µ∑

i=1

yi [Z[i]]1 +

∥∥∥∥∥∥∥

µ∑

i=1

yiZ[i]

∥∥∥∥∥∥∥

2

and σ—needed to obtain the distribution of Z[i]—equals
∑ |yi|. Optimal weights are then obtained by

normalizing the solution vector yopt.

Asymptotic Results

We investigate the limit of the convergence rate given in Theorem 14.3.7 when the dimension goes to
infinity. For the (µ/µw, λiid + λrandm ), we define the random vector (Z1, . . . ,Zλiid ) ∈ Rλiid as

(Z1, . . . ,Zλiid ) = argsort{N1, . . . ,Nλiid−λm ,
− |Nλiid−λm+1|, . . . ,−|Nλiid |} (14.14)

whereN i are λiid independent standard normal distribution.

For the (µ/µw, λiid + λselm ) with or without independent lengths, we define the vector

(Z1, . . . ,Zλiid ) = argsort{Y1, . . . ,Yλiid−λm ,

− |Yλiid−λm+1|, . . . ,−|Yλiid |} (14.15)

where (Y1, . . . ,Yλiid ) = argsort{N1, . . . ,Nλiid }. The asymptotic convergence rate for different variants is
given in the following theorem.

14.3.8 Theorem
The convergence rate of the (µ/µw, λiid + λrandm )-ES and the (µ/µw, λiid + λselm )-ES (with or without inde-
pendent lengths) with scale-invariant step size and weights w ∈ Rµ with

∑µ
i=1 |wi| = 1 on the class of

spherical functions g(‖x‖), g ∈ M satisfies

lim
d→∞

dCR
(
σ

d
,w

)
=

1
λiid + λm



σ2

2

µ∑

i=1

w2
i + σ

µ∑

i=1

wiE(Zi)




where the distribution of Zi is given in (14.14) for the (µ/µw, λiid + λrandm )-ES and in (14.15) for the
(µ/µw, λiid + λselm )-ES with or without independent length for the mirroring.

Similarly to the (µ/µw, λ)-ES case, we find that the optimal convergence rate is given by

CRopt,∞ := − 1
2(λiid + λm)

µ∑

i=1

E(Zi)2 , (14.16)
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Figure 14.3: Estimated optimal convergence rates for the (µ/µw, λiid + λm)-ES depending on the ratio
of mirrored and independent offspring comparing choices with constant λiid + λm: on the left, the
random variant (µ/µw, λiid +λrandm )-ES and on the right, the (µ/µw, λiid +λselm )-ES, mirroring the worst λm
independent offspring.

and the optimal weights equal wopt
i
= −E(Zi)/

∑µ
i=1 |E(Zi)|. We remark that the asymptotic convergence

rate for the selective mirroring is the same with or without sampling independent lengths for the
mirroring vectors. Thus the independent length sampling can only affect finite dimension results. In the
remainder, all convergence rates are estimated with only positive recombination weights.

14.4 Simulation of Convergence Rates

Due to their implicit nature, the above derived optimal convergence rates are difficult to compare directly.
However, we can estimate the rates bymeans ofMonteCarlo sampling easilywhich allows us to compare
the performance of the proposed algorithms in infinite and finite dimension. Moreover, we are able to
decide what is the optimal ratio between the number of mirrored and unmirrored offspring and which
is, theoretically and on spherical functions, the best of the algorithms. If not mentioned differently, 106

samples are used for each combination of λiid and λm, each dimension, and for each algorithm. The
MATLAB code will be made available online after the double-blind reviewing process.

Random and Selective Mirroring in Infinite Dimension Let us first have a look at the scale-invariant
random mirroring strategy in infinite dimension. The lefthand plot in Fig. 14.3 show the estimated
convergence rates versus the number of independent offspring and versus the total number of offspring
respectively. We see that in all cases, the convergence rate monotonically improves, the more offspring
are mirrored. The optimal ratio between mirrored and independent offspring is therefore 1. Moreover,
we see that with an increasing number of offspring, the convergence rate approaches −0.25.

The result looks quite different with selective mirroring, see the righthand plot in Fig. 14.3: with
increasing number of mirrored solutions per iteration, the optimal convergence rate first improves from
the convergence rate of the standard (µ/µw, λ)-ES (λm = 0) to its minimum at around λm ≈ λiid5 and with
further increased λm, the convergence rate worsens again. Similar than with random mirroring, the
optimal convergence rate improves with increased number of offspring, but reaches far better optimal
values with selective mirroring. The limit values for λ → ∞ are 0.25 for random mirroring and above
0.386 for selective mirroring. Figure 14.4 shows the best convergence rates among all selective mirroring
strategies with constant λiid + λm from Fig. 14.3 together with the corresponding ratio (λm/λiid). The
optimal convergence rate approaches about 0.3875 when the number of offspring increases and the
optimal ratio indeed goes to a value of (slightly below) 1/5. Note that the unsmoothness of the ratio
stems from discretization: not all values for the ratio of λm/λiid are possible which in particular has an
effect for small λiid.
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Figure 14.4: Extracted normalized optimal convergence rates (solid lines) for the (µ/µw, λiid + λrandm )-ES
(top) and (µ/µw, λiid +λselm )-ES (bottom) of Fig. 14.3 for different numbers of offspring (λiid +λm) together
with the corresponding optimal ratio of mirrored and unmirrored offspring for the selective mirroring
variant (dashed).

Selective Mirroring in Finite Dimension When estimating the convergence rates of the proposed
strategies in finite dimension, one faces first another problem: the derivation of optimal weights.
Whereas in the infinite case, the optimal weights are known theoretically, this is not the case in finite
dimension. We therefore estimate the optimal weights by optimizing the convergence rates of Sec. 14.3
numerically. The convergence rate can be estimated by a Monte Carlo simulation, resulting thus in a
noisy optimization problem. We use UH-CMA-ES (CMA-ES with uncertainty handling, [182])6 to solve
this problem. The number of Monte Carlo estimates to compute the convergence rate per offspring
is adapted with an initial value of 100 and a maximal value of 104. The shown weights are extracted
by averaging the sample distribution mean from CMA-ES over the last half of the overall iterations,
typically the last 150 iterations. For each setting two experiments are done.

The results with independently re-sampled vector lengths are shown in Fig. 14.5 for λ = 10 in
dimension 3 and 30 and compared to the optimal weights for infinite dimension (right). For small or
moderate dimension, when λ 4 N, the spread of the weights is much more pronounced than with
N-∞-optimal weights. Also the negative weights get less important with increasingN/λ.

For the optimal λm = 2, the default recombination weights wi ∝ log((λ + 1)/2) − log(i) as used in
the CMA-ES resemble the optimal weights much better than the N-infinity optimal weights. Further
experiments have been conducted with mirrored lengths and also with λ = 20 leading to the same
qualitative observations. We conclude that the default recombination weights are well applicable with
mirroring.

6We have used the Matlab code cmaes.m from http://www.lri.fr/˜hansen/cmaes_inmatlab.html, Version 3.54.beta.
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Figure 14.5: Optimal weights for λ = 10 versus λm. Each point is the average of two simulations (small
black dots). All weights are normalized such that the sum of positive weights is one. Stars depict the
default weights in CMA-ES and theN-∞-optimal weights for λm = 5. Dimension 3, 30 (both estimated
with UH-CMA-ES) and∞ from left to right.
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Figure 14.6: Number of function evaluations to reach function value 10−8 with CMA-ES on the sphere,
tablet and Rosenbrock function in 5- and 20-D versus population size λ.

14.5 (µ/µw, λ)-CMA-ES With Mirroring

We apply selective mirroring as outlined in Algorithm 9 to the CMA-ES. Default recombination weights
and parameter settings as in the downloaded MATLAB code are used with the modifications from [85].
The number of mirrored solutions is set to ⌈0.167λ⌉.

Results on the sphere, ‖x‖2, the tablet, 106x21 +
∑N

i=2 x
2
i
, and Rosenbrock function,

∑N
i=2 100(x

2
i
− xi−1)2 +

(xi − 1)2, are shown in Fig. 14.6. Initial values are coordinate-wise 0.1 for the mean and 0.2 for the
step-size. Shown are the number of function evaluations to reach function value 10−8.

On all but one unimodal functions that we have tested, the effect of mirroring resembles the effect on
the sphere function. Mirroring is only effective with a small population size (λ < N) and i.i.d. lengths
are slightly favorable. The only exception is the tablet function where we also see a slight disadvantage
for larger values of λ in Fig. 14.6.

Testing on the COCO/BBOB Function Suite The IPOP-CMA-ES (CMA-ES restarted with Increasing
POPulation size [40]) with mirroring using i.i.d. lengths and without mirroring has been run on the
BBOB-2010 benchmark [178, 177]. The empirical run length distribution over all functions with and
without mirroring for up to 3 × 104N function evaluations is shown in Fig. 14.7.

The overall effect is almost negligible. Also on most single functions, the performance difference is
small. The one exception is the Schwefel function f20 shown in Fig. 14.7, right. Mirroring has a strong
adversarial effect on the performance on this function.
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Figure 14.7: Left: run length distribution (in number of function evaluations) of the IPOP-CMA-ES with
◦ and without + mirroring over all BBOB-2010 functions in 20-D using target values 10−8,−4,−1,1. Right:
average number of function evaluations (in log10) to reach respective target values, x-value without
mirroring, y-value with mirroring. Markers on the edge indicate the target value was not reached.
Markers represent dimension: 2:+, 3:▽, 5:⋆, 10:◦, 20:�, 40:^.

14.6 Summary and Conclusion

Wehave introducedmirrored sampling in ESs withmulti-recombination. Two important tricks are used.
Selective mirroring: only the worst offspring are mirrored; pairwise selection: only at most one from a
mirrored/unmirrored pair is selected for recombination. Our theoretical results support the effectiveness
in particular of selective mirroring: the new algorithm improves the known convergence rate record for
ESs with positive recombination weights by 56% from 0.25 to 0.390. This is a huge improvement and the
new (µ/µw, λiid +λm)-ES is also more than 60% faster than the fastest single-parent mirroring (1+1ms)-ES
and almost twice as fast as the regular (1+1)-ES in the asymptotic limit.

Applied to CMA-ES, mirrored sampling improves the convergence speed in small populations.
However, on a singlemultimodal function in the BBOBbenchmark it leads to a considerable performance
decline. Nevertheless, we believe that mirrored sampling has yet a great future potential, in particular
when also cleverly exploited for the covariance matrix update.
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Algorithm 9: (µ/µw, λiid +λm)-ES with random or selective mirroring with or without i.i.d. lengths
of the mirrored vectors

1: given: f : RN → R, X0 ∈ RN, σ0 > 0, λiid ∈ N+, λm ∈ {0, . . . , λiid}, µ ≤ λiid, (N r)r∈N, weights w ∈ Rµ
with

∑µ
i=1 |wi| = 1 and |{wi ≥ 0}| ≥ λm

2: r← 0 (number of random samples used)
3: k← 0 (iteration counter for notational consistency)
4: while stopping criterion not fulfilled do
5: /* use/rename samples */

6: N1 . . . ,Nλiid = N r+1, . . . ,N r+λiid

7: r = r + λiid
8: /* generate λiid offspring independently */
9: i← 0 (offspring counter)
10: while i < λiid do
11: i← i + 1
12: Xi

k = Xk + σkN
i

13: end while
14: if selective then
15: (X1

k , . . . ,X
λiid
k

), π = argsort( f (X1
k ), . . . , f (X

λiid
k

))
16: else
17: π = id
18: end if
19: /* mirror λm offspring */
20: while i < λiid + λm do
21: i← i + 1
22: /* dependent sample with(out) new length ‖N r‖ */
23: if i.i.d. lengths then
24: r = r+1;
25: Xi

k = Xk − σk
‖N r‖

‖Nπ−1(2λiid+1−i)‖
Nπ

−1(2λiid+1−i)

26: else
27: Xi

k = Xk − σkNπ
−1(2λiid+1−i)

28: end if
29: end while
30: /* weighted recombination */

31: X1:λiid
k
, . . . ,Xλiid:λiid

k
=

32: argsort( f (X1
k ), . . . , f (X

λiid−λm
k

),
33: min{ f (Xλiid−λm+1

k
), f (Xλiid+λm

k
)}, . . . ,

34: min{ f (Xλiid
k

), . . . , f (Xλiid+1
k

)})
35: Xk+1 =

∑µ
i=1 wi X

i:λiid
k

36: σk+1 = update(σk, f (X1
k ), . . . , f (X

λiid
k

))
37: k← k + 1 iteration counter
38: end while
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14.7 Appendix (proofs)

14.7.1 Lemma
For the scale-invariant (µ/µw, λ)-ES minimizing spherical functions, the probability distribution of the
vector
(Z[1 : λ], . . .Z[λ : λ]) is independent of Xk and equals

(Z[1 : λ], . . . ,Z[λ : λ]) = argsort{hσ(N1), . . . , hσ(Nλ)} (14.17)

where hσ(x) = 2[x]1+σ‖x‖2, where (N i)1≤i≤λ areλ independent standardmultivariate normal distribution.

Proof. At iteration k, starting fromXk, the distribution of the selected steps is determined by the ranking
of

(‖Xk + σ‖Xk‖N
i‖)1≤i≤λ .

Normalizing by ‖Xk‖will not change the ranking such that the distribution is determined by the ranking
of ∥∥∥∥∥∥

Xk

‖Xk‖
+ σN i

∥∥∥∥∥∥ for 1 ≤ i ≤ λ .

However, since the distribution ofN i is spherical, the distribution of the selected steps will be the same
if we start from any vector with unit norm (like Xk

‖Xk‖
), so WLOG the distribution will be determined by

ranking
∥∥∥e1 + σN

i
∥∥∥ for 1 ≤ i ≤ λ or since composing by g(x) = x2 will not change the ranking

∥∥∥e1 + σN
i
∥∥∥2 for 1 ≤ i ≤ λ

We develop
∥∥∥e1 + σN

i
∥∥∥2 and obtain 1 + 2σ[N i]1 + σ2‖N i‖2. Ranking will not be affected if we subtract 1

and divide by σ such that the distribution ofN i is determined by the ranking with respect to hσ(N i). �

14.7.2 Theorem
For the (µ/µw, λ)-ES with scale-invariant step-size on g(‖x‖), g ∈ M, (14.1) and (14.2) hold and the
convergence rate equals

CR(σ,w) =
E ln

[
1 + 2

∑µ
i=1 σwi [Z[i : λ]]1 +

∥∥∥∑µ
i=1 σwiZ[i : λ]

∥∥∥2
]

2λ
,

where wi ∈ R and
∑µ

i=1 |wi| = 1.

Proof. We start from

‖Xk+1‖ = ‖Xk + σ‖Xk‖
µ∑

i=1

wiZ[i : λ]‖

that we normalize by ‖Xk‖ and take the logarithm

ln
‖Xk+1‖
‖Xk‖

= ln ‖Xk/‖Xk‖ + σ
µ∑

i=1

wiZ[i : λ]‖ (14.18)

Using the isotropy of the sphere function and of the multivariate normal distribution, together with the
previous lemma, we find that the random variables in the RHS of the previous equation are i.i.d. and
distributed as ln ‖e1 + σ

∑µ
i=1 wiZ[i : λ]‖. Applying the Law of Large Numbers to

1
λk

ln
‖Xk‖
‖X0‖

=
1
λk

k−1∑

i=0

ln
‖X

i+1‖
‖X

i
‖
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we find thus that
1
λk

ln
‖Xk‖
‖X0‖

=
1
λ
E[ln ‖e1 +

µ∑

i=1

σwiZ[i : λ]‖]

We develop the convergence in the RHS of the previous equation using the identity

ln ‖e1 + u‖ = 1
2
ln

[
1 + 2u1 + ‖u‖2

]
, for u ∈ Rn (14.19)

that can be obtained in a straightforward way by writing ln ‖e1 + u‖ as 1
2 ln ‖e1 + u‖2 and developing

the norm. We then obtain that (14.2) holds with the convergence rate expression given in the theorem.
To obtain the convergence in expectation as defined in (14.1), we take the expectation in (14.18). For
a more formal argument that the expectation exists and of the independence of the random variables
ln ‖Xk‖/‖Xk‖, we refer to [205]. �

14.7.3 Theorem
The convergence rate of the (µ/µw, λ)-ESwith scale-invariant step size andweightsw ∈ Rµwith

∑µ
i=1 |wi| =

1 on the class of spherical functions g(‖x‖), g ∈ M satisfies

lim
d→∞

dCR
(
σ

d
,w

)
=

1
λ



σ2

2

µ∑

i=1

w2
i + σ

µ∑

i=1

wiE(Ni:λ)




where Ni:λ is the ith order statistic of λ independent normal distributions with mean 0 and variance 1,
i.e., the ith smallest of λ independent variablesNi ∼ N(0, 1).

Proof. Let N i be the λ independent standard multivariate normal distributions. Let P(λ) denote
the permutation of {1, . . . , λ}, the distribution of log-progress can be expressed by summing over all
permutations in P(λ) in the following way

1
2λ

ln


1 + 2

σ

d

µ∑

i=1

wi[Z[1 : i]]1 +
σ2

d

‖∑µ
i=1 wiZ[1 : i]‖2

d


 =

1
2λ

∑

π∈P(λ)
ln


1 + 2

σ

d

µ∑

i=1

wi[Nπ(i)]1 +
σ2

d

‖∑µ
i=1 wiNπ(i)‖2

d


 ·

1{hσ/d(Nπ(1))≤...≤hσ/d(Nπ(λ))} (14.20)

For any permutation π and any i

hσ/d(Nπ(i)) = 2[Nπ(i)]1 +
σ

d
‖Nπ(i)‖2

such that limd→∞ hσ/d(Nπ(i)) = 2[Nπ(i)]1. Therefore,

1{hσ/d(Nπ(1))≤...≤hσ/d(Nπ(λ))} −−−→d→∞
1{[Nπ(1)]1≤...[Nπ(λ)]1} . (14.21)

In addition, since every component of the vector
∑µ

i=1 wiNπ(i) follows a standard normal distribution
with mean zero and variance

∑µ
i=1 w

2
i
, we have that by the Law of Large Numbers that ‖∑µ

i=1 wiNπ(i)‖2/d
converges to

∑µ
i=1 w

2
i
and thus

d

2
ln


1 + 2

σ

d

µ∑

i=1

wi[Nπ(i)]1 +
σ2

d

‖∑µ
i=1 wiNπ(i)‖2

d




−−−→
d→∞

σ

µ∑

i=1

wi[Nπ(i)]1 +
σ2

2

µ∑

i=1

w2
i (14.22)
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Thus injecting the limits from (14.21) and (14.22) into (14.20), we obtain

d

2λ
ln


1 + 2

σ

d

µ∑

i=1

wi[Z[1 : i]]1 +
σ2

d

‖∑µ
i=1 wiZ[1 : i]‖2

d


 −−−→d→∞

∑

π∈P(λ)

1
λ


σ

µ∑

i=1

wi[Nπ(i)]1 +
σ2

2

µ∑

i=1

w2
i


 1{[Nπ(1)]1≤...[Nπ(λ)]1} (14.23)

In the RHS of the previous equation, we recognize the distribution of order statistics of standard normal
distributions. Thus

d

2λ
ln


1 + 2

σ

d

µ∑

i=1

wi[Z[1 : i]]1 +
σ2

d

‖∑µ
i=1 wiZ[1 : i]‖2

d


 −−−→d→∞

1
λ


σ

µ∑

i=1

wiN i:λ +
σ2

2

µ∑

i=1

w2
i


 (14.24)

To find the announced result, we need to obtain the limit in expectation. To do som we need to verify
that the random variables are uniformly integrable. This step is quite technical and we refer to [205] for
the details. �

14.7.4 Lemma
In the (µ/µw, λiid + λrandm )-ES with scale-invariant step-size on spherical functions, the distribution of the
vector of ordered steps to be recombined is given by

(Z[1], . . . ,Z[λiid]) = argsort{hσ(N1), . . . , hσ(Nλiid−λm ),
min{hσ(Nλiid−λm+1), hσ(−Nλiid−λm+1)}, . . . ,

min{hσ(Nλiid ), hσ(−Nλiid)}} (14.25)

where hσ(x) = 2[x]1 + σ‖x‖2.

Proof. Let (N i)1≤i≤λ be λ independent standardmultivariate normal distributions. At iteration k starting
from Xk, we rank the individuals Xk + σ‖Xk‖N

i for 1 ≤ i ≤ λiid − λm and the best of the mirrored,
unmirrored pairs for the λm last individuals, i.e., we rank ‖Xk + σ‖Xk‖N

i‖ for 1 ≤ i ≤ λiid − λm with
min{‖Xk + σ‖Xk‖N

i‖, ‖Xk − σ‖Xk‖N
i‖} for i = λiid − λm + 1, . . . , λiid. Using the same arguments as in

Lemma 14.3.1, we find that the ranking does not change if we normalize by ‖Xk‖ and if we start from
e1 such that the distribution is determined by the ranking of ‖e1 + σN

i‖ for 1 ≤ i ≤ λiid − λm and
min{‖e1 + σN

i‖, ‖e1 − σN
i‖} for i = λiid − λm + 1, . . . , λiid. As in Lemma 14.3.1, we square the terms and

develop them to find that the distribution is determined by the ranking according to hσ as given in (14.7).
�

14.7.5 Lemma
In the (µ/µw, λiid + λselm )-ES with scale-invariant step-size on spherical functions, the distribution of the
vector of ordered steps to be recombined is given by

(Z[1], . . . ,Z[λiid]) = argsort{hσ(Ysel
1 ), . . . , hσ(Ysel

λiid
)} , (14.26)

where Ysel
i is defined in (14.8) and (14.9).
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Proof. As in Lemma 14.3.1 and Lemma 14.3.4, the ranking can be done normalizing by Xk and starting
from e1. Thus, it follows from the way we have defined Ysel

i that the distribution of the vector of ordered
steps is determined by (14.10). �

14.7.6 Lemma
In the (µ/µw, λiid + λselm )-ES with scale-invariant step-size on spherical functions, the distribution of the
vector of ordered steps to be recombined is given by

(Z[1], . . . ,Z[λiid]) = argsort{hσ(Ysel
1 ), . . . , hσ(Ysel

λiid
)} , (14.27)

where Ysel
i is defined in (14.11) and (14.12).

Proof. As in Lemma 14.3.1 and Lemma 14.3.4, the ranking can be done normalizing by Xk and starting
from e1. Thus, it follows from the way we have defined Ysel

i that the distribution of the vector of ordered
steps is determined by (14.10). �

14.7.7 Theorem
The convergence rate of the (µ/µw, λiid + λselm )-ES and (µ/µw, λiid + λrandm )-ES and (µ/µw, λiid + λrandm )-ES
with independent length equals

CR(σ,w) =
E ln

[
1 + 2

∑µ
i=1 σwi [Z[i]]1 +

∥∥∥∑µ
i=1 σwiZ[i]

∥∥∥2
]

2(λiid + λm)
,

where wi ∈ R and
∑µ

i=1 |wi| = 1 and the distribution of the random vector (Z[1], . . . ,Z[λiid]) are defined
in Lemma 14.3.4, 14.3.5 and 14.3.6 respectively.

Proof. The proof is similar to the proof of Theorem 14.3.2 injecting the distribution of the randomvectors
(Z[1], . . . ,Z[λiid]) for the different algorithms. �

14.7.8 Theorem
The convergence rate of the (µ/µw, λiid + λrandm ), (µ/µw, λiid + λselm ) (with or without independent length)
with scale-invariant step size and weights w ∈ Rµ with

∑µ
i=1 |wi| = 1 on the class of spherical functions

g(‖x‖), g ∈ M satisfies

lim
d→∞

dCR
(
σ

d
,w

)
=

1
λiid + λm



σ2

2

µ∑

i=1

w2
i + σ

µ∑

i=1

wiE(Zi)




where the distribution ofZi is given in (14.14) for the (µ/µw, λiid+λrandm ) and in (14.15) for the (µ/µw, λiid+
λselm ) with or without independent length for the mirroring.

Proof. The proof follows the same lines as the proof for the (µ/µw, λ)-ES (Theorem 14.3.3). �
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Figure 14.8: Optimal weights found by UH-CMA-ES
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To simultaneously optimize multiple objective functions, several evolutionary multiobjective opti-
mization (EMO) algorithms have been proposed. Nowadays, often set quality indicators are used
when comparing the performance of those algorithms or when selecting “good” solutions during the
algorithm run. Hence, characterizing the solution sets that maximize a certain indicator is crucial—
complying with the optimization goal of many indicator-based EMO algorithms. If these optimal
solution sets are upper bounded in size, e.g., by the population size µ, we call them optimal µ-
distributions. Recently, optimal µ-distributions for the well-known hypervolume indicator have been
theoretically analyzed, in particular, for bi-objective problems with a linear Pareto front. Although
the exact optimal µ-distributions have been characterized in this case, not all possible choices of the
hypervolume’s reference point have been investigated. Moreover, some of the results rely on a lower
bound for the reference point in order to ensure the extremes of the front in the optimal µ-distributions.
In this report, we revisit the previous results and rigorously characterize the optimal µ-distributions
also for all other reference point choices. In this sense, our characterization is now exhaustive as
the result holds for any linear Pareto front and for any choice of the reference point and the optimal
µ-distributions turn out to be always unique in those cases. We also prove a tight lower bound
(depending on µ) such that choosing the reference point above this bound ensures the extremes of the
Pareto front to be always included in optimal µ-distributions.

15.1 Introduction

Many evolutionary multiobjective optimization (EMO) algorithms have been proposed to tackle opti-
mization problems with multiple objectives. The most recent ones employ quality indicators within
their selection in order to (i) directly incorporate user preferences into the search [379, 24] and/or to
(ii) avoid cyclic behavior of the current population [353, 383]. In particular the hypervolume indicator

189
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[381] is of interest here and due to its refinement property [383] employed in several EMO algorithms
[61, 198, 43]. The hypervolume indicator assigns a set of solutions the “size of the objective value space
which is covered” and at the same time is bounded by the indicator’s reference point [381]. Although
maximizing the hypervolume indicator, according to its refinement property, results in finding Pareto-
optimal solutions only [150], the question ariseswhich of these points are favored by hypervolume-based
algorithms. In other words, we are interested in the optimization goal of hypervolume-based algorithms
with a fixed population size µ, i.e., in finding a set of µ solutions with the highest hypervolume indicator
value among all sets with µ solutions. Also in performance assessment, the hypervolume is used quite
frequently [384]. Here, knowing the set of points maximizing the hypervolume is crucial as well. On the
one hand, it allows to evaluate whether hypervolume-based algorithms really converge towards their
optimization goal on certain test functions. On the other hand, only the knowledge of the best hyper-
volume value achievable with µ solutions allows to compare algorithms in an absolute manner similar
to the state-of-the-art approach of benchmarking single-objective continuous optimization algorithms in
the horizontal-cut view scenario, see [176, appendix] for details.

Theoretical investigations of the sets of µ pointsmaximizing the hypervolume indicator—also known
under the term of optimal µ-distributions [25]—have been started only recently. Although quite strong,
i.e., very general, results on optimal µ-distributions are known [25, 84], most of them are approximation
or limit results in order to study a wide range of problem classes. The only exact results consider
problems with very specific Pareto fronts, namely linear fronts that can be described by a function
f : x ∈ [xmin, xmax] 7→ αx + βwhere α < 0 and β ∈ R in the bi-objective case [60, 137, 25] or fronts that can
be expressed as f : x ∈ [1, c] 7→ c/xwith c > 1 [156].

Themain aim of this report is to revisit the results on optimal µ-distributions for bi-objective problems
with linear Pareto fronts and to consider all conditions under which the exact optimal µ-distributions
have not been characterized yet. The result is both exact and exhaustive, in the sense that a single
formula is proven that characterizes the unique optimalµ-distribution for any choice of the hypervolume
indicator’s reference point and for any µ ≥ 2, covering also the previously known cases. It turns out that
the specific case of µ = 2 complies with a previous results of [25] and that for all linear front shapes, the
optimal µ-distributions are always unique.

Before we present our results in Sec. 15.5–15.7, we introduce basic notations and definitions in
Sec. 15.2, define and discuss the problem of finding optimal µ-distributions in Sec. 15.3 in more detail,
and give an extensive overview of the known results in Sec. 15.4.

15.2 Preliminaries

Without loss of generality (w.l.o.g.), we consider bi-objective minimization problems where a vector-
valued function F : X → R

2 has to be minimized with respect to the weak Pareto dominance relation
�. We say a solution x ∈ X is weakly dominating another solution y ∈ X (x � y) iff F1(x) ≤ F1(y) and
F2(x) ≤ F2(y) where F = (F1,F2). We also say x ∈ X is dominating y ∈ X (x ≺ y) if x � y but y � x.
The set of nondominated solutions is the so-called Pareto set Ps = {x ∈ X |∄y ∈ X : y ≺ x} and its image
F (Ps) in objective space is called Pareto front. Note that, to keep things simple, we make an abuse of
terminology throughout the paper and use the term solution both for a point x in the decision space X
and for its corresponding objective vector F (x) ∈ R

2. Moreover, we also define the orders � and ≺ on
objective vectors.

In order to optimize multiobjective optimization problems like the bi-objective ones considered here,
several recent EMO algorithms aim at optimizing the hypervolume indicator [381], a set quality indicator
IH(A, r) that assigns a set A the Lebesgue measure λ of the set of solutions that are weakly dominated by
solutions in A but that at the same time weakly dominate a given reference point r ∈ R2, see Fig. 15.1:

IH(A, r) = λ
(
{z ∈ R2 | ∃a ∈ A : f (a) � z � r}

)
(15.1)



15.3. PROBLEM STATEMENT 191

The hypervolume indicator has the nice property of being a refinement of the Pareto dominance relation
[383]. This means that maximizing the hypervolume indicator is equivalent to obtaining solutions in
the Pareto set only [150]. However, it is more interesting to know where the solutions maximizing the
hypervolume lie on the Pareto front if we restrict the size of the sets A to let us say, the population size
µ. This set of µ points maximizing the hypervolume indicator among all sets of µ points is known under
the term optimal µ-distribution [25] and finding an optimal µ-distribution coincides with the optimization
goal of hypervolume-based algorithms with fixed population size.

To investigate optimal µ-distributions in this report, we assume the Pareto front to be given by a
function f : R→ R and two values xmin, xmax ∈ R such that all points on the Pareto front have the form
(x, f (x)) with x ∈ [xmin, xmax]. In case of a linear Pareto front, f (x) = αx+ β for α, β ∈ R, see Fig. 15.1 for an
example. W.l.o.g, we assume that xmin = 0 and β > 0 in the remainder of the paper—otherwise, a simple
linear transformation brings us back to this case. Moreover, α < 0 follows fromminimization. Note also
that under not too strong assumptions on the Pareto front, and in particular for linear fronts, optimal
µ-distributions always exist, see [25].

15.3 Problem Statement

In case of a linear Pareto front described by the function f (x) = αx+ β (α < 0, β ∈ R), finding the optimal
µ-distribution for the hypervolume indicator with reference point r = (r1, r2) can be written as finding
the minimum of the function

IH(x1, . . . , xµ) =
µ∑

i=1

(xi+1 − xi)
(
f (x0) − f (xi)

)
=

µ∑

i=1

(xi+1 − xi) (αx0 − αxi)

= α

µ∑

i=1

[
(xi)

2
+ x0xi+1 − x0xi − xixi+1

]
(15.2)

with xmin ≤ xi ≤ xmax for all 1 ≤ i ≤ µ

where we define xµ+1 = r1 and x0 = f−1(r2) [25], Fig. 15.1. According to [25], we denote the x-values
of the optimal µ-distribution, maximizing (15.2), as x

µ

1 . . . x
µ
µ. Although the term in (15.2) is quadratic

in the variables x0, . . . , xµ+1, and therefore, in principle, solvable analytically, the restrictions of the
variables to the interval [xmin, xmax] makes it difficult to solve the problem. In the following, we therefore
investigate the minima of (15.2) depending on the choice of r1 and r2 with another approach: we use the
necessary condition for optimal µ-distributions of [25, Proposition 1] and apply it to linear fronts while
the restriction of the variables to [xmin, xmax] are handled “by hand”.

15.4 Overview of Recent and New Results

Characterizing optimal µ-distributions for the hypervolume indicator has been started only recently but
the number of results is already quite extensive, see for example [150, 60, 137, 25, 24, 156, 26, 84, 43].
Here, we restate, to the best of our knowledge, all previous results that relate to linear Pareto fronts and
point out which problems are still open.

Besides the proof that maximizing the hypervolume indicator yields Pareto-optimal solutions [150],
the authors of [60] and [137] were the first to investigate optimal µ-distributions for linear fronts. Under
the assumption that the extreme points (0, β) and (xmax, 0) are included in the optimal µ-distribution, it
was shown for linear frontswithα = −1 that neighboredpointswithin a setmaximizing the hypervolume
are equally spaced. However, the result does not state where the leftmost and rightmost point of the
optimal µ-distribution have to be placed in order to maximize the hypervolume and it has been shown
later [25] that the assumption about the extreme points does not always hold.
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Figure 15.1: Left: Illustration of the hypervolume indicator IH(A, r) (gray area). Right: Optimal µ-
distributions and the choice of the reference point for linear fronts of shape y = αx + β. Up-to-now,
theoretical results are only known if the reference point is chosen within the regions I and IX [25].
Exemplary, the optimal 2-distribution (circles) is shownwhen choosing the reference point (cross) within
region IV.

The first results without assuming the positions of the leftmost and rightmost point have been proven
in [25] where the result is based on a more general necessary condition about optimal µ-distributions for
the hypervolume indicator. In particular, [25] presents the exact distribution of µ points maximizing the
hypervolume indicator when the reference point is chosen close to the Pareto front (region I in Fig. 15.1,
cp. [25, Theorem 5]) or far away from the front (region IX in Fig. 15.1, cp. [25, Theorem 6]). In the former
case, both extreme points of the front do not dominate the reference point and the (in this case unique)
optimal µ-distribution reads

x
µ

i
= f−1(r2) +

i

µ + 1
· (r1 − f−1(r2)) . (15.3)

In the latter case, the reference point is chosen far enough such that—independent of the reference point
and µ—both extreme points are included in an optimal µ-distribution1 and the (again unique) optimal
µ-distributions can be expressed as

x
µ

i
= xmin +

i − 1
µ − 1

(xmax − xmin) . (15.4)

Note that the region IX, corresponding to choices of the reference point within Theorem 6 of [25] does
not depend on µ but on a lower bound on the reference point to ensure that both extremes are included
in the optimal µ-distribution. Recently, a limit result has been proven [26] which shows that the lower
bound of [25, Theorem 6] converges to the nadir point2 if µ goes to infinity but the result does not state
how fast (in µ) the nadir point is approached. Clearly, choosing the reference point within the other
regions II–VIII in Fig. 15.1 is possible and the question arises how the reference point influences the
optimal µ-distributions in these uninvestigated cases as well. The answer to this question is the main
focus of this report.

15.5 If the Reference Point is Dominated by Only the Right Extreme

As a first new result, we consider choosing the reference point within the regions II or III of Fig. 15.1.
Here, the left extreme cannot be included in an optimal µ-distribution as it is never dominating the
reference point and thereby always has a zero hypervolume contribution. Thus, the proof of the optimal
µ-distribution has to consider only the restrictions of the µ points at the right extreme. Moreover, the
uniqueness of the optimal µ-distribution in the cases II and III follows directly from case I.

1Which is proven to be true for r1 > 2xmax and r2 > 2β in another general theorem [25].
2In case of a linear front as defined above, the nadir point equals n = (xmax, f (xmin)).
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15.5.1 Theorem
Given µ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f (x) = αx+βwithin [0, xmax = − βα ]. If r2 ≤ β and
r1 ≥ xmax (cases II and III), the unique optimal µ-distribution (xµ1 , . . . , x

µ
µ) for the hypervolume indicator

IH with reference point (r1, r2) can be described by

x
µ

i
= f−1(r2) +

i

µ + 1

(
min

{
r1,
µ + 1
µ

xmax −
f−1(r2)
µ

}
− f−1(r2)

)
. (15.5)

Proof. According to (15.3) and assuming no restrictions of the solutions on the linear front αx + β
with x ∈ R, the optimal µ-distribution would be given by x

µ

i
= f−1(r2) + i

µ+1 · (r1 − f−1(r2)) where the xµ
i

are possibly lying outside the interval [0, xmax]. However, as long as r1 is chosen such that xµµ ≤ xmax, we
can use (15.3) for describing the optimal µ-distributions, i.e., in the case that

x
µ
µ = f−1(r2) +

µ

µ + 1
· (r1 − f−1(r2)) ≤ xmax ⇔

f−1(r2)
µ + 1

+
µ

µ + 1
r1 ≤ xmax

⇔ r1 ≤
µ + 1
µ

xmax −
f−1(r2)
µ

(
=
−r2 − βµ
αµ

)
. (15.6)

With larger r1, the optimalµ-distributiondoesnot change any further (only thehypervolumecontribution
of xµµ increases linearly with r1), i.e., we can rewrite (15.3) as (15.5). � �

The previous theorem allows us also a more precise statement of when the right extreme is included
in optimal µ-distributions than the statement in [25].

15.5.2 Corollary
In case that r2 ≤ β and r1 ≥ µ+1

µ xmax − f−1(r2)
µ , the right extreme point (xmax, 0) is included in all optimal

µ-distributions for the front αx + β. �

Note that the choice of r1 to guarantee the right extreme in optimal µ-distributions depends both on µ
and r2 here whereas the (not so tight) bound for r1 to ensure the right extreme proven in [25] equals
2xmax. This is independent of µ and coincides with the new (tighter) result if µ = 2 and r2 = β. Figure 15.2
illustrates the region for which, if the reference point is chosen within, the right extreme is always
included in an optimal µ-distribution. Compare also to the old result of [25] which states this inclusion
of the right extreme only in case the reference point is chosen in region IX of Fig. 15.1. The description
of the line y = −αµx − µβ where choosing the reference point to the right of it ensures the right extreme

in the optimal µ-distribution results from writing r2 within r1 =
µ+1
µ xmax − f−1(r2)

µ as a function of r1.

15.6 If the Reference Point is Dominated by Only the Left Extreme

Obviously, the two cases IV and VII of Fig. 15.1 are symmetrical to the cases II and III where mainly the
left extreme and the reference point’s coordinate r2 take the roles of the right extreme and the coordinate
r1 respectively from the previous proof.

15.6.1 Theorem
Given µ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f (x) = αx+ βwithin [0, xmax = − βα ]. If r1 ≤ xmax

and r2 ≥ β (cases IV andVII), the unique optimalµ-distribution (xµ1 , . . . , x
µ
µ) for the hypervolume indicator

IH with reference point (r1, r2) can be described by

x
µ

i
= f−1

(
min

{
r2,
µ+1
µ β−

f (r1)
µ

})
+

i

µ + 1

(
r1− f−1

(
min

{
r2,
µ+1
µ β−

f (r1)
µ

}))
. (15.7)
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Figure 15.2: When choosing the reference point within regions II and III, we prove that the right extreme
is included in optimal µ-distributions if the reference point is chosen within the gray shaded area right
of the line y = −αµx − µβ, see Corollary 15.5.2. The picture corresponds to µ = 2.

Proof. The proof is similar to the one of Theorem 15.5.1: As in case I, we can write the optimal µ-
distribution according to (15.3) except that we have to ensure that xµ1 ≥ xmin = 0. This is equivalent to
f−1(r2) + 1

µ+1

(
r1 − f−1(r2)

)
≥ 0 or r2−β

α +
1
µ+1

(
r1 − r2−β

α

)
≥ 0 or r2−β

α +
αr1−r2+β
(µ+1)α ≥ 0. With α < 0, this gives

(µ + 1)r2 − (µ + 1)β + αr1 − r2 + β ≤ 0 and finally r2 ≤ (µ+1)β−(αr1+β)
µ =

µ+1
µ β −

f (r1)
µ such that (15.3) becomes

(15.7). � �

15.7 General Result for All Cases I–IX

By combining the above results, we can now characterize the optimal µ-distributions also for the other
cases V, VI, VII, and IX and give a general description of optimal µ-distributions for problems with
bi-objective linear fronts, given any µ ≥ 2 and any meaningful choice of the reference point3.

15.7.1 Theorem
Given µ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f (x) = αx+ βwithin [0, xmax = − βα ], the unique
optimal µ-distribution (xµ1 , . . . , x

µ
µ) for the hypervolume indicator IH with reference point (r1, r2) ∈ R

2
>0

can be described by

x
µ

i
= f−1(Fl) +

i

µ + 1

(
Fr − f−1(Fl)

)
(15.8)

for all 1 ≤ i ≤ µwhere

Fl = min{r2,
µ + 1
µ
β − 1
µ
f (r1),

µ

µ − 1
β} and

Fr = min{r1,
µ + 1
µ

xmax −
1
µ
f−1(r2),

µ

µ − 1
xmax} .

Proof. Again, the optimal µ-distribution would be given by (15.3) if we prolongate the front linearly
outside the interval [xmin, xmax] and therefore, no restrictions on the xµ

i
would hold. However, the points

x
µ

i
are restricted to [xmin, xmax] and therefore (since we assume x

µ

i
< x

µ

i+1) we have to ensure that both

3Choosing the reference point such that it weakly dominates a Pareto-optimal point does not make sense as no feasible solution
would have a positive hypervolume.
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x
µ

1 ≥ xmin = 0 and x
µ
µ ≤ xmax = −β/α hold. According to the above proofs, the former is equivalent to

r2 ≤
µ + 1
µ
β − f (r1)

µ
(15.9)

and the latter is equivalent to

r1 ≤
µ + 1
µ

xmax −
f−1(r2)
µ

(15.10)

however, with restrictions on r1 (r1 ≤ xmax) and r2 ≤ β respectively which we do not have here. As long
as both (15.9) and (15.10) hold as in the white area in Fig. 15.3, i.e., no constraint is violated, (15.3) can be
used directly to describe the optimal µ-distribution as in region I. To cover all other cases, we could, at
first sight, simply combine the results for the cases II, III, IV, and VII from above and use

F∗l = min
{
r2,
µ + 1
µ
β − f (r1)

µ

}
and F∗r = min

{
r1
µ + 1
µ

xmax −
f−1(r2)
µ

}

as the extremes influencing the set xµ,∗
i
= F∗

l
+ i
µ+1

(
F∗r − F∗

l

)
. However, r1 and r2 are unrestricted and thus,

F∗
l
and F∗r can become too large such that the points xµ,∗

i
lie outside the feasible front part [xmin, xmax]. To

this end, we compute where the two constraints (15.9) and (15.10) meet, i.e., what is the smallest possible
reference point that results in having both extremes in the optimal µ-distribution. This point is depicted
as the lower left point of the dark gray area in Fig. 15.3.

By combining the equalities in (15.9) and (15.10) which is equivalent to r2 = −αµr1 − βµ (see end of
Sec. 15.5), we obtain

r2 =
µ+1
µ β −

f (r1)
µ =

µ+1
µ β −

αr1+β
µ = −αµr1 − βµ or r1 = − βα

µ
µ−1 =

µ
µ−1xmax

and thus r2 =
µ+1
µ β −

f ( µµ−1 xmax)

µ =
µ
µ−1β. Hence, if we choose the reference point r = (r1, r2) such that

r1 ≥ µ
µ−1xmax and r2 ≥ µ

µ−1β, both extremes will be included in the optimal µ-distribution x
µ

i
= Fextr

l
+

i
µ+1

(
Fextrr − Fextr

l

)
with Fextr

l
=

µ
µ−1β and Fextrr =

µ
µ−1xmax. With this result, we know that, independent of r2,

the right extreme is included if r1 ≥ µ
µ−1xmax (if the leftmost extreme is not included, r2 must be smaller

than µ
µ−1β and in this case r1 ≥ µ+1

µ xmax ensures that it is also greater or equal to µ+1µ xmax − f−1(r2)
µ ). The

same can be said for the left extreme, which is included in an optimal µ-distribution whenever r2 ≥ µ
µ−1β.

The optimal µ-distribution for those cases are the same than the optimal µ-distributions if we restrict r1
and r2 to be at most min{µ+1µ xmax − 1

µ f
−1(r2),

µ
µ−1xmax}, and min{µ+1µ β − 1

µ f (r1),
µ
µ−1β}} respectively, i.e., to

the cases where the reference point is lying on the boundary of the white region of Fig. 15.3 and having
one or even both extremes included in the optimal µ-distributions. In those cases, (15.3) can be used
again for characterizing the optimal µ-distribution as the constraints on the x

µ

i
are fulfilled. Using the

mentioned restrictions on r1 and r2 results in the theorem. � �

Note that the previous proof gives a tighter bound for how to choose the reference point r = (r1, r2)
in order to obtain the extremes in comparison to the old result in [25]: The former result states that
whenever r1 is chosen strictly larger than 2xmax and r2 is chosen strictly larger than 2β, both extremes
are included in an optimal µ-distribution in the case of a linear Pareto front. This bound holds for every
µ ≥ 2 but the previous theorem precises this bound to r1 ≥ µ+1

µ xmax and r2 ≥ µ+1
µ β for a given µ which

coincides with the old bound for µ = 2 but is the closer to the nadir point (xmax, β), the larger µ gets—a
result that has been previously shown as a limit result for arbitrary Pareto fronts [26].

Last, we want to note that, though the two equations (15.8) and (15.4) do not look the same at first
sight, Theorem 15.7.1 complies with the characterization of optimal µ-distributions given in (15.4) [25,
Theorem 6] for the case IX which can be shown by simple algebra.
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Figure 15.3: How to choose the reference point to obtain the extremes in optimal µ-distributions: µ = 2
(left) and µ = 4 (right) for one and the same front y = −x/2 + 1.

15.8 Conclusions

Finding optimal µ-distributions, i.e., sets of µ points that have the highest quality indicator value among
all sets of µ solutions coincideswith the optimization goal of indicator-basedmultiobjective optimization
algorithms and it is therefore important to characterize them. Here, we rigorously analyze optimal µ-
distributions for the often used hypervolume indicator and for problems with linear Pareto fronts. The
results are exhaustive in a sense that a single formula covers all possible choices of the hypervolume’s
reference point, including two previously proven cases. In addition to the newly covered cases, the
new results show also how the choice of µ influences the fact that the extremes of the Pareto front are
included in optimal µ-distributions for the case of linear fronts—a fact that has been only shown before
by a lower bound result of choosing the reference point and not exact as here. The proofs also show that
the optimal µ-distributions for problems with linear Pareto fronts are, given a µ ≥ 2 and a certain choice
of the reference point, always unique.

Besides being the first exhaustive theoretical investigation of optimal µ-distributions for a specific
front shape, the presented results are expected to have an impact in practical performance assessment as
well. For the first time, it is now possible to use the exact optimal µ-distribution and its corresponding
hypervolume when comparing algorithms on test problems with linear fronts such as DTLZ1 [119] or
WFG3 [193] for any choice of the reference point4. It remains futurework to theoretically characterize the
optimal µ-distributions for test problems with other front shapes for which the optimal µ-distributions
can only be approximated numerically at the moment [25].

4Theorem 15.7.1 can be applied directly with α = −1 and β = 0.5 (DTLZ1) or β = 1 (WFG3).
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In recent years, indicator-based evolutionary algorithms, allowing to implicitly incorporate user
preferences into the search, have become widely used in practice to solve multiobjective optimization
problems. When using this type of methods, the optimization goal changes from optimizing a set
of objective functions simultaneously to the single-objective optimization goal of finding a set of µ
points that maximizes the underlying indicator. Understanding the difference between these two
optimization goals is fundamental when applying indicator-based algorithms in practice. On the one
hand, a characterization of the inherent optimization goal of different indicators allows the user to
choose the indicator that meets her preferences. On the other hand, knowledge about the sets of µ
pointswith optimal indicator values—so-calledoptimalµ-distributions—can be used in performance
assessment whenever the indicator is used as a performance criterion. However, theoretical studies
on indicator-based optimization are sparse. One of the most popular indicators is the weighted
hypervolume indicator. It allows to guide the search towards user-defined objective space regions
and at the same time has the property of being a refinement of the Pareto dominance relation with
the result that maximizing the indicator results in Pareto-optimal solutions only. In previous work,
we theoretically investigated the unweighted hypervolume indicator in terms of a characterization
of optimal µ-distributions and the influence of the hypervolume’s reference point for general bi-
objective optimization problems. In this report, we generalize those results to the case of theweighted
hypervolume indicator. In particular, we present general investigations for finiteµ, derive a limit result
for µ going to infinity in terms of a density of points and derive lower bounds (possibly infinite) for
placing the reference point to guarantee the Pareto front’s extreme points in an optimal µ-distribution.
Furthermore, we state conditions about the slope of the front at the extremes such that there is no
finite reference point that allows to include the extremes in an optimal µ-distribution—contradicting
previous belief that a reference point chosen just above the nadir point or the objective space boundary
is sufficient for obtaining the extremes. However, for fronts where there exists a finite reference point
allowing to obtain the extremes, we show that for µ to infinity, a reference point that is slightly worse
in all objectives than the nadir point is a sufficient choice. Last, we apply the theoretical results to
problems of the ZDT, DTLZ, and WFG test problem suites.
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16.1 Introduction

Multiobjective optimization aims at optimizing several criteria simultaneously. In the last decades,
evolutionary algorithms have been shown to be well-suited for those problems in practice [115, 103].
A recent trend is to use quality indicators to turn a multiobjective optimization problem into a single-
objective one by optimizing the quality indicator itself. An indicator-based algorithm uses a specific
quality indicator to assign every individual a single-objective fitness—most of the time proportional to
the indicator loss, a measure of howmuch the quality indicator decreases if the corresponding individual
is removed from the population. Instead of optimizing the objective functions directly, indicator-based
algorithms therefore aim at finding a set of solutions that maximizes the underlying quality indicator
and a fundamental question is whether these two optimization goals coincide or how they differ. In
practice, the population size of indicator-based algorithms is usually finite, i.e., equal to µ ∈ N, and
the optimization goal changes to finding a set of µ solutions optimizing the quality indicator1. We call
such a set an optimal µ-distribution for the given indicator generalizing the definition given by [25]. In
this case, the additional questions arise how the number of points µ influences the optimization goal
and to which set of µ objective vectors the optimal µ-distribution is mapped, i.e., which search bias is
introduced by changing the optimization goal. Ideally, the optimal µ-distribution for an indicator only
contains Pareto-optimal points and an increase in µ covers more and more points until the entire Pareto
front is covered if µ approaches infinity. It is clear that in general, two different quality indicators yield a
priori two different optimal µ-distributions, or in other words, introduce a different search bias. This has
for instance been shown experimentally by [156] for the multiplicative ε-indicator and the hypervolume
indicator.

The hypervolume indicator and its weighted version [376] are particularly interesting indicators
since they are refinements of the Pareto dominance relation [383]2. Thus, an optimal µ-distribution for
these indicators contains only Pareto-optimal solutions and the set (probably unbounded in size) that
maximizes the (weighted) hypervolume indicator covers the entire Pareto front [150]. Many other quality
indicators do not have this fundamental property. It explains the success of the hypervolume indicator
as quality indicator applied to environmental selection of indicator-based evolutionary algorithms such
as ESP [194], SMS-EMOA [61], MO-CMA-ES [198], or HypE [44]. Nevertheless, it has been argued that
using the (weighted) hypervolume indicator to guide the search introduces a certain bias. Interestingly,
several contradicting beliefs about this bias have been reported in the literature which we will discuss
later on in more detail (see Sec. 16.3). They range from stating that convex regions may be preferred to
concave regions to the argumentation that the hypervolume is biased towards boundary solutions. In the light
of those contradicting beliefs, a thorough investigation of the effect of the hypervolume indicator on
optimal µ-distributions is necessary.

Another important issue when dealing with the hypervolume indicator is the choice of the reference
point, a parameter, both the unweighted and the weighted hypervolume indicator depend on. The
influence of this reference point on optimal µ-distributions has not been fully understood, especially for
theweighted hypervolume indicator, and only rules-of-thumb exist on how to choose the reference point
in practice. In particular, it could not be observed from practical investigations how the reference point
has to be set to ensure to find the extremes of the Pareto front. Several authors recommend to use the
corner of a space that is a little bit larger than the actual objective space as the reference point [219, 61].
For performance assessment, others recommend to use the estimated nadir point as the reference point
[310, 309, 195]. Also here, theoretical investigations are highly needed to assist in practical applications.

First theoretical studies on optimal µ-distributions for the (unweighted) hypervolume indicator and
the choice of its reference point have been published in an earlier work by the authors [25]. The
theoretical analyses resulted in a better understanding of the search bias the hypervolume indicator
introduces and in theoretically founded recommendations on where to place the reference point in the

1Sometimes, the population size might not be fixed, e.g., when deleting all dominated solutions, but the maximum number of
simultaneously considered solutions is typically upper bounded by a constant µ.

2Other studies introduced the equivalent terms of being compatible or compliant with the Pareto dominance relation [220, 384].
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case of two objectives. In particular, some beliefs about the indicator’s search bias could be disproved
and others confirmed, the optimal µ-distributions for linear Pareto fronts were characterized exactly, and
lower bounds on the reference point’s objective values that allow to include the extremes of the Pareto
front in certain cases have been given. Recently, a specific result of [25] has been already generalized to
the weighted hypervolume indicator [24] and another exact result for specific Pareto fronts have been
provided [156].

In this report, we extend all results by [25] to the weighted case and provide a general theory of the
weighted hypervolume indicator in terms of both the inherently introduced search bias and the choice
of the reference point. In particular, we

• characterize the sets of µ points that maximize the (weighted) hypervolume indicator; besides
general investigations for finite µ, we derive a limit result for µ going to infinity in terms of a
density of points. The presented results for the weighted hypervolume indicator comply with the
results for the unweighted case [25]. Furthermore, we

• investigate the influence of the reference point on optimal µ-distributions, i.e., we derive lower
bounds for the objective values of the reference point (possibly infinite) for guaranteeing the Pareto
front’s extreme points in an optimal µ-distribution and investigate cases where the extremes are
never contained in such a set; these results generalize theworkby [25] to theweightedhypervolume
indicator. In addition, we

• prove, in case the extremes can be obtained, that for any reference point dominated by the nadir
point—with any small but positive distance between the two points—there is a finite number of
points µ0 (possibly large in practice) such that for all µ > µ0, the extremes are included in optimal
µ-distributions. Last, we

• apply the theoretical results to linear Pareto fronts [25] and to benchmark problems of the ZDT
[378], DTLZ [119], and WFG [193] test problem suites resulting in recommended choices of the
reference point including numerical and sometimes analytical expressions for the resulting density
of points on the front.

The paper is structured as follows. First, we recapitulate the basics of the (weighted) hypervolume
indicator and introduce the notations and definitions needed in the remainder of the paper (Sec. 16.2).
Then, we consider the bias of the weighted hypervolume indicator in terms of optimal µ-distributions.
After characterizingoptimalµ-distributions for afinite number of solutions (Sec. 16.3.1), wederive results
on the density of points if the number of points goes to infinity (Sec. 16.3.2). Section 16.4 investigates the
influence of the reference point on optimal µ-distributions especially on the extremes. The application
of the results to test problems is presented in Sec. 16.5, and Sec. 16.6 concludes the paper.

16.2 The Hypervolume Indicator: General Aspects and Notations

Throughout this study we consider, without loss of generality, minimization problems where k objective
functions Fi : X → Z, 1 ≤ i ≤ k have to be minimized simultaneously. The vector function F :=
(F1, . . . ,Fk) thereby maps each solution x in the decision space X to its corresponding objective vector
F (x) in the objective space F (X) = Z ⊆ R

k. Furthermore, we assume that the underlying dominance
structure is given by the weak Pareto dominance relation �which is defined between arbitrary solution
pairs. We say x ∈ X weakly dominates y ∈ X if for all 1 ≤ i ≤ k, Fi(x) ≤ Fi(y) and write x � y. This weak
Pareto dominance relation is generalized to sets of solutions in the following straightforward manner:
we say a set A of solutions weakly dominates another solution set B if for all b ∈ B there exists an a ∈ A
such that a � b. The Pareto(-optimal) set Ps consists of all solutions x∗ ∈ X, such that there is no x ∈ X that
satisfies x � x∗ and x∗ � x. The image of Ps under F is called Pareto(-optimal) front or front for short. We
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Figure 16.1: The hypervolume indicator IH,w(A) corresponds to the integral of a weight function w(z)
over the set of objective vectors that are weakly dominated by a solution set A and in addition weakly
dominate the reference point r (hatched areas). On the left, the set A consists of nine objective vectors
whereas on the right, the infinite set A can be described by a function f : [xmin, xmax]→ R. The left-hand
plot shows an example of a weight functionw(z), where for all objective vectors z that are not dominated
by A or not enclosed by r the function w is not plotted, such that the weighted hypervolume indicator
corresponds to the volume of the gray shape.

also use the weak Pareto dominance relation notation � among objective vectors, i.e., for two objective
vectors x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk we define x � y if and only if for all 1 ≤ i ≤ k : xi ≤ yi.

In the following, in order to simplify notations3, we define the indicators for sets of objective vectors
A ⊆ R

k instead for solution sets A′ ⊆ X as it was already done before [376, 25]. Theweighted hypervolume
indicator IH,w(A, r) for a set of objective vectors A ⊆ Z is then the weighted Lebesgue measure of the set
of objective vectors weakly dominated by the solutions in A that at the same time weakly dominate a
so-called reference point r ∈ Z [44]4:

IH,w(A, r) =
∫

Rk

w(z)1H(A,r)(z)dz (16.1)

where H(A, r) := {z ∈ Z | ∃a ∈ A : a � z � r}, 1H(A,r)(z) is the characteristic function of H(A, r) that equals
1 iff z ∈ H(A, r) and 0 otherwise, and w : Rk → R>0 is a strictly positive weight function integrable on
any bounded set, i.e.,

∫
B(0,γ) w(z)dz < ∞ for any γ > 0, where B(0, γ) is the open ball centered in 0 and of

radius γ. In other words, we assume that the measure associated to w is σ-finite5. Throughout the paper,
the notation IH refers to the non-weighted hypervolume where the weight is 1 everywhere, and we will
explicitly use the term non-weighted hypervolume for IH while the weighted hypervolume indicator
IH,w is, for simplicity, referred to as hypervolume.

The left-hand plot of Fig. 16.1 illustrates the hypervolume IH,w for a bi-objective problem. The three-
objective plot shows the objective values of nine points on the first two axes and the weight function w
on the third axis. The hypervolume indicator IH,w(A) for the set A of nine points equals the integral of
the weight function over the objective space that is weakly dominated by the set A and which weakly
dominates the reference point r = (r1, r2).

In what follows, we consider bi-objective problems. The Pareto front can thus be described by a
one-dimensional function f mapping the image of the Pareto set under the first objective F1 onto the

3Considering an indicator on solution sets introduces the possibility of solutions that map to the same objective vector. Adding
such a so-called indifferent solution to a solution set does not affect the set’s hypervolume indicator value but the consideration of
such solutions makes the text less readable if we want to state the results formally correct.

4Instead of a reference set as by [44], we consider one reference point only as in earlier publications [376].
5Several results presented in this report also hold if the weight is strictly positive almost everywhere, i.e., it can be 0 for null

sets. However, we decided to consider only strictly positive weights to keep the proofs simple.
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image of the Pareto set under the second objective F2,

f : x ∈ D 7→ f (x) ,

where D denotes the image of the Pareto set under the first objective. D can be, for the moment, either
a finite or an infinite set. An illustration is given in the right-hand plot of Fig. 16.1 where the function f
describing the front has a domain of D = [xmin, xmax].

16.2.1 Example
Consider the bi-objective problem DTLZ2 [119] which is defined as

minimize F1(d) =
(
1 + g(dM)

)
cos(d1π/2)

minimize F2(d) =
(
1 + g(dM)

)
sin(d1π/2)

g(dM) =
∑

di∈dM
(di − 0.5)2

subject to 0 ≤ di ≤ 1 for i = 1, . . . n

(16.2)

where dM denotes a subset of the decision variables d = (d1, . . . , dn) ∈ [0, 1]n with g(dM) ≥ 0. The Pareto
front is reached for g(dM) = 0. Hence, the Pareto-optimal points have objective vectors (cos(d1π/2),
sin(d1π/2)) with 0 ≤ d1 ≤ 1 which can be rewritten as points (x, f (x)) with f (x) =

√
1 − x2 and x ∈ D =

[0, 1], see Fig. 16.9(f).

Since f represents the shape of the trade-off surface, we can conclude that, forminimization problems,
f is strictly monotonically decreasing in D6. The coordinates of a point belonging to the Pareto front are
given as a pair (x, f (x)) with x ∈ D and therefore, a point is entirely determined by the function f and the
first coordinate x ∈ D. For µ points on the Pareto front, we denote their first coordinates as (x1, . . . , xµ).
Without loss of generality, it is assumed that xi ≤ xi+1, for i = 1, . . . , µ − 1 and for notation convenience,
we set xµ+1 := r1 and f (x0) := r2 where r1 and r2 are the first and second coordinate of the reference
point (see Figure 16.2). The weighted hypervolume enclosed by these points can be decomposed into
µ components, each corresponding to the integral of the weight function w over a rectangular area (see
Figure 16.2). The resulting weighted hypervolume writes:

IH,w((x1, . . . , xµ)) :=
µ∑

i=1

∫ xi+1

xi

(∫ f (x0)

f (xi)
w(x, y)dy

)
dx . (16.3)

When the weight function equals one everywhere, one retrieves the expression for the (non-weighted)
hypervolume [25]

IH((x1, . . . , xµ)) :=
µ∑

i=1

(xi+1 − xi)( f (x0) − f (xi)) . (16.4)

Indicator-based evolutionary algorithms that aim at optimizing a unary indicator I : 2X → R such as
the hypervolume transform a multiobjective problem into the single-objective one consisting of finding
a set of points maximizing the respective indicator I. In practice, the cardinality of these sets of points
is usually upper bounded by a constant µ, typically the population size. Generalizing the definition by
[25], we define an optimal µ-distribution as a set of µ points maximizing I.

16.2.2 Definition (Optimal µ-distribution)
For µ ∈N and a unary indicator I, a set of µ points maximizing I is called an optimal µ-distribution for I.

6If f is not strictly monotonically decreasing, we can find Pareto-optimal points (x1, f (x1)) and (x2, f (x2)) with x1, x2 ∈ D such
that, without loss of generality, x1 < x2 and f (x1) ≤ f (x2), i.e., (x1, f (x1)) dominates (x2, f (x2)).
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Figure 16.2: Computation of the hypervolume indicator for µ solutions (x1, f (x1)), . . . , (xµ, f (xµ)) and the
reference point r = (r1, r2) in the bi-objective case as defined in Eq. 16.3 and Eq. 16.4 respectively.

The rest of the paper is devoted to understand optimal µ-distributions for the hypervolume indicator
in the bi-objective case. The x-coordinates of an optimal µ-distribution for the hypervolume IH,w will be
denoted (xµ1 , . . . , x

µ
µ) and will thus satisfy

IH,w((x
µ

1 , . . . , x
µ
µ)) ≥ IH,w((x1, . . . , xµ)) for all (x1, . . . , xµ) ∈ D × . . . ×D .

Note, that the optimal µ-distribution might not be unique, and (xµ1 , . . . , x
µ
µ) therefore refers to one

optimal µ-distribution. The corresponding value of the hypervolume will be denoted I
µ

H,w
, i.e., Iµ

H,w
=

IH,w((x
µ

1 , . . . , x
µ
µ)).

16.2.3 Remark
Looking at Eq. 16.3 and Eq. 16.4, we see that for a fixed f , a fixed weight w, and a fixed reference point,
the problem of finding a set of µ points maximizing the weighted hypervolume amounts to finding the
solution of a µ-dimensional single-objective maximization problem, i.e., optimal µ-distributions are the
solution of a single objective problem of µ variables.

16.3 Characterization of Optimal µ-Distributions for Hypervolume

Indicators

Several contradicting beliefs about the bias introduced by the hypervolume indicator have been reported
in the literature. For example, [381] stated that, when optimizing the hypervolume in maximization
problems, “convex regions may be preferred to concave regions”, which has been also stated by [262]
later on, whereas [116] argued that “[. . . ] the hyper-volume measure is biased towards the boundary
solutions”. [221] observed that a local optimum of the hypervolume indicator “seems to be ‘well-
distributed’” which was also confirmed empirically [222, 136]. [61], in addition, state several properties
of the hypervolume’s bias: (i) optimizing the hypervolume indicator focuses on knee points; (ii) the
distribution of points on the extremes is less dense than on knee points; (iii) only linear front shapes
allow for equally spread solutions; and (iv) extremal solutions are maintained. In the light of these
contradicting statements, a thorough characterization of optimal µ-distributions for the hypervolume
indicator is necessary. Especially for the weighted hypervolume indicator, the bias of the indicator
and the influence of the weight function w on optimal µ-distributions in particular has not been fully
understood.

In this section, we first prove the existence of optimal µ-distributions for lower semi-continuous
fronts, we show the monotonicity in µ of the hypervolume associated with optimal µ-distributions, and
derive necessary conditions satisfied by optimal µ-distributions. In a second part, we derive the density
associated with optimal µ-distributions when µ grows to infinity.
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16.3.1 Finite Number of Points

Existence of Optimal µ-Distributions

Before to further investigate optimal µ-distributions for IH,w, we establish a setting ensuring their exis-
tence. We will from now on assume that D is a closed interval that we denote [xmin, xmax] such that f
writes:

x ∈ [xmin, xmax] 7→ f (x).

A function is lower semi-continuous if for all x0, lim infx→x0 f (x) ≥ f (x0). If f is decreasing (which is the
case when f describes a Pareto front), lower semi-continuous is equivalent to continuity to the right.
As shown in the following theorem, a sufficient setting for the existence of optimal distributions is the
lower semi-continuity of f .

16.3.1 Theorem (Existence of optimal µ-distributions)
Let µ ∈ N, if the function f describing the Pareto front is lower semi-continuous, there exists (at least)
one set of µ points maximizing the hypervolume.

Proof. We are going to prove that IH,w is upper semi-continuous if f is lower semi-continuous, and
then apply the Extreme Value Theorem. Since IH,w is the sum of µ functions g(xi, xi+1) where g(α, β) =∫ β
α

(∫ f (x0)

f (α) w(x, y)dy
)
dx, we will prove the upper semi-continuity of g(xi, xi+1) for (xi, xi+1) ∈ [xmin, xmax].

This will imply the upper semi-continuity of IH,w. Let (xi, xi+1) ∈ [xmin, xmax] and let (xn
i
, xn

i+1)n∈N converg-
ing to (xi, xi+1). We will now prove that lim sup g(xn

i
, xn

i+1) ≤ g(xi, xi+1). Since

lim sup
n→∞

g(xni , x
n
i+1) = lim sup

n→∞

∫ ∫
1[xn

i
,xn

i+1](x)1[ f (xni ), f (x0)](y)w(x, y)dydx ,

and 1[xn
i
,xn

i+1](x)1[ f (xi), f (x0)](x)w(x, y) ≤ 1[xmin,xmax](x)1[ f (xmax), f (x0)](x)w(x, y) we can use the (Reverse) Fatou
Lemma that implies lim sup g(xn

i
, xn

i+1) ≤
∫ ∫

lim sup 1[xn
i
,xn

i+1](x)1[ f (xni ), f (x0)](y)w(x, y)dydx. Since f is lower
semi-continuous, lim inf f (xn

i
) ≥ f (xi) holds which is equivalent to lim sup( f (x0) − f (xn

i
)) = f (x0) −

lim inf f (xn
i
) ≤ f (x0) − f (xi). Hence, lim sup 1[ f (xn

i
), f (x0)](y) ≤ 1[ f (xi), f (x0)](y) and thus

lim sup
n→∞

g(xni , x
n
i+1) ≤

∫ ∫
1[xi,xi+1](x)1[ f (xi), f (x0)](y)w(x, y)dydx = g(xi, xi+1) .

We have proven the upper semi-continuity of g which implies the upper semi-continuity of IH,w :
[xmin, xmax]µ → R. Given that [xmin, xmax]µ is compact, we can imply from the Extreme Value Theorem
that there exists a set of µ points maximizing the hypervolume indicator. �

Note that, in case of bi-objective maximization problems, the lower semi-continuity of f has to be
changed into upper semi-continuity which has been proven recently for the unweighted hypervolume
[84]. Note also that the previous theorem states the existence but not the uniqueness, which cannot be
guaranteed in general. With this respect, we would like to mention that the question of uniqueness
is related loosely to another property of the hypervolume which is not discussed here but has high
importance in practice: For indicator-based algorithms and the analysis of their convergence speed, it
is highly important whether local optima are observed during the search. This property is, however,
defined within the decision space X and especially depends on the mapping between the decision space
and the objective space which is not taken into account in this study.

Furthermore, if the front is not semi-continuous, optimal µ-distributions might not exist. In the
following proposition, we construct an example of a front where this is the case, i.e., where there is no
optimal µ-distribution for µ = 1.



204 CHAPTER 16. HYPERVOLUME-BASED MULTIOBJECTIVE OPTIMIZATION

16.3.2 Proposition
Let r = (r1, r1) be a reference point with r1 > 1.2. Consider the front fce : [0, 1]→ [0, 1.2] with

fce(x) =


1 − x + 0.2 if x ≤ 1

2 ,

1 − x if x ∈] 12 , 1] .

Then f does not admit an optimal 1-distribution for the unweighted hypervolume.

Proof. Consider first the linear front f : x ∈ [0, 1] → [0, 1], x 7→ 1 − x. Here, the optimal 1-distribution
is the point (0.5, 0.5) with a corresponding hypervolume value of γ = (r1 − 1

2 )(r1 − 1
2 )

7. Consider now
h(x) = fce(x) for all x ∈ [0, 1] except for x = 0.5 where h(x) = 0.5. Then, h is continuous to the right and
thus lower semi-continuous. Hence, according to Theorem 16.3.1 it admits an optimal 1-distribution. In
addition, remark that the hypervolume contribution for any x ∈ [0, 0.5[ is strictly smaller for h than for
f and equal for x ∈ [0.5, 1]. Thus (0.5, 0.5) is also the optimal 1-distribution of h with hypervolume γ.
However, for fce, the hypervolume contribution is strictly smaller than for f for x ∈ [0, 0.5] and equal for
x ∈]0.5, 1] with a gap at 0.5 such that γ cannot be reached for any point in [0, 1] though one has values
arbitrary close from it for x arbitrary close from 0.5 to the right. �

We have chosen µ = 1 in the previous proposition for the sake of simplicity, however, such a counter-
example can be generalized for arbitrary µ by following the same idea. Let us also note that, lower
semi-continuity is not a necessary condition for the existence of optimal µ-distributions: if we simply
introduce the discontinuity of the function fce in the previous proposition somewhere in ]0, 0.5[ instead
of at x = 0.5, the optimal 1-distribution would exist (and be located at x = 0.5) though the function
describing the front is not lower semi-continuous.

Strict Monotonicity of Hypervolume in µ for Optimal µ-Distributions

The following proposition establishes that the hypervolume of optimal (µ + 1)-distributions is strictly
larger than the hypervolume of optimal µ-distributions. This result is a generalization of [25, Lemma 1].

16.3.3 Proposition
Let D ⊆ R, possibly finite and f : x ∈ D 7→ f (x) describe a Pareto front. Let µ1 and µ2 ∈ N with µ1 < µ2,
then

I
µ1
H,w
< I
µ2
H,w

holds if D contains at least µ1 + 1 elements xi for which xi < r1 and f (xi) < r2 holds.

Proof. To prove the proposition, it suffices to show the inequality for µ2 = µ1 + 1. Assume Dµ1 =

{xµ11 , . . . , x
µ1
µ1 } with x

µ

i
∈ R is the set of x-values of the objective vectors of the optimal µ1-distribution for

IH,w with a hypervolume value of Iµ1
H,w

if the Pareto front is described by f . SinceD contains at least µ1 + 1
elements, the set D\Dµ1 is not empty and we can pick any xnew ∈ D\Dµ1 that is not contained in the
optimal µ1-distribution for IH,w and for which f (xnew) is defined. Let xr := min{x|x ∈ Dµ1 ∪ {r1}, x > xnew}
be the closest element of Dµ1 to the right of xnew (or r1 if xnew is larger than all elements of Dµ1 ).
Similarly, let fl := min{r2, { f (x)|x ∈ Dµ1 , x < xnew}} be the function value of the closest element of
Dµ1 to the left of xnew (or r2 if xnew is smaller than all elements of Dµ1 ). Then, all objective vectors
within Hnew := [xnew, xr[× [ f (xnew), fl[ are weakly dominated by the new point (xnew, f (xnew)) but are not
dominated by any objective vector given by Dµ1 . Furthermore, Hnew is not a null set (i.e., has a strictly
positive measure) since xnew > xr and fl > f (xnew) and the weight w is strictly positive which gives

I
µ1
H,w
< I
µ2
H,w

. �

7In caseµ = 1 and f (x) = 1−x, we can easily compute themaximumof thehypervolume IH,w(x) = (r1−x)(r1−(1−x)) = r21−r1+x−x
2

of the single point at x by computing the derivative of IH,w(x) and setting it to zero: I′
H,w(x) = 1 − 2x = 0.
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Characterization of Optimal µ-Distributions for Finite µ

In this section, we derive a general result to characterize optimal µ-distributions for the hypervolume
indicator if µ is finite. The result holds under the assumption that the front f is differentiable and is a
direct application of the fact that solutions of a maximization problem that do not lie on the boundary
of the search domain are stationary points, i.e., points where the gradient is zero.

16.3.4 Theorem (Necessary conditions for optimal µ-distributions for IH,w)
If f is continuous and differentiable and (xµ1 , . . . , x

µ
µ) are the x-coordinates of an optimal µ-distribution

for IH,w, then for all xµ
i
with x

µ

i
> xmin and x

µ

i
< xmax

f ′(xµ
i
)
∫ x

µ

i+1

x
µ

i

w(x, f (xµ
i
))dx =

∫ f (xµ
i
)

f (xµ
i−1)

w(xµ
i
, y)dy (16.5)

holds where f ′ denotes the derivative of f , f (xµ0 ) = r2 and x
µ

µ+1 = r1.

Proof. The proof idea is simple: optimal µ-distributions maximize the µ-dimensional function IH,w de-
fined in Eq. 16.3 and should therefore satisfy necessary conditions for local extrema of a µ-dimensional
function stating that the coordinates of local extrema either lie on the boundary of the domain (here
xmin or xmax) or satisfy that the partial derivative with respect to this coordinate is zero. Hence, we see
that the partial derivatives of IH,w have to be computed. This step is quite technical and is presented in
Appendix 16.7.1 on page 220 together with the full proof of the theorem. �

The previous theorem proves an implicit relation between the points of an optimal µ-distribution.
However, in certain cases of weights, this implicit relation can be made explicit as illustrated first on the
example of the weight function w(x, y) = exp(−x), aiming at favoring points with small values along the
first objective.

16.3.5 Example
If w(x, y) = exp(−x), Eq. 16.5 simplifies into the explicit relation

f ′(xµ
i
)(e−x

µ

i − e−x
µ

i+1 ) = e−x
µ

i ( f (xµ
i
) − f (xµ

i−1)) . (16.6)

Another example where the relation is explicit is given for the unweighted hypervolume IH that
we can obtain as a corollary of the previous theorem and which coincides with a previous result [25,
Proposition 1].

16.3.6 Corollary
(Necessary condition for optimal µ-distributions for IH) If f is continuous, differentiable and (xµ1 , . . . , x

µ
µ)

are the x-coordinates of an optimal µ-distribution for IH, then for all xµ
i
with x

µ

i
> xmin and x

µ

i
< xmax

f ′(xµ
i
)(xµ

i+1 − x
µ

i
) = f (xµ

i
) − f (xµ

i−1) (16.7)

holds where f ′ denotes the derivative of f , f (xµ0 ) = r2 and x
µ

µ+1 = r1.

Proof. The proof follows immediately from setting w = 1 in Eq. 16.5. �

16.3.7 Remark
Corollary 16.3.6 implies that the points of an optimal µ-distribution for IH are linked by a second order
recurrence relation. Thus, in this case, finding optimal µ-distributions for IH does not correspond to
solving a µ-dimensional optimization problem as stated in Remark 16.2.3 but to a 2-dimensional one.
The same remark holds for IH,w and w(x, y) = exp(−x) as can be seen in Eq. 16.6.
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Figure 16.3: Every continuous front g(x) (left) can be described by a function f : x′∈ [0, x′max] 7→ f (x′) with
f (x′max) = 0 (right) by a simple translation.

The previous corollary can also be used to characterize optimal µ-distributions for certain Pareto
fronts more generally as the following example shows.

16.3.8 Example
Consider a linear Pareto front, i.e., a front that can be formally defined as f : x ∈ [xmin, xmax] 7→ αx + β
where α < 0 and β ∈ R. Then, it follows immediately from Corollary 16.3.6 and Eq. 16.7 that the optimal
µ-distribution for IH maps to objective vectors with equal distances between two neighbored solutions
(see also Theorem 16.5.1 in Sec. 16.5.1):

α
(
x
µ

i+1 − x
µ

i

)
= f (xµ

i
) − f (xµ

i−1) = α(x
µ

i
− x
µ

i−1)

for i = 2, . . . , µ − 1. Note that this result coincides with earlier results for linear fronts with slope α = −1
[60] or the even more specific case of a front of shape f (x) = 1 − x [137].

16.3.2 Number of Points Going to Infinity

Besides for simple fronts, like the linear one, Eq. 16.5 and Eq. 16.7 cannot be easily exploited to derive
optimalµ-distributions explicitly. However, one is interested in knowinghow thehypervolume indicator
influences the spread of points on the front and in characterizing the bias introduced by the hypervolume.
To reply to these questions, we will assume that the number of points µ grows to infinity and derive the
density of points associated with optimal µ-distributions for the hypervolume indicator.

We assume without loss of generality that xmin = 0 and that f : x ∈ [0, xmax] 7→ f (x) with f (xmax) = 0
(Fig. 16.3). We also assume that f is continuous within [0, xmax], differentiable, and that its derivative is a
continuous function f ′ defined in the interval ]0, xmax[. Instead ofmaximizing theweightedhypervolume
indicator IH,w, it is easy to see that, since r1r2 is constant, one can equivalently minimize

r1r2 − IH,w((x1, . . . , xµ)) =
µ∑

i=0

∫ xi+1

xi

∫ f (xi)

0
w(x, y) dy dx

with x0 = 0, f (x0) = r2, and xµ+1 = r1 (see Fig. 16.4(b)). If we subtract the area below the front curve, i.e.,

the integral
∫ xmax

0

(∫ f (x)

0 w(x, y)dy
)
dx of constant value (Fig. 16.4(c)), we see that minimizing

µ∑

i=0

xi+1∫

xi

f (xi)∫

0

w(x, y) dy dx −
xmax∫

0

f (x)∫

0

w(x, y) dy dx (16.8)

is equivalent to maximizing the weighted hypervolume indicator (Fig. 16.4(d)).
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Figure 16.4: Illustration of the idea behind deriving the optimal density: Instead of maximizing the
weighted hypervolume indicator IH,w((x1, . . . , xµ)) (a), one can minimize the shaded area in (b) which is
equivalent to minimizing the integral between the attainment surface of the solution set and the front
itself which can be expressed with the help of the integral of f (d).

For a fixed integer µ, we now consider a sequence of µ ordered points xµ1 , . . . , x
µ
µ in [0, xmax] that lie

on the Pareto front. We assume that the sequence converges—when µ goes to∞—to a density δ(x) that
is regular enough. Formally, the density in x ∈ [0, xmax] is defined as the limit of the number of points
contained in a small interval [x, x + h[ normalized by the total number of points µ when both µ goes
to ∞ and h to 0, i.e., δ(x) = limµ→∞

h→0

(
1
µh

∑µ
i=1 1[x,x+h[(x

µ

i
)
)
. As explained above, maximizing the weighted

hypervolume is equivalent to minimizing Eq. 16.8, which is also equivalent to minimizing

Eµ = µ



µ∑

i=0

∫ x
µ

i+1

x
µ

i



∫ f (xµ

i
)

0
w(x, y)dy


 dx−

∫ xmax

0

(∫ f (x)

0
w(x, y)dy

)
dx

]
, (16.9)

where we have multiplied Eq. 16.8 by µ to obtain a quantity that will converge to a limit when µ goes to
∞. Indeed Eq. 16.8 converges to 0 when µ increases. We now conjecture that the equivalence between
minimizing Eµ and maximizing the hypervolume also holds for µ going to infinity. Therefore, our proof
consists of two steps: (1) compute the limit of Eµ when µ goes to∞. This limit is going to be a function
of a density δ. (2) Find the density δ that minimizes E(δ) := limµ→∞ Eµ. The first step therefore consists
in computing the limit of Eµ.

16.3.9 Lemma
If f is continuous, differentiable with the derivative f ′ continuous, if x 7→ w(x, f (x)) is continuous, if
x
µ

1 , . . . , x
µ
µ converge to a continuous density δ, with 1

δ ∈ L2(0, xmax)8, and ∃ c ∈ R+ such that

µ sup




 sup
0≤i≤µ−1

|xµ
i+1 − x

µ

i
|

 , |xmax − x

µ
µ|

→ c

then Eµ converges for µ→∞ to

E(δ) := −1
2

∫ xmax

0

f ′(x)w(x, f (x))
δ(x)

dx . (16.10)

Proof. For the technical proof, we refer to Appendix 16.7.2 on page 222. �

The limit density of a µ-distribution for IH,w, as explained before, minimizes E(δ). It remains therefore
to find the density which minimizes E(δ). This optimization problem is posed in a functional space and
is also a constrained problem since the density δ has to satisfy the constraint J(δ) :=

∫ xmax

0 δ(x)dx = 1. The

8L2(0, xmax) is a functional space (Banach space) defined as the set of all functions whose square is integrable in the sense of the
Lebesgue measure.
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constraint optimization problem (P) that needs to be solved is summarized in:

minimize E(δ)
subject to J(δ) = 1 .

(P)

In a similar way than Theorem 7 in [25] where − f ′ needs to be replaced everywhere by − f ′w9, we find
that the density solution of the constraint optimization problem (P) equals

δ(x) =

√
− f ′(x)w(x, f (x))

∫ xmax

0

√
− f ′(x)w(x, f (x))dx

.

For xmin , 0, the density reads

δ(x) =

√
− f ′(x)w(x, f (x))

∫ xmax

xmin

√
− f ′(x)w(x, f (x))dx

. (16.11)

16.3.10 Remark
The previous density corresponds to the density of points of the front projected onto the x-axis, however,
if one is interested into the density on the front δF10 one has to normalize the result from Eq. 16.11 by the
norm of the tangent for points of the front, i.e.,

√
1 + f ′(x)2. Therefore, the density on the front is

δF(x) =

√
− f ′(x)w(x, f (x))

∫ xmax

xmin

√
− f ′(x)w(x, f (x))dx

1√
1 + f ′(x)2

. (16.12)

16.3.11 Example
Let us consider the test problem ZDT2 [378, see also Fig. 16.9] the Pareto front of which can be described
by f (x) = 1 − x2 with xmin = 0 and xmax = 1 and f ′(x) = −2x [25]. Considering the unweighted case,
the density on the x-axis according to Eq. 16.11 is δ(x) = 3

2

√
x and the density on the front according to

Eq. 16.12 is δF(x) = 3
2

√
x√

1+4 x2
, see Fig. 16.9 for an illustration.

To summarize, we have seen that the density follows as a limit result from the fact that the integral
between the attainment function of the solution set with µ points and the front itself (Fig. 16.4(d)) has
to be minimized and the optimal µ-distribution for IH,w and a finite number of points converges to the
density when µ increases. Furthermore, we can conclude that the proportion of points of an optimal

µ-distribution with x-values within a certain interval [a, b] converges to
∫ b

a
δ(x)dx if the number of points

µ goes to infinity. How this relates to practice will be presented in Sec. 16.5 where analytical and
experimental results on the density for specific well-known test problems are shown.

Instead of applying the results to specific test functions, the above results on the hypervolume
indicator can also be interpreted in a broader sense: From (16.11), we know that it is only the weight
function and the slope of the front that influences the density of the points of an optimal µ-distribution—
contrary to several prevalent beliefs as stated in the beginning of this section. Since the density of points
does not depend on the position on the front but only on the gradient and the weight at the respective
point, the density close to the extreme points of the front can be very high or very low—it only depends
on the front shape. Section 16.4.1 will even present conditions under which the extreme points will
never be included in an optimal µ-distribution for IH,w—in contrast to the statement by [61]. In the
unweighted case, we observe that the density has its maximum for front parts where the tangent has a

9Note that in [25, Theorem 7] and its proof, the density should belong to L2(0, xmax) but also, 1/δ ∈ L2(0, xmax).
10The density on the front gives for any curve on the front (a piece of the front) C, the proportion of points of the optimal
µ-distribution (for µ to infinity) contained in this curve by integration on the curve:

∫
C
δFds. Since we know that for any

parametrization of C, say t ∈ [a, b] → γ(t) ∈ R2, we have
∫
C
δFds =

∫ b

a
δF(γ(t))‖γ′(t)‖2dt, we can for instance use the natural

parametrization of the front given by γ(t) = (t, f (t)) giving ‖γ′(t)‖2 =
√
1 + f ′(t)2 that therefore implies that δ(x) = δF(x)

√
1 + f ′(x)2.

Note that we do a small abuse of notation writing δF(x) instead of δF(γ(x)) = δF((x, f (x))).
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gradient of -45◦ [25]. Therefore, and compliant with the statement by [61], optimizing the unweighted
hypervolume indicator stresses so-called knee-points—parts of the Pareto front decision makers believe
to be interesting regions [111, 82]. However, choosing a non-constant weight can highly change the
distribution of points and makes it possible to include several user preferences into the search. The new
result in (16.11) now explains how the distribution of points changes: for a fixed front, it is the square
root of the weight that is directly reflected in the optimal density.

16.4 Influence of the Reference Point on the Extremes

Clearly, optimal µ-distributions for IH,w are in some way influenced by the choice of the reference point r
as the definition of IH,w in Eq. 16.3 depends on r and it is well-known from experiments that the reference
point can influence the outcomes of multiobjective evolutionary algorithms drastically [222]. How in
general, the outcomes of hypervolume-based algorithms are influenced by the choice of the reference
point, however, has not been investigated from a theoretical perspective. In particular, it could not be
observed frompractical investigations how the reference point has to be set to ensure to find the extremes
of the Pareto front.

In practice, mainly rules-of-thumb exist on how to choose the reference point. Many authors recom-
mend to use the corner of a space that is a little bit larger than the actual objective space as the reference
point. Examples include the corner of a box 1% larger than the objective space [219] or a box that is
larger by an additive term of 1 than the extremal objective values obtained [61]. In various publications
where the hypervolume indicator is used for performance assessment, the reference point is chosen as
the nadir point11 of the investigated solution set [310, 309, 195], while others recommend a rescaling of
the objective values everytime the hypervolume indicator is computed [379].

In this section, we ask the question of how the choice of the reference point influences optimal µ-
distributions and theoretically investigate in particular whether there exists a choice for the reference
point that implies that the extremes of the Pareto front are included in optimal µ-distributions. The pre-
sented results generalize the statements by [25] to the weighted hypervolume indicator and give insights
into how the reference point should be chosen if the weight function does not equal 1 everywhere. Our
main result, stated in Theorem 16.4.3 and Theorem 16.4.7, shows that for continuous and differentiable
Pareto fronts we can give implicit lower bounds on the F1 and F2 value for the reference point (possibly
infinite depending on f and w) such that all choices above this lower bound ensure the existence of
the extremes in an optimal µ-distribution for IH,w. For the special case of the unweighted hypervolume
indicator, these lower bounds turn into explicit lower bounds (Corollaries 16.4.5 and 16.4.8). Moreover,
Sec. 16.4.1 shows that it is necessary to have a finite derivative on the left extreme and a non-zero one
on the right extreme to ensure that the extremes are contained in an optimal µ-distribution. This result
contradicts the common belief that it is sufficient to choose the reference point slightly above and to the
right to the nadir point or the border of the objective space to obtain the extremes as indicated above. A
new result (Theorem 16.4.10), not covered by [25], shows that a point slightly worse than the nadir point
in all objectives starts to become a good choice for the reference point as soon as µ is large enough.

Before we present the results, recall that r = (r1, r2) denotes the reference point and y = f (x) with
x ∈ [xmin, xmax] represents the Pareto front where therefore (xmin, f (xmin)) and (xmax, f (xmax)) are the left
and right extremal points. Since we want that all Pareto-optimal solutions have a contribution to the
hypervolume of the front in order to be possibly part of the optimal µ-distribution, we assume that the
reference point is dominated by all Pareto-optimal solutions, i.e., r1 > xmax and r2 > f (xmin).

11In our notation, the nadir point equals (xmax, f (xmin)), i.e., is the smallest objective vector that is weakly dominated by all
Pareto-optimal points.
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16.4.1 Finite Number of Points

For the moment, we assume that the number of points µ is finite and provide necessary and sufficient
conditions for finding a finite reference point such that the extremes are included in any optimal µ-
distribution for IH,w. In Sec. 16.4.2, we later on derive further results in case µ goes to infinity.

Fronts for Which It Is Impossible to Have the Extremes

A previous belief was that choosing the reference point of the hypervolume indicator in a way, such that
it is dominated by all Pareto-optimal points, is enough to ensure that the extremes can be reached by an
indicator-based algorithm aiming at maximizing the hypervolume indicator. The main reason for this
belief is that with such a choice of reference point, the extremes of the Pareto front always have a positive
contribution to the overall hypervolume indicator and should be therefore chosen by the algorithm’s
environmental selection. However, theoretical investigations revealed that we cannot always ensure
that the extreme points of the Pareto front are contained in an optimal µ-distribution for the unweighted
hypervolume indicator [25]. In particular, a necessary condition to have the left (resp. right) extreme
included in optimal µ-distributions is to have a finite (resp. non-zero) derivative on the left extreme
(resp. right extreme). The following theorem generalizes this result and shows that also for the weighted
hypervolume indicator, the same necessary condition holds.

16.4.1 Theorem
Let µ be a positive integer. Assume that f is continuous on [xmin, xmax], non-increasing, differentiable
on ]xmin, xmax[ and that f ′ is continuous on ]xmin, xmax[ and that the weight function w is continuous
and positive. If limx→xmin f ′(x) = −∞, the left extremal point of the front is never included in an optimal
µ-distribution for IH,w. Likewise, if f ′(xmax) = 0, the right extremal point of the front is never included in
an optimal µ-distribution for IH,w.

Proof. The idea behind the proof is to assume the extreme point to be contained in an optimal µ-
distribution and to show a contradiction. In particular, the gain and loss in hypervolume if the extreme
point is shifted can be computed analytically. A limit result for the case that limx→xmin f ′(x) = −∞ (and
f ′(xmax) = 0 respectively) shows that one can always increase the overall hypervolume indicator value
if the outmost point is shifted, see also Fig. 16.11. For the technical details, including a technical lemma,
we refer to Appendix 16.7.3 on page 224. �

16.4.2 Example
Consider the test problem ZDT1 [378] with a Pareto front described by f (x) = 1 −

√
x with xmin = 0 and

xmax = 1, see Figure 16.9(a). The derivative f ′(x) = −1/(2
√
x) equals −∞ at the left extreme xmin and the

left extreme is therefore never included in an optimal µ-distribution for IH,w according to Theorem 16.4.1.

Although one should keep the previous result in mind when using the hypervolume indicator, the
fact that the extreme can never be obtained in the cases of Theorem 16.4.1 is less restrictive in practice.
Due to the continuous search space for most of the test problems, no algorithm will obtain a specific
solution exactly—and the extreme in particular—and if the number of points is high enough, a solution
close to the extreme12 will be found also by hypervolume-based algorithms. However, if the number
of points is low the choice of the reference point is crucial and choosing it too close to the nadir point
will massively change the optimal µ-distribution as can be seen exemplary for the ZDT1 problem in
Fig. 16.513. Moreover, when using the weight function in the weighted hypervolume indicator to model

12Although the distance of solutions to the extremesmight be sufficiently small in practice also for the scenario of Theorem 16.4.1,
the theoretical result shows that for a finite µ, we cannot expect that the solutions approach the extremes arbitrarily close.

13The shown approximations of the optimal µ-distribution have been obtained by using the algorithm CMA-ES [180, version
3.40beta with standard settings] to solve the 2-dimensional optimization problem of Remark 16.3.7 with the two leftmost points
as variables and a boundary handling with penalties if the leftmost or rightmost point is outside [xmin, xmax] (population size 20,
best result over 100 runs shown).
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Figure 16.5: Influence of the choice of the reference point r = (r1, r2) on optimal 2- (left) and optimal 10-
distributions on the ZDT1 problem, in particular on the left extreme. Shown are the best approximations
found within 100 CMA-ES runs for r = (1.01, 1.01) (▽), r = (1.1, 1.1) (�), r = (2, 2) (^), and r = (11, 11)
(△). Note that according to theory, the left extreme is never included in optimal µ-distributions and the
lower bound on r1 to ensure the right extreme is R1 = 3 [25].

preferences of the user towards certain regions of the objective search, one should pay attention to this
fact by increasing the weight drastically close to such extremes if they are desired, see [24] for examples.

Lower Bound for Choosing the Reference Point for Obtaining the Extremes

We have seen in the previous section that if the limit of the derivative of the front at the left extreme
equals −∞ (resp. if the derivative of the front at the right extreme equals zero) there is no choice of
reference point that allows to have the extremes included in optimal µ-distributions for IH,w. We assume
now that the limit of the derivative of the front at the left extreme is finite (resp. the derivative of the front
at the right extreme is not zero) and investigate conditions ensuring that there exists (finite) reference
points ensuring to have the extremes in the optimal µ-distributions.

Lower Bound for Left Extreme

16.4.3 Theorem (Lower bound for left extreme)
Let µ be an integer larger or equal 2. Assume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous on ]xmin, xmax[ and lim

x→xmin
− f ′(x) < ∞. If there exists

aK2 ∈ R such that for all x1 ∈]xmin, xmax]

∫ K2

f (x1)
w(x1, y)dy > − f ′(x1)

∫ xmax

x1

w(x, f (x1))dx , (16.13)

then for all reference points r = (r1, r2) such that r2 ≥ K2 and r1 > xmax, the leftmost extremal point is
contained in optimal µ-distributions for IH,w. In other words, defining R2 as

R2 = inf{K2 satisfying Eq. 16.13} , (16.14)

the leftmost extremal point is contained in optimal µ-distributions if r2 > R2, and r1 > xmax.

Proof. This proof is presented in Appendix 16.7.4 on page 226. �

16.4.4 Remark
The previous theorem states only an implicit condition for K2 and it is not always obvious whether
a finite K2 with the stated properties exists. There are different reasons for a non-existence of a finite
K2—although we assume that limx→xmin − f ′(x) < ∞. One reason can be the fact that f ′(x1) is infinite for
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some x1 ∈ ]xmin, xmax] such that the right-hand side of Eq. 16.13 is not finite and therefore K2 cannot be
finite as well. Example 16.4.6, however, shows an example where f ′(x1) = −∞ for an x1 ∈ ]xmin, xmax] and
K2 is still finite. Another possible reason for the non-existence of a finite K2 can be a choice of w such
that the left-hand side of Eq. 16.13 is always smaller than the right-hand side—even assuming that w is
continuous does not prevent such a choice of w.

Wewill now apply the previous theorem to the unweighted hypervolume and prove an explicit lower
bound for setting the reference point so as to have the left extreme. This results recovers [25, Theorem 2].

16.4.5 Corollary (Lower bound for left extreme)
Let µ be an integer larger or equal 2. Assume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous on [xmin, xmax[. Let us assume that limx→xmin − f ′(x) <
∞. If

R2 = sup{ f ′(x)(x − xmax) + f (x) : x ∈]xmin, xmax]} (16.15)

is finite, then the leftmost extremal point is contained in optimal µ-distributions for IH if the reference
point r = (r1, r2) is such that r2 is strictly larger than R2 and r1 > xmax.

Proof. The proof is presented in Appendix 16.7.5 page 227. �

16.4.6 Example
Consider again the DTLZ2 test function from Example 16.2.1 with f (x) =

√
1 − x2 and f ′(x) = − x√

1−x2
where xmin = 0 and xmax = 1. Assume w = 1, i.e., the unweighted hypervolume indicator IH. We see that
f ′(xmax) = −∞ but nevertheless, R2 is finite according to Eq. 16.15, namely

R2 = sup
{
− x√

1 − x2
(x − xmax) +

√
1 − x2 : x ∈]xmin, xmax]

}
=

√
6
√
3 − 9 ≈ 1.18 ,

which can be obtained for example with a computer algebra system such as Maple.

Lower Bound for Right Extreme
We now turn to the case of the right extreme and address the same question as for the left extreme:
assuming that f ′(xmax) , 0, can we find an explicit lower bound for the first coordinate of the reference
point ensuring that the right extreme is included in optimal µ-distributions? The following result holds.

16.4.7 Theorem (Lower bound for right extreme)
Let µ be an integer larger or equal 2. Assume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous on ]xmin, xmax[ and f ′(xmax) , 0. If there exists a
K1 ∈ R such that for all xµ ∈ [xmin, xmax[

− f ′(xµ)
∫ K1

xµ

w(x, f (xµ))dx >
∫ f (xmin)

f (xµ)
w(xµ, y)dy , (16.16)

then for all reference points r = (r1, r2) such that r1 ≥ K1 and r2 > f (xmin), the rightmost extremal point
is contained in optimal µ-distributions. In other words, defining R1 as

R1 = inf{K1 satisfying Eq. 16.16} , (16.17)

the rightmost extremal point is contained in optimal µ-distributions if r1 > R1, and r2 > f (xmin).

Proof. This proof is presented in Appendix 16.7.6 on page 228. �

We will now apply the previous theorem to the unweighted hypervolume and prove an explicit
lower bound for setting the reference point so as to have the right extreme. This results recovers [25,
Theorem 2].
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16.4.8 Corollary (Lower bound for right extreme)
Let µ be an integer larger or equal 2. Assume that f is continuous on [xmin, xmax], non-increasing,
differentiable on ]xmin, xmax[ and that f ′ is continuous and strictly negative on ]xmin, xmax]. If

R1 = sup
{
x +

f (x) − f (xmin)
f ′(x)

: x ∈ [xmin, xmax[
}

(16.18)

is finite, then the rightmost extremal point is contained in optimal µ-distributions for IH if the reference
point r = (r1, r2) is such that r1 > R1 and r2 > f (xmin).

Proof. The proof is presented in Appendix 16.7.7 page 228. �

16.4.2 Number of Points Going to Infinity

The lower bounds we have derived for the reference point such that the extremes are included are
independent of µ. It can be seen in the proof that those bounds are not tight if µ is larger than 2. Deriving
tight bounds is, however, difficult because it would require to know for a given µ where the second
point of optimal µ-distributions is located. It can be certainly achieved in the linear case, but it might be
impossible in more general cases. However, we want to investigate now how µ influences the choice of
the reference point so as to have the extremes. In this section, we will denote RNadir

1 and RNadir
2 the first

and second coordinates of the nadir point, namely RNadir
1 = xmax and RNadir

2 = f (xmin).

Wewill prove that for any reference point dominated by the nadir point, there exists a µ0 such that for
all µ larger than µ0, optimal µ-distributions associated to this reference point include the extremes in case
the extremes can be contained in optimal µ-distributions, i.e., if − f ′(xmin) < ∞ and f ′(xmax) < 0. Before,
we establish a lemma saying that if there exists a reference point R1 allowing to have the extremes, then
all reference points R2 dominated by this reference point R1 will also allow to have the extremes.

16.4.9 Lemma
Let R1 = (r11, r

1
2) and R2 = (r21, r

2
2) be two reference points with r11 < r21 and r12 < r22. If both extremes

are included in optimal µ-distributions for IH,w associated with R1 then both extremes are included in
optimal µ-distributions for IH,w associated with R2.

Proof. The proof is presented in Appendix 16.7.8 page 229. �

16.4.10 Theorem
Let us assume that f is continuous, differentiable with f ′ continuous on [xmin, xmax], f ′(xmax) < 0, and w

is bounded, i.e., there existsW > 0 such that w(x, y) ≤W for all (x, y). For all ε = (ε1, ε2) ∈ R2
>0,

1. there exists a µ1 such that for all µ ≥ µ1, and any reference point R dominated by the nadir point
such that R2 ≥ RNadir

2 + ε2, the left extreme is included in optimal µ-distributions,

2. there exists a µ2 such that for all µ ≥ µ2, and any reference point R dominated by the nadir point
such that R1 ≥ RNadir

1 + ε1, the right extreme is included in optimal µ-distributions.

Proof. The proof is presented in Appendix 16.7.9 page 229. �

As a corollary, we obtain the following result for obtaining both extremes simultaneously:
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16.4.11 Corollary
Let us assume that f is continuous, differentiable with f ′ continuous on [xmin, xmax], f ′(xmax) < 0, and
w is bounded, i.e., there exists a W > 0 such that w(x, y) ≤ W for all (x, y). For all ε = (ε1, ε2) ∈ R

2
>0,

there exists a µ0 ∈ N such that for µ larger than µ0 and for all reference points weakly dominated by
(RNadir

1 + ε1,RNadir
2 + ε2), both the left and right extremes are included in optimal µ-distributions.

Proof. The proof is straightforward taking for µ0 the maximum of µ1 and µ2 in Theorem 16.4.10. �

Theorem 16.4.10 and Corollary 16.4.11 state that for bi-objective Pareto fronts which are continuous
on the interval [xmin, xmax] and a bounded weight, we can expect to have the extremes in optimal µ-
distributions for any reference point dominated by the nadir point if µ is large enough, i.e., larger
than µ0. Unfortunately, the proof does not allow to state how large µ0 has to be chosen for a given
reference point but it is expected that µ0 depends on the reference point as well as on the front shape
and w. Recently, for linear Pareto fronts, this dependency could be shown explicitly and we will briefly
summarize this result in the following.

16.5 Application to Multiobjective Test Problems

Besides being used within indicator-based algorithms, the hypervolume indicator has been also fre-
quently used for performance assessment when comparing multiobjective optimizers—mainly because
of its refinement property [383] and its resulting ability to map both information about the proximity
of a solution set to the Pareto front and about the set’s spread in objective space into a single scalar.
Also here, knowing the optimal µ-distribution and its corresponding hypervolume value for certain test
problems is crucial. On the one hand, knowing the largest hypervolume value obtainable by µ solutions
allows to compare the achieved hypervolume values of different algorithms not only relatively but also
absolutely in terms of the difference between the achieved and the achievable hypervolume value. On
the other hand, only knowing the actual optimal µ-distributions for a certain test problem allows to
investigate whether hypervolume-based algorithms really converge to their inherent optimization goal
(or get stuck in local optima of (16.3) and (16.4)) which has not been investigated yet. In this section, we
therefore apply the theoretical concepts derived in Sections 16.3 and 16.4 to several known test problems.
First, we recapitulate results from [25] and in Sec. 16.5.1 and investigate optimal µ-distributions for the
unweighted hypervolume indicator IH in case of a linear Pareto front. Then, we apply the results to the
test function suites ZDT, DTLZ, and WFG in Sec. 16.5.2.

16.5.1 Linear Fronts

In this section, we have again a closer look at linear Pareto fronts, i.e., fronts that can be formally defined
as f : x ∈ [xmin, xmax] 7→ αx+ βwhere α < 0 and β ∈ R. For linear fronts with slope α = −1, [60] (and later
on [137] for a more restricted front of shape f (x) = 1− x) already proved that a set of µ points maximizes
the unweighted hypervolume if and only if the points are equally spaced. However, the used proof
techniques do not allow to state where the leftmost and rightmost point have to be placed in order to
maximize the hypervolume with respect to a certain reference point—an assumption that later results
do not require [25]. We will recapitulate those recent results briefly and in particular show for linear
fronts of arbitrary slope, how the—in this case unique—optimal µ-distribution for IH looks like without
making assumptions on the positions of extreme solutions.

First of all, we formalize the result of Example 16.3.8 that, as a direct consequence of Corollary 16.3.6,
the distance between two neighbored solutions is constant for arbitrary linear fronts:
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Figure 16.6: Optimal µ-distribution for µ = 4 points and the unweighted hypervolume indicator if the
reference point is not dominated by the extreme points of the Pareto front (Theorem 16.5.2, left) and in
the most general case (Theorem 16.5.3, right) for a front with slope f ′(x) = α = − 1

3 . The dotted lines in
the right plot limit the regions where the leftmost point, the rightmost point, or both are included in the
optimal µ-distributions for µ = 4 (see also Fig. 16.7).

16.5.1 Theorem
If the Pareto front is a (connected) line, the optimal µ-distribution with respect to the unweighted
hypervolume indicator is such that the distance is the same between all neighbored solutions.

Proof. Applying Eq. 16.7 to f (x) = αx + β implies that α(xµ
i+1 − x

µ

i
) = f (xµ

i
) − f (xµ

i−1) = α(x
µ

i
− x

µ

i−1) for
i = 2, . . . , µ − 1 and therefore the distance between consecutive points of the optimal µ-distribution for
IH is constant. �

Moreover, in case the reference point is not dominated by the extreme points of the Pareto front, i.e.,
r1 < xmax and r2 is such that there exists (a unique) xµ0 ∈ [xmin, xmax] with x

µ

0 = f−1(r2), the exact position of
the optimal µ-distribution for IH on the linear front can be determined, see also the left plot of Fig. 16.6:

16.5.2 Theorem
If the Pareto front is a (connected) line and the reference point (r1, r2) is not dominated by the extremes
of the Pareto front, the optimal µ-distribution with respect to the unweighted hypervolume indicator is
unique and satisfies for all i = 1, . . . , µ

x
µ

i
= f−1(r2) +

i

µ + 1
· (r1 − f−1(r2)) . (16.19)

Proof. From Eq. 16.7 and the previous proof we know that α
(
x
µ

i+1 − x
µ

i

)
= f (xµ

i
)− f (xµ

i−1) = α(x
µ

i
− xµ

i−1) ,
for i = 1, . . . , µ while f (xµ0 ) = r2 and x

µ

µ+1 = r1 are defined as in Corollary 16.3.6; in other words, the

distances between x
µ

i
and its two neighbors xµ

i−1 and x
µ

i+1 are the same for each 1 ≤ i ≤ µ. Therefore, the
points (xµ

i
)1≤i≤µ partition the interval [xµ0 , x

µ

µ+1] into µ+ 1 sections of equal size and we obtain Eq. 16.19. �

Although Theorem 16.5.2 proves the exact unique positions of the µ points maximizing the un-
weighted hypervolume indicator in the restricted case where the reference point r is not dominated by
the extremes of the front, the result can be used to obtain the exact distributions also in the most general
case for any reasonable14 choice of the reference point and any µ ∈ N if the linear front is defined in the
interval [0, xmax]15.

16.5.3 Theorem
Given µ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f (x) = αx+ βwithin [0, xmax = − βα ], the unique
optimal µ-distribution (xµ1 , . . . , x

µ
µ) for the unweighted hypervolume indicator IH with reference point

14Again, choosing the reference point such that it dominates Pareto-optimal points does not make sense as no solution will have
positive hypervolume contributions.

15Assuming xmin = 0 is not a restriction as the result for other choices of xmin canbederivedbya simple coordinate transformation.
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(r1, r2) ∈ R2
>0 can be described by

x
µ

i
= f−1(Fl) +

i

µ + 1

(
Fr − f−1(Fl)

)
(16.20)

for all 1 ≤ i ≤ µwhere

Fl = min
{
r2,
µ + 1
µ
β − 1
µ
f (r1),

µ

µ − 1
β

}
and Fr = min

{
r1,
µ + 1
µ

xmax −
1
µ
f−1(r2),

µ

µ − 1
xmax

}

if the reference point is dominated by at least one Pareto-optimal point.

Proof. The proof idea is the following. We can elongate the linear front beyond xmin and xmax and use
the result of Theorem 16.5.2 to obtain the optimal placement dependent on r1 and r2—keeping in mind
that all points are restricted to the interval [xmin, xmax]. In case r1 and r2 are too far away from the nadir
point (xmax, β) such that Theorem 16.5.2 gives us xµ1 < xmin or x

µ
µ > xmax, we have to make sure that these

constraints are fulfilled by restricting the values Fl and Fr in Eq. 16.20 accordingly. �

Right from the technicalities in the proof of Theorem 16.5.3 we see for which choices of the reference
point the left and/or the right extreme are contained in the optimal µ-distribution.

16.5.4 Corollary
Given µ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f (x) = αx + β within [0, xmax = − βα ],

• the left extreme point (0, β) is included in the optimal µ-distribution for the unweighted hypervol-
ume indicator if the reference point (r1, r2) ∈ R2

>0 lies above the line L(x) =
µ+1
µ β− 1

µ f (x) = β− αµx or
if r2 >

µ
µ−1β and

• the right extreme point (xmax, 0) is included if the reference point lies below the lineR(x) = µ+1µ xmax−
1
µ f
−1(x) = −αµx − µβ or if r1 > µ

µ−1xmax.

Figure 16.7 gives an example for the front f (x) = 2 − x
3 and shows the regions within which the

reference point ensures the left and/or the right extreme of the front for various choices of µ. Note that in
the specific case of linear Pareto fronts, we not only know that the reference point to obtain both extremes
approaches the nadir point if µ goes to infinity as proven in Sec. 16.4.2 but with the previous corollary,
we also know how fast this happens.

As pointed out before, we do not know in general whether an optimal µ-distribution for a given
indicator is unique or not. The example of a linear front is a case where we can ensure the uniqueness
due to the concavity of the hypervolume indicator [62]. Note also that besides for linear fronts, only one
front shape is known so far for which we can also determine optimal µ-distributions exactly: for front
shapes of the form f (x) = β/x with β > 1, xmin = −β, and xmax = −1 and when the reference point is in
(0, 0) [156]. On the other hand, even in the case of convex Pareto fronts, examples are known where the
hypervolume indicator is not concave anymore and therefore the uniqueness of optimal µ-distributions
is not known [62].

16.5.2 Test Function Suites ZDT, DTLZ, and WFG

In this section, we apply the presented results to problems in the ZDT [378], the DTLZ [119], and the
WFG [193] test function suites. All results are derived for the unweighted case of IH, but they can
also be derived for any other weight function w(x, y) , 1. In particular, we derive the function f (x)



16.5. APPLICATION TO MULTIOBJECTIVE TEST PROBLEMS 217

Figure 16.7: Influence of the reference point on the extremes for problems with linear Pareto fronts: the
left plot shows the different regions within which the reference point ensures one (light gray), both (dark
gray) or none (white) of the extremes in the optimal µ-distribution for µ = 2 and the example front of
f (x) = 2 − x

3 . The right plot shows the borders of these regions for µ = 2 (dotted), µ = 3 (dash-dotted),
µ = 4 (dashed), and µ = 11 (solid) for the same front. For clarity, the nadir point is shown as a black
circle.

describing the Pareto front and its derivative f ′(x) which directly leads to the density δF(x) with constant
C. Furthermore, we derive a lower bound R for the choice of the reference point such that the extremes
are included and compute an approximation of the optimal µ-distribution for µ = 20 points. For the
latter, the approximation schemes as proposed by [25] are used to get a precise picture for a given µ16.
The densities and the lower bounds R for the reference point are obtained by the commercial computer
algebra system Maple 12.0.

Figure 16.8 summarizes the results on the density and the lower bounds for the reference point for all
investigated problemswhereas we refer to the appendix formore detailed derivations (Appendix 16.7.10
presents the ZDT, Appendix 16.7.11 the DTLZ, and Appendix 16.7.12 the WFG results). Moreover,
Fig. 16.9 shows a plot of the Pareto front, the obtained approximation of an optimal µ-distribution for
µ = 20, and the derived density δF(x) (as the hatched area on top of the front f (x)) for all investigated
test problems.

The presented results show that for several of the considered test problems, analytical results for
the density and the lower bounds for the reference point can be given easily—at least if a computer
algebra system such as Maple is used. Otherwise, numerical results can be provided that approximate
the mathematical results with an arbitrary high precision (up to the machine precision) which also holds
for the approximations of the optimal µ-distributions shown in Fig. 16.9. Note that in the latter case, the
approximation schemes used do not guarantee that the actual maximum of Eq. 16.3 and Eq. 16.4 is found
as already discussed by [25]. However, the distributions shown in Fig. 16.9 have been cross-checked
by using the robust stochastic search optimizer CMA-ES [180] in a similar manner as for the plots in
Fig. 16.5. Moreover, the resulting optimal µ-distributions are independent of the starting conditions of
the approximation schemes which is a strong indicator that the distributions found are indeed good
approximations of the optimal distributions of µ points [25].

Last, we give an additional interpretation of the density results: the density not only gives information
about the bias of the hypervolume indicator for a given front, but can also be used to assess the number
of solutions to be expected on a given segment of the front, as the following example illustrates.

16.5.5 Example
Consider again ZDT2 as in Example 16.3.11. We would like to answer the question what is the fraction
of points rF of an optimal µ-distribution with the first and second objective being smaller or equal
0.5 and 0.95 respectively, see the highlighted front part in Figure 16.10. From f−1(y) =

√
1 − y and

f−1(0.95) =
√
0.05 follows, that for the considered front segment x ∈ [

√
0.05, 0.5] holds. Using δ(x) given

16For the test suites ZDT and DTLZ, additional approximations of the optimal µ-distribution for other typical numbers of points
can be downloaded at http://www.tik.ee.ethz.ch/sop/mudistributions.
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Figure 16.8: Lists for all ZDT, DTLZ, andWFG test problems and the unweighted hypervolume indicator
IH: (i) the Pareto front as x ∈ [xmin, xmax] 7→ f (x), (ii) the density δF(x) on the front according to Eq. 16.12,
and (iii) a lower bound R = (R1,R2) of the reference point to obtain the extremes (Eq. 16.18 and 16.15
respectively).

in Example 16.3.11 and integrating over [
√
0.05, 0.5] yields:

rF =

∫ 0.5

√
0.05
δ(x)dx =

∫ 0.5

√
0.05

3
2
√
xdx =

1
4

√
2 − 0.053/4 ≈ 24.78% .

The same result can be obtained by taking the line integral of the density on the front over the considered
front segment. Let δs

F
(x, f (x)) := δF(x) denote the density on the front for a given point (x, f (x)), then

rF =
∫
γ
δs
F
(s)ds =

∫ b

a
δs
F
(γ(t)) ‖γ̇(t)‖2 dtwhere the path γ denotes the considered line segment on the front,

i.e., γ : [a =
√
0.05, b = 0.5] → R

2, t 7→ (t, 1 − t2). With ‖γ̇(t)‖2 =
√
1 + f ′(t)2 and δF(γ(t)) = δF(t) we

have rF =
∫ 0.5√

0.05 δF(t)
√
1 + f ′(t)2dt =

∫ 0.5√
0.05 δ(t)dt ≈ 24.78%. Note that for the approximated optimal µ-

distribution of a finite number of µ = 100 points17 we obtained 24 points in the considered line segment,
which is close to the predicted percentage of rF = 24.78%.

17see http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/zdt2/data/mu100.txt
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(a) ZDT1 and ZDT4 (b) ZDT2 (c) ZDT3

(d) ZDT6 (e) DTLZ1 and WFG3 (scaled) (f) DTLZ2–4 and WFG4–9

(g) DTLZ7 (h) WFG1 (i) WFG2

Figure 16.9: Pareto front shape f (x), approximate optimal distribution of 20 points (black dots) for the
unweighted hypervolume indicator, and the density δF(x) (hatched area) for different test problems.

Figure 16.10: The density of points δ(x) and δF(x) can be used to assess the number of points to be
expected in a given part of the front. The plot shows the thick line segment of the Pareto-front of ZDT2
for which f (x) ≤ 0.95 and x ≤ 0.5 hold, see Example 16.5.5.
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16.6 Conclusions

Indicator-based evolutionary algorithms transform a multiobjective optimization problem into a single-
objective one that corresponds to finding a set ofµpoints thatmaximizes the underlying quality indicator.
Theoretically understanding these so-called optimal µ-distributions for a given indicator is a fundamental
issue both for performance assessment of multiobjective optimizers and for the decision which indicator
to take for the optimization in practice such that the search bias introduced by the indicator meets the
user’s preferences.

In this report, we theoretically characterize optimal µ-distributions for the weighted hypervolume
indicator in case of bi-objective problems. The results generalize previous work on the unweighted
hypervolume indicator and are, in addition, applied to several known test problems. In particular,
we investigate the sets of µ points that maximize the weighted hypervolume indicator and, besides
general investigations for finite µ, we derive a limit result for µ going to infinity in terms of a density of
points. Furthermore, we investigate the influence of the reference point on optimal µ-distributions, i.e.,
we derive lower bounds for placing the reference point (possibly infinite) for guaranteeing the Pareto
front’s extreme points in an optimal µ-distribution and investigate cases where the extremes are never
contained in an optimal µ-distribution. In addition, we show that the belief, the best choice for the
reference point corresponds to a point that is slightly worse than the nadir point in all objectives, can
be founded theoretically if the number of points goes to infinity. Last, we apply the theoretical results
to problems of the ZDT, DTLZ, and WFG test problem suites resulting in recommended choices of the
reference point including numerical and sometimes analytical expressions for the resulting density of
points on the front.

We believe the results presented in this report are important for several reasons. On the one hand,
we prove that several previous beliefs about the bias of the hypervolume indicator and the choice of
the reference point to obtain the extremes of the front have been wrong. On the other hand, the results
on optimal µ-distributions are highly useful in performance assessment if the hypervolume indicator
is used as a quality measure. For the first time, approximations of optimal µ-distributions for finite µ
allow to compare the outcome of indicator-based evolutionary algorithms to the actual optimization
goal. Moreover, the actual hypervolume indicator of optimal µ-distributions (or the approximations we
provide) offers a way to interpret the obtained hypervolume indicator values in an absolute fashion as
the hypervolume of an optimal µ-distribution is a better estimate of the best achievable hypervolume
than the hypervolume of the entire Pareto front. Last, we would like to mention that the presented
results for the weighted hypervolume indicator also provide a basis for a better understanding of how
to articulate user preferences with the weighted hypervolume indicator in terms of the question on how
to choose the weight function in practice.

16.7 Appendix

16.7.1 Proof of Theorem 16.3.4 stated on page 205

Before to prove the result, we rewrite Eq. 16.3 (page 201) in the following way

IH,w(x1, . . . , xµ) =
µ∑

i=1

g(xi, xi+1) , (16.21)

where g is the 2-dimensional function defined as

g(α, β) =
∫ β

α

(∫ f (x0)

f (α)
w(x, y)dy

)
dx . (16.22)
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The derivation of the gradient of IH,w thus relies on computing the partial derivatives of g. The following
lemma gives the expressions of the partial derivatives of g:

16.7.1 Lemma
Let w be a weight function for the weighted hypervolume indicator IH,w and f : [xmin, xmax] → R be
a continuous and differentiable function describing a 2-dimensional Pareto front. Let g be defined as

g(α, β) =
∫ β
α

(∫ f (x0)

f (α) w(x, y)dy
)
dx where f (x0) = r2. Then,

∂1g(α, β) = − f ′(α)
∫ β

α

w(x, f (α))dx −
∫ f (x0)

f (α)
w(α, y)dy (16.23)

∂2g(α, β) =
∫ f (x0)

f (α)
w(β, y)dy (16.24)

Proof.

To compute the first partial derivative of g, we need to compute the derivative of the function g1 : α→
g(α, β). Let us define γ(l,m) =

∫ f (x0)

f (m) w(l, y)dy such that g1(α) =
∫ β
α
γ(x, α)dx. Define K(x̄, ȳ) =

∫ β
x̄
γ(x, ȳ)dx

and be Φ : α ∈ R→ (α, α) ∈ R2. Then g1(α) = K ◦ Φ(α) such that we can apply the chain rule to find the
derivative of g1. Since g1 maps R into R, the differential of g1 in α applied in h equals the derivative of
g1 in alpha times h. We thus have that for any h ∈ R

g′1(α)h = (Dαg1)(h) = DΦ(α)K ◦DαΦ(h) (16.25)

where DαΦ (resp. DΦ(α)K) are the differential of Φ (resp. K) in α (resp. Φ(α)). We therefore need to
compute the differentials of Φ and K. Since Φ is linear, DαΦ = Φ and thus

DαΦ(h) = (h, h) . (16.26)

Moreover, the differential of K can be expressed with the partial derivatives of K, i.e., D(x̄,ȳ)K(h1, h2) =
(∇K) · (h1, h2) where ∇ is the vector differential operator ∇ =

(
∂
∂x1
, . . . , ∂∂xn

)
= (∂1, . . . , ∂n) and (h1, h2) ∈ R2.

Hence,
D(x̄,ȳ)K(h1, h2) = ∂1K(x̄, ȳ) h1 + ∂2K(x̄, ȳ) h2.

We thus need to compute the partial derivatives of K. From the fundamental theorem of calculus,
∂1K(x̄, ȳ) = −γ(x̄, ȳ). Besides, ∂2K(x̄, ȳ) =

∫ β
x̄
∂2γ(x, ȳ)dx and therefore

D(x̄,ȳ)K(h1, h2) = −γ(x̄, ȳ)h1 +
(∫ β

x̄

∂2γ(x, ȳ)dx
)
h2.

Applying again the fundamental theorem of calculus to compute the second partial derivative of γ, we
find that

∂2γ(x, ȳ) = − f ′(ȳ)w(x, f (ȳ))
and thus

D(x̄,ȳ)K(h1, h2) =
(
−

∫ f (x0)

f (ȳ)
w(x̄, y)dy

)
h1 +

(∫ β

x̄

− f ′(ȳ)w(x, f (ȳ))dx
)
h2. (16.27)

Combining Eq. 16.27 and Eq. 16.26 in Eq. 16.25 we obtain

∂1g(α, β) = g′1(α) = − f ′(α)
∫ β

α

w(x, f (α))dx −
∫ f (x0)

f (α)
w(α, y)dy

which gives Eq. 16.23.
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To compute the second partial derivative of g, we need to compute, for any α, the derivative of
the function g2 : β → g(α, β). The function g2 can be rewritten as g2 : β →

∫ β
α
θ(x)dx where θ(x) =

∫ f (x0)

f (α) w(x, y)dy. Therefore, from the fundamental theoremof calculuswehave that∂2g(α, β) = g′2(β) = θ(β)
and thus

∂2g(α, β) =
∫ f (x0)

f (α)
w(β, y)dy .

�

We are now ready to prove Theorem 16.3.4 Proof. From the first order necessary optimality conditions,
we know that if (xµ1 , . . . , x

µ
µ) maximizes Eq. 16.3, then either xµ

i
belongs to ]xmin, xmax[ and the i-th partial

derivative of IH,w(x
µ

1 , . . . , x
µ
µ) equals zero in x

µ

i
, or xµ

i
belongs to the boundary of [xmin, xmax], i.e., x

µ

i
= xmin

or xµ
i
= xmax. Therefore, we need to compute the partial derivatives of IH,w. From Eq. 16.21, we have that

∂1IH,w(x
µ

1 , . . . , x
µ
µ) = ∂1g(x

µ

1 , x
µ

2 ) and from Lemma 16.7.1 we therefore obtain that

∂1IH,w(x
µ

1 , . . . , x
µ
µ) = − f ′(x

µ

1 )
∫ x

µ
2

x
µ

1

w(x, f (xµ1 ))dx −
∫ f (xµ0 )

f (xµ1 )
w(xµ1 , y)dy

and thus if xµ1 , xmin and x
µ

1 , xmax. By setting the previous equation to zero, we obtain

− f ′(xµ1 )
∫ x

µ
2

x
µ

1

w(x, f (xµ1 )dx =
∫ f (xµ0 )

f (xµ1 )
w(xµ1 , y)dy .

For 2 ≤ i ≤ µ, ∂iIH,w(xµ1 , . . . , x
µ
µ) = ∂2g(x

µ

i−1, x
µ

i
) + ∂1g(x

µ

i
, x
µ

i+1). Using Lemma 16.7.1 we obtain

∂iIH,w(x
µ

1 , . . . , x
µ
µ) =

∫ f (xµ0 )

f (xµ
i−1)

w(xµ
i
, y)dy − f ′(xµ

i
)
∫ x

µ

i+1

x
µ

i

w(x, f (xµ
i
))dx −

∫ f (xµ0 )

f (xµ
i
)
w(xµ

i
, y)dy .

Gathering the first and last term of the right-hand side, we obtain

∂iIH,w(x
µ

1 , . . . , x
µ
µ) =

∫ f (xµ
i
)

f (xµ
i−1)

w(xµ
i
, y)dy − f ′(xµ

i
)
∫ x

µ

i+1

x
µ

i

w(x, f (xµ
i
))dx (16.28)

and thus if xµ
i+1 , xmin and x

µ

i+1 , xmax, by setting the previous equation to zero, we obtain

∫ f (xµ
i
)

f (xµ
i−1)

w(xµ
i
, y)dy = f ′(xµ

i
)
∫ x

µ

i+1

x
µ

i

w(x, f (xµ
i
))dx .

�

16.7.2 Proof of Lemma 16.3.9 stated on page 207

Proof. Let us first note that the Cauchy-Schwarz inequality implies that

∫ xmax

0

| f ′(x)w
(
x, f (x)

)
|

|δ(x)| dx ≤

√∫ xmax

0

(
f ′(x)w(x, f (x))

)2
dx

∫ xmax

0
(1/δ(x))2dx (16.29)

and since x → f ′(x)w(x, f (x)) ∈ L2(0, xmax) and 1
δ ∈ L2(0, xmax), the right-hand side of Eq. 16.29 is finite

and Eq. 16.10 is well-defined. The proof is divided into two steps. First, we rewrite Eµ and, in a second
step, the limit result is derived by using this new characterization of Eµ.
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Step 1. In a first step we are going to prove that Eµ defined in Eq. 16.9 satisfies

Eµ = µ
µ∑
i=0

(
− 1

2 f
′(xµ

i
)w(xµ

i
, f (xµ

i
))(xµ

i+1 − x
µ

i
)2 +O

(
(xµ

i+1 − x
µ

i
)3
))
. (16.30)

To this end, we elongate the front to the right such that f equals f (xmax) = 0 for x ∈ [xmax, x
µ

µ+1]. Like

that, we can decompose
∫ xmax

0

∫ f (x)

0 w(x, y)dydx into
∑µ

i=0

∫ x
µ

i+1

x
µ

i

∫ f (x)

0 w(x, y) dy dx, while using the fact that
∫ x

µ

µ+1

xmax

∫ f (x)

0 w(x, y)dydx = 0. Using the right-hand side of the previous equation in Eq. 16.9, we find that

Eµ = µ



µ∑

i=0

∫ x
µ

i+1

x
µ

i



∫ f (xµ

i
)

0
w(x, y) dy


 dx −

µ∑

i=0

∫ x
µ

i+1

x
µ

i

(∫ f (x)

0
w(x, y) dy

)
dx


 = µ

µ∑

i=0

∫ x
µ

i+1

x
µ

i

∫ f (xµ
i
)

f (x)
w(x, y) dy dx .

(16.31)
At the first order, we have that

∫ f (xµ
i
)

f (x)
w(x, y)dy = w(xµ

i
, f (xµ

i
))( f (xµ

i
) − f (x)) +O((x − x

µ

i
)) . (16.32)

Since f is differentiable, we can use a Taylor approximation of f in each interval [xµ
i
, x
µ

i+1] and write
f (x) = f (xµ

i
)+ f ′(xµ

i
)(x−xµ

i
)+O((x−xµ

i
)2),which thus implies that f (xµ

i
)− f (x) = − f ′(xµ

i
)(x−xµ

i
)+O((x−xµ

i
)2)

and thus the left-hand side of Eq. 16.32 becomes −w(xµ
i
, f (xµ

i
)) f ′(xµ

i
)(x− xµ

i
)+O((x− xµ

i
)2). By integrating

the previous equation between x
µ

i
and x

µ

i+1 we obtain
∫ x

µ

i+1

x
µ

i

∫ f (xµ
i
)

f (x)
w(x, y) dy dx = −1

2
w(xµ

i
, f (xµ

i
)) f ′(xµ

i
)(xµ

i+1 − x
µ

i
)2 +O((xµ

i+1 − x
µ

i
)3) .

Summing up for i = 0 to i = µ, multiplying byµ and using Eq. 16.31, we obtain Eq. 16.30, which concludes
Step 1.

Step 2. We now decompose 1
2

∫ xmax

0
f ′(x)w(x, f (x))
δ(x) dx into

1
2

µ−1∑

i=0

∫ x
µ

i+1

x
µ

i

f ′(x)w(x, f (x))
δ(x)

dx +
1
2

∫ xmax

x
µ
µ

f ′(x)w(x, f (x))
δ(x)

dx .

For the sake of convenience in the notations, for the remainder of the proof, we redefine x
µ

µ+1 as xmax

such that the previous equation becomes

1
2

∫ xmax

0

f ′(x)w(x, f (x))
δ(x)

dx =
1
2

µ∑

i=0

∫ x
µ

i+1

x
µ

i

f ′(x)w(x, f (x))
δ(x)

dx (16.33)

For µ to∞, the assumption µ sup((sup0≤i≤µ−1 |x
µ

i+1−x
µ

i
|), |xmax−xµµ|)→ c implies that the distance between

two consecutive points |xµ
i+1 − x

µ

i
| as well as |xµµ − xmax| converges to zero. Let x ∈ [0, xmax] and let

us define for a given µ, ϕ(µ) as the index of the points such that xµ
ϕ(µ) and x

µ

ϕ(µ)+1 surround x, i.e.,

x
µ

ϕ(µ) ≤ x < x
µ

ϕ(µ)+1. Since we assume that δ is continuous, a first order approximation of δ(x) is δ(xµµ), i.e.,

δ(x) = δ(xµ
ϕ(µ)) +O(xµ

ϕ(µ)+1 − x
µ

ϕ(µ)) and therefore by integrating between x
µ

ϕ(µ) and x
µ

ϕ(µ)+1 we obtain

∫ x
µ

ϕ(µ)+1

x
µ

ϕ(µ)

δ(x)dx = δ(xµ
ϕ(µ))(x

µ

ϕ(µ)+1 − x
µ

ϕ(µ)) +O(xµ
ϕ(µ)+1 − x

µ

ϕ(µ))
2) . (16.34)

Moreover by definition of the density δ,
∫ x

µ

ϕ(µ)+1

x
µ

ϕ(µ)

δ(x)dx approximates the number of points contained in

the interval [xµ
ϕ(µ), x

µ

ϕ(µ)+1[ (i.e., one) normalized by µ:

µ

∫ x
µ

ϕ(µ)+1

x
µ

ϕ(µ)

δ(x)dx = 1 +O((xµ
ϕ(µ)+1 − x

µ

ϕ(µ))) . (16.35)
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Using Eq. 16.34 and Eq. 16.35, we thus have 1/δ(xµ
ϕ(µ)) = µ(x

µ

ϕ(µ)+1−x
µ

ϕ(µ))+O(µ(xµ
ϕ(µ)+1−x

µ

ϕ(µ))
2). Therefore

for every iwe have that
1
δ(xµ

i
)
= µ(xµ

i+1 − x
µ

i
) +O(µ(xµ

i+1 − x
µ

i
)2) . (16.36)

Since x→ f ′(x)w(x, f (x))/δ(x) is continuous, we also obtain

∫ x
µ

i+1

x
µ

i

f ′(x)w(x, f (x))
δ(x)

dx =
f ′(xµ

i
)w(xµ

i
, f (xµ

i
))

δ(xµ
i
)

(xµ
i+1 − x

µ

i
) +O((xµ

i+1 − x
µ

i
)2) .

Injecting Eq. 16.36 in the previous equation, we obtain

∫ x
µ

i+1

x
µ

i

f ′(x)w(x, f (x))
δ(x)

dx = µ f ′(xµ
i
)w(xµ

i
, f (xµ

i
))(xµ

i+1 − x
µ

i
)2 +O(µ(xµ

i+1 − x
µ

i
)3) .

Multiplying by 1/2 and summing up for i from 0 to µ and using Eq. 16.30 and Eq. 16.33, we obtain

1
2

∫ xmax

0

f ′(x)w(x, f (x))
δ(x)

= −Eµ +
µ∑

i=0

O(µ(xµ
i+1 − x

µ

i
)3) . (16.37)

Let us define ∆µ as sup((sup0≤i≤µ−1 |x
µ

i+1 − x
µ

i
|), |xmax − x

µ
µ|). By assumption, we know that µ∆µ converges

to a positive constant c. The last term of Eq. 16.37 satisfies
∣∣∣∣∣∣∣

µ∑

i=0

O(µ(xµ
i+1 − x

µ

i
)3)

∣∣∣∣∣∣∣
≤ Kµ2(∆µ)3

where K > 0. Since µ∆µ converges to c, (µ∆µ)2 converges to c2. With ∆µ converging to 0, we therefore
have that µ2∆3

µ converges to 0. Taking the limit in Eq. 16.37, we therefore obtain

−1
2

∫ xmax

0

f ′(x)w(x, f (x))
δ(x)

dx = lim
µ→∞

Eµ .

�

16.7.3 Proof of Theorem 16.4.1 stated on page 210

Before to state and prove Theorem 16.4.1, we need to establish a technical lemma.

16.7.2 Lemma
Let us assume that f is continuous on [xmin, xmax] and differentiable on ]xmin, xmax[. Let x2 ∈]xmin, r1] and
let us define the function Θ : [0, xmax − xmin]→ R as

Θ(ε) =
∫ x2

xmin+ε

(∫ f (xmin)

f (xmin+ε)
w(x, y)dy

)
dx

and Γ : [0, x2 − xmin]→ R as

Γ(ε) =
∫ xmin+ε

xmin

(∫ r2

f (xmin)
w(x, y)dy

)
dx .

If w is continuous, positive and limx→xmin f ′(x) = −∞ then for any r2 > f (xmin)

lim
ε→0

Θ(ε)
Γ(ε)

= +∞ .
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Proof. The limits of Θ and Γ for ε converging to 0 equal 0. We will therefore apply the l’Hôpital rule to
compute limε→0

Θ(ε)
Γ(ε) . First of all, note that since f is differentiable on ]xmin, xmax[,Θ and Γ are differentiable

on ]0, xmax − xmin]. Moreover, we see that Θ(ε) = g(xmin + ε, x2) where g is defined in Eq. 16.22 except for
the change from f (xµ0 ) to f (xmin). The proof of Lemma 16.7.1, however, does not change if we exchange
the constant f (xµ0 ) to the constant f (xmin) and we deduce that

Θ′(ε) = − f ′(xmin + ε)
∫ x2

xmin+ε

w(x, f (xmin + ε))dx −
∫ f (xmin)

f (xmin+ε)
w(xmin + ε, y)dy .

From the fundamental theorem of calculus, we also have that

Γ′(ε) =
∫ r2

f (xmin)
w(xmin + ε, y)dy .

From the l’Hôpital rule, we deduce that

lim
ε→0

Θ(ε)
Γ(ε)

= lim
ε→0

Θ′(ε)
Γ′(ε)

. (16.38)

By continuity of w, we deduce that

lim
ε→0
Γ′(ε) = lim

ε→0

∫ r2

f (xmin)
w(xmin + ε, y)dy =

∫ r2

f (xmin)
w(xmin, y)dy

and by continuity of f and w, we deduce that

lim
ε→0

∫ x2

xmin+ε

w(x, f (xmin + ε))dx =
∫ x2

xmin

w(x, f (xmin))dx and lim
ε→0

∫ f (xmin)

f (xmin+ε)
w(xmin + ε, y)dy = 0 .

Therefore limε→0Θ
′(ε) = limε→0 − f ′(xmin + ε) ·

∫ x2

xmin
w(x, f (xmin))dx = +∞ because x2 is fixed, i.e., indepen-

dent of ε, and therefore, the integral is constant. By Eq. 16.38 we obtain the result. �

Now, we are ready to prove Theorem 16.4.1. Proof. We first prove the result for the left extreme. We
denote xµ1 and x

µ

2 the two leftmost points of an optimal µ-distribution for IH,w if µ ≥ 2. In case of µ = 1, let
x
µ

1 be the optimal position of the (single) point. In this case, the contribution of xµ1 in the first dimension
extends to the reference point, which we represent by setting x

µ

2 = r1 such that from now on, we can
assume µ ≥ 2. We assume that limx→xmin f ′(x) = −∞ and that xµ1 = xmin in order to get a contradiction.
Let IH,w(xmin) be the hypervolume solely dominated by the point xmin. If we shift xµ1 to the right by ε > 0
(see Figure 16.11), then the new hypervolume contribution IH,w(xmin + ε) satisfies

IH,w(xmin + ε) = IH,w(xmin) +
∫ x

µ
2

xmin+ε

∫ f (xmin)

f (xmin+ε)
w(x, y)dydx −

∫ xmin+ε

xmin

∫ r2

f (xmin)
w(x, y)dydx .

Identifying x2 with x
µ

2 in the definition of Θ in Lemma 16.7.2, the previous equation can be rewritten as

IH,w(xmin + ε) = IH,w(xmin) + Θ(ε) − Γ(ε) .

From Lemma 16.7.2, for any r2 > f (xmin), there exists an ε > 0 such that Θ(ε)
Γ(ε) > 1 and thusΘ(ε)− Γ(ε) > 0.

Thus, for any r2 > f (xmin), there exists an ε such that IH,w(xmin + ε) > IH,w(xmin) and thus IH,w(xmin) is not
maximal which contradicts the fact that xµ1 = xmin. In a similar way, we can prove the result for the right
extreme. �
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Figure 16.11: If the function f (x) describing the Pareto front has an infinite derivative at its left extreme,
the leftmost Pareto-optimal point at xmin will never coincide with the leftmost point xµ1 of an optimal
µ-distribution for IH,w (left); similarly, if the derivative is zero at the right extreme, the rightmost Pareto-
optimal point at xmax will never coincide with the rightmost point xµµ (right). The reason is in both cases
that for any finite r1, and r2 respectively, there exists an ε > 0, such that the dominated space gained (⊕)
when moving x

µ

1 from xmin to xmin + ε, and x
µ
µ from xmax to xmax − ε respectively, is larger than the space

no longer dominated (⊖).

16.7.4 Proof of Theorem 16.4.3 stated on page 211

The proof of the theorem requires to establish a technical proposition. We have assumed that the
reference point is dominated by the Pareto front, i.e., at least r1 > xmax and r2 > f (xmin). Let us consider
a set of points on the front and the hypervolume contribution of the leftmost point P1 = (x1, f (x1)) (see
Figure 16.12). This hypervolume contribution is a function of x1 itself, x2, the x-coordinate of the second
leftmost point, and r2, the second coordinate of the reference point. For a fixed x2, r2, the hypervolume
contribution of the leftmost point with coordinate x1 ∈ [xmin, x2[ is denoted Hw

1 (x1; x2, r2) and reads

Hw
1 (x1; x2, r2) =

∫ x2

x1

∫ r2

f (x1)
w(x, y)dydx . (16.39)

The following proposition establishes a key property of the function Hw
1 .

(a) left extreme (b) right extreme

Figure 16.12: Shows the notation and formula to compute the hypervolume contributions of the leftmost
and rightmost point P1 and Pµ respectively.
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Figure 16.13: If the hypervolume indicator is larger for the choice of x1 = xmin than when choosing
x1 > xmin if x2 = xmax (left-hand side), it is also larger for x1 = xmin for any x2 > x1 (right-hand side).

16.7.3 Proposition
If x1 → Hw

1 (x1; xmax, r2) is maximal for x1 = xmin, then for any x2 ∈ ]x1, xmax] the contribution Hw
1 (x1; x2, r2)

is maximal for x1 = xmin too.

Proof. [Proof]Assume thatHw
1 (x1; xmax, r2) ismaximal forx1 = xmin, i.e.,Hw

1 (xmin; xmax, r2)≥Hw
1 (x1; xmax, r2),

for all x1 ∈ ]xmin, xmax]. Let {D1, . . . ,D5} denote the weighted hypervolume indicator values of different
non-overlapping rectangular areas shown in Fig. 16.13. Then for all x1 in ]xmin, xmax], Hw

1 (xmin; xmax, r2) ≥
Hw

1 (x1; xmax, r2) can be rewritten using D1, . . . ,D5 as

D1 +D2 +D4 ≥ D2 +D3 +D4 +D5

which in turn implies that D1 +D2 ≥ D2 +D3 +D5. Since D5 ≥ 0 we have that D1 +D2 ≥ D2 +D3, which
corresponds to Hw

1 (xmin; x2, r2) ≥ Hw
1 (x1; x2, r2). Hence, Hw

1 (x1; x2, r2) is also maximal for x1 = xmin for any
choice x2 ∈]x1, xmax]. �

We are now ready to prove Theorem 16.4.3. Proof. [Proof of Theorem 16.4.3] Let x1 and x2 denote the
x-coordinates of the two leftmost points P1 = (x1, f (x1)) and P2 = (x2, f (x2)). Then the hypervolume
contribution of P1 is given by Eq. 16.39. To prove that P1 is the extremal point (xmin, f (xmin)), we need
to prove that x1 ∈ [xmin, x2] 7→ Hw

1 (x1; x2, r2) is maximal for x1 = xmin. By using Proposition 16.7.3,
we know that if we prove that x1 → Hw

1 (x1; xmax, r2) is maximal for x1 = xmin then we will also have
that Hw

1 : x1 ∈ [xmin, x2] 7→ Hw
1 (x1; x2, r2) is maximal for x1 = xmin. Therefore we will now prove that

x1 → Hw
1 (x1; xmax, r2) is maximal for x1 = xmin. To do so, we will show that

dHw
1 (x1;xmax,r2)

dx1
, 0 for all

xmin < x1 ≤ xmax. According to Lemma 16.7.1, the derivative of the hypervolume contribution of P1 is

dHw
1 (x1; xmax, r2)

dx1
= − f ′(x1)

∫ xmax

x1

w(x, f (x1))dx −
∫ r2

f (x1)
w(x1, y)dy

Hence, by choosing r2 > K2 according to Theorem 16.4.3,
dHw

1 (x1;xmax,r2)
dx1

, 0. �

16.7.5 Proof of Corollary 16.4.5 stated on page 212

Proof. We replace w(x, y) in Eq. 16.13 of Theorem 16.4.3 by 1 and obtain that if there exists a K2 ∈ R

such that
∀x1 ∈ ]xmin, xmax] : K2 − f (x1) > − f ′(x1)(xmax − x1), (16.40)

then for any r2 ≥ K2, the leftmost extreme is included. The previous equation writes K2 > f (x1) −
f ′(x1)(xmax − x1) for all x1 ∈ ]xmin, xmax]. However − f ′(x1)(xmax − x1) = f ′(x1)(x1 − xmax). Therefore
Eq. 16.40 writes as

∀x1 ∈ ]xmin, xmax] : K2 > f (x1) + f ′(x1)(x1 − xmax) . (16.41)
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Since K2 has to be larger than the right-hand side of Eq. 16.41 for all x1 in ]xmin, xmax], it has to be larger
than the supremum of f (x1) + f ′(x1)(x1 − xmax) for x1 in ]xmin, xmax] and thus

K2 > sup{ f (x1) + f ′(x1)(x1 − xmax) : x ∈]xmin, xmax]} . (16.42)

Defining R2 as the infimum over K2 satisfying Eq. 16.42 results in Eq. 16.15 which concludes the proof.
�

16.7.6 Proof of Theorem 16.4.7 stated on page 212

Before to present the proof, we consider the hypervolume contribution of the rightmost point:

Hw
µ (xµ; xµ−1, r1) =

∫ r1

xµ

∫ f (xµ−1)

f (xµ)
w(x, y)dydx (16.43)

Similar to Proposition 16.7.3 we can establish the following proposition:

16.7.4 Proposition
If xµ → Hw

1 (xµ; xmin, r1) is maximal for xµ = xmax, then for any xµ ∈ [xmin, xµ−1[ the contribution
Hw
µ (xµ; xµ−1, r1) is maximal for xµ = xmax too.

Weare now ready to prove Theorem 16.4.7. Proof. [Proof of Theorem 16.4.7] Let xµ and xµ−1 denote the x-
coordinates of the two rightmost pointsPµ = (xµ, f (xµ)) andPµ−1 = (xµ−1, f (xµ−1)). Then the hypervolume
contribution of Pµ is given by Eq. 16.43. To prove that Pµ is the extremal point (xmax, f (xmax)), we need
to prove that xµ ∈ [xµ−1, xmax] 7→ Hw

µ (xµ; xµ−1, r1) is maximal for xµ = xmax. By using Proposition 16.7.4,
we know that if we prove that xµ → Hw

µ (xµ; xmin, r1) is maximal for xµ = xmax then we will also have
that Hw

µ : xµ ∈ [xµ−1, xmax] 7→ Hw
µ (xµ; xµ−1, r1) is maximal for xµ = xmax. Therefore, we will now prove

that xµ → Hw
µ (xµ; xmin, r1) is maximal for xµ = xmax. To do so, we will show that

dHw
µ (xµ;xmin,r1)

dxµ
, 0 for all

xmin ≤ xµ < xmax. According to Lemma 16.7.1, the derivative of the hypervolume contribution of Pµ is

dHw
µ (xµ; xmin, r1)

dxµ
= − f ′(xµ)

∫ r1

xµ

w(x, f (xµ))dx −
∫ f (xmin)

f (xµ)
w(xµ, y)dy .

Hence, by choosing r1 > K1 according to Theorem 16.4.7,
dHw
µ (xµ;xmin,r1)

dxµ
, 0. �

16.7.7 Proof of Corollary 16.4.8 stated on page 213

Proof. We replace w(x, y) in Eq. 16.16 of Theorem 16.4.7 by 1 and obtain that if there exists a K1 ∈ R

such that − f ′(xµ)(K1 − xµ) > ( f (xmin) − f (xµ)) holds for all xµ ∈ [xmin, xmax[, then for every r1 ≥ K1, the
rightmost extreme is included in optimal µ-distributions for IH. The previous inequality writes

∀xµ ∈ [xmin, xmax[: K1 > ( f (xµ) − f (xmin))/ f ′(xµ) + xµ . (16.44)

Since K1 has to be larger than the right-hand side of Eq. 16.44 for all xµ in [xmin, xmax[, it has to be larger
than the supremum of the right-hand side of Eq. 16.44 for xµ in [xmin, xmax[ and thus

K1 > sup
{
x +

f (x) − f (xmin)
f ′(x)

: x ∈ [xmin, xmax[
}
. (16.45)

Defining R1 as the infimum over K1 satisfying Eq. 16.45 results in Eq. 16.18 which concludes the proof.
�
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16.7.8 Proof of Lemma 16.4.9 stated on page 213

Proof. Let us denote the leftmost and the rightmost point of an optimal µ-distribution for IH,w as xµ1 (R)
and x

µ
µ(R) respectively when the hypervolume indicator is computed with respect to a reference point

R. By assumption, xµ1 (R
1) = xmin and x

µ
µ(R1) = xmax. Assume, in order to get a contradiction, that

x
µ

1 (R
2) > xmin (i.e., the leftmost point of the optimal µ-distribution for IH,w and R2 is not the left extreme)

and assume that xµµ(R2) = xmax for the moment. Let us denote I
µ

H,w
(R2) the hypervolume associated

with an optimal µ-distribution for IH,w computed with respect to the reference point R2 (and I
µ

H,w
(R1)

accordingly for R1). We decompose Iµ
H,w

(R2) in the following manner (see Figure 16.14)

I
µ

H,w
(R2) = A1 + A2 + A3 (16.46)

where A1 is the hypervolume (computed with respect to w) enclosed in between the optimal µ-
distribution associated with R2 and the reference point R1, A2 is the hypervolume (computed with
respect to w) enclosed in the rectangle whose diagonal extremities are R2 and (xµ1 (R

2), r12) and A3 is the
hypervolume (again with respect to w) enclosed in the rectangle with diagonal [(r11, f (xmax)), (r21, r

1
2)].

Consider now an optimal µ-distribution for IH,w associated with the reference point R1 and denote this
optimal µ-distribution (xµ1 (R

1), . . . , xµµ(R1)). Theweighted hypervolume enclosed by this set of points and

R2 equals Iµ
H,w(R

1)+A2 +A
′
2 +A3 where A′2 is the hypervolume (computed with respect to w) enclosed in

the rectangle whose diagonal is [(xmin, r12), (x
µ

1 (R
2), r22)] (Fig. 16.14). By definition of Iµ

H,w
(R2) we have that

I
µ

H,w
(R2) ≥ I

µ

H,w
(R1) + A2 + A′2 + A3 . (16.47)

However, since Iµ
H,w

(R1) is the maximal hypervolume value possible for the reference point R1 and a set

of µ points, we have that A1 ≤ I
µ

H,w(R
1) and thus with Eq. 16.47 that Iµ

H,w(R
2) ≥ A1 + A2 + A′2 + A3 . From

Eq. 16.46, we deduce that

I
µ

H,w
(R2) ≥ I

µ

H,w
(R2) + A′2 . (16.48)

Since we have assumed that xµ1 (R
2) > xmin and that r22 > r12, we have A′2 > 0. And thus, Eq. 16.48 implies

that Iµ
H,w(R

2) > I
µ

H,w(R
2), which contradicts our assumption. In a similar way, we show a contradiction

if we assume that both x
µ

1 (R
2) > xmin and x

µ
µ(R2) < xmax, i.e., if both extremes are not contained in an

optimal µ-distribution for IH,w and the reference point R2. Also the proof for the right extreme is similar.
�

16.7.9 Proof of Theorem 16.4.10 stated on page 213

Proof. Let us fix ε2 ∈ R>0 and let R = (R1,R2) = (r1,RNadir
2 + ε2) for r1 arbitrarily chosen with r1 ≥ RNadir

1 .
The optimal µ-distributions for IH,w and the reference point R obviously depend on µ. Let xµ2 (R) denote
the second point of an optimal µ-distribution for IH,w when R is chosen as reference point. We know that
for µ to infinity, xµ2 (R) converges to xmin. Also, because f ′ is continuous on [xmin, xmax], the extreme value
theorem implies that there exists θ > 0 such that | f ′(x)| ≤ θ for all x ∈ [xmin, xmax]. Since f ′ is negative we
therefore have

∀x ∈ [xmin, xmax] : − f ′(x) ≤ θ . (16.49)

In order to prove that the leftmost point of an optimal µ-distribution is xmin, it is enough to show that
the first partial derivative of IH,w is non-zero on ]xmin, x

µ

2 (R)]. According to Eq. 16.3 and Lemma 16.7.1,
the first partial derivative of IH,w((x

µ

1 , . . . , x
µ
µ)) equals (we omit the dependence in R for the following
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equations)

∂1IH,w = − f ′(xµ1 )
∫ x

µ
2

x
µ

1

w
(
x, f (xµ1 )

)
dx −

∫ R2

f (xµ1 )
w(xµ1 , y)dy

=
(
− f ′(xµ1 )

) ∫ x
µ
2

xmin

w
(
x, f (xµ1 )

)
dx −

(
− f ′(xµ1 )

) ∫ x
µ

1

xmin

w
(
x, f (xµ1 )

)
dx −

∫ RNadir
2

f (xµ1 )
w(xµ1 , y)dy −

∫ RNadir
2 +ε2

RNadir
2

w(xµ1 , y)dy .

(16.50)

Since the second and third summand are non-positive due to w being strictly positive we have

≤
(
− f ′(xµ1 )

) ∫ x
µ
2

xmin

w
(
x, f (xµ1 )

)
dx −

∫ RNadir
2 +ε2

RNadir
2

w(xµ1 , y)dy (16.51)

and because w ≤W and with Eq. 16.49, Eq. 16.51 can be upper bounded by

≤ θW(xµ2 − xmin) −
∫ RNadir

2 +ε2

RNadir
2

w(xµ1 , y)dy . (16.52)

Since x
µ

2 converges to xmin for µ to infinity, and −
∫ RNadir

2 +ε2

RNadir
2

w(xµ1 , y)dy < 0 we deduce that there exists µ1
such that for all µ larger than µ1, Eq. 16.52 is strictly negative and thus for all µ larger than µ1, the first
partial derivative of IH,w is non zero, i.e., xµ1 = xmin. With Lemma 16.4.9 we deduce that all reference
points dominated by Rwill also allow to obtain the left extreme.

Wewill now follow the same steps for the right extreme. Let us fix ε1 ∈ R>0 and letR = (RNadir
1 +ε1, r2)

for r2 ≥ RNadir
2 . Following the same steps for the right extreme, we need to prove that the µ-th partial

derivative of IH,w is non zero for all xµµ ∈ [x
µ

µ−1, xmax[. According to Eq. 16.28,

∂µIH,w(x
µ

1 , . . . , x
µ
µ) = −

∫ f (xµ
µ−1)

f (xµµ)
w(xµµ, y)dy − f ′(xµµ)

∫ RNadir
1 +ε1

x
µ
µ

w(x, f (xµµ))dx (16.53)

≥ −W( f (xµ
µ−1) − f (xµµ)) − f ′(xµµ)

∫ RNadir
1 +ε1

x
µ
µ

w(x, f (xµµ))dx

and since xµµ ≤ RNadir
1 , we obtain

≥ −W( f (xµ
µ−1) − f (xµµ)) − f ′(xµµ)

∫ RNadir
1 +ε1

RNadir
1

w(x, f (xµµ))dx (16.54)

By continuity of f and the fact that both x
µ
µ and x

µ

µ−1 converge to xmax the term W( f (xµ
µ−1) − f (xµµ))

converges to zero. Since − f ′(xµµ)
∫ RNadir

1 +ε1

RNadir
1

w(x, f (xµµ))dx is strictly positive, we deduce that there exists µ2

such that for all µ ≥ µ2, ∂µIH,w(xµ1 , . . . , x
µ
µ) is strictly positive and thus for all µ larger than µ2 the µ-th

partial derivative of IH,w is non zero, i.e., xµµ = xmax. With Lemma 16.4.9 we deduce that all reference
points dominated by R allow to obtain the right extreme. �

16.7.10 Results for the ZDT Test Function Suite

There exist six ZDT test problems—ZDT1 to ZDT6—of which ZDT5 has a discrete Pareto front and is
therefore excluded from our investigations [378]. In the following, let d = (d1, . . . , dn) ∈ R

n denote the
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Figure 16.14: If the optimal distribution of µ points contains the extremes (left-hand side), then after
increasing the reference point from R1 to R2 the extremes are still included in the optimal µ-distribution
(right-hand side). This can be proven by contradiction (middle).

decision vector of n real-valued variables. The shapes of the Pareto fronts as stated below follow from
the definition of the objectives including a function g(d) and the fact that the Pareto front is obtained by
setting g(d) = 1.

ZDT1 From Example 16.4.2, we recapitulate the front shape of ZDT1 as f (x) = 1 −
√
x with xmin = 0

and xmax = 1, see Figure 16.9(a). From f ′(x) = −1/(2
√
x) the density on the front according to Eq. 16.12 is

δF(x) =
3 4√x

2
√
4x+1

. Since f ′(xmin) = −∞, the left extreme is never included as stated already inExample 16.4.2.
The lower bound of the reference point R = (R1,R2) to have the right extreme, according to Eq. 16.18,
equals R1 = sup

x∈]xmin,xmax]
x +

1−
√
x−1

−1/(2
√
x)
= sup

x∈]0,1]
3x = 3.

ZDT2 From Example 16.3.11, we recapitulate the front shape of ZDT2 as f (x) = 1 − x2 with xmin = 0
and xmax = 1 and the density of δF(x) =

3
√
x

2
√
1+4x2

(see Fig. 16.9(b)). The lower bounds for the reference
point R = (R1,R2) to obtain the extremes are according to the equations Eq. 16.18 and Eq. 16.15 R1 =

sup
x∈]xmin,xmax]

x+ 1−x2−1
−2x = sup

x∈]0,1]

3
2x =

3
2 andR2 = sup

x∈[xmin,xmax[
−2x · (x−1)+1−x2 = sup

x∈[0,1[
2x−3x2+1 = 4

3 respectively.

ZDT3 Due to the sine-function in the definition of ZDT3’s second objective, the front is discontinuous
where f : D→ [−1, 1], x 7→ 1−

√
x−x·sin(10πx) whereD = [0, 0.0830]∪(0.1823, 0.2578]∪(0.4093, 0.4539]∪

(0.6184, 0.6525] ∪ (0.8233, 0.8518] is derived numerically. Hence xmin = 0 and xmax = 0.8518. The density
is

δF(x) = C ·
√

1
2
√
x
+ sin (10πx) + 10πx cos (10πx)

/√
1 +

(
1

2
√
x
+ sin (10πx) + 10πx cos (10πx)

)2
with C ≈

1.5589

where x ∈ D and δF(x) = 0 otherwise. Figure 16.9(c) shows the Pareto front and the density. Since
f ′(xmin) = −∞ and f ′(xmax) = 0, the left and right extremes are never included.

ZDT4 The Pareto front of ZDT4 is again given by f (x) = 1 −
√
x. Hence, the density and the choice of

the reference point is the same as for ZDT1.

ZDT6 The Pareto front of ZDT6 is f : [xmin, xmax]→ [0, 1], x 7→ 1 − x2 with xmin ≈ 0.2808 and xmax = 1,
see Fig. 16.9(d). Hence, the Pareto front coincides with the one of ZDT2 except for xmin which is shifted
slightly to the right. From this, it follows that also the density is the same except for a constant factor,
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i.e., δF(x) is larger than the density for ZDT2 by a factor of ≈ 1.25. For the lower bound R of the reference
point, we obtain

R1 = sup
x∈]xmin,xmax]

x +
1 − x2 − (1 − x2min)

−2x = sup
x∈]0.2808,1]

x2min − 3x2

−2x =
3 − x2min

2
≈ 1.461 and

R2 = sup
x∈[xmin,1[

−2x(x − xmax) + 1 − x = sup
x∈[xmin,1[

2x − 3x2 + 1 =
4
3
.

Hence, the lower bound R2 is the same as for ZDT2, but R1 differs slightly from ZDT2.

16.7.11 Results for the DTLZ Test Function Suite

The DTLZ test suite offers seven test problems which can be scaled to any number of objectives [119].
For the bi-objective variants, DTLZ5 and DTLZ6 are degenerated, i.e., the Pareto fronts consist of only a
single point and are not examined in the following. For the definitions of the problems, we refer to [119]
and only state the shapes of the Pareto fronts which can be obtained by setting g(d) = 0 similar to the
ZDT problems.

DTLZ1 The Pareto front of DTLZ1 is described by f (x) = 1/2 − x with xmin = 0 and xmax = 1/2, see
Fig. 16.9(e). According to Eq. 16.12, we have δF(x) =

√
2. A lower bound for the reference point is given

by R1 = supx∈]0,1/2] 1 − x = 1 and R2 = R1 for symmetry reasons.

DTLZ2 From Example 16.2.1, we recapitulate the front shape of f (x) =
√
1 − x2 with xmin = 0 and

xmax = 1, see Fig. 16.9(f). According to Eq. 16.12, the density on the front is δF(x) =
√
πx

4√
1 − x2

/
Γ(3/4)2

where Γ denotes the gamma-function, i.e., Γ(3/4) ≈ 1.225. A lower bound for the reference point is given
by

R1 = sup
x∈]xmin,xmax]

x +

√
1−x2−

√
1−x2min

−x/
√
1−x2

= sup
x∈]0,1]

√
1−x2−1+2x2

x = 1/2
(√

3 − 1
)
33/4
√
2 ≈ 1.18

and for symmetry reasons R2 = R1.

DTLZ3 The problem formulation of DTLZ3 is the same as for DTLZ2 except for the function g(d).
However, the Pareto front is formed by the same decision vectors as for DTLZ2 and the fronts of DTLZ2
and DTLZ3 are identical. Hence, also the density and the choice of the reference point are the same as
for DTLZ2.

DTLZ4 In DTLZ4, the same functions as in DTLZ2 are used with an additional meta-variable mapping
m : [0, 1] → [0, 1] of the decision variables, i.e., the decision variable m(di) = dα

i
is used instead of

the original decision variable di in the formulation of the DTLZ2 function. This transformation does
not affect the shape of the Pareto front and the results on optimal µ-distributions for the unweighted
hypervolume indicator again coincide with the ones for DTLZ2.

DTLZ7 The Pareto front of DTLZ7 is discontinuous and described by the function f : D → [0, 4],
x 7→ 4− x(1+ sin(3πx)) where D = [0, 0.2514]∪ (0.6316, 0.8594]∪ (1.3596, 1.5148]∪ (2.0518, 2.1164] which
is derived numerically, see Fig. 16.9(g). Hence, xmin = 0 and xmax ≈ 2.1164. The derivative of f (x) is
f ′(x) = −1 − sin(3πx) − 3πx cos(3πx) and the density therefore is
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δF(x) = C ·
√
1 + sin (3π x) + 3πx cos (3π x)

/√
1 +

(
1 + sin (3π x) + 3πx cos (3π x)

)2
with C ≈ 0.6566. For

R, we find R1 ≈ 2.481 and R2 ≈ 13.3720.

16.7.12 Results for the WFG Test Function Suite

The WFG test suite offers nine test problems which can be scaled to any number of objectives. In
contrast to DTLZ and ZDT, the problem formulations are build using an arbitrary number of so-called
transformation functions. We abstain from quoting these functions here and refer the interested reader
to [193]. The resulting Pareto front shape is determined by parameterized shape functions hi mapping
[0, 1] to the range [0, 1]. All test functions WFG4 to WFG9 share the same shape functions and are
therefore examined together in the following.

WFG1 For WFG1, the shape functions are convex and mixed respectively which leads to the Pareto

front f (x) =
2ρ−sin(2ρ)

10π − 1 with ρ = 10 arccos(1 − x), xmin = 0 and xmax = 1, see Fig. 16.9(h). The density
becomes

δF(x) = C ·
√√√√√√ 2

(
1 − cos

(
2ρ

))
π

√
x (2 − x)

(
π2 − 4 (1−cos(2ρ))2

x(x−2)

)

with C ≈ 1.1569. Since limx→xmax f
′(xmax) = 0 the rightmost extreme point is never included in an optimal

µ-distribution for IH,w. For the choice of R2 the analytical expression is very long and therefore omitted.
A numerical approximation leads to R2 ≈ 0.9795.

WFG2 For WFG2, the shape functions are convex and discontinuous respectively which leads to the

discontinuous Pareto front f : D → [0, 1], x 7→ 1 − 2 (π−0.1ρ) cos2(ρ)
π where ρ = arccos (x − 1), and with

a numerically derived domain D = [0, 0.0021] ∪ (0.0206, 0.0537] ∪ (0.1514, 0.1956] ∪ (0.3674, 0.4164] ∪
(0.6452, 0.6948] ∪ (0.9567, 1], xmin = 0 and xmax = 1, see Fig. 16.9(i). The density becomes

δF(x) = C ·
√
− f ′(x)

√
1 + f ′(x)2

with C ≈ 0.44607 and f ′(x) = −2
cos

(
ρ
) (
cos

(
ρ
)
+ 20 sin

(
ρ
)
π − 2 sin

(
ρ
)
ρ
)

√
x (2 − x)π

for all x ∈ D and δF(x) = 0 otherwise. Again, f ′(0) = −∞ such that the leftmost extreme point is never
included in an optimal µ-distribution for IH,w. For the rightmost extreme one finds R1 ≈ 2.571.

WFG3 For WFG3, the shape functions are both linear—leading to the linear Pareto front f (x) = 1 − x

with xmin = 0 and xmax = 1. Hence, the density is δF(x) = 1/
√
2, see Fig. 16.9(e) for a scaled version of this

Pareto front. For the choice of the reference point the same arguments as for DTLZ1 hold, which leads
to R = (2, 2).

WFG4 toWFG9 For the six remaining test problemsWFG4 toWFG9, the shape functions h1 and h2 are
both concave—resulting in a spherical Pareto front f (x) =

√
1 − x2 with xmin = 0 and xmax = 1. Hence,

the Pareto front coincides with the front of DTLZ2 and also the density and the choice of the reference
point are the same.
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Chapter 17

Technological architecture evolutions of
Information Systems: trade-off and
optimization

Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda

Submitted to Concurrent Engineering Research and Applications

In the normal lifespan of large enterprises, the strategic management of IT often evolves. Existing
services must be replaced with new services without impairing operations. The problem of scheduling
such replacement is of critical importance for the success of the operation. We analyze this problem
from a quantitative point of view, underlining the trade-off nature of its solutions. We formalize this
multi-objective optimization problem as a mathematical programming formulation. We discuss its
theoretical properties and show that real-world instances can be solved by standard off-the-shelf tools.

17.1 Introduction

For any information system manager, a recurrent key challenge is to avoid creating more complexity
within its existing information system through the numerous IT projects that are launched in order
to respond to the needs of the business. Such an objective leads thus typically to the necessity of co-
optimizing both creation and replacement/destruction— called usually kills in the IT language—of parts
of the information system, and of prioritizing the IT responses to the business consequently.

This important question is well known in practice and quite often addressed in the IT literature, but
basically only from an enterprise architecture or an IT technical management perspective [56, 94, 264].
Architectural andmanagerial techniques, however, are often only parts of the puzzle that one has to solve
to handle these optimization problems. On the basis of budget, resource and time constraints given by
the enterprise management, architecture provides the business and IT structure of these problems. This
is however not sufficient to model them completely or solve them. Nevertheless, from a methodological
point of view, real systems (especially information ones) can be described adopting different perspectives
and different levels of details according to Systems Architecture methodologies that we can find in
literature [68, 69, 225]. Some powerful techniques help to manage complex systems decoupling them
into parts. Abstraction and Concretization are the processes that allow to shift from a specific level of
details to a properly lower/higher one so that we can focus on the features which are really relevant and

237
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“hide” the others. Decomposition and Integration are the ones that let the analyst to identify and solve
sub-problems. Alternating these activities we can provide a series of partial visions which cooperate to
produce the whole picture, instead of a single global description.

According to these seminal concepts, in a previous work [162] we proposed a first abstract model
(or vision) of the problem and moved a first step towards the integration of architectural business and
IT project management aspects. More precisely, we proposed an operational model and a Mathematical
Programming (MP) formulation expressing a generic global prioritization problem occurring in the
— limited, but practically relevant — context of a technological evolution of an information system,
reducing to one all the different objectives of the different stakeholders.

In this paper we refine our analysis. In the interest of simplicity, the first model proposed understated
the multi-objective nature of the problem. In particular the presence of many teams at work is worth
a closer examination, because it can lead to puzzling situations if some specific conditions hold or
resources are insufficient. If we introduce a bound on the duration of the whole transition, or, at least,
on each step of it, and force the activation/deactivations to be done before a short deadline we generate
a competition between departements. Thus, we employ multi-optimization techniques in order to
model and numerically solve a wider part of this general problem. This is a second step towards a full
formalization of the problem which promises to provide a valuable help for IT practitioners.

The rest of this paper is organized as follows: section 2 describes the problem and the key elements
involved, section 3 proposes the Mathematical Programming formulation and introduces the necessary
multi-optimization techniques, section 4 discusses the theoretical properties of the model and section 5
reports the results of the computational tests.

17.2 Operational model of an evolving information system

17.2.1 Elements of information system architecture

Any information system of an enterprise (consisting of a set D of departments) is classically described
by two architectural layers:

• the business layer: the description of the business services (forming a set V) offered by the informa-
tion system;

• the IT layer: the description of the IT modules (forming a setU) on which business services rely on.

In general, the relationship A ⊆ V × U between these two layers is not one-to-one. A given business
service can require any number of IT modules to be delivered and vice-versa a given IT module can be
involved in the delivery of several business services, as shown in Fig. 17.1.

17.2.2 Evolution of an information system architecture

From time to time, an information systemmay evolve in its entirety due to the replacement of an existing
software technology by a new one (e.g. passing from several independent/legacy software packages to
an integrated one, migrating from an existing IT technology to a new one, and so on). These evolutions
invariably have a strong impact at the IT layer level, where the existing IT modules UE = {M1, . . . ,Mn}
are replaced by new ones in a set UN = {N1, . . . ,Nn′ } (in the sequel, we assume U = UE ∪ UN). This
translates to a replacement of existing services (sometimes denoted ES) in V by new services (sometimes
denotedNS) inW ensuring that the impact on thewhole enterprise is kept low in order to avoid business
discontinuity. This also induces a relation B ⊆W×UN expressing reliance of new services on ITmodules.
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....

Business layer

IT layer

....

service 1 service 2 service |V|

M1 M2 M|U|

Figure 17.1: A simple two-layer information system architecture.

Note also that in this context, at the business level, there exists a relation (in V ×W) between existing
services and new services which expresses the fact that a given existing service shall be replaced by a
subset of new business services. We note in passing that this relation also induces another relation in
UE × UN expressing the business covering of an existing IT module to a subset of new IT modules (see
Fig. 17.2).

ES1 ES2 ES|V| NS1 NS2 NS|W|

M1 M2 Mn N1 N2 Nn′

Business layer

IT layer

Requires

Figure 17.2: Evolution of an information system architecture.

17.2.3 Management of information system architecture evolutions

Mapping the above information system architecture on the organization of a company, it appears clear
that threemain types of enterprise actors are naturally involved in themanagement of these technological
evolutions which are described below.

1. Business department managers: they are responsible of creating business value—within the perime-
ter of a business department in the set D — through the new business services. This value might
be measured by the amount of money they are ready to invest in the creation of these services
(business services are usually bought internally by their users within the enterprise).
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2. IT project managers: they are responsible for creating the new IT modules, which is a pre-requisite
to creating the associated business services. The IT project manager has a project schedule usually
organized in workpackages, each having a specific starting times and global budget (see Fig. 17.2):
in our case, this schedule is presented as a set of deployment precedence rules for new modules.

3. Kill managers: they are responsible for destroying the old IT modules in order to avoid to duplicate
the information system — and therefore its operating costs — when achieving its evolution. Kill
managers have a budget for realizing such “kills”, but they must ensure that any old IT module
i is only killed after the new services replacing those old ones relying on i are put into service.
The enterprise motivates the efficiency of kill managers by setting a monetary value on each
deactivation: this provides a measure of the desirability of killing module i.

In this context, managing the technological evolution of an information system means being able of
creating new IT modules within the time and budget constraints of the IT project manager in order to
maximize both the IT modules business value brought by the new services and the associated kill value
(i.e. the number of old services than can be killed).

17.2.4 The information system architecture evolution management problem

The architecture evolution of the IT system involves revenues, costs and schedules over a time horizon
tmax, as detailed below.

• Time and budget constraints of the IT project manager. Each new IT module i ∈ U has a cost ai and a
production schedule.

• IT module business value. Each department ℓ ∈ D is willing to pay qℓk monetary units for a new
service k ∈ W from a departmental production budget Hℓ =

∑
k:(ℓ,k)∈F qℓk; the business value of

the new service k is ck =
∑
ℓ:(ℓ,k)∈F qℓk. We assume that this business value is transferred in a

conservative way via the relation B to the IT modules. Thus, there is a business contribution βik
over every (i, k) ∈ B such that for each k we have ck =

∑
(i,k)∈B βik; furthermore, the global business

value of module i is
∑

k:(i,k)∈B βik. We also introduce a set N ⊆ U of IT modules that are necessary to
the new services.

• Deployment schedule of new modules. We are given a Directed Acyclic Graph (DAG) (U,S) where
each couple (i, h) ∈ S ⊂ U × U encodes a deployment precedence between the new modules i, h
(i.e. h cannot be deployed before i).

• Kill value. Discontinuing (or killing) a module i ∈ U has a cost bi due to the requirement, prior to the
kill, of an analysis of the interactions between the module and the rest of the system architecture,
in order to minimize the chances of the kill causing unexpected system behaviour. As mentioned
above, it also has a monetary value (or desirability) φi .

The evolution involves several stakeholders. The department heads want to maximize the value of
the required new services. Themodule managers want to produce themodules according to an assigned
schedule whilst maximizing the business value for the new services to be activated. The kill managers
want to maximize the monetary value of the deactivated modules within a certain kill budget. Thus,
the rational planning of this evolution requires the solution of an optimization problem with several
constraints and criteria, which we shall discuss in the next session.

17.3 Mathematical Programming based approach

Mathematical Programming (MP) is a formal language used for modelling and solving optimization
problems [253, 363]. Each problem ismodelled bymeans of a list of index sets, a list of known parameters
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encoding theproblemdata (the instance), a list of decisionvariables, whichwill contain appropriate values
after the optimization process has taken place, an objective function to beminimized ormaximized, and a
set of constraints. The objective and constraints are expressed in function of the decision variables and the
parameters. The constraints might include integrality requirements on the decision variables. MPs are
classified into Linear Programs (LP),Mixed-Integer Linear Programs (MILP),Nonlinear Programs (NLP),
Mixed-Integer Nonlinear Programs (MINLP) according to the linearity of objective and constraints and
to integrality requirements on the variables. MILPs andMINLPs are usually solved using a Branch-and-
Bound (BB) method, explained at the beginning in Sect. 17.3.4. A solution is an assignment of numerical
values to the decision variables. A solution is feasible if it satisfies the constraints. A feasible solution is
optimal if it optimizes the objective function.

17.3.1 Multiobjective Programming

Multiobjective Programming (MOP) [158] is a modification of the MP language that allows for sets of
objective functions to be supplied. A feasible solution s dominates a second one s′ (denoted by s ≺ s′ if
it is at least as good as the first one on all objectives, and strictly better on at least one objective. MOP is
dealt with either by looking for the efficient set (i.e. the set of all nondominated feasible solutions) or by
reformulating the MOP to a single-objective MP which finds one efficient solution. All efficient points
are possible choices but the ultimate decision maker usually wants only one or a few suggestions. In
this case the resolution of a MOP includes a first phase, the production of all not dominated points and
a second one, the selection of the most desirable ones in order to satisfy some kind of preference related
to the users. The role played by these preferences determines four approaches present in literature (no-
preference, “a posteriori”, “a priori”, interactive) according to [275]. In particular the no-preference methods
do not use preferences and propose only the best solution. In this case, the two phases are not clearly
distincted and the final choice is always based on a criterion which is independent from the user. A
method which represents well this class is the Lp-metric method (see Figure 17.3 above). The basic idea
of this method is to search in the objective space the point which has the minimal distance from a fixed
point h∗. Typically, the chosen reference is the ideal point (utopia) , which corresponds to the maximal
values of all objectives. The ideal point is the one we would chose if there were no constraints and no
trade-offs between tasks. Formally it is defined as h∗ ∈ Rn:

h∗i = max{ fi(x)|x ∈ X}, i = 1, . . . ,n; (17.1)

Different metrics can be chosen but the most common choice is:

dp(x1, x2) =




n∑

i=1

|x1i − x2i |p



1/p

(17.2)

which determines the following minimization problem:

min




n∑

i=1

| fi(x) − h∗i |p



1/p

(17.3)

17.3.2 Introducing the MP formulation

As explained above, an enterprise in our context consists of a set D of departments currently relying
on existing services in V and wishing to evolve to new services in W within a time horizon tmax. Each
service relies on some IT module in U (the set N ⊆ U indexes those IT modules that are necessary).
The relations between services and modules and, respectively, departments and services, are denoted
as follows: A ⊆ V × U, B ⊆ W × U, E ⊆ D × V and F ⊆ D ×W. If an IT module i ∈ U is required by a
new service, then it must be produced (or activated) at a certain cost ai. When an IT module i ∈ U is no
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Figure 17.3: Lp-metric method

longer used by any service it must be killed at a certain cost bi. Departments can discontinue using their
existing services only when all new services providing the functionalities have been activated; when this
happens, the service (and the corresponding IT modules) can be killed; a killed module i contributes
φi monetary units to the goal of the kill manager. Departments have budgets dedicated to producing
and killing IT modules, which must be sufficient to perform their evolution to the new services; for the
purposes of this paper, we suppose that departmental budgets are interchangeable, i.e. all departments
credit and debit their costs and revenues to two unique enterprise-level budgets: a production budgetHt

and a kill budget Kt indexed by the time period t. A new service k ∈W has a value ck, and an IT module
i ∈ U contributes βik to the value of the new service k that relies on it. We use the graph G = (V,E)
shown in Fig. 17.4 to model departments, existing services, new services, IT modules and their relations.
The vertices are V = U ∪ V ∪W ∪ D, and the edges are E = A ∪ B ∪ E ∪ F. This graph is the union
of the four bipartite graphs (U,V,A), (U,W,B), (D,V,E) and (D,W,F) encoding the respective relations.
We remark that E and F collectively induce a relation between existing services and new services with a
“replacement” semantics (an existing service can be killed if the related new services are active).

17.3.3 Sets, variables, objectives, constraints

We present here the MP formulation of the Architecture Evolution Problem (AEP). We recall that NS
stands for new service and ES for existing service.

1. Sets:

• T = {0, . . . , tmax}: set of time periods (Sect. 17.2.4, p. 240);

• U: set of IT modules (Sect. 17.2.1, p. 238);

• N ⊆ U: set of IT modules that are necessary for the NS (Sect. 17.2.4, p. 240);

• V: set of existing services (Sect. 17.2.1, p. 238);

• W: set of new services (Sect. 17.2.2, p. 238);

• A ⊆ V ×U: relations between ES and IT modules (Sect. 17.2.1, p. 238);

• B ⊆W ×U: relations between NS and IT modules (Sect. 17.2.2, p. 238);

• D: set of departments (Sect. 17.2.1, p. 238);
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Figure 17.4: The bipartite graphs used to model the problem.

• E ⊆ D × V: relations between departments and ES (Sect. 17.3.2, p. 242);

• F ⊆ D ×W: relations between departments and NS (Sect. 17.3.2, p. 242);

• S ⊂ N ×N: deployment precedences between new modules (Sect. 17.3.2, p. 240).

2. Parameters:

• ∀i ∈ U ai = cost of producing an IT module (Sect. 17.2.4, p. 17.2.4);

• ∀i ∈ U bi = cost of killing an IT module (Sect. 17.2.4, p. 17.2.4);

• ∀i ∈ U φi = desirability (monetary units) of killing an IT module (Sect 17.2.4, p. 17.2.4)

• ∀t ∈ T Ht = production budget per time period (Sect. 17.3.2, p. 17.3.2);

• ∀t ∈ T Kt = kill budget per time period (Sect. 17.3.2, p. 17.3.2);

• ∀(i, k) ∈ B βik =monetary value given to NS k by IT module i (Sect. 17.2.4, p. 17.2.4).

3. Decision variables:

∀i ∈ U, t ∈ T uit =

{
1 if IT module i is used for a ES at time t
0 otherwise; (17.4)

∀i ∈ U, t ∈ T zit =

{
1 if IT module i is used for a NS at time t
0 otherwise; (17.5)

∀ j ∈ V, t ∈ T v jt =

{
1 if existing service j is active at time t
0 otherwise; (17.6)

∀k ∈W, t ∈ T wkt =

{
1 if new service k is active at time t
0 otherwise. (17.7)

4. Objective functions.
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• Business gain: value contributed to new services by IT modules. This is the objective of the
module managers, and, because β is indexed on both modules and services, it agrees with the
objective of the department heads.

max
u,v,w,z

∑

t∈T
(i,k)∈B

βikzitwkt. (17.8)

• Killing gain: objective of the kill managers.

max
u,v,w,z

∑

t∈T
i∈U

φi(1 − uit). (17.9)

5. Constraints.

• Production budget (cost of producing new ITmodules; this is another objective of the module
managers):

∀t ∈ T r {tmax}
∑

i∈U
ai(zi,t+1 − zit) ≤ Ht, (17.10)

where the term zi,t+1 − zit is only ever 1 when a new service requires production of an IT
module — we remark that the next constraints prevent the term from ever taking value −1.

• Once an IT module is activated, do not deactivate it.

∀t ∈ T r {tmax}, i ∈ U zit ≤ zi,t+1. (17.11)

• Kill budget (cost of killing IT modules; this is part of the objective of the kill managers):

∀t ∈ T r {tmax}
∑

i∈U
bi(uit − ui,t+1) ≤ Kt, (17.12)

where the term uit − ui,t+1 is only ever 1 when an IT module is killed — we remark that the
next constraints prevent the term from ever taking value −1.

• Once an IT module is killed, cannot activate it again.

∀t ∈ T r {tmax}, i ∈ U uit ≥ ui,t+1. (17.13)

• If an existing service is active, the necessary IT modules must also be active:

∀t ∈ T, (i, j) ∈ A uit ≥ v jt. (17.14)

• If a new service is active, the necessary IT modules must also be active:

∀t ∈ T, (i, k) ∈ B : i ∈ N zit ≥ wkt. (17.15)

• Anexisting service canbedeactivatedonce all departments relyingon it have already switched
to new services; for this purpose, we define setsW j = {k ∈ W | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F)}
for all j ∈ V:

∀t ∈ T, j ∈ V
∑

k∈W j

(1 − wkt) ≤ |W j|v jt. (17.16)

• New modules must be deployed according to precedences: for a precedence (i, h) ∈ S, i must
be deployed at least one timestep before h is; therefore, if zit = 0 then zhs = 0 for all s ≤ t
(17.17), and if t is the first timestep where zit = 1 then zht = 0 (17.18):

∀s ≤ t ∈ T, (i, h) ∈ S zhs − zit ≤ 0 (17.17)
∀s ≤ t ∈ T r {0}, (i, h) ∈ S zhs + zit − zi,t−1 ≤ 1. (17.18)
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• Boundary conditions. To be consistent with the objectives of the module and kill managers,
we postulate that:

– at t = 0 all IT modules needed by existing services are active, all IT modules needed by
new services are inactive:

∀i ∈ U ui0 = 1 ∧ zi0 = 0; (17.19)
∀ j ∈ V v j0 = 1 ∧ ∀k ∈W wk0 = 0. (17.20)

– at t = tmax all IT modules needed by the existing services have been killed:

∀i ∈ U uitmax = 0. (17.21)

These boundary conditions are a simple implementation of the objectives of module and
kill managers. Similar objectives can also be pursued by adjoining further constraints to the
MP, such as for example that the number of IT modules serving ES must not exceed a given
amount.

Apart from the fact that the formulation above has two objective functions, it belongs to the Binary
Quadratic Programming (BQP) class, as a product of decision variables appears in the objective function
and all variables are binary. BQPs can either be solved directly using standard BB-based solvers [51, 200,
320] or reformulated exactly (see [252] for a formal definition of reformulation) to a MILP, by means of the
ProdBin reformulation [153, 253] prior to solving is with standard MILP solvers.

Intuitively, the multi-objective aspect of the BQP presented above is apparent if one takes into
account the production and kill budget constraints. Moreover, in practice these budgets are both part of
an enterprise-wide budget, so that (17.10) and (17.12) could be replaced by the following constraints:

∀t ∈ T r {tmax}
∑

i∈U
(ai(zi,t+1 − zit) + bi(uit − ui,t+1)) ≤ Ht + Kt. (17.22)

Constraints (17.22) emphasize the trade-off nature of the two objectives (17.8)-(17.9), since they imply,
respectively, z and u variables. Formally, we shall show in Sect. 17.4 that the trade-off nature of this
problem is implied by constraints 17.16.

17.3.4 Valid cuts from implied properties

The BB method for for MPs with binary variables performs a binary tree-like recursive search. At
every node, a lower bound to the optimal objective function value is computed by solving a continuous
relaxation of the problem. If all integral variables happen to take integer values at the optimum of the
relaxation, the node is fathomed with a feasible optimum. If this optimum has better objective function
value than the feasible optima found previously, it replaces the incumbent, i.e. the best current optimum.
Otherwise, a variable x j taking fractional value x̄ j is selected for branching. Two subnodes of the current
node are created by imposing constraints x j ≤ ⌊x̄ j⌋ (left node) and x j ≥ ⌈x̄ j⌉ (right node) to the problem.
If the relaxed objective function value at a node is worse than the current incumbent, the node is also
fathomed. The step of BB which most deeply impacts its performance is the computation of the lower
bound. To improve the relaxation quality, one often adjoins “redundant constraints” to the problem
whenever their redundancy follows from the integrality constraints. Thus, such constraints will not be
redundant with respect to the relaxation. An inequality is valid for a MP if it is satisfied by all its feasible
points. If an inequality is valid for an MP but not for its relaxation, it is called a valid cut.

We shall now discuss two valid inequalities for the evolution problem. The first one stems from the
following statement: If a new service k ∈ W is inactive, then all existing services linked to all departments
relying on k must be active. We formalize this statement by defining the sets:

∀k ∈W Vk = { j ∈ V | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F)}.
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The statement corresponds to the inequality:

∀t ∈ T, k ∈W
∑

j∈Vk

(1 − v jt) ≤ |Vk|wkt. (17.23)

17.3.1 Lemma
Whenever (v,w) are part of a feasible solution of the evolution problem, (17.16)⇔ (17.23).

Proof. Firstly, we start proving that (17.16) ⇒ (17.23). We proceed by contradiction: suppose (17.16)
holds and (17.23) does not. Then there must be t ∈ T, k ∈ W, j ∈ Vk such that wkt = 0 and v jt = 0. By
(17.16), v jt = 0 implies ∀h ∈ W j (wht = 1). By definition ofVk andW j, we have that k ∈ W j, and hence
wkt = 1 against the assumption. Secondly, we observe that the converse, (17.16) ⇐ (17.23), also holds.
The proof is symmetric: it suffices to swap j with k,W j withVk, vwith w, (17.16) with (17.23). �

We remark that (17.16)⇒ (17.23) let us assert that (17.23) is a valid inequality for the AEP. The second
inequality is a simple relation between v and w.

17.3.2 Proposition
The inequalities

∀t ∈ T, j ∈ V, k ∈W ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F) v jt + wkt ≥ 1 (17.24)

are valid for the AEP.

Proof. Suppose (17.24) does not hold: hence there are t ∈ T, j ∈ V, k ∈ W, ℓ ∈ D with (ℓ, j) ∈ E and
(ℓ, k) ∈ F such that v jt + wkt = 0. Since v jt,wkt ≥ 0, this implies v jt = wkt = 0. It is easy to verify that if this
is the case, (17.16) and (17.23) cannot both hold, contradicting (17.16)⇔ (17.23) (cf. Lemma (17.3.1)). �

Eq. (17.24) states that at any given time period no pair (ES, NS) related to a given department must
be inactive (otherwise the department cannot be functional). We can add (17.23) and (17.24) to the MP
formulation of the AEP, and hope they will improve the quality of the lower bound obtained via the
LP relaxation. We remark that other valid inequalities similar to (17.23), (17.24) can be derived by the
problem constraints; these will be studied in further works.

17.3.3 Corollary
The inequalities

∀t ∈ T, i ∈ U∃ j ∈ V, k ∈W, ℓ ∈ D((i, j) ∈ A ∧ (i, k) ∈ B ∧ (ℓ, j) ∈ E ∧ (ℓ, k) ∈ F) uit + zit ≥ 1 (17.25)

are valid for the AEP.

Proof. The result follows by summing (17.14) and (17.15) and then applying Prop. 17.3.2. �

Eq. (17.25) states that no pairs of (old,new) modules serving the same department can be inactive at the
same time.

17.4 Formulation properties and trade-off

We investigate some decomposition properties of the original formulation (17.4)-(17.21), without con-
sidering (17.22) nor the valid cuts of Sect. 17.3.4. We shall show that (17.16) are the true source of the
trade-off nature of (17.4)-(17.21).
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Without (17.16), the formulation can be decomposed into two bi-objective subproblems involving
only the u, v and respectively w, z variables. This suggests a Lagrangian relaxation [366] of (17.16) using
Lagrangian coefficients λ, µ ≥ 0, which yields the two maximization objectives:

ζ(λ,u, v,w, z) =
∑

(i,k)∈B
t∈T

βikzitwkt +
∑

t∈T
j∈V

λ jt



∑

k∈W j

(wkt − 1) + |W j|v jt


 =

=
∑

t∈T
(i,k)∈B

βikzitwkt +
∑

t∈T, j∈V
k∈W j

λ jtwkt +
∑

t∈T
j∈V

|W j|λ jt(v jt − 1),

and

η(µ,u, v,w, z) =
∑

t∈T
i∈U

φiuit +
∑

t∈T
j∈V

µ jt



∑

k∈W j

(wkt − 1) + |W j|v jt


 =

=
∑

t∈T
i∈U

φiuit +
∑

t∈T, j∈V
k∈W j

µ jtwkt +
∑

t∈T
j∈V

|W j|µ jt(v jt − 1).

Thus, we can decompose the problemof Sect. 17.3.2 into the two bi-objective Lagrangian subproblems
P,Q:

max
u,v

∑
t∈T
j∈V

|W j|λ jt(v jt − 1)

max
u,v

∑
t∈T
i∈U

φiuit +
∑
t∈T
j∈V

|W j|µ jt(v jt − 1)

∀t ∈ T r {tmax}
∑
i∈U

bi(uit − ui,t+1) ≤ Kt

∀t ∈ T r {tmax}, i ∈ U uit ≥ ui,t+1
∀t ∈ T, (i, j) ∈ A uit ≥ v jt

∀i ∈ U ui0 = 1
∀ j ∈ V v j0 = 1
∀i ∈ U uitmax = 0,



(17.26)

max
w,z

∑
t∈T

(i,k)∈B

βikzitwkt +
∑

t∈T, j∈V
k∈W j

λ jtwkt

max
w,z

∑
t∈T, j∈V
k∈W j

µ jtwkt

∀t ∈ T r {tmax}
∑
i∈U

ai(zi,t+1 − zit) ≤ Ht

∀t ∈ T r {tmax}, i ∈ U zit ≤ zi,t+1
∀t ∈ T, (i, k) ∈ B : i ∈ N zit ≥ wkt

∀s ≤ t ∈ T, (i, h) ∈ S zhs − zit ≤ 0
∀s ≤ t ∈ T r {0}, (i, h) ∈ S zhs + zit − zi,t−1 ≤ 1

∀i ∈ U zi0 = 0
∀ j ∈ V w j0 = 0.



(17.27)

We remark that the formof the objective functions for (17.26) and (17.27) is special: both cases conform
to the general case

max
y∈Y

f (y) + g(y)

max
y∈Y

g(y)


. (17.28)

for functions f , g and a set Y. We have the following results.
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17.4.1 Proposition
The efficient set of (17.28) is contained in that of:

max
y∈Y

f (y)

max
y∈Y

g(y)


. (17.29)

Proof. Let y, y′ be in the efficient set of (17.28). Then, either f (y)+ g(y) ≤ f (y′)+ g(y′) (∗) and g(y) ≥ g(y′)
(†), or f (y) + g(y) ≥ f (y′) + g(y′) (∗∗) and g(y) ≤ g(y′) (‡). By rearrangement of (∗) we have f (y) − f (y′) ≤
g(y′) − g(y); by (†), g(y′) − g(y) ≤ 0. Therefore, f (y) − f (y′) ≤ 0. By rearrangement of (∗∗) we have
f (y) − f (y′) ≥ g(y′) − g(y), which by (‡) is ≥ 0, hence f (y) − f (y′) ≥ 0. Thus y, y′ are in the efficient set of
(17.29). �

By Prop. 17.4.1 one could find the efficient sets of:

max
u,v

∑
t∈T
j∈V

|W j|λ jt(v jt − 1)

max
u,v

∑
t∈T
i∈U

φiuit

constraints of (17.26)


(17.30)

max
w,z

∑
t∈T

(i,k)∈B

βikzitwkt

max
w,z

∑
t∈T, j∈V
k∈W j

µ jtwkt

constraints of (17.27)



(17.31)

and then simply filter out all the dominated solutions with respect to the objectives of (17.26) and,
respectively, (17.27).

Formulations (17.30)-(17.31) are difficult to solve because, in accordance with Lagrangian duality
theory, one would also have to minimize with respect to λ, µ. In practice, one could employ a “pure
decomposition” where λ = µ = 0. This reduces (17.30)-(17.31) to the two following single-objective
problems:

max
u,v

∑
t∈T
i∈U

φiuit

constraints of (17.26)

 (17.32)
max
w,z

∑
t∈T

(i,k)∈B

βikzitwkt

constraints of (17.27)


(17.33)

This proves the following result:

17.4.2 Theorem
Relaxing (17.16) yields a MP with the single objective function (17.8) + (17.9).

In other words, the constraints (17.16) are the true source of the trade-off nature of the problem.

17.5 Computational results

In our previous work [162] we proposed a single objective model of the architecture evolutions problem
and showed that it can be solved in a reasonable amount of time with regard to realistically sized
instances. We aim to establish if we can solve the MO problem which involves the two objectives (17.8)
and (17.9) as good as the sigle objective one which considered only (17.8). We are more interested in
evaluating the computational effort required rather than in exactly modelling the preferences of the
decision makers. Hence, we adopt a no-preference approach, the Lp-metric method, with p=1 and solve:

min
u,v,w,z

∣∣∣∣∣∣∣∣∣

∑

t∈T
(i,k)∈B

βikzitwkt − h∗1

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

∑

t∈T
i∈U

Φiuit − h∗2

∣∣∣∣∣∣∣∣
(17.34)
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We consider a set of small instances, to be solved to guaranteed optimality, and one of larger instances
where the BB algorithm is stopped either at BB termination or after 30 minutes of CPU time (whichever
comes first). We use the AMPLmodelling environment [154] and the off-the-shelf CPLEX 11 solver [200]
running on four 2.4 GHz Intel Xeon CPUs with 8GB RAM. Ordinarily CPLEX’s Quadratic Programming
(QP) solver requires QPs with Positive Semi-Definite (PSD) quadratic forms only. Although in our
case this may not be true, CPLEX can reformulate the problem exactly to the required form because all
variables are binary.

We consider the same set of instances both for the single objective form of the problem and the
bi-objective form. All instances have been randomly generated from a model that bears some similarity
to data coming from an actual service industry. We consider three parameter categories: cardinalities
(vertex set), graph density (edge creation probability) and monetary values. Each of the 64 instances in
each set corresponds to a triplet (cardinality, edge creation probability, monetary value), each component
of which ranges over a set of four elements.

17.5.1 CPU time
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Figure 17.5: Single Objective Model: CPU time when solving small instances.
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Figure 17.6: Bi-objective Model: CPU time when solving small instances.

In order to observe how CPU time scales when solving to guaranteed optimality, we present 12
plots referring to the small set, grouped by row. We have two groups of plots, the first (Fig. 17.5)
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regards the results obtained with the single objective formulation and the second one (Fig. 17.6) the
results obtained with the bi-objective formulation. We plot seconds of user CPU time: for each fixed
cardinality, in function of edge creation probability and monetary value (Fig. 17.5 and Fig. 17.6, first
row); for each fixed edge creation probability, in function of cardinality and monetary value (Fig. 17.5
and Fig. 17.6, second row); for each fixed monetary value, in function of cardinality and edge creation
probability (Fig. 17.5 and Fig. 17.6, third row). The largest “small instance” corresponds to the triplet
(20, 0.8, 8). The plots show that the proposed methodology can solve a small instance to guaranteed
optimality within half an hour; it is also possible to notice that denser graphs and smaller budgets yield
more difficult instances. Sudden drops in CPU time might correspond to infeasible instances, which
are usually detected quite fast. We notice also that the we can solve both the single objective and the
bi-objective formulation. Table 17.1 shows the results of the comparison (with cardinality fixed at 20)
and the relative increase of the cpu time needed to solve the new formulation. The effort is considerable
higher but still manageable. Infeasibily is detected similarly in both models.

Edge Probability Budget feasible/infeasible cpu time increment
0,4 2 infeasible 0,0
0,4 4 feasible 314,3
0,4 6 feasible 241,2
0,4 8 feasible 257,9
0,6 2 infeasible 12,5
0,6 4 infeasible 0,0
0,6 6 feasible 73,4
0,6 8 feasible 135,7
0,8 2 infeasible -4,5
0,8 4 infeasible 4,0
0,8 6 feasible 186,7
0,8 8 feasible 137,0

Table 17.1: Cpu time increment

17.5.2 Optimality Gap

Fig. 17.7 and Fig. 17.8 are also organized by rows, but we plot the optimality gap — an approximation
ratio — at termination rather than the CPU time, which is in this case limited to 30 minutes. The largest
“large instance” corresponds to the triplet (40, 0.8, 16). The optimality gap, expressed in percentage, is

defined as
(
100| f ∗− f̄ |
| f ∗+10−10 |

)
%, where f ∗ is the objective function value of the best feasible solution found within

the time limit, and f̄ is the tightest overall lower bound. A gap of 0% corresponds to the instance being
solved to optimality. The plots show that the proposed methodology is able to solve large instances to a
gap of 12.8% within half an hour of CPU time at worst. It can solve and to an average gap of 1.13% both
the single and the bi-objective formulation, within an average CPU time of 459s and 538s respectively
(about 8 minutes). Tables 17.2 and 17.3 given in Appendix report the details of the comparison.

17.6 Conclusion

The information system architecture evolution management problem, namely the problem of scheduling
the replacement of existing services with new services without discountinuity still need an exact and
shared formulation, dispite of its practical importance. The presence of many deciders, as the Business
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Figure 17.7: Single Objective Model: Optimality gap.
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Figure 17.8: Bi-objective Model: Optimality gap.

department managers, the IT project managers and the Kill managers allows different perspectives. These
different stakeholders have different needs that the evolution of the system has to satisfy and this causes
conflicts between the respective tasks, especially when the scheduling of the activities is tight. The
decision makers tipically aim to gain : (1) top business value produced by the new services, (2) the
maximum number of new useful modules activated and (3) the maximum number of useless modules
deactivated. In most situations, the objectives (1) and (2) are not really conflicting since the activation
of new services require new modules, thus Business and IT managers push the activities in the same
direction. On the contrary, the objectives (3) is potentially controversial, when there is a lack of time and
resources. The activation of new modules and the deactivation of old ones require work. If the amount
of workforce is limited (a bound of this kind is really plausible) we have to decide what has to be done
first and, eventually, what is not necessary and can be planned for a later period. Business and Project
managers on one side and Kill managers on the other side have to compete “to grab” the resouces and
have diverging aims. The former can fully attain their tasks on time only forcing the latter to delay theirs
and viceversa.

We proposed a model in a previous work which favoured the objectives (1) and (2) and now we
refine it taking in account the objective (3) more carefully. We define aMathematical Programming (MP)
formulation and test that we can solve it for realistic instances observing the trend of both CPU time
and optimality gap. This model is an evolution of the previous one, so we present a comparison of the
results obtained for both of them. We also analyse some theoretical aspects of our formulation in order
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to investigate futher developements.

From awider perspective this work and its predecessor show a sequence of refinements which are an
example of the real activity of modelling, which progress step by step towards the best model crossing
different level of abstraction. We work at both improving the model and formalizing the practice of
progressive refinements to make it a mature engineering method.

17.7 Appendix

Card. Prob. Bud. feas. (1) cpu (1) obj. (1) gap (1) feas. (2) cpu (2) obj. (2) gap (2)
25 0,20 10 yes 0,09 230 0,13 yes 0,03 529 0,37
25 0,20 12 yes 0,03 261 0,58 yes 0,04 561 0,23
25 0,20 14 yes 0,02 190 0,65 yes 0,03 490 0,25
25 0,20 16 yes 0,02 205 0,06 yes 0,02 505 0,02
25 0,40 10 yes 0,12 344 1,45 yes 0,69 497 0,63
25 0,40 12 yes 0,17 404 0,21 yes 0,35 629 0,84
25 0,40 14 yes 0,04 411 1,62 yes 0,26 636 1,25
25 0,40 16 yes 0,1 424 3,41 yes 0,44 652 0,3
25 0,60 10 yes 1,33 424 0,42 yes 3,14 574 0,03
25 0,60 12 yes 0,46 499 0,37 yes 2,48 649 0,76
25 0,60 14 yes 0,22 578 1,13 yes 0,64 803 0,03
25 0,60 16 yes 0,32 562 0,79 yes 0,72 787 0,44
25 0,80 10 yes 196,76 540 0,01 yes 504,4 690 0,01
25 0,80 12 yes 1801,15 631 0,55 yes 1800,55 781 0,83
25 0,80 14 yes 5,85 734 0,02 yes 13,4 959 0,01
25 0,80 16 yes 2,15 745 0,08 yes 6,33 970 0,04
30 0,20 10 yes 0,51 304 0,05 yes 0,69 612 1,04
30 0,20 12 yes 0,05 344 0,59 yes 0,05 704 0,24
30 0,20 14 yes 0,04 303 1,05 yes 0,44 627 0,21
30 0,20 16 yes 0,06 315 0,53 yes 0,05 674 0,47
30 0,40 10 yes 2,54 477 0,09 yes 7,34 657 0,06
30 0,40 12 yes 0,95 532 0,14 yes 4,36 712 0,11
30 0,40 14 yes 0,27 609 0,49 yes 0,76 879 0,89
30 0,40 16 yes 0,26 560 0,16 yes 1,94 830 0,06
30 0,60 10 yes 13,27 635 0,01 yes 37,76 815 0,01
30 0,60 12 yes 10,06 634 0,02 yes 11,43 814 0,07
30 0,60 14 yes 3,11 734 0,06 yes 5,81 914 0,11
30 0,60 16 yes 0,31 824 0,19 yes 1,2 1094 0,34
30 0,80 10 yes 1800,96 772 3,84 yes 1800,46 952 3,55
30 0,80 12 yes 1800,96 789 1,31 yes 1800,45 969 1,44
30 0,80 14 yes 1800,99 837 1,73 yes 1800,46 1017 1,78
30 0,80 16 yes 359,42 1099 0,01 yes 1296,32 1369 0,01

Table 17.2: Optimality gap (a)
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Card. Prob. Bud. feas. (1) cpu (1) obj. (1) gap (1) feas. (2) cpu (2) obj. (2) gap (2)
35 0,20 10 yes 7,51 352 0,02 yes 0,28 764 0,02
35 0,20 12 yes 0,31 377 0,04 yes 0,33 716 0,07
35 0,20 14 yes 0,09 425 0,11 yes 0,39 769 0,11
35 0,20 16 yes 0,09 437 0,03 yes 0,07 857 0,32
35 0,40 10 yes 20,45 534 0,03 yes 212,1 641 0,02
35 0,40 12 yes 6,86 665 0,01 yes 20,34 875 0,01
35 0,40 14 yes 5,46 726 0,05 yes 15,19 936 0,04
35 0,40 16 yes 5,5 701 0,02 yes 10,72 914 0,07
35 0,60 10 yes 61,68 613 0,02 yes 459,1 718 0,01
35 0,60 12 yes 55,69 824 0,01 yes 87,78 1034 0,01
35 0,60 14 yes 12,79 816 0,02 yes 28,15 1026 0,01
35 0,60 16 yes 2,53 1012 0,13 yes 8,29 1222 0,03
35 0,80 10 yes 1800,83 579 7,74 yes 1800,45 684 7,32
35 0,80 12 yes 1800,85 978 4,97 yes 1800,4 1188 4,5
35 0,80 14 yes 1800,87 969 2,45 yes 1800,45 1179 2,33
35 0,80 16 yes 1800,72 1121 0,31 yes 1800,37 1331 0,56
40 0,20 10 yes 6,13 463 0,01 yes 1,72 812 0,04
40 0,20 12 yes 2,75 453 0,01 yes 0,62 837 0,04
40 0,20 14 yes 0,39 449 0,03 yes 0,59 822 0,01
40 0,20 16 yes 0,19 479 0,16 yes 0,08 948 0,1
40 0,40 10 yes 511,06 588 0,01 yes 1800,31 708 1,38
40 0,40 12 yes 324,62 686 0,01 yes 994,54 806 0,01
40 0,40 14 yes 41,64 818 0,01 yes 69,13 1058 0,01
40 0,40 16 yes 7,48 906 0,03 yes 25,12 1146 0,02
40 0,60 10 yes 1800,88 638 2,36 yes 1800,33 758 6,72
40 0,60 12 yes 1273,08 753 0,01 yes 1800,27 873 2,9
40 0,60 14 yes 1800,95 1061 0,73 yes 1800,37 1301 0,66
40 0,60 16 yes 1222,44 1105 0,01 yes 1800,36 1345 0,37
40 0,80 10 yes 1800,72 720 12,84 yes 1800,33 840 11,49
40 0,80 12 yes 1800,75 807 9,18 yes 1800,46 927 8,3
40 0,80 14 yes 1800,72 1340 6,08 yes 1800,39 1580 5,48
40 0,80 16 yes 1800,74 1315 3,59 yes 1800,53 1555 3,41

Table 17.3: Optimality gap (b)
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Chapter 18

Recent advances on the discretizable
molecular distance geometry problem

Carlile Lavor, Leo Liberti, NelsonMaculan, AntonioMucherino

Submitted to European Journal of Operational Research

Identifying 3D conformation is a crucial step to synthesizing useful proteins; in particular, the confor-
mation of some of the proteins linked to photosynthesis is still largely unknown. Since photosynthesis
allows the production of clean energy from light, this line of research is relevant to sustainable en-
ergy, although our approach is more general than that. The Molecular Distance Geometry Problem
(MDGP) consists in finding an embedding in R3 of a nonnegatively weighted simple undirected
graph with the property that the Euclidean distances between embedded adjacent vertices must be the
same as the corresponding edge weights. The Discretizable Molecular Distance Geometry Problem
(DMDGP) is a particular subset of the MDGP which can be solved using a discrete search occurring
in continuous space; its main application is to find three-dimensional arrangements of proteins using
Nuclear Magnetic Resonance (NMR) data. The model provided by the DMDGP is too theoretical for
practical exploitation. In the last five years we strove to adapt the DMDGP to be an ever closer model
of the actual difficulties posed by the problem of determining protein structures fromNMR data, whilst
always keeping the discrete search property valid. This survey lists recent developments on DMDGP
related research.

18.1 Introduction

Thedeterminationof the three-dimensional structureof agivenprotein is anall-important and formidable
problem in biochemistry, mainly because the function of a protein is linked to its structure as well as
to its atomic composition [325]. We consider here the subproblem of determining the protein structure
with information arising from Nuclear Magnetic Resonance (NMR) data [170].

The output of a Nuclear Magnetic Resonance experiment on a given molecule can be taken to consist
of a set of atomic labels (e.g. hydrogen, carbon and so on) and a set of pairs (ℓ, q), where ℓ ∈ N and
q ∈ R+, such that there are ℓ pairs of atoms in the molecule with labels in the given set and mutual
distance equal to q [54]. It turns out that NMR data can be manipulated so that it yields a list of pairs
{u, v} of atoms with a corresponding nonnegative distance duv. Unfortunately this manipulation is rather
error-prone, resulting in interval-type errors, so that the exact inter-atomic distances duv are in fact
contained in given intervals [dLuv, dUuv] [54]. For practical reasons, NMR experiments are often performed
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on hydrogen atoms [54] (although sometimes carbons and nitrogens are also considered). Other known
molecular information includes the number and type of atoms in the molecules, all the covalent bonds
with corresponding Euclidean distances, all distances between atoms separated by exactly two covalent
bonds, and the Euclidean coordinates of at least some of the atoms in the molecule [325].

We assume NMR data can be stored as a nonnegatively interval-weighted simple (i.e. without loops
or parallel edges) undirected graphG = (V,E, d) whereV represents a subset of atoms of the molecule for
which distance measurements can be obtained, {u, v} ∈ E if a distance measurement is present between
atoms u and v, and d associates an edge {u, v} ∈ E with the respective interval measurement [dLuv, dUuv]
(since precise distances are also known for certain edges, such as for covalent bonds, some intervals
might have dLuv = dUuv). The main problem is that of finding a set (alternatively, all sets) of Cartesian
coordinates for the atoms that are consistent with all the distance information. We shall call this problem
the Protein Structure from NMR Data (PSNMR).

Our survey will focus on several variants of the PSNMR. Specifically, we shall consider the cases
when: (a) d maps E into nonnegative real numbers (instead of intervals); (b) V is the set of all atoms; (c)
a particular order on V guarantees the existence of an iterative search for the position of v ∈ V given the
positions of its adjacent predecessors; (d) the Euclidean space used for the embedding has an arbitrary
number of dimensions (this is useful for applications other than to molecular structure prediction). Each
case gives rise to different theoretical results; we show how we combined them in order to derive a very
efficient discrete search in continuous space that addresses the main problem.

This paper is organized as follows: in the rest of Sect. 18.1 we give a very short review of continuous
search based methods and illustrate their weaknesses as a motivation to work towards a discrete search.
In Sect. 18.2 we introduce our discrete approach. In Sect. 18.3 we generalize the discrete search method
to Euclidean spaces of arbitrary dimensions. In Sect. 18.4 we discuss automatic methods to find “good”
orders for V guaranteeing the existence of a discrete search method. In Sect. 18.5 we restrict V to only
contain hydrogen atoms. Sect. 18.7 presents our implementation to serial and parallel architectures.
Sect. 18.8 concludes the paper and discusses future work.

18.1.1 Problems solved by continuous methods

Given a simple undirected graphG = (V,E) and a positive integer K, an embedding ofG inRK is a function
x : V → RK. Let d : E→ R+ be a given edge weight function on G = (V,E, d). An embedding is valid for
G if

∀{u, v} ∈ E ‖xu − xv‖ = duv, (18.1)

where ‖ · ‖ is the Euclidean norm, xv = x(v) for all v ∈ V and duv = d({u, v}) for all {u, v} ∈ E. For any
U ⊆ V, an embedding of G[U] (i.e. (U, {{u, v} ∈ E | u, v ∈ U}), the subgraph of G induced by U) is a partial
embedding of G. If x is a partial embedding of G and y is an embedding of G such that ∀u ∈ U xu = yu
then y is an extension of x. With a slight abuse of notation, if v < U and y is an embedding of G[U ∪ {v}],
we write y = (x, yv); in this case we also say that the point yv extends x.

The most basic model for the PSNMR problem is the following.

Molecular Distance Geometry Problem (MDGP). Given a nonnegatively weighted simple
undirected graph G = (V,E, d) is there a valid embedding of G in R3?

This is one of the foremost problems in distance geometry [71]; we shall call its generalization to RK

(with K being given as part of the input) the Distance Geometry Problem (DGP), and denote the
restriction of the DGP to a particular fixed dimension K by DGPK. If d is an interval-valued function,
i.e. d({u, v}) = [dLuv, dUuv] for all {u, v} ∈ E, we obtain a problem which is “closer” to the PSNMR.

intervalMolecularDistanceGeometryProblem (iMDGP).Givenanonnegatively interval-
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weighted simple undirected graph G = (V,E, d), is there an embedding x : V → R3 such that:

∀{u, v} ∈ E dLuv ≤ ‖xu − xv‖ ≤ dUuv? (18.2)

In this case, an embedding is valid if it satisfies (18.2). Again, we consider the generalization to RK and
call it the interval Distance Geometry Problem (iDGP).

18.1.2 Characterization of the solution set

Let X̄ = {x : V → RK | x satisfies (18.2)} be the set of all solutions to an iDGP instance. Then if T is a
translation or rotation of RK, for all x ∈ X̄ we also have T(x) ∈ X̄. Because there are continuously many
such transformations, it follows that |X̄| = 2ℵ0 . We define an equivalence relation ∼ on X̄ such that x ∼ y
if and only if there is a translation or rotation T such that y = T(x). We then define X = X̄/∼ and identify
the equivalence classes of X with one of their representatives x ∈ X̄. We can now consider X as the
“interesting” set of solutions of an iDGP instance. We remark that |X| is not necessarily infinite. In fact,
most of the iDGP variants considered in the sequel will have a finite |X|.

18.1.3 Problem complexity

A reduction from the Subset-Sum problem to the DGP1 with unit weights was given in [323], showing
that DGP1 is NP-complete. For fixed values of K, [323] describes a reduction from 3-SAT to DGP1 with
integer weights and a reduction from DGP1 with integer weights to DGPK with integer weights. In
the same paper, Saxe also remarked that since YES certificates for the DGP generally involve irrational
numbers forK > 1, it is not clear whether the DGP belongs to the classNP or not. From this it follows that
theMDGP isNP-hard, and the same holds for DGPK for each integer K > 1. Considering formal decision
problems as sets of instances, it is clear that DGP3 = MDGP ⊂ iMDGP ⊂ iDGP and DGPK ⊂ DGP
for all K ∈ N. Again, because singletons are also intervals, DGP ⊂ iDGP. Thus, by restriction ([157],
Sect. 3.2.1), the DGP, iMDGP and iDGP are also NP-hard.

18.1.4 Euclidean distance matrices

A part of the distance geometry literature is concerned with determining whether a given n × n matrix
D is a Euclidean distance matrix (EDM), i.e. whether there exist points p1, . . . , pn of a finite-dimensional
Euclidean space such that di j = ‖pi − p j‖2 for all i, j ≤ n. This is called the EDM Problem (EDMP). The
EDM Completion Problem (EDMCP) provides a partial matrix D (i.e. a matrix with some unspecified
entries) and asks whether there exists a EDM D′ such that Di j = D′

i j
for all (i, j) where D is defined (see

e.g. [235]).

Formally, the EDMCPdiffers from theDGP in that the dimensionK of the embedding Euclidean space
is not provided as part of the input. Since the output YES certificate is the embedding itself, and writing
out the embedding requires knowing K, the EDM and EDMCP implicitly make K part of the output. For
this reason no inclusion relation can be established between the EDMCP and the DGP variants presented
above; in fact, the complexity status of the EDMCP is unknown, although some polynomial cases exist
[235]. Since the EDMCP can be formulated as a Semidefinite Programming (SDP) problem, it can be
solved to arbitrary precision in polynomial time [8].
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18.1.5 Limitations of continuous methods

The problems listed above are naturally cast as nonlinear systems of equations and inequalities, and
can therefore be reformulated to minimizing an objective function consisting of a sum of error terms,
which is a Global Optimization (GO) problem. Some continuous methods for solving such problems are
surveyed in [239, 258]. These methods often exhibit the following disadvantages.

• Reliability. All computations are floating-point; this yields inaccurate solutions. Moreover, it is
well known that floating point errors often accumulate, which in the long run may invalidate the
solution.

• Efficiency. GOmethods often involve locally solving a (nonconvex) Nonlinear Programming (NLP)
subproblem; local NLP solvers are complex pieces of software which may take a long time to
converge.

• Completeness. To the best of our knowledge, there is no continuousmethodwhich is able to compute
all solutions of an iDGP instance; and in fact most continuous methods are actually designed to
compute at most one solution.

Of course these disadvantages are due to a trade-off against generality. In the rest of this paper we
shall present mixed combinatorial methods for solving subclasses of the iDGP. It is this restriction that
allows our methods to be more reliable, efficient and complete than continuous methods. Moreover, the
subclasses for which our methods work are a good model for solving the iMDGP on proteins, which are
in fact the main motivation for the PSNMR.

18.2 The Discretizable Molecular Distance Geometry Problem

Although the DGP implicitly requires a search in continuous space, if an appropriate order is given on
V, we can show that the search space has a finite number of valid embeddings, up to translations and
rotations. For an order < on V and for each v ∈ V, let ρ(v) = |{u ∈ V | u ≤ v}| be the rank of v in V with
respect to <. Since the rank defines a bijection between V and {1, . . . , |V|}, we can identify vwith its rank
and extend arithmetic notation to V so that for some appropriate i ∈ Z, v + i denotes the vertex u ∈ V
with ρ(u) = ρ(v) + i.

We now outline an iterative algorithm for solving the DMDGP, a subset of the MDGP which will be
defined below. We assume that an order is given onV. Suppose wewant to embed a vertex v ∈ V of rank
greater than three in R3, and suppose also that: (a) we already know a valid embedding for all vertices
preceding v; (b) the edges {v−3, v}, {v−2, v}, {v−1, v} are inE. Thismeans that the embedding of v, denoted
by xv, belongs to the three spheres centered at xv−3, xv−2, xv−1 with respective radii dv−3,v, dv−2,v, dv−1,v. The
intersection of three spheres in R3 can either be empty, or consist of exactly one point, or of exactly two
points (see Fig. 18.1), or of uncountably many points [104] (see Fig. 18.2). Because we assume all vertices
preceding v are already embedded prior to v, we know all their mutual distances. In particular, we know
dv−3,v−1, dv−3,v−2, dv−2,v−1. As long as the strict triangular inequality dv−3,v−1 < dv−3,v−2 + dv−2,v−1 holds, then
the intersection can only have either one or two points, depending on whether the discriminant of a
certain quadratic polynomial in xv is zero or nonzero [104]: we call this the finite sphere intersection property.
Because this discriminant can in general take any value inR+, and a singleton set has Lebesgue measure
zero in R+, the sphere intersection has one point with probability 0 and two points with probability 1.
We remark that the strict triangular inequality condition can only be checked once the predecessors of
v have been embedded; this prevents us from recognizing aprioristically whether an MDGP instance
conforms to this condition or not. We address this limitation by requiring that all 4-cliques of consecutive
vertices are subgraphs of G. Thus, each 3-(sub)clique Kv

3 = {v − 3, v − 2, v − 1} is used to verify the strict
triangular inequality, and the edges from Kv

3 to v guarantee the finite sphere intersection property. If we
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Figure 18.1: Three spheres intersect in exactly two points.

v − 3

v − 2

v − 1

v
x′v

xvdv−3,v−2
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dv−3,v−1

dv−1,v
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dv−3,v

dv−3,v−2 dv−2,v−1

dv−3,v−1

Figure 18.2: Locus of the intersection of three spheres: exactly two points (above) with dv−3,v−1 <
dv−3,v−2 + dv−2,v−1 and uncountably many (below) with dv−3,v−1 = dv−3,v−2 + dv−2,v−1.

proceed by embedding vertices iteratively this way we end up with a tree of possibilities where each
embedded vertex gives rise to either one or two new positions for the embedding of the next vertex in
the order. Since the first vertex triplet has only one possible embedding up to translations and rotations
(because E contains a clique on the first four vertices), |X| is finite [238, 240]. Moreover, with probability
1, it is a binary tree from the fourth level downwards.

A number of existing works exploits the finite sphere intersection property, but considering four
(rather than three, as in our case) spheres [127, 128, 139, 368, 331, 114]; in general, the non-empty
intersection of four spheres in R3 contains exactly one point: this follows because the system ∀ j ∈
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{1, 2, 3, 4} ‖xv− j − xv‖2 = d2
v− j,v can be reduced to a square 3 × 3 linear system which is nonsingular under

simple geometric regularity conditions. This ensures that the worst-case running time of an iterative
algorithm based on this idea is O(|V|). In [127] G is assumed to be a clique. In [128] this requirement is
weakened: the so-called geometric build-up algorithm can only find a valid embedding if for the current
vertex one can find at least four previously embedded adjacent vertices; depending on the instance,
however, the algorithm in [128] may fail to find a valid embedding even if one exists. In [331] the
geometric build-up algorithm is modified to deal with some restricted types of measurement errors in
the data. In [139] the finite sphere intersection property is introduced in the framework of wireless
sensor networks.

Naturally, requiring known distances to four previously embedded adjacent vertices limits the extent
of the iterative embedding algorithm to instances with relatively dense graphs. Because distances are
usually hard to obtain (this is true for both molecules and sensor networks), an effort should be made in
order to weaken this requirement. Although similar concepts were already known in rigidity [318], the
first work providing an iterative discrete search algorithm for the MDGP that only requires three (rather
than four) previously embedded adjacent vertices is [238, 240]. Other methods based on this weaker
assumption are given in [256, 93, 369]. The following defines a subclass of MDGP instances conforming
to these weaker assumptions [238, 240].

Discretizable Molecular Distance Geometry Problem (DMDGP). Given a nonnegatively
weighted simple undirected graphG = (V,E, d), an order< onV and amapping x′ : {1, 2, 3} →
R3 such that:

1. x′ is a valid embedding of G[{1, 2, 3}] (Start)
2. G contains all 4-cliques of<-consecutive vertices as induced subgraphs (Discretization)

3. ∀v ∈ V of rank greater than 3, dv−3,v−1 < dv−3,v−2 + dv−2,v−1 (Strict Triangular Inequali-
ties),

is there a valid embedding x of G in R3 extending x′?

We remark that the formal definition of the DMDGP introduces an order on V as an essential part of the
input data; this marks a fundamental difference between [238, 240] and [256, 93, 369]. We shall discuss
this further in Sect. 18.4.

18.2.1 Problem complexity

While it is clear that DMDGP ⊂ MDGP, the DMDGP does not include any of the NP-hard classes
described in Sect. 18.1.3, so restriction cannot be used to establish itsNP-hardness. An explicit reduction
from the Subset-Sum problem to the DMDGP was, however, provided in [238, 240].

18.2.2 Mathematical programming formulation

Given a nonnegatively weighted simple undirected graph G = (V,E, d) where V = {1, . . . ,n}, a valid
partial embedding x′ : {1, 2, 3} → R3 and a map c : V r {1, 2, 3} :→ [−1, 1], consider the problem C of
determining whether there exists a valid embedding x of G extending x′ and such that the torsion angles
φi, determined by each quadruplet (xi−3, xi−2, xi−1, xi) (see Fig. 18.3), satisfy cos(φi) = c(i) (denoted by ci)
for all i > 3. Because each ci can be computed from d in constant time using formula (2.15) in [185],
there is a trivial reduction from DMDGP to C. Conversely, if one is given precise values for the torsion
angle cosines, then every quadruplet (xi−3, xi−2, xi−1, xi) must be a rigid framework (for i > 3), which
implies both Discretization and Strict Triangular Inequalities in the DMDGP definition and shows
C ⊆ DMDGP. Thus, C is the same set of instances as DMDGP.
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Figure 18.3: The torsion angle φi.

We let α : Vr {1, 2} → R3 compute the normal vector to the plane defined by three consecutive atoms:

∀i ≥ 3 αi =

∣∣∣∣∣∣∣∣

i j k
xi−2,1 − xi−1,1 xi−2,2 − xi−1,2 xi−2,3 − xi−1,3
xi,1 − xi−1,1 xi,2 − xi−1,2 xi,3 − xi−1,3

∣∣∣∣∣∣∣∣
(18.3)

=



(xi−2,2 − xi−1,2)(xi,3 − xi−1,3) − (xi−2,3 − xi−1,3)(xi,2 − xi−1,2)
(xi−2,1 − xi−1,1)(xi,3 − xi−1,3) − (xi−2,3 − xi−1,3)(xi,1 − xi−1,1)
(xi−2,1 − xi−1,1)(xi,2 − xi−1,2) − (xi−2,2 − xi−1,2)(xi,1 − xi−1,1)


 , (18.4)

so that αi = αi(x) is a function of x, which is itself considered a matrix with entries xik. Now, for every
i > 3 the cosine of the torsion angle φi is given by the scalar product of the normal vectors αi−1 and αi:

∀i > 3 αi−1(x) · αi(x) = cosφi.

Thus, the following provides a mathematical programming formulation for the DMDGP:

minx

∑
{i, j}∈E

(||xi − x j||2 − d2
i j
)2

s.t. ∀i > 3 αi−1(x) · αi(x) = ci.

 (18.5)

18.2.3 Branch-and-Prune framework

We describe the Branch-and-Prune (BP) algorithm for solving the DMDGP [238, 240, 256]. The version
given here is recursive (for clarity); it is also parameterized so that its variants, described in the rest of
this paper, can be presented as configurations or simple modifications of Alg. 10. We recall that given
G = (V,E) andU ⊆ V,G[U] denotes the subgraph ofG induced byU. For v ∈ V,N(v) = {u ∈ V | {u, v} ∈ E}
is set of vertices adjacent to v. We denote by SK−1(y, r) the sphere in RK (where K = 3) centered at ywith
radius r.

The BranchAndPrune call has five arguments: the weighted simple undirected graph G = (V,E, d)
given as part of the DMDGP instance, a current vertex v being embedded, a subset U ⊆ N(v) with
|U| = K (where K is the dimension of the embedding space), a valid embedding x′ of a subgraph of G
containing G[U], and the set X of valid embeddings of G currently found. The recursion starts with the
call BranchAndPrune(G, 4, {1, 2, 3}, y, ∅) where y is the valid embedding of {1, 2, 3} given as part of the
DMDGP instance.

The BP algorithm shown in Alg. 10 builds a binary search tree whose nodes at level v represent
possible spatial positions p for the vertex v. Whenever the test in Step 5 for validity of an embedding
fails, the branch of p is pruned; pruning techniques are discussed in Sect. 18.2.3.
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Algorithm 10: The Branch-and-Prune algorithmic framework.
1: BranchAndPrune(G, v, U, x′, X):
2: Let P be the intersection of the K spheres SK−1(x′u, duv) for u ∈ U
3: for p ∈ P do
4: Extend the current embedding to x = (x′, p)
5: if x is a valid embedding of G[{1, . . . , v}] then
6: if (v is the last vertex) then
7: Append x to X
8: else
9: Let U′ = (U r {minU}) ∪ {v}

10: BranchAndPrune(G, v + 1, U′, x, X)
11: end if
12: end if
13: end for

18.2.1 Theorem ([238, 240])
At termination of the BP shown in Alg. 10, X contains all valid embeddings of G extending x′.

Completeness

The BP algorithm generates a search tree. For each leaf node of this tree, the unique path to the root
node encodes an embedding of G. By Thm. 18.2.1, the unique paths from each leaf node at level |V|
encode all valid embeddings ofG extending x′. We remark that the BP can be stopped after the first valid
embedding has been found when just one solution of the DMDGP is needed. It can also be allowed to
proceed until all valid embeddings have been identified. This makes the BP algorithm complete, in the
sense of Sect. 18.1.5.

Algorithmic complexity

In the worst case, when no pruning occurs, |P| = 2 at each iteration, which means that the search tree is
a full binary tree. This makes the BP worst-case complexity exponential in |V|.

Performance

In order to asses the empirical behaviour of the BP algorithm we measure its efficiency in terms of
seconds of user CPU time, and its reliability in terms of the Largest Distance Error (LDE):

1
|E|

∑

{u,v}∈E

|‖xu − xv‖ − duv|
duv

. (18.6)

The computational results shown in [238, 240] are markedly different frommost continuous approaches:
they scale up with instance size considerably better both in terms of CPU time and reliability. On the
1epw PDB [55] instance, for example, which has 3861 atoms and 35028 distances, the BP took 0.25s to find
all solutions, and yielded an LDE of 4×10−12. By comparison, DGSOL [282] took 2038s and produced an
embedding with an LDE value around 0.5 (we remark that LDE values greater than one usually denote
a wrong protein structure). This instance is not an isolated case: the BP consistently outperforms all
continuous approaches we have tested [282, 237, 257].

In very recent work [261] we argue that on average protein instances the BP search tree has bounded
width, thus yielding a polynomial-time algorithm; this makes the BP efficient in the sense mentioned in
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Sect. 18.1.5.

As for the reliability, our implementation employs several devices in order to limit the propagation
of floating point errors given by the computation of P, from the choice of appropriate vertex orders
minimizing the range of values taken by the entries in the distance matrix (Sect. 18.4) to the exploitation
of repeated vertices (Sect. 18.5), for which the zero distance between a vertex and its repetition is used
as verification device for the embedding of nearby vertices. This makes the BP reliable in the sense
mentioned in Sect. 18.1.5.

Pruning the BP search tree

In this section we use the notation of Alg. 10. Pruning out infeasible branches of the BP search tree
reduces the CPU time taken by the BP algorithm. Consider the point p ∈ P ⊆ RK embedding vertex
v (line 2 in Alg. 10): if p extends x′ to a valid embedding x = (x′, p) of G[{1, . . . , v}] then p is feasible,
otherwise it is infeasible. In the latter case, the whole sub-tree rooted at p can be pruned.

The most natural pruning test at the iteration when the BP places vertex v is to consider the vertex
subset Ū = {u ∈ V | u < v ∧ u ∈ N(v) ∧ u < U}. Vertices in Ū provide distances to v, they will already
have been embedded in previous iterations, and have not been used to compute P: thus their positions
xu can be matched against xv to check for consistency of xv. If ‖xu − xv‖ , duv then (x′, xv) is not a valid
embedding of G and the node encoding xv can be pruned. In practical implementation, the pruning
condition translates to |‖xu − xv‖ − duv| < ε, for a constant tolerance ε > 0 [238, 240, 256]. We shall call this
pruning device Direct Distance Feasibility (DDF).

Another pruning device that can be used during the discrete search is based on the point-to-point
Dijkstra shortest-path searches on Euclidean graphs [242]. Consider the vertices u, v, w with u < v < w
such that {u,w} ∈ E, i.e. the distance duw is known. Suppose that a position for the vertex u is already
available, and that the feasibility of the node xv needs to be verified. Let D(v,w) be an upper bound to
the distance ‖xv− xw‖ for all possible valid embeddings. Then, if ‖xu− xv‖ > duw+D(v,w) holds, the node
xv can be pruned [242] because the triangular inequality is negated. A valid upper bound D(v,w) can be
computed by finding the shortest path between the vertex v and the vertex w in G. We call this pruning
device Dijkstra Shortest Path (DSP).

Computational experiments showed that theDSP ismore efficient than theDDF indetecting infeasible
embeddings, but it is alsomore computationally expensive. From aworst-case complexity point of view,
the DDF is O(1), whereas in a naive implementation the DSP is O(|V|2); of course, all shortest paths in
G can be computed as a pre-processing step to the BP in O(|V|3), so that the DSP can also be reduced to
O(1); but since the BP is very fast in practice, the CPU time for the pre-processing is often remarkedly
noticeable.

Other pruning devices could be conceived in the application of the DMDGP to protein structure
determination using NMR data. As an example, we can model atoms (i.e., vertices) using their van der
Waals radii [325]: if the two atoms are not bound, they should not be embedded at points with shorter
distance than the threshold given by van derWaals radii. Naturally, such thresholds depend on the kind
of atoms involved. Moreover, when considering DMDGPs restricted to backbone atoms only (the part of
the protein formed by the group of atoms which each amino acid has in common, excluding the side
chains), an auxiliary problem could be solved during the search. Every time a Cα carbon is placed, the
conformation of the side chain attached to the carbon could be found by solving a SideChain Placement
Problem (SCPP) [322]. If such a problem has no solutions, then the atomic position for the Cα carbon is
deemed infeasible.
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18.2.4 Cardinality of the solution set

It was empirically observed that for most DMDGP instances, BP always finds a number of solution that
is a power of two [256]. Counterexamples to this conjecture are given in Lemma 5.1 in [238, 240] and in
Sect. 6 in [260]. It was shown in [260] that, for the DMDGP, |X| is a power of two with probability 1.

In this section we give a summary of the argument.

Since the DMDGP definition requiresG to have at least those edges used to satisfy the Discretization
axiom, we partition E into the sets ED = {{u, v} | |ρ(v) − ρ(u)| ≤ K} and EP = E r ED. With a slight abuse
of notation we call ED the discretization distances and EP the pruning distances. An MDGP instance with
all discretization distances and which satisfies Strict Triangular Inequalities is a DMDGP instance.
Pruning distances are used to reduce the BP search space by pruning its tree. In practice, pruning
distances might make the set P in Alg. 10 have cardinality 0 or 1 instead of 2. Let GD = (V,ED, d) and XD

be the set of valid embeddings of GD; since GD has no pruning distances, the BP search tree for GD is a
full binary tree and |XD| = 2|V|−3.
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Figure 18.4: An example in 2D; a pruning distance {1, 4} prunes either ν6, ν7 or ν5, ν8.

The discretization distances arrange the embeddings so that, at level ℓ, there are 2ℓ−3 possible valid
embeddings xv for the vertex v with rank ℓ. Furthermore, when P = {xv, x′v}, because the discretization
distances to v only involve the three immediate predecessors of v, we have that x′v = Rv

x(xv) [260], the
reflection of xv w.r.t. the plane through xv−3, xv−2, xv−1. This also implies that the partial embeddings
encoded in two BP subtrees rooted at reflected nodes ν, ν′ are reflections of each other [260]. In other
words, for any BP subtree rooted at a node at level u, the discretization distances ensure that there are
2v−u−3 possible BP tree nodes at level v > u + 3 and that the corresponding positions have a reflection
symmetry through the plane defined by the embeddings of vertices u,u+ 1,u+ 2. This is what is shown
in the theorem below.

18.2.2 Theorem ([260])
With probability 1, for each v > 3 and u < v− 3 there is a finite setHuv of nonnegative real numbers with
cardinality 2v−u−3 such that for each x ∈ Xwehave ‖xv−xu‖ ∈ Huv. Furthermore, ‖xv−xu‖ = ‖Ru+3

x (xv)−xu‖
and ∀x′ ∈ X (x′v < {xv,Ru+3

x (xv)} → ‖xv − xu‖ , ‖x′v − xu‖).

Proof sketch. The argument is shown graphically for embeddings in R2 (replace 3 with 2 in the theorem
statement above) in Fig. 18.4; the circles mark distances to vertex 1. �

We also prove (Thm. 4.8 in [260]) that the result above holds even in the case where pruning distances
are present. This allows us to show that the number of BP tree nodes at level |V| is a power of two. We
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employ a “probability 1” argument which we sketch below.

18.2.3 Theorem ([260])
With probability 1, |X| is a power of two.

Proof sketch. Let n = |V|. For all v > 3 and a valid embedding x we define a partial reflection operation
gv(x) = (x1, . . . , xv−1,Rv

x(xv), . . . ,Rv
x(xn)): this acts like the identity on the first v − 1 components of x

and as the reflection through the plane defined by xv−1, xv−2, xv−3 on the remaining components. With
probability 1, for v > 3 the gv’s are idempotent injective maps XD → XD which commute. Thus, the
set GD = 〈gv | v > 3〉, generated by all compositions of the gv operators, is an abelian group (called the
discretization group) acting onXD which preserves all discretization distances; it is isomorphic to Cn−3

2 (the
direct product of n − 3 copies of the cyclic group of order 2). We now consider the subgroup GP ≤ GD

(called the pruned group) of those partial reflections that also fix pruning distances. Since all subgroups
of Cn−3

2 have cardinality power of two, the pruned group also has this property. Furthermore, its action
on X is transitive: thus there is only one orbit, and for all x ∈ Xwe have GPx = X. This shows that X also
has cardinality power of two. �

18.2.5 Overcoming practical limitations

Computational experiments (see for example [238, 240, 256, 242]) showed that the BP algorithm, when
employing the pruning device DDF only, is very efficient in finding the whole set of solutions for
DMDGPs. In at most a few seconds of user CPU time on a standard computer all the possible valid
embeddings forG can be identified. The DMDGP, however, is an inaccuratemodel of the PSNMR,which
is our main target application.

Interval distances

NMR experiments cannot provide exact distances, but only a lower and an upper bound to these
distances. As a consequence, for each distance, an interval is generally available in which the actual
distance value is contained. This makes the discretization process much more complex. While the
pruning device DDF, for example, can be trivially adapted for interval data [283], the generation of the
binary tree of solutions may require the computation of the intersection of three spherical shells [286].
In other words, interval distances cannot natively be used to satisfy the Discretization axiom, but they
can be used effectively to prune the BP search tree.

Supposeweneed tofind thepossible positions for the vertex v. If dv−3,v, dv−2,v and dv−1,v are represented
by the intervals [dL

v−3,v, d
U
v−3,v], [d

L
v−2,v, d

U
v−2,v] and [dL

v−1,v, d
U
v−1,v], three spherical shells can be defined, which

are centered in xv−3, xv−2 and xv−1, have inner radii dL
v−3,v, d

L
v−2,v and dL

v−1,v, and outer radii dU
v−3,v, d

U
v−2,v

and dU
v−1,v, respectively. Algorithms that allow to compute a finitary representation of arbitrary spherical

shell intersections in function of distance intervals are, to the best of our knowledge, hereto unknown.
In [241] we propose a strategy to deal with this problem.

Distances between hydrogens

Another important issue is related to the enforcement of the Discretization requirement in DMDGP
instances arising fromproteins. Discretization requires the availability of a certain number of distances,
whereas NMR experiments can usually only estimate short range distances (no larger than 4Å or 5Å,
depending on the NMR machinery). Moreover, generally, only distances between hydrogen atoms are
available from NMR experiments [325].



266 CHAPTER 18. DISCRETIZABLE MOLECULAR DISTANCE GEOMETRY PROBLEM

We address this problem from two points of view. In Sect. 18.4 we describe an automatic method
to find best vertex orders to satisfy Discretization. A second strategy, addressing the limitation in
hydrogen-related distances posed by the NMR, is discussed in Sect. 18.5: a hand-crafted vertex order
satisfying Discretization is defined for the hydrogen atoms of the protein backbones, which are placed
first; the other backbone atoms (mainly carbons and nitrogens) are placed in a second stage using an
auxiliary DMDGP instance.

This, however, disregards much of the distance information obtained from chemical bonds. Since
these distances are known precisely [325], they are likely to be useful in order to satisfy Discretization.
In Sect. 18.6, we describe a third strategy, which consists in reordering the atoms in such a way that a
maximum number of precise distances are exploited to satisfy Discretization, leaving only a minimum
of (arbitrarily discretized) interval distances to the same purpose. The bulk of the (non-discretized)
interval distances are relegated to DDF pruning.

Chronologically, we addressed most of the limitations posed by real protein instance incrementally,
starting from the basic DMDGP with exact distances and going through a sequence of problems where
the crucial Discretization requirementwasmaintained through clevermodifications of the vertex order.
We believe that the BP variant discussed in Sect. 18.6 solves instances which provide a realistic model of
the PSNMR.

18.3 The Discretizable Distance Geometry Problem

Although our driving application is to embed proteins in 3D, other applications of graph embedding
(wireless sensor networks, graph drawing) require embeddings in Euclidean spaces of varying dimen-
sions. Since the finite sphere intersection property also holds in Euclidean spaces of arbitrary dimensions,
we discuss two vartiants of the DMDGP requiring embeddings in RK.

The DGP, which generalizes theMDGP to a Euclidean space of arbitrary dimension K, asks for a valid
embedding of G in RK. The generalization of the DMDGP to RK replaces triplets of immediate adjacent
predecessors with K-uples of adjacent (but not necessarily immediate) predecessors. Furthermore, strict
triangle inequalities are replaced with strict simplex inequalities [71]. Strict triangle inequalities ensure
that the three predecessors in the DMDGP statement are not collinear; in other words, they ensure that
the 2-simplex defined by the predecessors has nonzero volume. Strict simplex inequalities generalize
this idea. For a set U = {xi ∈ RK−1 | i ≤ K} of points in RK−1, let D be the symmetric matrix whose (i, j)-th
component is ‖xi − x j‖2 for all i, j ≤ K and let D′ be D bordered by a left (0, 1, . . . , 1)⊤ column and a top
(0, 1, . . . , 1) row (both of size K + 1). Then the Cayley-Menger formula [71, 207] states that the volume
∆K−1(U) of the (K − 1)-simplex on U is given by

∆K−1(U) =

√
(−1)K

2K−1((K − 1)!)2
|D′|. (18.7)

The strict simplex inequalities are given by ∆K−1(U) > 0. For K = 3, these reduce to strict triangle
inequalities. We remark that only the distances of the simplex edges are necessary to compute ∆K−1(U),
rather than the actual points in U; the needed information can be encoded as a complete graph KK on K
vertices with edge weights as the distances. This implies that ∆K−1(U) is well defined also if U is a set of
vertices of V (instead of points in RK−1) as long as G[U] = KK. We also let [K] = {1, . . . ,K}.

For each v > K we denote the set of K consecutive predecessors of v by γK(v).

Generalized Discretizable Molecular Distance Geometry Problem (GDMDGP). Given a
positive integer K, a nonnegatively weighted simple undirected graph G = (V,E, d), an order
< on V and a mapping x′ : [K]→ RK such that:

1. x′ is a partial embedding of G[[K]] (Start)
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2. ∀v ∈ V r [K] (|γK(v) ∪ {v}| = K + 1) (Discretization)

3. ∀v ∈ V r [K] (∆K−1(γK(v)) > 0) (Strict Simplex Inequalities),

is there a valid embedding x of G in RK extending x′?

We denote GDMDGP instances where K is a fixed constant by GDMDGPK. The results of Sect. 18.2.4
apply to the GDMDGP.

18.3.1 From immediate to adjacent predecessors

For intersections of K appropriately defined spheres to yield at most 2 points, the centers need not
necessarily be immediate predecessors, as the DMDGP require. To embed a vertex v using the embedding
of vertices before v in the order, it suffices that there are at least K adjacent predecessors of v. Because of
this, we can relax Discretization and define a larger class of discretizable instances [284]. For v ∈ V, if
V is ordered let γ(v) be the set of predecessors of v.

Discretizable Distance Geometry Problem (DDGP). Given a positive integer K, a nonneg-
atively weighted simple undirected graph G = (V,E, d), an order < on V and a mapping
x′ : [K]→ RK such that:

1. x′ is a valid embedding of G[[K]] (Start)

2. ∀v ∈ V r [K] (|N(v) ∩ γ(v)| ≥ K) (Discretization)

3. ∀v ∈ Vr[K]∃Uv ⊂ N(v)∪γ(v) (G[Uv] = KK∧∆K−1(Uv) > 0) (StrictSimplex Inequalities),

is there a valid embedding x of G in RK extending x′?

Again, we denote DDGP instances with fixed K by DDGPK. By Discretization and Strict Simplex
Inequalities, the DDGP can be solved using BP (Alg. 10) — just replace Step 9 with “let U′ = Uv+1”. We
remark that the results of Sect. 18.2.4 do not apply to the DDGP.

Requiring G[Uv] = KK is a strong condition. In practice we usually relax G[Uv] = KK ∧ ∆K−1(Uv) > 0
to simply |Uv| = K. This does not necessarily ensure that the instance can be discretized. However,
because BP is an iterative algorithm on the order ofV, the positions of all vertices inUv are known before
embedding v, which implies that the Strict Simplex Inequalities condition can be verified by the BP
algorithm itself.

18.3.2 Problem complexity

Because the DDGP contains all DMDGP instances as a subproblem, it is NP-hard by restriction. We
remark that the Discretization condition makes this problem the “smallest” NP-hard problem with
respect to K: replacing K by K + 1 would yield instances having a K-trilateration order [139], for which
the embedding problem is in P. This can be seen by restricting the set P in Alg. 10 such that |P| ≤ 1: the
BP search tree width would then be bounded by 1, which means that the BP would have a worst-case
running time O(L|V|), where L is the complexity of finding P.

18.4 Discretization orders

In the family of problems that the BP can solve, i.e. DMDGP and DDGP, an order < on the vertex set V
is always given, guaranteeing that the edges in E satisfy the Discretization requirement. In practice,
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DMDGP instances coming from proteins are endowed with their natural backbone order, which may not
satisfy Discretization. In this section we discuss the problem of finding a good order or determining
that one such order does not exist.

Discretization VertexOrder Problem (DVOP). Given a simple undirected graph G = (V,E)
and apositive integerK, establishwhether there is anorder<onV such that: (a) {v ∈ V | ρ(v) ≤
K} is a K-clique in G and (b) for each v ∈ V with rank ρ(v) > K, we have |N(v) ∩ γ(v)| ≥ K.

We note that the DVOP does not verify whether the order satisfies the Strict Simplex Inequalities
requirement. This is because the set of distance matrices yielding a Cayley-Menger determinant (see
Eq. (18.7)) having value exactly zero has Lebesgue measure zero within the set of all possible (real)
distance matrices. NP-completeness of the DVOP follows trivially from NP-completeness of the K-
clique problem, for finding a DVOP order implies finding K vertices forming a clique in G.

Intuitively, the larger the sets N(v) ∩ γ(v) (for v of rank exceeding K), the smaller the sets P in
Alg. 10 for early ranks will be, and the better the BP will perform. Sets of adjacent predecessors of size
exactly K ensure that |P| ≤ 2, but more pruning distances to v might make the current position for v
infeasible, thereby pruning the current branch and speeding up the search. We therefore also consider
the optimization version of the DVOP:

Optimal Discretization Vertex Ordering Problem (ODVOP). Given a simple undirected
graph G = (V,E) and a positive integer K, establish whether there is an order < on V such
that: (a) {v ∈ V | ρ(v) ≤ K} is a K-clique in G and (b) for each v ∈ V with rank ρ(v) > K,
|N(v) ∩ γ(v)| is maximum and exceeds K.

The ODVOP is a multi-objective maximization problem, whose objective function vector is (|N(v) ∩
γ(v)| | v ∈ V (ρ(v) > K)). We prove in [236] that all DVOP solutions are in the Pareto set of the ODVOP.
In practice, however, we use the ODVOP maximality requirements to influence the choice of the next
vertex in the order in case of a draw. In other words, if there exist two or more candidate next vertices
whose set of adjacent predecessors is greater than K, we choose one among the vertices yielding the
largest such set.

NP-completeness of the DVOP notwithstanding, when K is fixed the DVOP is in P: for each possible
K-clique of G, we greedily build the order on V by choosing large sets of adjacent predecessors earliest.
Because K is typically much smaller than |V|, and in practical instances arising from proteins K is really
fixed to 3, this algorithm performs fast enough to be able to determine useful orders as a pre-processing
step to the BP.

As a testbed for DVOP-based techniques, we considered a subset of DDGP3 instances from the PDB
[55] where we kept all inter-atomic distances up to 5.5Å. With such a low threshold, the backbone order
is not valid w.r.t. Discretization. Using the DVOP, we were able to embed all 18 protein graphs (from
90 to 2259 backbone atoms) in around 21 seconds of user CPU time for the whole test set (this includes
solving the DVOP, which took 1/40th of the DDGP solution time on average), with average accuracy
10−10 measured in LDE (see Eq. (18.6)); this confirms the reliability of the BP. By comparison, DGSOL
[282] in its standard configuration took 800s and yielded an average accuracy of 5 × 10−1.

18.5 An artificial backbone of hydrogens

Our first attempt to consider NMR data, which usually provide distances between hydrogen atoms only
if closer than a given threshold, has been presented in [243, 244, 285]. We defined an order for the
hydrogens related to protein backbones which allows us to satisfy Discretization. Figure 18.5 shows
the proposed vertex order, indicated by the black arrows in the picture and by their labels (showing
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Figure 18.5: The artificial backbone of hydrogens satisfying the DMDGP requirements; the order is given
in the arrow labels. Four amino acids are shown.

a progressive index), which we named artificial backbone of hydrogens. Note that this particular order
considers the same atom more than once. Because of this, the relative distances between atoms farther
in sequence are reduced, and a new kind of distance is introduced: the distance equal to zero existing
between two copies of the same atom (obviously placed in the same spatial point).

Considering the same atom more than once does not change the problem complexity. In practice,
the complexity of computing P in Alg. 10 does not change, because the second copy of an atom can
only be placed in the same place as the first copy. Thus, no branching occurs in correspondence with
duplicated atoms, and the worst-case complexity of the BP variant exploiting orders with repetitions
in still exponential in |V|. In [245], we showed that, because of steric constraints due to the particular
structure of protein backbones, all distances necessary to guarantee Discretization can be obtained by
NMR. Once the problem is discretized and solved by the BP algorithm limited to hydrogen atoms, the
remaining backbone atoms, and in particular the sequence of atoms N, Cα, C can be obtained by solving
another MDGP. We proved that this MDGP is easy to solve, because assumptions stronger than the ones
needed for the DMDGP are satisfied [243]. In particular, each other backbone atom N, Cα, C has at least
4 adjacent predecessors. As a consequence, the order is a trilateration order and the instance can be
embedded in polynomial time [139].

Even though we showed that this approach works on a set of artificially generated instances (see for
example the experiments in [245]), we remarked its limitations when we tried to apply it to real NMR
data. The main issue is that the distances obtained by NMR are not precise (Sect. 18.1.5). Moreover,
even though the second MDGP needed for finding the coordinates of the atoms N, Cα and C is solvable
in polynomial time, its solution relies on a sequence of quadratic systems to be solved, which can easily
cause the propagation of round-off errors and numerical instabilities. The recently proposed order
discussed in Sect. 18.6 overcomes both these issues.

18.6 iBP: discrete search with interval distances

The interval BP (iBP) is an extension of the BP algorithm which is able to manage interval data [241]. It
is supposed that the distances dv,v−1 and dv,v−2, needed for the discretization, are always exact, whereas
only the distances dv,v−3 can be represented by an interval [dL

v,v−3, d
U
v,v−3]. This way, the discretization

process does not imply the definition of three spherical shells (see Sect. 18.1.5), whose intersection gives
the possible positions for the current atom. If only the distance dv,v−3 can be represented by an interval,
the hardest subproblem to be solved is the one of finding the intersection of two spheres (related to
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exact distances) and a spherical shell (related to the interval). This procedure would define a curve
in the three-dimensional space in which the possible positions for the current atom can be searched.
However, the equation of the curve would provide information on the atomic positions with a precision
which is actually not needed for the purposes of the computation LEO: cite. Therefore, we can discretize
the interval related to the distance dv,v−3 and apply the standard discretization process for a subset of
sample distances extracted from the interval [dL

v,v−3, d
U
v,v−3]. Fig. 18.6 shows our hand-crafted order for

a small protein backbone containing 3 amino acids. It shows the ordering for the first amino acid, for

Figure 18.6: The order used for for discretizing MDGPs with interval data.

the second one, and for a generic amino acid, where the last three atoms concerns the last amino acid
of the sequence. The ordering is specified by the red arrows in the picture and by their labels. It can be
verified that dv,v−1 and dv,v−2 are always exact, because they can be computed from information known
a priori on bond lengths and bond angles. Only dv,v−3 may be represented by intervals. When this is
the case, sample distances are taken from the interval and more than two branches are added to the
tree representing the discrete search domain. As in the order shown in Sect. 18.5, we allow for repeated
atoms.

The iBP algorithm is potentially able to solve MDGPs containing real data from NMR experiments.
An important point is that no discretization distance is expected to be provided by NMR: all NMR
distances (which are subject to imprecisions and errors) are pruning distances. This would make it
possible to compute a finite over-approximation of the solution set (which only depends on the number
of amino acids in the protein) where, potentially, the solutions to different DMDGP instances can be
searched using the pruning distances. In other words, one might pre-compute exponential-sized sets
of “potential embeddings” for proteins of given length, and then only traverse these trees by pruning
when each DMDGP instance of conformant length is provided.

18.7 Implementation and parallelization

MD-jeep is an implementation of the BP algorithm in the C programming language [289]. It is distributed
under the GNU General Public License (v.2) and it can be downloaded from
http://www.antoniomucherino.it/en/mdjeep.php. MD-jeep accepts as input a list of distances in a text file
with a predefined format, and returns PDB files containing the solutions to the problem as output. The
PDB is a standard format for storingmolecular conformations [55], which is compatible withmany other
software packages for molecular management and visualization. For example, two views, obtained
using RasMol (http://www.rasmol.org/), of one of the solutions found by MD-jeep are given in Fig. 18.7.
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Figure 18.7: Two different graphical representations of the embeddings obtained by MD-jeep.

18.7.1 Parallel BP

Weare alsoworking on parallel implementations of the BP algorithm [287, 288] for theDMDGP. The basic
idea is to partition the instance graph into subgraphs whose embeddings can be found independently
by separate processes and then recombined; embedding each subgraph requires a call to a sequential BP
algorithm, and the recombination is carried out by the master process.

Let us suppose that the number n of vertices related to a given instance graph is divisible by the
number p of processes involved in the parallel computation. Then p induced subgraphs Gi = G[Vi] can
be defined for all i ≤ p by setting:

Vi =

{
1 +

(i − 1)n
p
, . . . , 3 +

in

p

}
.

For all i ≤ p we define Ei = E[Vi] = {{u, v} ∈ E | u, v ∈ Vi}. This partition of V guarantees that each Gi is a
DMDGP instance if and only if G is.

We remark that Ē =
⋃

i≤p Ei does not cover E; in particular, edges {u, v} ∈ E with u ∈ Vi, v ∈ V j for
i , j do not belong to Ē. As a consequence, the corresponding distances duv are not used while the single
processes work on the subgraphs Gi. However, they can be exploited later after the communication
phase, when the local solutions found by the single processes are combined together in order to find the
final set of solutions to the original instance.

The communication phase is implemented by following the classical cascade schema, so that only
log2 p communications are required to make p processes exchange the partial embeddings found by the
sequential calls to BP (we suppose that p is a power of 2). Each partial embedding is coded by a sequence
of binary variables. In order to reduce the time needed for the communication, each binary variable is
stored in a single bit of an array of integer numbers. Each set of partial embeddings can be used for
defining the local binary tree of solutions, which can be represented by graphs Tk = (Wk,Hk), where
vertices inWk represent atomic positions, and edges inHk connect vertices related to consecutive atomic
positions. We employ the following procedure for combining the sets of partial embeddings found by
two processes k1 and k2 = k1+1. Let Tk1,k2 = (Wk1,k2 ,Hk1,k2) be the graphwhich is the combination between
Tk1 and Tk2 . The vertex set Wk1,k2 is defined so that it contains all the vertices in Wk1 and Wk2 , and the
vertices in Wk2 are also duplicated as many times as the number of leaf vertices in Wk1 , and new labels
are assigned to them. The edge set Hk1,k2 is computed similarly, and, for each leaf vertex vl ofWk1 , a new
edge is added between vl and the various copies of the first vertex ofWk2 . If this procedure is performed
recursively considering all the graphs Tk, then the final tree of solutions, representing the final set of
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embeddings, can be reconstructed. Distances related to atoms previously assigned to different processes
can be used for pruning branches of the final tree for removing infeasible solutions.

Computational experiments (refer to [288] for more details) showed the efficiency of the parallel
approach; the CPU time gain ratio between successive processor configurations (e.g. 1 against 2, 2
against 4 and so on) decreases as p increases (in a few cases, executions with more processes actually
took slightly longer). This is due to the fact that, as p increases, the subgraphs assigned to each process
get smaller, whereas the number of edges inErĒ increases. As a consequence, the calls to the (sequential)
BP process on each subgraph tends to be less expensive than the master process that builds the BP tree
for the whole graph. Parallel implementations overcoming this issue are currently under study.

18.8 Conclusion and future work

This paper gives an overview of the Discretizable Molecular Distance Geometry Problem, which offers a
good model for finding protein structures with NMR data. We discussed variants, complexity, solution
algorithms and extensions to deal with protein-specific features, such as limitations on the type of atoms
that NMR usually provides information on.

On a short term, future work concerns the following topics: treatment of errors in the NMR data;
polynomiality of the BP in the average case; exploitation of the BP tree symmetries. Longer term future
work includes: the integration of the side chain embeddings; discovering unknown protein structures
from real NMR data; synthesizing a BP-based integrated method to solve the PSNMR problem; looking
for more applications (notably in embedding whole molecular complexes).

One notable open theoretical question is whether the DGPK is in NP for K > 1. The embedding
that certifies a YES instance usually involves real numbers even though the instance data is rational (or
even integer). As the embeddings solve a system of polynomials of second degree in several variables,
it is easy to show that only algebraic numbers, rather than transcendental ones, are needed to express
the components of each vector in the embedding. Thus, a finite precise symbolic representation for the
embeddings is readily available, for example as the set of minimal polynomials having all the required
algebraic numbers as roots. Whether all such numbers can be encoded by means of expressions whose
length is polynomial in the instance size is as yet unclear.
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Quelles politiques publiques durables
pour l’accès aux ressources naturelles?

Alassane Bah, Patrick Daquino, Ivan Lavallée, Diaraff Seck, Ibra Touré

Report for OSD Project Lavallée-Dakar

Territorial laws in Senegal for regulating public access to natural resources are currently being debated.
The debate concerns the trade-off between productivity, fairness, equitability and sustainability. This
project aims to develop a modelling/simulation tool based on optimization techniques to evaluate the
impact of different public policies concerning the assignment of natural resource access to different
actors. Theoretically speaking, our proposal is based on a complex assignment problem with several
objectives. This report concerns the first phase of the work where data are collected from domain actors
(farmers and shepherds on the terrain).

19.1 Introduction: les enjeux de la démarche de modélisation partic-

ipative des politiques foncières

19.1.1 Lespolitiques foncières etdegestiondes ressourcesnaturelles : une cohérence
à développer

Le renouvellement ou l’évaluation des politiques à l’ordre du jour Dans la région sahélienne, acteurs
publics et organisations de la société civile réfléchissent à de nouvelles politiques, lois et règlementations
pour optimiser les modes d’accès, la gestion, l’exploitation et l’appropriation des terres et des ressources
naturelles renouvelables. De nombreuses initiatives sont développées en matière de réformes foncières,
de décentralisation de la gestion des ressources, d’aménagement du territoire, d’adaptation aux change-
ments climatiques, d’appui à l’investissement privé etc. Autant de politiques sectorielles qui touchent
aux problématiques relatives à la terre et aux ressources naturelles et qui ont des effets combinés sur les
modes d’accès à la terre et aux ressources renouvelables. Ces différentes politiques forment ainsi ce que
nous appelons ci-après un cadre de régulations foncières. Les mesures et outils de régulation dépendent
de pôles de décisions variés Ces choix politiques sectoriels, actuels et futurs, engendrent l’adoption de
mesures et l’utilisation d’outils dont la gamme des possibles est très large : régulations économiques,
mesures environnementales, diffusions de nouvelles pratiques culturales, règles domaniales, modes
d’appropriation et de transmission du foncier, formalisation de marchés fonciers, règlementation de la
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transhumance, schémas d’aménagement, distribution de l’occupation et de l’affectation des sols, règles
d’accès et d’exploitation des ressources, délimitation physique des espaces ou territoires, plan foncier
rural, cadastre, formalisation des transactions foncières, conventions locales etc.

Pour être cohérent, le cadre de régulations foncières doit combiner différentes mesures, de manière
à traiter de façon complémentaire les différents enjeux posés par les politiques. Or ce cadre de
régulations relève au niveau national de la responsabilité de différents départements ministériels et
résulte également, notamment sous l’effet des processus d’intégration régionale et de décentralisation,
de responsabilités situées à d’autres niveaux territoriaux : international, national, décentralisé, local.
Cette multiplicité des lieux de décision représente une contrainte forte à la nécessaire cohérence des
mesures adoptées.

Les effets desmesures et outils de régulation sont très difficiles à prévoir Selon leur nature et leurmode
d’application, ces mesures et outils peuvent profondément modifier les équilibres socio-économiques
et environnementaux (équilibres et complémentarités entre activités, impacts environnementaux, ac-
croissement et répartition des richesses, paix sociale). Or il est très difficile de prévoir a priori les
différents effets possibles , imprévisibilité accrue par l’aggravation de l’incertitude climatique.

De plus, un même outil peut servir à atteindre des objectifs opposés, selon la façon dont il est utilisé.
Quelques exemples : l’élaboration d’une convention locale peut élargir la gamme des possibles en
matière de modalités d’accès à la terre tout comme elle peut tendre à la réduire. Un outil comme le
plan foncier rural peut être utilisé pour sécuriser les exploitations familiales ou faciliter l’installation
de nouveaux investisseurs privés. La formalisation des transactions foncières peut dans certains cas
favoriser les “propriétaires coutumiers”, dans d’autres les exploitants.

En outre, sur un sujet aussi sensible, un outil ou une mesure peut engendrer des effets sur le terrain
avant même d’être mis en œuvre. Il suffit en effet que les populations locales apprennent qu’un outil va
être utilisé sans en maı̂triser les conséquences pour qu’elles développent, par anticipation, des stratégies
de limitation des risques. De nombreux cas ont par exemple été observés dans le cadre du projet Plan
Foncier Rural en Côte d’Ivoire dans les années 90.

Productivité, équité, durabilité, adaptabilité, ou le défi de la complémentarité des enjeux

Demultiples enjeux motivent la mise en place de ces nouvelles politiques, dont certains peuvent parfois
apparaı̂tre contradictoires. Entre productivité, équité et durabilité, les responsables des politiques de-
vront pourtant réussir à construire un cadre de régulations foncières qui intègrera complémentairement
ces différents enjeux, auxquels s’ajoutent des enjeux émergents, comme faciliter l’adaptabilité des pra-
tiques aux changements climatiques.

Or, ces enjeux sont rarement explicités et les oppositions entre acteurs aux intérêts distincts se
cristallisent, dans un contexte d’aléas et de pressions croissantes sur les ressources : chacun des acteurs
est porteur d’une partie des enjeux mais a du mal à prendre en compte, dans la définition des solutions,
les enjeux des autres parties prenantes.

En conclusion, plusieurs obstacles sont aujourd’hui difficiles à franchir pour améliorer les cadres de
régulations des terres et des ressources naturelles au Sahel :

• les mesures et outils de régulation mis en œuvre sont les produits de décisions sectorielles et prises
à différentes échelles géographiques ;

• les effets sociaux, économiques ou environnementaux d’un mécanisme donné de régulation ne
sont pas déterminables a priori, car ils dépendent de la façon dont la règle sera reçue, interprétée et
utilisée par les différents acteurs ciblés et de la combinaison des effets de cette règle avec les autres
mesures du cadre de régulation en place ;
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• les enjeux prioritaires sont perçus comme contradictoires et donnent lieu à des positions doctrinales
;

• les méthodes de concertation mises en œuvre ont du mal à aboutir à des solutions pertinentes, où
chaque acteur réussirait à intégrer de façon constructive les enjeux portés par les autres acteurs.

Des améliorations méthodologiques sont donc nécessaires, ce qui a abouti à la démarche suivante.

19.1.2 Les fondements de la démarche

La démarche proposée a comme objectifs :

1. une meilleure intégration par chacun des groupes ciblés (voir ci-dessous) des enjeux portés par les
autres parties prenantes. Sur cette base :

2. le développement chez les groupes ciblés de capacités d’évaluation collective des pratiques et
politiques actuelles ou possibles ;

3. la production collective entre ces différents groupes de propositions opérationnelles demécanismes
de régulation qui prennent en compte de façon complémentaire la diversité des enjeux identifiés
comme prioritaires par ces groupes.

Cela passe par l’organisationd’une réflexion où les groupes ciblésmettent en commun leurs savoirs, leurs
expériences et leurs perceptions pour co-évaluer des scenarii de régulation et co-construire des éléments
pragmatiques de régulation. Ce type de co-construction peut aboutir à des propositions originales, car il
permet de dégager des articulations positives entre des pratiques locales, parfois anciennes, et des outils
et mesures appropriables par les différents pôles de décisions.

Pour ce faire, la démarche s’appuie sur des innovations méthodologiques :

1. des outils de transferts de compétences à portée opérationnelle (construction et évaluation de
scenarii de régulation), qui mobilisent des expertises scientifiques pluridisciplinaires sous une
forme très éloignée des canons académiques de la production scientifique ;

2. un support spatial de simulation collective , à l’image d’un jeu de société (sous forme de jeu de
table ou informatisée), avec différentes cartes de terroirs (reprenant la diversité agro écologique
existante), où les participants jouent des usagers de différents types, avec leurs besoins diversifiés
(différents types d’agriculteur et d’éleveur, femme, jeune, autre type d’usager) ;

3. avec ce même support, le développement d’une réflexion prospective : les acteurs/joueurs con-
struisent des scenarii de régulation (combinaison de mesures et d’outils) et d’aléas, puis simulent
sur plusieurs années ces scenarii et les réactions/adaptations qu’il peut y avoir d’après eux chez les
usagers ; ils analysent enfin les effets de ces scenarii sur les différents enjeux qu’ils ont identifiés
précédemment ;

4. une réflexion “multi niveaux”, car d’une part le support de simulation présente la caractéristique
de pouvoir être utilisé avec des acteurs de profils très différents (du décideur à l’usager local, du
scientifique au membre d’une ONG) et d’autre part car le support spatial permet d’observer à
différentes échelles (exploitation familiale, lignage, terroir, région, pays) les effets de mécanismes
de régulation. Son utilisation en parallèle avec les différents groupes ciblés permet alors une
analyse collective équilibrée et constructive.

Les groupes ciblés sont :
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• lespopulations ruralesusagèresdes ressources renouvelables, y compris les groupesdits vulnérables
(femmes, jeunes, exploitations familiales modestes, éleveurs transhumants). La méthodologie
permet de réduire considérablement les asymétries observées dans les démarches participatives
classiques au dépend de ces groupes d’acteurs.

• les organisations faı̂tières paysannes, qui pourront s’engager dans une dynamique de dénouement
de situations tendues et de cohabitation améliorée entre acteurs aux intérêts variés.

• les collectivités locales, qui pourront recourir à cette démarche pour définir des mesures de
régulation relevant de leurs responsabilités et en cohérence avec les politiques nationales.

• les praticiens du développement (projets, ONG), qui seront en situation d’adapter et de diffuser la
démarche de prospective participative en fonction de leurs besoins, pour dépasser les blocages, de
plus en plus décriés, relatifs aux démarches participatives classiques.

• les départements ministériels (Élevage, Agriculture, Environnement, Hydraulique etc.) qui pour-
ront optimiser leurs compétences et leurs ressourcesdansunprocessusde formulationoud’évaluation
consensuelle de règles qui soient appropriables par tous.

19.1.3 La méthodologie “Prospective Participative Multi Niveaux” (2PMN)

La démarche repose sur uneméthodologie originale de Prospective ParticipativeMulti Niveaux (2PMN),
qui relie des ateliers menés en parallèle au niveau local, régional et national, de telle sorte qu’ils puissent
s’alimenter de leurs conclusions respectives.

Les ateliers sont conçus de manière à transférer progressivement et à un même rythme aux différents
groupes ciblés les savoirs et les capacités leur permettant de formaliser et d’évaluer eux-mêmes, ensem-
ble, des combinaisons de règles nationales, régionales et locales, aboutissant ainsi à des propositions
validées par tous.

La 2PMN est constituée d’une série d’ateliers de simulation prospective réalisés séparément (en
parallèle) auprès de chacun des différents groupes ciblés, avec le même support spatial de simulation
prospective et selon les mêmes étapes. Le support de simulation prospective présente la caractéristique
principale de pouvoir évoluer de façon itérative suivant les apports des différents groupes. Ces apports
(sur les enjeux possibles d’une régulation, sur l’enrichissement des indicateurs de suivi, la modification
du modèle) sont intégrés au fur et à mesure : chaque groupe s’alimente ainsi à chaque étape des
conclusions respectives des ateliers des autres groupes.

La 2PMN se décompose schématiquement en 4 étapes, qui peuvent donner lieu à un nombre variable
d’ateliers, pour s’adapter aux contraintes opérationnelles des groupes ciblés :

1. accord collectif sur les enjeux et indicateurs

• identification collective des différents enjeux sociaux, économiques ou environnementaux
possibles des cadres de régulations foncières, tels qu’ils sont perçus par les différentes parties
prenantes ,

• de là, définition des indicateurs d’évaluation (des mécanismes de régulation qui seront
simulés) pour suivre les effets spécifiques sur ces différents enjeux;

2. test puis correction collective du jeu de simulation reprenant ces indicateurs

• un support spatial, sous forme de différentes cartes de terroir englobant la diversité agro
écologique du Sahel, sur lequel agissent des usagers de différents types, avec des besoins
diversifiés et spécifiques (agriculteur, éleveur, femme, jeune),

• chaqueparticipant joue le rôle d’unde ces usagers ; tous les participants définissent et évaluent
(selon les différents indicateurs) les mécanismes de régulation qui sont testés dans le jeu ,
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• introduction dans le jeu de simulation de scenarii d’aléas ; puis introduction de premières
combinaisons simples de mécanismes de régulation,

• simulations de ces différents éléments et suivi de leurs effets sur les indicateurs,

• analyses collectives et améliorations des scenarii à explorer;

3. Transfert de compétence sur les mécanismes complexes de régulation

• quels sont les objectifs spécifiques de chacun des m écanismes de régulation possibles (du
cadastre à la convention locale) ?

• quels sont les effets possibles de chacun de ces différents mécanismes sur les différents enjeux
sociaux, économiques et environnementaux ?

4. Construction et test collectif de scenarii complexes

• simulation, sur plusieurs années, dans le modèle (via le jeu de table ou informatisé) des effets
possibles de ces propositions sur les différents types d’usagers, sur les ressources et sur les
différents enjeux sociaux, économiques et environnementaux répertoriés ,

• de là, co-construction de propositions opérationnelles de régulation, appropriées et validées
par les différents types d’acteurs participant au processus.

19.2 Mise en œuvre de la méthode de modélisation participative

Lieu : Les ateliers ont eu lieu dans un village agropastoral du centre Ouest du Sénégal, Widou, (com-
munauté rurale de Tessekere).

Figure 19.1: Le milieu agropastoral, village de Widou
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19.2.1 1ère étape : présentation de la démarche prospective participative multi
niveaux sur les politiques de sécurisation foncière

Figure 19.2: Le milieu agropastoral et ses acteurs

Questions abordées1

• Présentation des enjeux de notre présence : leur donner l’occasion de produire eux-mêmes à partir
de leurs savoirs des propositions originales de règles, se basant sur leur double connaissance : les
savoirs traditionnels et leur expérience des projets de gestion des ressources naturelles qu’ils ont
subis.

• Expliquez que l’on souhaite simplement aujourd’hui qu’ils comprennent bien les enjeux de notre
proposition, pour qu’ils puissent s’organiser comme bon leur semble pour le véritable atelier, la
prochaine fois, qui se tiendra sur trois jours.

Méthodologie :

Présentation des enjeux de l’approche multi-niveaux participative prospective

• L’enjeu de notre présence :

– Les faire directement participer à la définition des politiques publiques foncières (= réfléchir
à des règles à l’échelle du pays).

– Pour obtenir de meilleures règles, besoin de mettre en commun les différents savoirs et points
de vue, de les faire réfléchir ensemble ;

1Période des 8 et 9 février 2011
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– Faire co construire entre les différentes parties prenantes des propositions de politiques de
régulation, via un transfert de compétences auprès de chacune d’entre elles sur la construction
et l’évaluation des règles/lois

– par aussi un échange soutenu entre les différents niveaux. Faire remonter leurs points de vue
(“vers Dakar”) sur ce qu’il faut conserver dans les pratiques foncières actuelles et ceux qu’il
faut améliorer. Et d’un autre côté faire redescendre vers eux les points de vue des décideurs
de Dakar sur le sujet : “chacun dans le costume de l’autre”.

– Pas simplement obtenir un consensus sur des propositions, mais créer des propositions de
règles originales, à la croisée des différents savoirs

En résumé, les aider à produire des idées nouvelles de règles sous une forme compatible avec une politique
publique, en mettant en commun les différents savoirs et points de vue, du local au national, du paysans au
scientifique.

• Notre proposition:

– Notre objectif : leur fournir méthodes et outils pour qu’ils aient la capacité de faire cela

∗ Faire mutuellement comprendre les contraintes et les enjeux de chacun,
∗ puis proposer des supports pour qu’ils puissent trouver ensemble des solutions qui
satisfassent les différents points de vue,
∗ Le but : une amélioration des compétences des différentes parties (multi niveau) sur la
construction, le suivi et l’évaluation de politiques publiques foncières

– Notre position :

∗ être un media entre les discussions à distance (le principe de diversité des points de vue,
les aller retour, les ateliers et les supports identiques)
∗ leur donner les compétences (à tous) pour qu’ils définissent mieux ensemble les solutions
d’une situation complexe sans solution simple
∗ la place du chercheur : n’est pas là pour leur donner une expertise, mais comme :

1. “écrivain public”, pour aider à mettre sur cartes et autres ce qu’ils pensent (cf. enjeux)
;

2. “facteur”, pour l’aller-retour entre les différents lieux d’ateliers, par exemple entre
Dakar et ici, pour communiquer ce qui se dira dans chacun des lieux sur le même
sujet ; il est en quelque sorte “la table sur laquelle aura lieu le dialogue entre des
personnes qui ne sont pas au même; ce qui signifie de continuels aller-retour entre
ateliers, pour que chacun des groupes avance au même rythme, à partir des mêmes
cartes et autres, et puissent mieux échanger.

• Présentation en détails de notre démarche (les différents ateliers, leurs objectifs)

– 1ère étape (entre “haut” et “bas”, et avec ailleurs) : que chacun exprime ses points de vue et
ses enjeux puis comprenne les points de vue et les enjeux des autres, sur les enjeux d’une
politique publique foncière dans le pays (“prendre le costume des autres”)

– 2ème étape (entre “haut” et “bas”, et avec ailleurs) : qu’ils imaginent ensemble et se commu-
niquent les différentes possibilités de solution et qu’ils les testent dans un jeu au regard des
différents points de vue déjà exprimés.
“Essayer sur la table avant d’essayer dans la réalité” (simulation prospective) : personne ne peut
avoir idée de l’effet de différentes règles, et de leur combinaison. Autant pouvoir avoir une
idée un peu plus claire de leurs conséquences avant de lesmettre en place...et du coup pouvoir
essayer des choses différentes sans devoir trancher, prendre en compte les différentes idées
sans être obligé de trancher.

– 3ème étape (entre “haut” et “bas”, et avec “ailleurs) : transfert des connaissances qui leur
manquent pour affiner leurs idées de solution et surtout accès à l’ordinateur; nouveaux tests
dans le jeu et l’ordinateur
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19.2.2 2ème étape : Atelier d’appropriation de la démarche prospective participa-
tive multi niveaux sur les politiques de sécurisation foncière (2 au 4 Mars
2011)

Questions abordées

• La présentation de la démarche ;

• Une première discussion sur les enjeux fonciers ;

• Une première séance de jeu pour découverte (jusqu’à la SSF et avec l’autosuffisance alimentaire
comme seul indicateur quantifié) ;

• La présentation des supports pour définir les scénarios de règles et la discussion y attenant, sur les
règles possibles ;

• Un rendez vous pour une journée (courant juin) consacrée au test d’un premier scénario de règles,
qu’ils vont réfléchir d’ici là.

Méthodologie :

Analyse collective sur les enjeux potentiels du foncier

1. Faire sentir la complexité de la question.
Pour éviter les réponses qu’ils ont déjà en tête : affecter, zonage, etc.

• L’animateur rappelle la logique des ateliers : d’abord on aide les décideurs des politiques
de régulation à se mettre à la place (“dans le costume”) des paysans, pour comprendre leurs
besoins et leurs pratiques, puis on aide les paysans à se mettre à la place des décideurs,
pour comprendre de la même façon leurs objectifs et leurs raisonnements (“pour réussir à
être entendu de l’autre, il faut d’abord comprendre ce qu’il a dans la tête, en se mettant à sa
place”).

• Jusqu’à présent les ateliers ont servi à construire le “costume de paysan” dans lequel devra
se mettre le décideur pour comprendre les paysans : le “jeu”, où les décideurs vont “jouer”
les rôles des paysans et essayer de s’en sortir comme le font les paysans. Maintenant, c’est la
deuxième étape : que les paysans comprennent les objectifs et le raisonnement des décideurs,
pour qu’ils puissent ensuite “mettre leur costume” et réfléchir à desmécanismes de régulation.
“Après avoir construit un jeu pour représenter leurs perceptions et leurs besoins, il faut maintenant que
ce soit eux qui se mettent à la place des décideurs”. “Il faut comprendre d’abord comment ils pensent
pour ensuite pouvoir se faire entendreet comprendre”. Dans les deux sens : que les décideurs
comprennent les paysans (construire le jeu), que les paysans comprennent les décideurs
(choisir les règles collectives à appliquer au jeu).

• L’animateur explique aux participants les enjeux des politiques publiques de régulation au
Sahel, d’après les décideurs :

(a) Il faut accroı̂tre la productivité des différentes activités, pour nourrir et développer le
pays

(b) Pour y arriver, il faut sécuriser l’investissement (qu’ils soient des paysans ou de nouveaux
arrivants) : ”on n’investi tpas sur l’agriculture parce que ce que on n’est pas sûr de garder
suffisamment longtemps la terre une fois que l’on aura investi”

(c) Pour sécuriser cet investissement, il faut une assurance que l’investissement que l’on met
sur une terre ne nous sera pas retiré : sécurité du foncier, par un “papier”
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(d) Pour aider à l’investissement, il faut aussi que les banques acceptent de prêter pour
investir, et elles ne le feront que si elles ont une garantie de récuérer quelque chose de
valeur si on ne les rembourse pas : un droit d’accès au foncier, via ces “papiers”

(e) Il faut donc introduire des papiers, que ce soit pour une propriété privée (à l’occidentale)
ou pour des droits d’accès plus officiels et sur une durée suffisamment longue

(f) Et il faut que ces papiers soient accessibles à ceux qui ne sont pas du village mais qui ont
les moyens d’investir sur l’agriculture (“l’argent est ailleurs, il faut permettre à ceux qui
l’ont d’investir sur l’agriculture”).

• L”animateur insiste bien sur le fait qu’il ne s’agit pas à ce stade de juger de ce raisonnement,
mais de se “ mettre dans le costume” de ceux qui le tiennent, donc de le comprendre et de le
partager

• L’animateur donne ensuite les principales questions qui se posent les décideurs au moment
de définir quels papiers seraient les plus pertinents:

(a) Vaut-il mieux un droit de propriété exclusif, à l’occidentale (un seul propriétaire a tous les
droits sur une parcelle et pour toujours) ou des droits d’usage (un” propriétaire” a le droit
sur une seule activité et pour une durée déterminée) mais suffisamment sécurisé pour
convaincre investisseurs et banquiers ? L’animateur explique que dans le cas de droit
d’usage, la durée doit être suffisamment longue pour que l’investisseur (ou le banquier)
acceptent de s’engagermais enmême temps suffisamment courte pour que le propriétaire
ne se sente pas dépossédé de sa terre.

(b) Vaut-il mieux donner ces papiers à des individus, des chefs de famille, des chefs de village
?

(c) Vaut-il mieux pouvoir vendre et acheter ces papiers ou bien l’empêcher ? L’animateur
explique les dérives possibles d’un système marchand (concentration entre les mains
des plus riches) et les dérives possibles d’un système non marchand (marchandisation
informelle, non contrôlée).

• Selon les contextes et les réponses des participants, on peut prendre un autre exemple : pour
limiter la pression pastorale sans aboutir des couts d’accès à l’eau trop élevés pour les éleveurs,
on peut définir au départ le nombre d’éleveurs” pouvant avoir accès au terroir, puis distribuer
le nombre de papiers correspondants à des éleveurs, selon des proportions (transhumants/
autochtones, entre chaque campement, etc.) à négocier d’abord. Cela a l’avantage de fixer de
façon sûre la pression pastorale sans que cela soit difficile à supporter financièrement.
Inconvénient : même si le “papier” est gratuit au départ, il y aura toujours un marché informel
des papiers qui va se développer et cela risque d’être les plus riches qui finissent par récupérer
les droits d’accès.

• Il n’y a pas de solution toute faite à ces questions et les décideurs comme les experts n’ont
pas de réponse, mais partagent toutes ces questions. Si les participants ont bien compris
ces questions, ils en savent donc déjà suffisamment pour réfléchir à quelles réponses ils se
verraient donner, s’ils étaient “dans le costume du décideur”. l’animateur insiste sur le fait
qu’il s’ait d’un exercice, d’un apprentissage, et que, comme pour apprendre le vélo, il faut
commencer par essayer, même si l’on sait que les premières fois, on va tomberDonc, un temps
pour “essayer” : réfléchir, discuter et imaginer des réponses, puis les tester dans le jeu pour
voir leur défauts et en imaginer de nouvelles.

• L’animateur demande aux participants de réfléchir entre eux à un (premier) avis sur les
réponses possibles : temps de discussion et de débat;

• après ce temps libre de débat, l’animateur aide les participants à oser de premières réponses,
en reprenant uniquement la première question et en leur demandant une réponse. Puis,
une fois obtenu une réponse, il explique les avantages et les inconvénients qui peuvent en
découler, en “déroulant l’histoire qui pourrait arriver avec cette règle”.
Ensuite il recommence la même approche avec la deuxième question :
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(a) Vaut-il mieux un “papier” droit de propriété ou un papier “droit d’usage” sur une activité
?
A cette première question, il y a souvent une réponse en deux temps :
– “Il faut un droit de propriété” (pour sécuriser les paysans sur leur foncier traditionnel)
– L’animateur : “et comment fait on pour répondre au besoin de l’Etat : ouvrir la terre
à l’investissement ?”

– “Il faut par-dessus cela des droits d’usages (avec papiers)
De là, l’animateur décortique (“déroule la pelote), les questions qu’entraı̂ne ce choix, pour
illustrer dans ce cas concret les questions qu’il a déjà soulevées plus haut, sans émettre
de jugement de valeur de l’animateur sur ces différentes “histoires” possibles :
– dans ce système, quelle durée de droit d’usage sera-t-elle suffisante pour sécuriser
un investissement lourd (type aménagement irrigué ou arbres fruitiers) tout en ne
dépossédant pas le propriétaire ?

– ce type de formule peut aboutir à des évolutions où les propriétaires ont des dividen-
des mais n’ont plus de terres à cultiver ;

– cela peut aussi aboutir à la concentration des droits d’usage entre les mains de ceux
qui auront le plus de moyens d’investissement ;

– il risque de ne plus avoir de terres disponibles pour ceux qui ne sont ni propriétaires
fonciers ni investisseurs

– . . .
(b) Vaut-il mieux autoriser l’achat/vente de ces papiers ou l’interdire ?

En règle générale, lesparticipants répondentd’abordde l’interdire. L’animateurdécortique
alors de lamême façon les questions qu’entraı̂ne ce choix, pour illustrer les questions qu’il
a déjà soulevées plus haut, toujours sans émettre de jugement de valeur de l’animateur sur ces
différentes “histoires” possibles :

– dans ce système, les banquiers ne voudront pas prêter de l’argent aux propriétaires
pour investir, puisqu’ils n’auront pas le droit de récupérer la terre s’ils ne remboursent
pas

– Mais si l’on introduit un marché des terres, les propriétaires risquent petit à petit
de vendre toute leurs terres lorsqu’ils auront besoin d’argent et les jeunes vont se
retrouver sans terres ;

– cela peut aussi aboutir à la concentration des droits fonciers entre les mains de ceux
qui auront le plus de moyens;

– . . .

• Petit temps de réflexion et de débat.

• Puis l’animateur explique aux participants un deuxième “outil” pour les règles : le zonage.
“Le décideur, qui a lui aussi conscience de toutes ces dérives possibles, à aussi accès à d’autres
outils, avec lesquels il peut essayer d’empêcher les plus graves dérives”. Premier exemple de
ces outils, le zonage” :

– on peut par exemple imaginer un zonage qui nemet dans le système des “papiers” qu’une
partie des terres, l’autre restant dans le système traditionnel ;

– on peut aussi imaginer de réserver une zone pour un type particulier d’usager, qu’il veut
protéger (femmes, jeunes, etc.) ou pour une activité qu’il veut préserver (élevage, forêt).

L’animateur “déroule” alors les “histoires” possible à partir de ces choix, pour illustrer les
questions qu’il a déjà soulevées plus haut, toujours sans émettre de jugement de valeur de
l’animateur sur ces différentes “histoires” possibles :

– si l’on partage le terroir en deux zones, une zone “papiers”, une zone “terroir”, les
meilleures terres risquent de se retrouver dans la zone “papiers” et les paysans réduit à
utiliser les mauvaises terres de la zone terroir,

– ou bien, les paysans qui sont dans la zone “papier” peuvent finir par vendre toutes leurs
terreset demander ensuite à avoir un accès à la zone “terroir”.
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– . . .
Différents exemples de “papiers” et de “zonages” possibles sont donc ainsi donnés, pour
illustrer des idées d’utilisation de ces outils pour répondre aux contraintes qu’ils ont, en
insistant toujours sur le fait que nous savons que ce sont pas de bonnes solutions, mais que
les outils ainsi illustrés pourraient leur être utiles pour qu’ils construisent des solutions.

• Une fois que le zonage a été abordé, l’animateur peut introduire une troisième question, qui
est facilement illustrée à partir du cas concret d’un zonage : la distribution des responsabilités
sur la gestion foncière.
“Qui sera responsable de décider, de gérer ces droits ?” On peut imaginer un zonage qui
atténuerait les effets des “papiers (les participants ont peut-être déjà émis l’idée dans la
discussion) : une partie du terroir en zone “papiers”, une partie en zone “terroir”. Dans ce
cas, selon qui est chargé de faire le découpage, cela va aboutir à des “histories” très différentes:

– si c’est l’État qui est responsable du découpage, il risque fort de mettre dans la zone
“papiers” les meilleures terres, pour améliorer la production agricole du pays,

– si c’est le chef de village, il risque au contraire d’y situer les terres les plus médiocres,
ce que l’Etat ne peut pas accepter puisque l’objectif est d’ouvrir à l’investissement pour
augmenter la production.

– Ou bien le chef de village peut mettre dans la zone “papiers” seulement les volontaires
parmi les paysans (car cela permet de faire fructifier monétairement ses terres), mais ces
derniers risquent ensuite de se retourner vers la zone “terroir” une fois qu’ils auront tout
venduou leurs enfants.

– . . .
• Après avoir fait sentir la complexité des conséquences de tout choix, on récapitule ensuite,

pour conclure, les enjeux :
– “les gens de Dakar et les experts ont conscience de toutes ces questions qu’ont vient de
leur poser, mais ils n’ont pas plus de réponses qu’eux, car ils savent que chaque réponse
a des avantages et des inconvénients (pour que les participants osent y réfléchir et ne
pensent pas qu’ils ne sont pas assez expert pour cela)

– Chaque réponse, même si elle paraı̂t bonne, est un fil que l’on déroule et on ne sait pas ce
que l’on va trouver au bout. Personne ne sait. D’où l’intérêt de l’essayer d’abord dans le
jeu.

– “de la même façon que les gens de Dakar se mettent à leur place en jouant leur rôles,
ils vont maintenant se mettre à la place des gens de Dakar et essayer de choisir des
règles/papiers du jeu”

– Onne leur demandepas de donner une position qui serait ensuite leur position “officielle”
: “c’est un apprentissage, ils vont avoir de premières idées, ils vont les essayer dans le
jeu, ils vont se rendre compte qu’elles ont des effets qu’ils n’avaient pas prévu, ils vont
recommencer. comme lorsqu’on apprend à faire du vélo : la première fois qu’on essaie,
on sait que l’on va tomber, mais on sait aussi que c’est comme cela que l’on va apprendre
: il faut oser essayer même si on sait que ”on” n’a pas encore trouver la bonne idée”.

– C’est tout l’intérêt du jeu : essayer des règles qui risquent d’être mauvaises sans avoir les
catastrophes que l’on aurait eu si on les avait essayé dans la réalité.

• Puis, on distribue une fiche donnant toute la complexité des questions à se poser pour définir
un “papier” ou un “zonage” leur est distribuée (cf. annexe 1), en français et en Pulaar, en leur
expliquant qu’il s’agit juste pour l’instant de découvrir (et non de maı̂triser) la complexité des
questions qu’il faudra (un jour) se poser. Mais que l’on reprendra progressivement tout cela
avec eux, petit à petit.

• Puis, on leur demande de réfléchir à tout cela entre eux, jusqu’à la prochaine rencontre, à
laquelle ils devront arriver avec de premières propositions collectives de règles foncières à
tester dans le jeu de simulation. Cette prochaine rencontre aura lieu à Barkedji, les 5 et 6
Octobre, et rassemblera des “délégués” des différents endroits où ont été réalisés les ateliers :
Malene Niani, Belel Tuflé et Dayane Gueloldé..
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2. Diagnostic participatif des enjeux fonciers de chaque partie prenante Formuler le plus précisément
possibles les différents enjeux que les différentes parties prenantes ressentent concernant les règles
d’accès aux ressources naturelles et au foncier.

• Quelle situation veut-on atteindre dans 20 ans ?

• Qu’est ce qui est bien, qui marche bien, qu’il faudrait conserver ?

• Qu’est ce qui mérite amélioration, qui n’est pas bon, qu’il faudrait améliorer ?

• Pourquoi faut-il changer quelque chose d’après eux ? Quelles sont les évolutions du
contexte, de leur situation, qui peuvent impliquer des évolutions des règles d’accès

3. Restitution des enjeux décrits dans les autres ateliers, par les autres parties prenantes, à l’issue du
même type de discussion :

• Une diversité, peut-être hétéroclite :

– Depuis l’ouverture à l’investissement jusqu’à la préservation de la paix sociale, en passant
par durabilité environnementale ;

– Selon les enjeux d’un exploitant, d’un gestionnaire de terroir, d’un responsable régional,
puis d’un responsable national

– Selon un point de vue écologique, social, économique, culturel

• Reconnaissance de l’existence d’une diversité de points de vue sur les enjeux, selon l’échelle
et la région, au niveau régional, national et sous régional, selon le métier, la discipline, la
priorité (sociale, environnementale, économique, culturelle)

• Information sur les enjeux fonciers exprimés à différents niveaux : restitution de la liste
d’enjeux en cours de constitution, à partir des ateliers précédents :

• Validation de la réalité de cette diversité de points de vue, à prendre en compte et à faire
dialoguer (sous entendu : il peut y avoir des solutions gagnant-gagnant, à explorer grce à la
simulation participative)

(a) Analyse des enjeux présentés : discussion, amendement, enrichissement, validation (y
compris leur ordre de priorité entre ces enjeux et le comparer à ceux des autres, etc.)

(b) Des enjeux aux outils, un chemin délicat :

• Une fiche donnant toute la complexité des questions à se poser pour définir un “papier” ou
un “zonage” leur est distribuée, en langue locale si possible, en leur expliquant qu’il s’agit
juste pour l’instant de découvrir (et non maı̂triser) la complexité des questions qu’il faudra se
poser. Mais que l’on reprendra progressivement tout cela avec eux, petit à petit.

• Toujours pour illustrer cette découverte d’outils, on précise alors le type d’avantages et in-
convénients quepeuvent entraı̂nerdeuxde cesoutils, le zonage règlementaire et l’appropriation
personnalisée :

Exemples :

(a) Pour limiter la pression pastorale sans aboutir à des couts d’accès à l’eau trop élevés, on
peut définir par exemple au départ le nombre d’éleveurs pouvant avoir accès au terroir, puis
distribuer le nombre de “papiers” correspondants à des éleveurs, selon des proportions à
négocier (p.e. transhumants/autochtones, entre chaque campement). Avantage : fixe de façon
sûre la pression pastorale sans que cela soit difficile à supporter financèrement ; Inconvénient
: même si le “papier” est gratuit au départ, il y aura toujours un marché informel qui va se
développer et cela risque d’être les plus riches qui finissent par récupérer les droits d’accès.

(b) Un zonage distinguant zone de terroir (sans “papiers ) et zone d’intensification (avec “pa-
piers”)

(c) Un zonage distinguant élevage et agriculture Insister toujours sur le fait que ce ne sont
pas de bonnes solutions, mais seulement des exemples des questions à se poser avant de
réfléchir “outils”, a cause de la complexité des effets induits possibles. La bonne démarche
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est de commencer par s’entendre sur les enjeux, puis sur les règles effectives d’accès pouvant
répondre à ces enjeux et ensuite, sur les outils permettant de mettre en œuvre ces règles (où,
là, une connaissance des différents outils possibles leur sera transmise).

4. Apprentissage par l’action : mise en jeu du prototype

(a) Rappel de l’enjeu de ce “jeu” :

• “Travailler sur la même table en haut, en bas et ailleurs : un support commun de diag-
nostic,

• que l’on construit ensemble (entre “haut” et “bas”, et avec “ailleurs”) et progressivement,
en intégrant au fur et à mesure les points de vue des uns et des autres

• pour évaluer ensemble les possibilités de règles les plus adaptées
• Donc, qu’il permette de visualiser, et suivre les évolutions, de tous les enjeux repérés dans

les étapes précédentes :
– Comprendre les différents enjeux possibles d’une politique foncière
– Comprendre lesdifférentsmécanismes concretspossiblespour cespolitiques foncières
– Analyser collectivement les effets des différents types possibles de politique foncière,

en fonction des différents points de vue sur les enjeux à atteindre (accroissement mise
en valeur, sécurisation des producteurs, préservation environnement...)

– Réaliser ces analyses avec les concepteurs des politiques

(b) Utilisation expérimentale du prototype de jeu, pour une simulation participative sur un cycle
annuel

19.3 Déroulement du jeu de simulation

19.3.1 Présentation pédagogique, élément par élément, de la plateforme prototype
déjà construite

Les supports spatiaux des activités

• des cartes qui ont été faites par des participants comme eux, dans d’autres ateliers;

• plusieurs régions, de type différent (Ferlo, Sine Saloum, Fleuve,), pour prendre en compte les
effets des politiques foncières dans des régions différentes ainsi que les déplacements (hommes et
animaux) entre zones ;

• des couleurs représentant schématiquement les différents types de milieux agro-pédologiques ;

• un parcellaire schématique, pour distinguer les différents espaces à exploiter.

La visualisation des activités

• des pions de couleur différentes pour chaque type d’activité (vert : agriculture, bleu : élevage, .), à
positionner sur les parcelles ;

• que l’on déplace selon les saisons, pour exploiter les ressources des parcelles.
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La visualisation des enjeux

• économiques familiaux (autosuffisance, “cagnotte” de chaque famille) ;

• économiques globaux (productions et productivités aux échelles locales, régionales et nationales)

• sociaux : préservation de l’accès aux ressources naturelles et aux revenus des différents groupes
introduits dans le jeu (exploitations de différentes taille, groupes défavorisés), paix sociale

• culturels : interactions entre joueurs (liens sociaux), responsabilités collectives de gestion intro-
duites dans le jeu, types de règles collectives mises en œuvre

• environnementaux : indicateurs visibles d’état des différentes ressources naturelles, sous tendus
par des dynamiques écologiques formalisées de façon participative.

La capacité de tout modifier facilement, d’introduire leurs idées et de les tester

• sur les logiques des activités ;

• sur les règles collectives d’accès aux ressources et de répartition des responsabilités de gestion

• sur les aléas à introduire dans la simulation (pluviométrie, feu de brousse, modification des cours
des intrants ou productions)

• sur l’introduction d’autres types d’usagers (agro business, sylviculture, migrants agricoles) et
d’usages (bois de feu, chasse, cueillette de gomme arabique)

L’intégration de deux dimensions importantes pour la réflexion sur les politiques foncières au Sahel

• une perception multi niveaux des acteurs impliqués, des enjeux et des indicateurs ;

• la question de la mobilité (des troupeaux et des hommes) et l’évaluation des modalités de sa
pertinence.

19.3.2 Définition du scénario à simuler

Construction par les participants d’un scénario de règles (qu’ils souhaitent tester)

• Présentation des trois fonds de carte pour la spatialisation des règles d’acc ès aux ressources,
surtout de leur logique :

1. Entrée par les règles effectives d’accès plutôt que par les outils (affectation, réserve) ;

2. poser comme possibilité a priori (ils peuvent s’ils le veulent le supprimer) le multi usages
d’un même espace et la distinction de règles différentes par saison ;

3. Une représentation permettant une souplesse de construction : distinction des différents
usages extensifs avec souplesse de suppression de certains d’entre eux; introduction d’usages
intensifs et de leurs effets sur les autres accès possibles aux ressources du même espace ;
modes d’accès aux points d’eau

• Puis on leur pose les questions suivantes, sur la bibliothèque de droits/règles qu’ils retiennent pour
leur premier scénario :

– Quels usages ont besoin d’une attention particulière (préserver, favoriser) ?

– Quels usagers ont besoin d’une attention particulière (préserver, favoriser) ? Quelles règles pour y
parvenir ?
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– Quelles “brousses” (espaces, zones) ont besoin d’une attention particulière ? Quelles règles pour y
parvenir ?

– Quelles ressources ont besoin d’une attention particulière ? Quelles règles pour y parvenir ?

– Quelles règles pour faciliter l’augmentation de la production ?

– Quels usages globalement autoriser ?

– Qui est autorisé à pratiquer ces différentes activités à chaque saison (c’est-à-dire quels usagers
globalement autorisés) ?

• Rappel du contenu de la Fiche enjeux fonciers: ont ils pensé à int égrer dans leurs choix ci-dessus
les enjeux (des autres) qu’ils trouvent pertinents ?

• l’animateur rempli le recto de la Fiche 3 à partir de leurs réponses

– type d’usages retenus ;

– extensif/intensif ;

– saisons concernés ;

– groupe concerné (tous, local, femmes, jeunes) ;

– modalités d’attribution (paiement) ;

– . . .

19.3.3 Choix de distribution spatiale de ces règles

Après avoir rappelé la logique retenue de formalisation des règles (cf. point précédent), l’animateur
demande auxparticipants dedistribuer ces droits dans l’espace (zonage) pour chaque saison (l’animateur
note leurs choix au verso de la Fiche 3) :

1. Les droits extensifs sont inscrits par défaut sur les parcelles de trois fonds de carte (un par saison),
sous forme de ronds colorés

2. Des petits post-it carrés de couleur neutre (jaune pale) sont prévus pour oblitérer certains de ces
ronds si les participants décident de supprimer les droits qu’ils représentent

3. Les droits intensifs sont sous forme de post-it de couleur plus intense et de la taille d’une parcelle
(permettant de supprimer les droits extensifs lorsque le post it est collé par-dessus), de couleur
différente par activité. 2

4. Les droits d’accès sélectifs sont représentables par une gommette colorée de forme ronde, placée
au centre des ronds (usages) concernés, la couleur correspondant au type de sélection de l’accès
(codes couleurs définis sur la fiche 3)

5. On peut aussi décréter l’interdiction totale d’accès à une parcelle (type mise en défens) avec des
post it de couleur vert pale de la taille de la parcelle.

6. D’autres types de post-it sont disponibles, pour spatialiser toute autre forme de droit qu’ils
définiraient

19.3.4 Simulation du scénario retenu de règles foncières

1. Lancement du jeu :

2remarquons qu’il s’agit ici d’un droit de mise en en valeur, pas d’un titre de propriété (qui est un outil particulier parmi
d’autres pour formaliser ce droit)
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• Calcul de la distribution des effectifs en joueurs par terroir (via Fiche 1)

• Présentation des trois supports terroir (différentes régions ; expression mobilité hommes et
troupeaux) :

– présentation de la structure en cases, équivalente de parcelles
– illustration par la structuration en trois régions aux proportions différentes en types de
“brousse”

• Calcul de la distribution des effectifs en joueurs par terroir (via Fiche 1)

• Distribution des gobelets “familles” à chaque joueur, chacun personnalisé avec un logo
différent (du type marque de bétail)

• Distribution des cartes de main d’œuvre disponible à chaque famille, en fonction des propor-
tions du calibrage de la Fiche 1

• Présentation des pions activités (élevage : pion bleu ; agriculture : pion vert ;)

• Chaque joueur choisit sa stratégie de répartition de sa force de travail entre agriculture et
élevage et au niveau de l’élevage entre bovins et petits ruminants.

2. Au début de la saison des pluies

• Chaque joueur réfléchit à sa stratégie élevage/agriculture puis décide d’une localisation spa-
tiale de ses activités en fonction des droits possibles sur les différentes parcelles.

• On insiste sur le fait que les productions obtenues seront fonction du type de brousse, de la
pluviométrie, etc.

• Jet de dé : possibilité d’introduction d’un nouvel exploitant (Fiche 1)

• L’animateur marque la pression pastorale : il positionne des marqueurs de page verts (SP)
sur les parcelles où il y a eu des troupeaux (1/ troupeau), en expliquant l’intérêt de repérer la
pression sur les ressources (état des ressources)

3. À la fin de la saison des pluies

• Jet de dé : pluviométrie de la saison (Fiche 1)

• L’animateur distribue dans les gobelets les boules (production) produites par chaque joueur,
en fonction (Fiche 2) :

• des règles de productivité selon type de milieu et pluviom étrie,

• des effets négatifs possibles des interactions agriculture élevage (trop grande proximité entre
troupeaux et cultures),

• des effets négatifs de la pression pastorale

• des effets négatifs des modalités d’accès à l’eau (accès difficile ou impossible)

• Tableau 1A0. (penser à repérer les terroirs, selon leur position et leur région) On y note les
productions obtenues

Famille + (3)
Famille X (1)

Total/terroir NE-T1
Total/Région NE
Agrobusin n1

Total/Ville (agrobusiness)
Total Etat

• Puis retrait des besoins pour auto consommation : l’animateur retire à chacun les boules
correspondantes, distribue les “carton rouge” à ceuxqui n’ont pas atteint l’autoconsommation.

• Tableau 1A0. On note dans le premier tiers de la case la couleur (rouge/orange/vert) corre-
spondant à l’indice d’auto suffisance alimentaire
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• On peut vendre de la force de travail pour améliorer l’auto consommation

4. Au début de la saison fraı̂che

• Chaque joueur réfléchit à sa stratégie élevage/agriculture puis décide d’une localisation spa-
tiale de ses activités

• Chaque joueur cherche à poser ses pions “activités” là où il l’a décidé;

• L’animateur marque la pression pastorale : il positionne des marque page oranges sur les
parcelles où il y a eu des troupeaux (1/troupeau).

5. À la fin de la saison fraı̂che

• L’animateur distribue dans les gobelets les boules (production) produites par chaque joueur,
en fonction (Fiche 2) :

– des règles de productivité selon type de milieu et pluviométrie,
– des effets négatifs possibles des interactions agriculture élevage (trop grande proximité
entre troupeaux et cultures),

– des effets négatifs de la pression pastorale
– des effets négatifs des modalités d’accès à l’eau (accès difficile ou impossible)

• On note les productions obtenues par chacun en couleur (production par activité) les boules
obtenues par famille

• Puis retrait des besoins pour auto consommation : l’animateur retire à chacun les boules
correspondantes, distribue les “carton rouge” à ceuxqui n’ont pas atteint l’autoconsommation.

• Tableau 1A0. On note dans le deuxième tiers de la case la couleur (rouge/orange/vert) corre-
spondant à l’indice d’auto suffisance alimentaire et renseigner en parallèle le verso de la Fiche
4 de suivi

6. Au début de la saison sèche chaude

• Chaque joueur réfléchit à sa stratégie élevage/ agriculture puis décide d’une localisation
spatiale de ses activités

• Les feux de brousse apparaissent (cf. Fiche 1) : il faut repositionner ses activités, en fonction
des règles d’accès existantes

• Chaque joueur cherche à poser ses pions “activités” là où il l’a décidé.

• L’animateur marque la pression pastorale : il positionne des page markers rouges sur les
parcelles où il y a eu des troupeaux (1/troupeau).

7. À la fin de la saison sèche chaude

• L’animateur distribue dans les gobelets les boules (production) produites par chaque joueur,
en fonction (Fiche 2) :

– des règles de productivité selon type de milieu et pluviométrie,
– des effets négatifs possibles des interactions agriculture élevage (trop grande proximité
entre troupeaux et cultures),

– des effets négatifs de la pression pastorale
– des effets négatifs des modalités d’accès à l’eau (accès difficile ou impossible)

• Tableau 1A0. On y note les productions obtenues par chacun en couleur (production par
activité) les boules obtenues par famille

• Puis retrait des besoins pour auto consommation : l’animateur retire à chacun les boules
correspondantes, distribue les “carton rouge” à ceuxqui n’ont pas atteint l’autoconsommation.

• Tableau 1A0. On note dans le dernier tiers de la case la couleur (rouge/orange/vert) corre-
spondant à l’indice d’auto suffisance alimentaire et renseigner en parallèle le verso de la Fiche
4 de suivi.
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8. Bilans de l’année

• Chacun des joueurs peut conserver le capital qui lui reste ou l’investir sur plus d’activités

• Bilan quantitatif des activités réalisées et du capital produit par terroir : faire les sommes (tel
que ci-dessous) dans Tableau 1 A0 :

– Faire les totaux de chaque production ;

– Puis surligner en rouge, orange et vert le niveau d’auto satisfaction de chaque famille (lié
à auto suffisance)

• Bilan collectif

– bilan comparatif des différences: pour chaque activité, pour bien jouer (et gagner),

∗ Quels types de milieux doit on utiliser en fonction des saisons ?

∗ Quelles limites dues à la main d’œuvre disponible ?

∗ Quelles limites dues au capital disponible ?

– analyse des résultats: Dans la simulation quels types d’acteurs (de joueurs), quels types d’usages
ont ils étémieux préservés ? Si l’on avait continué la simulation avec ces règles collectives, comment
cela risquait de continuer à évoluer ? Vers quelle diversité d’activités se dirigeait-on ? Vers quel
type de structuration sociale et économique ? Vers quels niveaux de productivité ? Vers quel type
d’environnement naturel ?

– selon différents points de vue :D’après eux, à partir de quels résultats chaque point de vue est
il satisfait ? Chef de famille ? Responsable local ? Responsable régional ?Etat ? Scientifique ?. . .
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– revenir aux indicateurs existant sur les tableaux:

9. Amélioration de la plateforme

Expliquer que maintenant que le support de simulation est compris et qu’ils saisissent bien l’enjeu
de l’exercice, ils peuvent vérifier si le jeu permet de visualiser et de suivre les différents enjeux
identifiés sur le foncier, ce qui manque en précisions pour que les questions qu’ils se posent sur les
politiques foncières (enjeux) puissent être traitées dans ce type de plateforme :

• L’amélioration des indicateurs de la simulation : Les différents enjeux répertoriés peuvent ils
être suivis de façon suffisamment subtile pour jauger des différences entre scénarios de sim-
ulation ? Pour chacun des enjeux identifiés, première réflexion collective pour repérer quels
indicateurs concrets pourraient permettre de (mieux) les suivre et les évaluer dans un scénario
de régulation ? Réfléchir à traduire chacun en effets observables sur le terrain : du point de
vue d’un producteur local, d’un investisseur, d’un responsable foncier, d’un gestionnaire du
terroir, d’un responsable régional ou national, d’une direction de l’environnement,

• L’amélioration de la plateforme de simulation : Voir dans quelle mesure le jeu pourrait
permettre de suivre les enjeux spécifiques qu’ils y ont ajoutés (par exemple les droits d’accès
aux puits). Les différents éléments qu’ils jugent pertinents dans le choix d’un scénario de
régulation peuvent ils être introduits dans ce type de simulation ? Quelles améliorations
peut-on y intégrer ?...

• Enfin, l’évaluation des profils nécessaires de participants :

– Pour intégrer les différents types d’usagers : Dans la séance de “jeu”, ont-ils cherché à
reproduire la diversité des stratégies des différents types d’usagers présents sur un terroir
type ou simplement à mettre en œuvre leurs stratégies propres habituelles ? Pensent ils
qu’il faut intégrer dans le jeu les stratégies d’autres types d’acteur pour que ce soit plus
réaliste ? Préfèrent ils les jouer eux-mêmes ont intégrer ces autres acteurs dans le jeu pour
qu’ils les jouent eux-mêmes ?...

– Pour faire participer aux séances tous les acteurs utiles à une réflexion sur une politique
foncière : Pour imaginer et tester de règles foncières, quels acteurs qui ne participent pas
pour l’instant à nos discussions et qu’ils pensent intéressants de faire participer ?

10. Utilisation de la grille de lecture et d’analyse pour une prospective participative multi-niveaux
sur les politiques foncières
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• Rappel des enjeux de la grille de lecture et d’analyse :
– Mobiles et besoins des différents types d’usagers;
– Diversité des points de vue sur le foncier
– Représentation multi-niveau des effets

• Présentation de la grille de lecture de “réussite” d’une politique foncière (“indicateurs” visu-
alisables des différents enjeux) :

Caractérisation des indicateurs
Enjeu Nouveau terroir Nelle région Pays
Auto suffisance alimentaire T1 prop.rouge/orange/vert

T2 A idem
T3
T4 B idem
T5 C idem idem

Productions totales
Production par activité
État des RN
Paix sociale
Inégalités entre types
d’exploitants
. . .

• Utilisation de la grille pour comparer les résultats des simulations de scenarii de politiques
foncières:
– Rappeler les scénarios de règles mises en œuvre dans chaque simulation (compulser les
Fiches 3 de chaque simulation) ;

– Revenir à la liste des enjeux et identifier les indicateurs quimanquent encore et en discuter
• Après usage, faire réfléchir les participants au contexte foncier initial à poserdans la simulation

– Quelle distribution initiale des terres pourrait-on intégrer pour une simulation ensuite
plus intéressante ?

– Quels types de transaction (y compris collectives) ont-ils spontanément utilisés ? Faut-il
en intégrer formellement dans les règles du jeu ?

– Quels types de droits et de règles ont-ils spontanément utilisés ? Faut-il en intégrer
formellement dans les règles du jeu ?

– Quels types d’organisation pour les négociations foncières ont-ils spontanément utilisés
? Par famille ? Par lignage ?

– Faut-il intégrer formellementdans les règlesdu jeudes typesde responsabilité et d’autorité
foncière ? Quels rôles supplémentaires devraient être introduits (PCR par exemple) ?

• Transférer si possible à des correspondants locaux (agents techniques, membre d’ONG) la
capacité de présenter la plateforme, pour plus grande diffusion etmême utilisation autonome.
Si possible, leur demander pour la prochaine fois d’écrire une explication en langue locale sur
comment jouer le jeu (règles du jeu), que l’on reproduira ensuite (une fois corrigé à la séance
suivante) pour qu’ils puissent le diffuser localement aux autres personnes qu’ils souhaitent
associer : constitue une phase supplémentaire d’appropriation collective des règles du jeu,
par diffusion entre ceux qui ont mieux compris et les autres (et d’évaluation de leur niveau
d’appropriation).

19.4 Premiers résultats

Il s’agit de résultats provisoires, issus du premier atelier, qui seront confirmés et développés à l’atelier
suivant.
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19.4.1 Des idées originales de régulation collective, à développer

a) Pour s’adapter à l’incertitude climatique et l’extrême variabilité spatiale et temporelle des ressources
naturelles, les paysans proposent, en puisant dans leurs principes traditionnels de gestion, de construire
un système complexe de régulation se basant sur les principes suivants : deux types de régulation :

⇒ l’une, souple, pour les combinaisons espaces-temps où la situation de compétition est moyenne
(p.e. la plupart des espaces en année à pluviométrie bonne). Dans ces contextes, toutes les activités sont
autorisées partout, mais l’espace est divisé en zones “de priorité”, qui définissent les responsabilités : par
exemple, dans les zones “à priorité agricole”, les éleveurs ont le droit de venir mais ils sont responsables
des dégts qu’ils pourraient occasionner aux champs (fourrière, amendes), tandis que dans les zones “à
priorité élevage” les agriculteurs ont le droit d’installer des champs mais sont responsables d’empêcher
leur dégradation par els troupeaux (surveillance du champ, clôture).

⇒ Un autre type de régulation pour les “couples espace-temps” critiques (les bas fonds lorsque la
pluviométrie est mauvaise, certaines ressources en saison sèche, les points d’eau). Dans ces contextes-là,
la gestion doit être collective et selon des règles très strictes.

b) La garantie bancaire (pour les investissements productifs) est habituellement assurée par des biens
immobiles (immobilier, propriété foncière) alors que vu les conditions climatiques du Sahel, ce sont
les biens mobiles (troupeaux par exemple) qui sont les plus sûrs, puisqu’ils sont moins sensibles aux
variations climatiques car on peut les déplacer vers des zones moins touchées au moment des crises
de sécheresse. Il serait ainsi utile d’imaginer un système de garantie bancaire reposant sur des biens
mobiles ou leur production.

19.4.2 Une première caractérisation économique des différents types de produc-
tions

Au Sénégal, l’affectation foncière est conditionnée pour l’instant à une mise en valeur de la parcelle,
qu’il faut justifier. Or, au Sahel, les zones les plus productives sont différentes d’une saison à l’autre et
d’une année à l’autre (selon le type de pluviométrie) : les systèmes les plus productifs sont donc ceux
qui n’investissent pas sur une seule parcelle mais qui utilisent de façon la plus stratégique possible des
espaces répartis dans le pays. Ceci est particulièrement vrai pour les productions animales, qui peuvent
avoir une productivité doublée selon le type de déplacements qui est mis en œuvre. Les conditions
d’intensification de la production ne sont donc pas qualifiables en franc à l’hectare mais en type de
pratique technique, comme montré ci après pour l’élevage.

Élevage

Bovin:

• si pratique moyenne (peu de transhumance, pas d’accès aux zones les plus riches du sud du pays
durant la saison ou les années les plus sèches) : 75 000 FCFA/an ou 90 000 F CFA/an (dépend du
sexe du veau)

• si pratique performante (déplacements nombreux pour être sur les zones les plus riches à chaque
saison) : 125 000 ou 150 000 F CFA/an (dépend du sexe du veau)

Ovin

• si pratique moyenne (peu de transhumance, pas d’accès aux zones les plus riches du sud du pays
durant la saison ou les années les plus sèches) : 35 000 ou 15 000 F CFA/an (dépend du sexe de
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l’agneau)

• si pratique performante (déplacements nombreux pour être sur les zones les plus riches à chaque
saison) : 70 000 F 30 000 F CFA/an (dépend du sexe de l’agneau)

Caprin

• si pratique moyenne (peu de transhumance, pas d’accès aux zones les plus riches du sud du pays
durant la saison ou les années les plus sèches) : 20 000 FCFA/an ou 10 000 F CFA/an (dépend du
sexe du chevreau)

• si pratique performante (déplacements nombreux pour être sur les zones les plus riches à chaque
saison) : 40 000 ou 20 000 F CFA/an (dépend du sexe du chevreau)

Agriculture

Mil:

• si bonne pluviométrie : 1 T/ha

• si pluviométrie moyenne : 0,8 T/ha

• si pluviométrie mauvaise : 0,4 T/ha

Arachide :

• si bonne pluviométrie : 2 T/ha

• si pluviométrie moyenne : 1,5 T/ha

• si pluviométrie mauvaise : 1 T/ha
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Figure 19.3: Les intéressés en action
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Figure 19.4: Le jeu lui même

Figure 19.5: Types de brousses
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Figure 19.6: Les grands troupeaux et l’accès à l’eau

Figure 19.7: Une agriculture très pauvre
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Figure 19.8:
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[199] M. Ilić. From hierarchical to open access power systems. Proceedings of the IEEE, 95(5):1060–1084,
2007.

[200] ILOG. ILOG CPLEX 10.0 User’s Manual. ILOG S.A., Gentilly, France, 2005.

[201] H.I. Inyang, editor. Bridging the gaps for global sustainable development. International Conference on
Energy, Environment and Disasters, Charlotte, NC, July 2005.

[202] A. Ipakchi and F. Albuyeh. Grid of the future. IEEE power and energy magazine, 7:52–62, 2009.

[203] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. Desaulniers,
J. Desrosiers, and M.M. Solomon, editors, Column Generation, pages 33–65. Springer, 2005.

[204] M. Jebalia, A. Auger, and P. Liardet. Log-linear convergence and optimal bounds for the (1+1)-ES.
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