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ABSTRACT
Many malicious activities on the Web today make use of
compromised Web servers, because these servers often have
high pageranks and provide free resources. Attackers are
therefore constantly searching for vulnerable servers. In this
work, we aim to understand how attackers find, compromise,
and misuse vulnerable servers. Specifically, we present heat-
seeking honeypots that actively attract attackers, dynami-
cally generate and deploy honeypot pages, then analyze logs
to identify attack patterns.

Over a period of three months, our deployed honeypots,
despite their obscure location on a university network, at-
tracted more than 44,000 attacker visits from close to 6,000
distinct IP addresses. By analyzing these visits, we char-
acterize attacker behavior and develop simple techniques to
identify attack traffic. Applying these techniques to more
than 100 regular Web servers as an example, we identified
malicious queries in almost all of their logs.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms
Security

1. INTRODUCTION
Compromised Web servers are commonly utilized for con-

ducting various nefarious activities such as serving phishing
and malware pages, acting as open proxies, and redirecting
user traffic to malicious sites. Recent reports suggest that
almost 90% of Web attacks take place through legitimate
sites that have been compromised [4]. In addition, attackers
populate compromised servers with content that contains
popular search keywords in order to poison search results
from search engines. Over 50% of these keywords have at
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least one malicious link to a compromised site in the top
search result page [7].

While it could be argued that attackers can set up their
own Web servers, compromised Web servers are rather de-
sirable as they often have high pageranks. Hence, anything
hosted on these servers would be more trusted and more
likely to attract traffic than content hosted on a new server.
Furthermore, compromised Web servers can communicate
with a large number of client machines that are behind NATs
and firewalls, which would otherwise be hard for attackers to
reach directly. Finally, attackers are able to utilize these re-
sources for free while simultaneously reducing the likelihood
of being tracked down by security analysts.

Understanding how attackers identify Web servers run-
ning vulnerable applications, how they compromise them,
and what subsequent actions they perform on these servers
would therefore be of great value. An attractive approach
to studying attack patterns and attacker behavior in this
setting relies on honeypots, specifically honeypots that can
emulate Web applications. These honeypots will be run on
Web servers, so are a form of server-based honeypots. Unlike
client-based honeypots, which can initiate interactions with
attackers (by visiting suspicious servers, executing malicious
binaries, etc.), server-based honeypots are passive, and have
to wait for attackers. The first challenge is therefore how to
effectively get attackers to target these honeypots. The next
challenge is how to select which Web applications to emu-
late. There are a large number of vulnerable applications
available, and actually installing and running all of them
would be time-consuming, human-intensive, and therefore
not scalable.

To address these challenges, we design heat-seeking Web
server-based honeypots. As the name suggests, we actively
adapt our honeypots to emulate the most popular exploits
and construct pages that are similar to the ones targeted
by attackers. For this purpose, our heat-seeking honeypots
have four components. First, they have a module to identify
Web pages that are currently targeted by attackers. Previ-
ous work has shown that many attackers find vulnerable
servers with the help of Web searches [14, 17]. Therefore,
we look through the search logs of the Bing search engine [1]
to identify queries issued by attackers. Second, we generate
Web pages based on these queries without manually setting
up the actual software that is targeted. We then adver-
tise these links through search engines, and when we receive



attack traffic we log all interactions with the attackers. Fi-
nally, when analyzing the honeypot logs, we design methods
to separate attacker traffic from crawler traffic and legiti-
mate user traffic.

Our heat-seeking honeypots have the following attractive
properties:

1. Honeypot pages can be generated automatically with-
out understanding the latest exploits or knowing which
software is affected.

2. Web pages are put up to attract attackers, without the
heavy overhead of installing the real software. After
analyzing attacker visits, if we need additional infor-
mation about a particular attack, we can set up a high-
interaction honeypot by installing the actual software.

3. Since the honeypot pages look identical to pages gen-
erated by actual software, the attackers assume the
presence of the software and conduct attacks. This
allows us to observe a wide range of attacks.

We implement and deploy our heat-seeking honeypot un-
der a personal home page at the University of Washing-
ton. Despite its relatively obscure location, during the three
months of operation it attracted more than 31,000 attacker
visits from 6,000 distinct IP address. In comparison to a
setup where real vulnerable applications are installed, our
honeypot pages get a similar amount of traffic, albeit at a
much lower setup cost. We observe a wide variety of at-
tacks including password guesses, software installation at-
tempts, SQL-injection attacks, remote file inclusion attacks,
and cross-site scripting (XSS) attacks.

By analyzing the attack traffic at our honeypots, we char-
acterize attacker behavior and general trends in Web at-
tacks. We also develop simple techniques to distinguish
legitimate requests from attack requests. Applying these
techniques to a set of random Web servers on the Internet,
we identify malicious accesses in all of their logs, sometimes
accounting for 90% of the entire traffic.

The rest of the paper is structured as follows. We discuss
related work in Section 2. In Section 3, we describe the de-
sign and implementation of our honeypots. We then present
the results of our honeypot deployment in Section 4. We
discuss ideas for increasing the effectiveness of honeypots
and securing Web applications in Section 5 and conclude in
Section 6.

2. RELATED WORK
Honeypots are usually deployed with the intent of cap-

turing interactions with unsuspecting adversaries. The cap-
tured interactions allow researchers to understand the pat-
terns and behavior of attackers. For example, honeypots
have been used to automate the generation of new signa-
tures for network intrusion detection systems [13, 20], collect
malicious binaries for analysis [9], and quantify malicious be-
havior through measurement studies [15].

Client-based honeypots are used to detect malicious servers
that attack clients, typically by exploiting browser vulnera-
bilities or by performing drive-by downloads [15, 21]. Server-
based honeypots such as ours, on the other hand, emulate
vulnerable services or software, and wait for attackers.

Further, depending on the level of interaction with the ad-
versary, honeypots can be categorized as low-interaction or

high-interaction. Low-interaction honeypots such as Hon-
eyd [16] emulate some specific portion of the vulnerable
service or software. These honeypots function only when
the incoming requests match specific known patterns. High-
interaction honeypots, on the other hand, can handle all
requests, and they reply with authentic responses through
the use of sandboxed virtual machines running the actual
software [10].

Several Web honeypots have been developed to capture
attack traffic directed at vulnerable Web applications. The
Google Hack Honeypot [8] contains a dozen templates for
common Web applications, including a high-interaction PHP-
based shell. Other recent honeypots [2, 3] add additional
templates and also include a central server where all hon-
eypot logs are collected. They also save copies of files that
attackers might try to upload, for later analysis. However,
these Web honeypots emulate a limited number of vulner-
abilities and require manual support, thereby not allowing
them to scale easily.

The honeypot by Small et al. [18] uses natural language
processing to generate responses to attacker requests based
on a training set containing vulnerable Web pages. The
heat-seeking honeypots are simpler and work with any soft-
ware without training. They also capture a wider class of
attacks, such as attacks on sites that are discovered by at-
tackers because of the specific directory structure used by
the vulnerable software.

3. SYSTEM DESIGN
We want heat-seeking honeypots to attract many attack-

ers in order to study their behavior. We also want our
honeypots to be generic across different types of vulnera-
ble software and to operate automatically—from generation
of Web pages to detection of attack traffic. Human experts
are needed only to do post-analysis of detected attack traffic.

In our design, the heat-seeking honeypots have four com-
ponents. The first component is to identify which types of
Web services the attackers are actively targeting. The sec-
ond component is to automatically set up Web pages that
match attackers’ interests. The third component advertises
honeypot pages to the attackers. When the honeypot re-
ceives traffic from attackers, it uses a sandboxed environ-
ment to log all accesses. Finally, the fourth component em-
bodies methods to distinguish attacks from normal users and
crawler visits, and to perform attack study.

In the rest of this section, we explain these components
in detail. Some components can be implemented in differ-
ent ways. We discuss design tradeoffs and then explain the
design choices we made in our prototype system.

3.1 Obtaining attacker queries
Attackers often use two methods to find vulnerable Web

servers. The first is to perform brute-force port scanning
on the Internet, and the second is to make use of Internet
search engines. It is reported that vulnerable Web servers
are compromised immediately after a Web search reveals
their underlying software [14]. For example, a query phpiz-

abi v0.848b c1 hfp1 to a search engine will return to the
attacker a list of Web sites that have a known PHP vulner-
ability [11]. Because of the convenience of this approach,
many attackers adopt it, and our system is designed to at-
tract such attackers.

We use SBotMiner [22] and SearchAudit [12] to automat-
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Figure 1: The architecture of a heat-seeking honeypot. Attacker queries from the feed (1) are issued
to search engines (2). The pages from the search results are fetched (3). These pages are encapsulated
and put up on the heat-seeking honeypot, along with other real software installed on VMs. Then these
pages are advertised and crawled by search engines (4). When attackers issue similar queries to search
engines, the honeypot pages are returned in the search results (5). When attackers interact with the
honeypot (6), all interactions are logged (7) for further analysis.

ically identify malicious queries from attackers in the Bing
log. SBotMiner combines attack queries into groups and
generates regular expressions. Each group is likely to have
been generated by the same attacker, typically using the
same script [22]. An example of a query group is
inurl:/includes/joomla.php [a-z]{3,7}

Here, the attacker is searching for sites where the URL con-
tains a particular string. The second part of the regular
expression corresponds to random English words added by
the attacker to diversify the query results. From each such
group, we pick the most popular query by the attacker and
feed it to the next component.

3.2 Creation of honeypot pages
Given the query used by the attacker to find a set of

servers, how do we create an appropriate honeypot? We
explore a few different approaches and describe their pros
and cons.

(a) Install vulnerable Web software: This approach
sees exactly how the attacker interacts with and com-
promises the software, but it requires a domain expert
to manually identify the target software and set up the
software.

(b) Set up Web pages matching the query: Instead of
setting up the actual software, we can create Web pages
that are similar to the ones created by the software. By
issuing the query ourselves to different search engines
and looking at the Web pages returned in the results,

we can generate pages that match the attacker’s criteria.
The advantage here is that the whole process can be
automated, thus allowing it to scale. The disadvantage
is that it leads to fewer interactions with the attacker.
Since there is no real software running, requests made
by attackers may result in incorrect responses, thereby
limiting the depth of the interaction.

(c) Set up proxy pages: This approach is similar to the
previous one, but instead of creating a copy of the Web
pages in the search results, we set up a transparent
proxy, which forwards all requests to the actual Web-
sites. This proxy setup can be automated, allowing the
approach to scale. While this approach combines the
advantages of the previous two approaches, it has one
major drawback: we will be forwarding to vulnerable
servers malicious traffic that may potentially compro-
mise the servers, thereby assisting in malicious attacks.

In our deployment, we choose a combination of options
(a) and (b), and did not adopt option (c).

For each query obtained in the previous component, we
issue it to the Bing and Google search engines, and collect
the result URLs. We pick the top three results as the ones
we wish to emulate. Our crawler fetches the Web pages
at these URLs, along with the other elements required to
render these pages (such as images and CSS stylesheets).

To ensure that visiting a page will not cause malicious
traffic to be sent to other sites, we strip all Javascript con-
tent from the page and rewrite all the links on the page to



point to the local versions. The HTML content within the
page is encapsulated in a PHP script, which simply returns
the HTML, and logs all information regarding each visit to
a database. Also, we mirror the same URL structure in our
honeypot pages as in the original, so as to match queries
where the attackers specify the URL structure. Consider-
ing again our earlier example, the honeypot page would be
stored at:
http://path/to/honeypot/includes/joomla.php

Any of the random keywords used by the attacker in the
queries (as obtained from our query groups) are also sprin-
kled across the honeypot page in order to increase the chance
of a match.

We also manually install a few common Web applications
that were frequently targeted, learned from the requests to
our honeypot pages. We place these applications in separate
VMs, so that if one of them gets compromised, it does not
affect the working of the other applications. We use virtual
hosts and port forwarding to allow access to the Web servers
running on the VMs. In order to check if an application has
been successfully compromised, we monitor the filesystem
to check if any of the application files have been modified,
or if new files have been added.

3.3 Advertising honeypot pages to attackers
Now that we have set up honeypot pages that attackers

are interested in, our next task is to effectively advertise our
pages.

Ideally, we want our honeypot pages to appear in the
top results of all malicious searches, but not normal user
searches. However, this would require the help of all major
search engines to detect attack traffic in real-time and deliver
our honeypot pages when they detect malicious searches.

In our deployment, we simply submit the URLs of the hon-
eypot pages to the search engines and then boost the chance
of honeypot pages being delivered in response to malicious
queries by adding surreptitious links pointing to our hon-
eypot pages on other public Web pages (such as the home
pages of the authors). The links are added in such a way
that they are not prominently visible to regular users. This
reduces the chance of having regular users randomly reach
the pages, while still allowing search engines to crawl and
index these links. Having these additional links pointing to
the honeypot increases the pagerank of the honeypot pages,
and therefore increases the likelihood of having our honey-
pot URLs returned to the attackers.

Usually, this kind of search engine optimization (SEO)
aimed at increasing pagerank is frowned upon, since having
irrelevant results leads to a worse user experience. However,
we believe our approach to be mostly innocuous because we
specifically target search queries that are issued by malicious
attackers. In particular, legitimate sites are not likely to lose
traffic from ordinary users.

3.4 Detecting malicious traffic
We log all visits to our heat-seeking honeypots. Next,

we need to process the log to automatically extract attack
traffic.

Different from traditional honeypots that operate on dark-
nets or locations where no legitimate traffic is expected, our
honeypots are likely to receive two kinds of legitimate traf-
fic. First, we expect search engine crawlers to visit our pages
since the pages are publicly accessible. Second, once the

pages are indexed by search engines, it is possible (though
unlikely) for regular users to stumble upon our honeypots.

3.4.1 Identifying crawlers
One might imagine it is easy to identify crawler traffic by

looking for known user agent strings used by crawlers. For
example, Google’s crawler uses Mozilla/5.0 (compatible;

Googlebot/2.1;+http://www.google.com/bot.html) as its
user agent. However, this approach does not always work.
As the user agent string can be trivially spoofed, attackers
can also use a well-known string to escape detection. In
fact, we observed several instances of this phenomenon in
our experiments. In addition, there are many user agent
strings used by different crawlers. It is hard to enumerate
all of them, especially for small or new crawlers.

In our work, we identify crawlers by their access patterns—
crawlers typically follow links in the page and access most of
the connected pages. We first characterize the behavior of a
few known crawlers and then use such knowledge to detect
other crawlers.

Characterizing the behavior of known crawlers
We identify a few known crawlers by looking at the user
agent string and verify that the IP address of the crawler
matches the organization it claims to be from. Note that a
single search engine can use multiple IP addresses to crawl
different pages on a Web site. Therefore, we first map IP
addresses to Autonomous Systems (AS) owned by the search
engine and look at the aggregate behavior. Since these are
legitimate crawlers, we use their behavior to define the base-
line.

There are two types of links a crawler would visit: static
and dynamic links. Those automatically generated honey-
pot pages are static ones. Dynamic links are generated by
the real software, where URL arguments can take different
values. For example, a page allows a user to register for an
account has the format:
/ucp.php?mode=register&sid=1f23...e51a1b

where sid is the session ID, which changes with each request.
To distinguish static links from dynamic ones, we look at

histograms of the URLs accessed by known crawlers. For
those that are accessed by only one crawler, we treat them
as dynamic link candidates.

Despite the uniqueness of dynamic links, the structure
of URLs and variables can be expressed using regular ex-
pressions. We feed the dynamic link candidates to the Au-
toRE [19] system for generating regular expressions. This
system allows us to automatically generate a set of patterns
E, describing the eligible values for each variable in differ-
ent URLs. For our previous example, AutoRE gives us the
pattern /ucp.php mode=register sid=[0-9a-f]{32}.

After detecting all dynamic links, we treat the rest as
static links and we record their union to be the set of crawlable
pages C.

Identifying unknown crawlers
We identify other IP addresses (also grouped by AS num-
bers) that have similar behavior as the known crawlers. Here
“similar” is defined in two parts. First, they need to access
a large fraction of pages P in the crawlable pages C. In our
work, we use a threshold K = |P |/|C| for selecting crawlers.
This threshold is easy to set as most crawlers accessed a
vast majority of pages (detailed in Section 4.1.1). Second,
outside of the set of pages in C, crawlers should access only
pages that match regular expressions in E.



3.4.2 Identifying malicious traffic
The static Web pages on the heat-seeking honeypots are

just used to attract attacker visits. From our honeypot logs,
we observed that most of the attacks are not targeting these
static pages. Rather, they try to access non-existent files
or files that were not meant to be publicly accessed, or to
provide spurious arguments to scripts, assuming that the full
software package is installed and running. Since we know the
exact set of links that are present in each of our honeypots,
we can treat this set as our whitelist.

There are also a few links that needed to be added to the
whitelist. Most well-behaved crawlers look for robots.txt

before crawling a site. For sites that do not have robots.txt,
crawler requests violate the whitelist. Another similar type
of access to non-existent files comes from client browsers.
Browsers may request favicon.ico when they visit the site.
This file contains a small icon for the site, which is displayed
by the browser, but not all Web servers have it. Such links
should be added to our whitelist.

Requests for links not in the whitelist are considered sus-
picious. This approach is different from frequently used
blacklist-based techniques, where illegal access patterns are
explicitly constructed by human operators or security ex-
perts. In contrast, whitelist-based approaches can be auto-
mated and thus more generally applied to different types of
software.

This whitelist-based approach can be generalized to iden-
tify malicious traffic for regular Web servers on the Internet.
Each site master could enumerate the list of URLs from the
sites and put them into the whitelist. Alternatively, one
could also use the set of links accessed by a known crawler
(C) as the whitelist, provided every link on the site is acces-
sible1 to the crawler. For dynamic links, one can generate
regular expressions based on normal user accesses, or site
masters can handcraft those. In Section 4.4, we present re-
sults on applying this approach to 100 random Web servers.

4. RESULTS
In this section, we present results from a prototype de-

ployment of our system. We set up heat-seeking honeypots
under a personal home page at the cs.washington.edu do-
main. During three months of operation, our system con-
sisted of 96 automatically generated honeypot Web pages (3
pages each from 32 malicious queries), and four manually in-
stalled Web application software packages. They altogether
received 54,477 visits from 6,438 distinct IP addresses.

We first present results on how we distinguish malicious
visits from legitimate ones. Then we characterize the types
of malicious requests received at the honeypots. In addition,
we compare different honeypot setups and demonstrate the
effectiveness of heat-seeking honeypots in terms of attracting
malicious traffic. Finally, we apply the whitelist approach
learned from operating the honeypots to other Web-logs and
show its effectiveness in identifying malicious requests.

4.1 Distinguishing malicious visits

4.1.1 Crawler visits
To filter traffic from crawlers, we first map IP addresses

to ASes as mentioned in Section 3.4. Then we pick three

1For sites that specify restrictions in robots.txt, the disal-
lowed links should be added to the whitelist.
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Table 1: The number of IP addresses used by the
three big search engines, and the number of pages
crawled.

Figure 2: The number of search engines visiting
each URL in the software honeypot.

popular search engine crawlers, Google, Bing and Yahoo,
and mark the URLs they visit. Not all crawlers visit all
the pages set up by our system; this may be because our
honeypot pages have a relatively low pagerank, so are not
the highest priority for crawlers. Table 1 shows the number
of links visited by each of the major crawlers.

Our Web honeypots, consisting of only static HTML pages,
do not contain any dynamic links. Our software honeypots,
on the other hand, have many dynamic links and we look
at how well our approach of detecting dynamic links works.
For each link that is visited by search engine crawlers, we
count the number of different crawlers that crawled the link.
The idea here is that a static link remains the same across
sessions, so all the crawlers will have crawled the same link.
A dynamic link, however, changes in each session. So, each
crawler will see a slightly different link—therefore each dy-
namic link will be crawled by exactly one crawler.

Figure 2 shows the number of crawlers that access each
link. All three of the big crawlers visit around half of the
links in the software honeypot, but remaining links are vis-
ited by exactly one crawler. We manually checked these
links, and unsurprisingly, these correspond to the dynamic
links in the software. Therefore, the simple approach of
counting the number of crawler visits helps us identify po-
tential dynamic links in the Web application.

The dynamic links are fed to AutoRE, which generates a
total of 16 regular expressions. These determine the values
allowed for each variable in the dynamic link. Some exam-
ples of the kinds of regular expressions generated for these
dynamic links are:
/oscommerce/shopping_cart.php osCsid=[0-9a-f]{32}

/phpBB3/style.php sid=[0-9a-f]{32}

After getting the list of crawler-visited URLs, we examine
our logs to identify other IP addresses that visit URLs that
are a strict subset of the crawlable static URLs or match
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Figure 3: The number of legitimate visits from
distinct ASes for different number of total pages
visited.
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Figure 4: The frequency with which each crawler
visits us.

the regular expressions for the dynamic URLs. This set
represents the visitors that did not perform any malicious
activity: they are either crawlers or legitimate visitors. For
each AS, we compute the fraction of crawlable pages visited.
The distribution is plotted in Figure 3. We find this distribu-
tion to be bi-modal, with 16 ASes (comprising 375 different
IP addresses) crawling more than 75% of the hosted pages,
and another 18 ASes (comprising 79 IP addresses) visiting
less than 25% of the pages. We therefore pick 75% as the
threshold K, and anyone visiting more than this is consid-
ered a crawler, while others are considered legitimate users
that reach our honeypot pages.

In all, we found and verified 16 different crawlers. The 375
crawler IP addresses account for 9443 visits. Figure 4 shows
how often each crawler visits our honeypot pages. We see
that Yahoo, Google, and Bing are the three most frequent
crawlers, followed by Russian sites Yandex and Rambler.
Nearly a quarter of the visits were from other crawlers which
were mostly specialized search engines (such as archive.org
which tracks older version of Web pages).

4.1.2 Attacker visits
After eliminating accesses from crawlers, there are 79 IP

addresses that access only whitelisted URLs. These could
either be normal users who visited our pages accidentally, or
attackers who did not launch any attacks. We conservatively
consider these as potential attack visits and count them as
false negatives for our malicious traffic detection approach.
The remaining traffic is malicious, trying to access URLs
that are not in the whitelist. We find 5,980 attacker IP
addresses responsible for 44,696 visits. (We classify these
attacks into various categories in Section 4.2.3.) Thus, the
false negative rate of our approach is at most 1%.

In Figure 5, we plot the total number of visits by attackers
to each honeypot page. This plot gives a measure of which
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Figure 5: The number of attacker visits to each
honeypot page. We show only pages with 25 or
more visits.

Figure 6: The cumulative distribution of attacker
IP addresses, and the number of honeypot pages
visited.

of our pages is most effective at drawing attackers. Out of
the 96 honeypot pages we set up, we plot only those pages
which received at least 25 visits after excluding crawler vis-
its. As we can see from the figure, different pages received
drastically different number of attacks. The most popular
honeypot page with over 10,000 visits was for a site running
Joomla, a content management system. The differences in
popularity can be caused by the frequency of attacks, and
also by the pageranks of other vulnerable Web servers in
the search results. If attackers search for queries that return
mostly low-ranked pages, the chance of our honeypot being
returned in the top results is much higher.

4.2 Properties of attacker visits

4.2.1 Attacker IP properties
We look at the behavior of attacker IP addresses when

visiting our honeypot pages, in particular the number of
attempts by each attacker. From Figure 6, we observe that
10% of the IP addresses are very aggressive, and account for
over half of the page visits. These aggressive IP addresses
are the ones which make multiple requests (usually several
hundred) to the same page, trying different arguments in
order to find vulnerabilities.

We also look at the geographic locations of the attacker
IP addresses, and find that over 24% of the IP addresses
are located in the United States. Table 2 shows the top ten
countries from where the honeypot visits originate, and the
fraction of IP addresses observed from each of these coun-
tries.
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Table 2: The top 10 countries where the attacker
IP addresses are located.

Figure 7: The distribution of the number of days
between the honeypot page being crawled and be-
ing attacked.

4.2.2 Discovery time
Here, we try to answer the question: how soon after a

page is set up does it start getting hit by attackers? We
calculate the number of days between the first crawl of the
page by a search crawler and the first visit to the page by
an attacker. We call this the discovery time, i.e., the time
it takes for the attackers to find the page after it has been
crawled. Figure 7 shows the distribution of discovery times
for the various honeypot pages. For two of the honeypot
pages, we found attacks starting the same day as they were
crawled. Those pages were for a not very popular search
term, so are likely to show up high in search results and be
targeted by attackers, even though the pages are new. In
the median case, however, we find the discovery time to be
around 12 days.

4.2.3 Attacks seen
We classify all the attacker requests we detect into ten

different categories, based on the attacker’s motives. The
categories are created manually, and are not intended to be
a complete classification of all possible attacks—their pur-
pose is to provide an overall idea of what the attackers are
trying to do. A brief explanation of each attack category,
an associated example, and the fraction of traffic observed
at the honeypot is shown in Table 3.

The most common attack we see on our honeypot is from
attackers looking for file disclosure vulnerabilities (FILE).
Here, attackers try to access files on the file system which
are not meant to be accessed. This kind of attack happens
when Web applications do not correctly implement access

control, and anyone is allowed to access files on the filesys-
tem with the privilege of the Web server. Examples of this
attack typically include attempts to access the /etc/passwd

file on UNIX machines and application configuration files
containing database credentials. We also see a lot of attack-
ers trying to look for a particular xmlrpc.php (XMLRPC)
file with a known vulnerability. Several popular applica-
tions shipped with a vulnerable version of this file a few
years ago. Though it was fixed subsequently, attackers still
look for old vulnerabilities. On a similar note, attackers also
look at several other PHP files to see if they allow for remote
file inclusion (RFI). This bug allows the application script
(typically PHP) to execute code included from another file
(usually on the same server). Sometimes the file can be in a
remote location, so an attacker can execute arbitrary code
on the Web server.

A surprising find in the table is that the two most com-
monly heard-of attacks, cross-site scripting (XSS) and SQL
injection (SQLI), are not very popular in our honeypots. A
possible explanation is that these attacks are not targeted
at any particular Web applications: XSS attacks could be
attempted against any Web site that has input forms where
users can enter text, and SQLI attacks are possible against
any Web site that is backed by a database. Looking at
hacker forums, we find the most popular query for find-
ing sites to try SQLI on is: inurl:index.php. Since our
honeypot pages are not very highly ranked, we would not
be returned by the search engines for such generic queries.
Therefore, we are less likely to see traffic for such attacks.

4.3 Comparing honeypots
In this section, we look at how effective different honeypot

setups are in terms of attracting attackers. We consider
three scenarios and compare the results of our deployment:

1. Web server: Here, we have just a Web server (in
our case, Apache) running on a machine that can be
publicly accessed on the Internet. The machine has no
hostname, so the only way to access the machine is by
its IP address. There are no hyperlinks pointing to the
server, so it is not in the index of any search engine or
crawler.

2. Vulnerable software: We install four commonly tar-
geted Web applications, as described in Section 3.2 (a).
The application pages are accessible on the Internet,
and there are links to them on public Web sites. There-
fore, they are crawled and indexed by the search en-
gines.

3. Heat-seeking honeypot pages: These pages are gen-
erated by option (b) as described in Section 3.2. They
are simple HTML pages, wrapped in a small PHP
script which performs logging. Similar to software
pages, the honeypot pages are also crawled and in-
dexed by search engines.

4.3.1 Coverage
All three setups were active for the same duration of 3

months. Figure 8, plotted on a log scale, shows the effec-
tiveness of each setup. In spite of its relative obscurity, the
plain Web server still sees quite a bit of attack traffic. It
sees over 1,300 requests from 152 different IP addresses over
the course of the three months we had the system running.



Category Description Example Traffic 
(%)

ADMIN Find administrator console GET,POST /store/admin/login.php 1.00
COMMENT Post spam in comment or forum POST /forum/reply.php?do=newreply&t=12

FILE Access files on filesystem GET /cgi-bin/img.pl?f=../etc/passwd 43.57
INSTALL Access software install script GET /phpmyadmin/scripts/setup.php 12.47
PASSWD Brute-force password attack GET joomla/admin/?uppass=superman1 2.68
PROXY Check for open proxy GET http://www.wantsfly.com/prx2.php 0.40

RFI Look for remote file inclusion 
(RFI) vulnerabilities

GET /ec.php?l=http://213.41.16.24/t/c.in
10.94

SQLI Look for SQL injection 
vulnerabilities 

GET /index.php?option=c'
1.40

XMLRPC Look for the presence of a 
certain xmlrpc script 

GET /blog/xmlrpc.php
18.97

XSS Check for cross-site-scripting 
(XSS)

GET /index.html?umf=<script>foo</script>
0.19

OTHER Everything else 8.40

Table 3: All the attack categories, with a brief explanation, an example, and the fraction of traffic
corresponding to the attack in our heat-seeking honeypot.
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Figure 8: Comparison of the total number of vis-
its and the number of distinct IP addresses, across
three setups: Web server, vulnerable software,
and the heat-seeking honeypot.

In fact, we observed the first probe less than four hours af-
ter setting up the Web server! This suggests that there are
attackers who are continuously scanning IP ranges looking
for Web servers. Most of the probes hitting the server were
either checking if it allowed proxying, or looking for certain
files on the server (which would indicate whether a particu-
lar software is installed or running on the machine). These
scans can be thwarted by using virtual hosts, and requiring
that the correct hostname be provided before the Web server
returns anything. However, the availability of Web sites that
provide the set of domain names hosted on a particular IP
address allows the attacker to easily overcome this hurdle.

The number of IP addresses observed by the vulnerable
software and the honeypot pages are roughly proportional,
considering we have four software pages and 96 honeypot
pages. This suggests that our honeypot pages are as good
at attracting attackers as the real software. The main trade-
off we notice here is that, with real software running on the
machine, we are able to have many more interactions with
a single attacker. On the other hand, with honeypot pages,
we are able to reach many more attackers, but the number
of interactions with a single attacker is far smaller.

4.3.2 Attacks seen
Table 4 shows which attacks are observed by each setup.

In general the heat-seeking honeypots receive instances of
almost all the different attacks. The only category which
our honeypots do not see is the one where attackers post
spam comments. Attacks of this type seem to be targeted
at particular software that supports these operations.

The software honeypot mainly sees two types of attacks:
attackers trying to register accounts and post in the forums
and comments (COMMENT), and attackers trying to access
the administrator console on these Web applications (AD-
MIN). The reason the heat-seeking honeypot does not see
the same volume of traffic in these categories is because we
return responses that the attacker does not expect. For ex-
ample, when the attacker tries to access the administrator
console, we return a HTTP404 error because the page does
not exist on our honeypot. However, the software honeypot
returns an error of HTTP401 or HTTP403; this response
prompts the attacker to try again.

The Web server mostly sees requests that check if it is
accessible as an open proxy. Additionally, in spite of there
being no running software, attackers still try to probe for
file disclosure and other vulnerabilities.

4.4 Applying whitelists to the Internet
In addition to the logs we obtain from our honeypots, we

also look at other Web servers on the Internet. We first
find servers whose HTTP access logs are indexed by search
engines. We take a random set of 100 such servers and obtain
their access logs. Studying these logs will give us an idea of
what kinds of attacks are out there “in the wild”, and how
prevalent they are. Note that these servers are chosen at
random, so vary in almost all respects—the popularity, the
kinds of software running on them, the number of visitors,
etc.

In this section, we look at the volume of attack traffic
received by each site. We define a request to be from an at-
tacker, if it tries to fetch a link which isn’t whitelisted (i.e.,
a link which has not been accessed by a crawler). Since
this heuristic would lead us to falsely flag any dynamically
generated links as attack traffic, we place an additional re-
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Table 4: The different types of attacks that are
seen by each setup. The bold entries indicate the
most frequent attack in each setup.

Figure 9: The amount of attack traffic each Web
site receives, as a fraction of the total non-crawler
traffic received.

quirement: the requested link should not be present on the
server, i.e., the request results in an HTTP404 error. We are
therefore conservative in our labeling, and could miss any at-
tack traffic that succeeded in finding the file or vulnerability
it was scanning for. Figure 9 plots what fraction of each
site’s non-crawler traffic is from attackers. We consider only
those sites that had at least 25 visits in all. For 25% of the
sites, almost 90% of the traffic came from attackers; i.e., less
than 10% of the traffic was due to legitimate visitors. This
happens mostly in the case of small or unpopular Web sites
that do not have many regular visitors. In the median case,
we see that about a quarter of the traffic is from attackers.

This use of whitelists suggests that one may rely on pub-
lic Web server logs to augment information obtained from
honeypots for attack detection and analysis. The effective-
ness of this approach, however, remains an issue for further
investigation.

5. DISCUSSION
We now discuss certain properties of our system design

and ways in which the system could be enhanced to provide
greater visibility into the malicious behavior of attackers.

Detectability of heat-seeking honeypots
In client-based honeypots, malicious binaries can sometimes
detect the presence of a honeypot environment (such as
a virtual machine) and choose to behave differently. For

our honeypots, a determined adversary may detect that we
are not running the full versions of software packages, but
that would require that the adversary probe our honeypots.
These probes would effectively reveal the presence of the
attackers; studying further interactions with the attackers
would then typically require installing more software.

Attracting more attacks
Currently, as our honeypots are set up under a personal
homepage, they are not highly ranked in search results and
hence miss out on many attack visits. We could get more
links from highly ranked pages to boost the pagerank of
our honeypot pages. Our system could be easily extended
to multiple servers in different domains and countries using
networks like PlanetLab [5]. These servers would attract
attackers with special search restrictions such as domain and
language.

Improving reaction times
An important limitation of Web honeypots is the inability
to respond quickly to new attacks. When a new application
is targeted, a honeypot can put up a related honeypot page
immediately after getting the malicious query feed. How-
ever, this page will not get attack traffic until some search
engines crawl and index it. This delay could be mitigated
if the honeypot pages are linked to from popular pages that
are crawled frequently and ranked high. To completely solve
the problem, though, we need the cooperation of search en-
gines to dynamically include honeypot pages in search re-
sults when they detect suspicious queries in real-time. Hence
honeypots would be able to see traffic from attackers early,
enabling the detection of emerging threats and 0-day at-
tacks.

Blacklist vs. whitelist
In this paper, we use a whitelist-based approach to detect
malicious traffic. It is different from traditional blacklist-
based approaches such as Snort rules [6] and IP blacklists,
which usually suffer from false positives, and are sometimes
easy to get around if attackers use obfuscation. We see from
our honeypots that many of the Web attacks involve ac-
cessing a resource that was not meant to be accessed. We
therefore believe that an approach that uses whitelisting to
restrict such probes might help prevent compromise of these
Web applications. The advantage of using a whitelist is
that by having the Web server implement it, all the differ-
ent applications running on the server are protected. The
main challenge is the generation of accurate whitelists, and
this might be simplified by using systems like AutoRE to
automatically generate the whitelist from a set of allowed
requests. Going forward, we believe that whitelists will be
an important tool that administrators can use to secure Web
applications.

6. CONCLUSIONS
In this paper, we present heat-seeking honeypots, which

deploy honeypot pages corresponding to vulnerable software
in order to attract attackers. They generate honeypot pages
automatically without understanding the latest exploits or
knowing which software is affected. During three months of
operation, our prototype system attracted an order of mag-
nitude more malicious traffic than vanilla Web servers, and
captured a variety of attacks including password guesses,
software installation attempts, SQL-injection attacks, re-
mote file inclusion attacks, and cross-site scripting (XSS)
attacks. Further, our system can detect malicious IP ad-



dresses solely through their Web access patterns, with a
false-negative rate of at most 1%. Heat-seeking honeypots
are low-cost, scalable tools; we believe that they help un-
derstand attackers’ targets and methods, and that their use
can effectively inform appropriate monitoring and defenses.
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