
Toward Querycentric Web Modeling and Crawling

Jiuming Huang 1,2, Haixun Wang 1, Ariel Fuxman 3, Yan Jia 2

1Microsoft Research Asia
2National University of Defense Technology, China

3Microsoft Research Silicon Valley

ABSTRACT
Crawling and information extraction is perhaps one of the most
extensively studied topics in the web age. Albeit much progress
has been made in this area, it is still a page-centric, computation
intensive process, and more often than not, it relies on manually
crafted templates. But how a web site organizes its data has gone
through significant changes since the early days of web, and many
web sites, especially e-commerce sites, now support exploratory
search, which presents data to the user through an implicit query
interface. In this paper, we conduct a comprehensive survey of
exploratory web sites, and we show that traditional page-centric
crawling is extremely wasteful and the crawled data is seriously
incomplete. We propose a query-centric view of web data, and
an automatic crawling framework that crawls web sites by queries
instead of by pages. In essence, we make queries first class citizens
in modeling web data. This allows us to target the right content in
crawling, which not only makes crawling more efficient, but also
enables us to collect data that is hidden from page views and hence
unreachable to traditional crawling methods. We conduct extensive
experiments to demonstrate the advantage of the new model, and
the performance of our new crawling method.

1. INTRODUCTION
The web is a valuable source of information. A lot of applica-

tions, from search engines to content portals, rely on data extracted
from the web. In many cases, a database exists behind a web site,
and the goal of crawling is to acquire as much and as complete data
from the database as possible. For example, many applications fo-
cus on crawling product information on e-commerce sites, and the
goal is to obtain as much and as complete information such as the
name, brand, price, and other properties of the products [2, 7, 13,
19].

The effectiveness of web crawling largely depends on how web
sites present their data. Certainly, web sites present their data in
ways to maximize user experience (instead of making the life of a
crawler easier). A majority of web sites now organize their data to
support so-called exploratory search [11], which combines query-
ing and browsing to improve user experience on the web. Specifi-
cally, it provides an easy-to-use interface to allow users to construct
queries step by step. At each step, the web site presents entities that

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘11, August 29 September 3, 2011, Seattle, WA
Copyright 2011 VLDB Endowment, ACM 0000000000000/00/00.

satisfy the current query to the user. The query can often be suc-
cinctly represented in SQL:

SELECT * FROM database
WHERE a1 = v1, a2 = v2, ..., ak = vk

where a1=v1, ..., ak=vk is a list of attribute/value pairs con-
structed by the user. Many web sites also provide another mecha-
nism, which is keyword search. However, the results of the above
queries usually cover entities in the entire database already, which
means they cover the results of a keyword search. Thus, as far as
the goal of acquiring as much data as possible is concerned, we can
focus on SQL-like queries and ignore keyword search.

We surveyed a large number of popular web sites in different
categories (Section 2), and the result shows that a large percentage
of web sites are exploratory, or organized by queries. However,
state-of-the-art crawling techniques are still page-centric. When
pages are considered as the first class citizen in crawling, and se-
mantics beyond pages, such as queries, is ignored, we may suffer
great vulnerabilities such as i) crawling is extremely inefficient and
wasteful, and ii) the data crawled is often seriously incomplete.

Crawling is extremely wasteful
Traditional crawling focuses on individual web pages, or on how
web sites present their data, instead of on the data itself. In other
words, we are crawling the presentation, instead of the data that
drives the presentation. When data semantics is ignored, we may
waste a lot of efforts on pages that do not contain new information.
The number of such pages can be orders of magnitude larger than
useful ones.

To see this, consider exploratory sites that allow users to con-
struct queries. A user can first specify she is interested in handbags,
and then she selects a price range, say $200 and above.

SELECT * FROM database
WHERE category = ’handbags’ AND price >= 200.00

Another user might make the selection in the reverse order. That
is, she selects price range $200 and above first, and then handbags.
The two queries are exactly the same, however, the URLs that rep-
resent the queries are different. Figure 1 shows the URLs of the
above example on Amazon.com. The URLs are only different but
also encoded in a way that is hard to interpret. In other cases, for
example, the two Food.com URLs (for recipes) in Figure 1 are
interpretable, but still, different. In either case, a crawler that does
not understand the semantics of the query will consider the URLs
as totally different, and end up crawling many redundant pages (all
the URLs originate from this page might be prefixed with the cur-
rent URL).

Consider the two queries in Figure 2 as another example. The
two queries differ in the ORDER BY clause, which affects how

$200 & Above → Handbags:
http://www.amazon.com/gp/search/ref=sr nr n 5?rh=n%3A10365
92%2Cn%3A!1036682%2Cn%3A1036700%2Cn%3A247493601
1%2Cp 36%3A1253492011%2Cn%3A15743631

Handbags → $200 & Above:
http://www.amazon.com/gp/search/ref=sr nr p 36 4?rh=n%3A10
36592%2Cn%3A!1036682%2Cn%3A1036700%2Cn%3A247493
6011%2Cn%3A15743631%2Cp 36%3A1253492011

Rice → Stews:
http://www.food.com/recipe-finder/rice,stews

Stews → Rice:
http://www.food.com/recipe-finder/stews,rice

Figure 1: Different URLs for equivalent queries

SELECT * FROM database
WHERE a1 = v1, a2 = v2, ..., ak = vk
ORDER BY PRICE ASCENDING

SELECT * FROM database
WHERE a1 = v1, a2 = v2, ..., ak = vk
ORDER BY PRICE DESCENDING

Figure 2: Different outputs for two equivalent queries

the data is returned, instead of what data is returned. However,
the pages generated by the two queries are very different. If we
cannot identify their equivalence, then we end up crawling all pages
(which have unique URLs) that originate from these pages.

Clearly, since there can be a huge number of combinations of
attributes, ordering, etc., a crawler that ignores the query semantics
will end up crawling orders of magnitude more pages.

Figure 3: An Entity Page (information about one recipe)

Crawled data is seriously incomplete
Assume an entity has an attribute/value pair a = v, for example,
category=woman or theme=casual. In exploratory search, a user
may choose a = v when she formulates queries interactively in
a step by step fashion. Thus, the information about a = v does
not need to appear on the final page that describes an entity, as the
user is already aware of it. On the other hand, if the user does

Figure 4: A List Page (links to multiple recipes)

not select a = v in exploratory search, then it might mean the
information is not important to the user or the user can derive it
from non-text information on the final page (e.g., from the picture
of the entity), thus the information does not need to be shown on the
entity page either (unless it is essential such as price). As traditional
crawling only focuses on the entity pages, it loses information that
is embodied in the web exploration process.

This problem is quite universal for exploratory sites across all
categories. We use a recipe web site as an example. Figure 3
is an entity page (a page that describes a recipe in this case) on
Food.com about the recipe “Spanish Chicken and Rice.” It con-
tains some detail information about the recipe, including ingredi-
ents, cooking directions, and nutrition facts. However, much infor-
mation, such as the type of dietary, the occasion the recipe is for,
other major ingredients it contains, is not shown on the page. But
the web site actually contains all such information. In Figure 4,
the “Add Filter” section on the left allows users to add searching
conditions for recipes, and users can specify types of courses, in-
gredients, preparation methods, etc. But most of the information
that can be specified in filtering are not present on the entity page.

In Table 4 (Appendix), we list all the attribute/value pairs that
are used to describe the recipe “Spanish Chicken and Rice.” The in-
formation is collected from recipe pages and filter links. As shown
in the table, more than 67% of the data is not present on the entity
page. We evaluated many exploratory sites across different cate-
gories, and on average, more than 50% of information about en-
tities is hidden in the dynamic exploratory process. Clearly, data
obtained by traditional crawling is seriously incomplete.

Supervised crawling as a naı̈ve solution
The fundamental cause of the above two problems is that the crawler
does not know the semantics in the data: It views a web site as con-
sisting of a set of individual pages, and it has no idea that the pages
are organized around queries.

To emulate a human interacting with an exploratory web site,
the crawler must be able to first formulate a query through the web
interface, and then identify results returned by the web site. This is
difficult as each step may require the crawler to intelligently follow
through many pages.

A direct solution is to manually inject semantics into the crawl-
ing process. For example, through the use of manually crafted tem-

plates or through examples created by user interaction, a crawler
may learn, for each particular web site, what pages are useful and
what part of a page contains content of interest. Apparently, the ap-
proach is ad-hoc, and cannot automatically support heterogeneous
web sites. More importantly, approaches based on templates or
user provided examples are for individual pages only, and they fall
short to support exploratory web sites, as on exploratory web sites,
much information lies in the dynamic exploration process, instead
of in static pages.

Our contributions
We introduced the problem of attribute extraction leveraging brows-
ing structure in a recent paper [9]. In that paper, we presented a
proof-of-concept algorithm and successfully applied it to two com-
mercial sites: Amazon and Zappos. We now address the challenges
involved in implementing the vision at scale. For example, the al-
gorithm in [9] requires an entire Web site to be crawled before any
extraction can be done. We now present an algorithm that performs
focused crawling of web sites, thereby drastically improving the
efficiency of the system. We also crisply characterize the class of
Web sites that can benefit from browsing-aware extraction, and pro-
vide exhaustive experimental results on the top commercial sites as
per the Hitwise report.

In summary, this paper makes the following contributions: i) We
conduct a comprehensive survey of exploratory web sites. We not
only show the popularity of exploratory search, but also charac-
terize its benefits and challenges. ii) Based on the query-centric
model, we introduce a highly efficient online algorithm for web
site crawling. We show that we achieve accuracy and recall of both
90% and higher. iii) We show our approach has great generality, as
we can handle over 70% exploratory web sites across different cat-
egories. Furthermore, our approach is mostly unsupervised, which
means we are not vulnerable to site updates, etc.

2. EXPLORATORY SEARCH: A SURVEY
How web sites organize and present data has evolved signifi-

cantly since the early days of the Web. In this section, we introduce
the concept of exploratory search and browsing, and survey various
web sites to show the characteristics of exploratory web sites.

Exploratory search [11] combines querying and browsing in web
surfing. It provides hierarchical or multidimensional browsing op-
tions (e.g., the left panel on the page shown in Figure 4) through
which users can refine their search. This is paritcularly helpful to
users who do not have a very specific goal in browsing (e.g., a
customer who wants to buy a handbag but has not decided on the
brand, price range, color, size, etc.)

The exploratory search model has been widely adopted by web
sites across different domains ranging from e-commerce to digital
library. We conducted a comprehensive survey over 443 highly
ranked1 web sites in 20 major domains (e.g., shopping, travel, real
estatate, etc). Figure 5 shows that 127 out of the 433 web sites
(28.7%) use exploratory search. In particular, shopping web sites
are the most aggressive in adopting the exploratory model: 97 out
of top 133 e-commerce web sites (72.9%) use exploratory search.

As we mentioned in Section 1, a crawler that ignores the ex-
ploratory search semantics and focuses on the final pages of each
entity will miss a lot of information about the entity. Our survey
showed that among the 127 web sites that use exploratory search,
only 29 or 23% put complete information about each entity on the
entity page. A large majority (77%) contains incomplete informa-
tion. Note that on some web sites, e.g., Ebags.com, the entity
1The ranking is obtained from Hitwise.com, a leading online
competitive intelligence service.

29

23%

98

77%

Exploratory sites put complete information

on entity pages

Exploratory sites put incomplete information

on entity pages

Figure 5: Survey of 433 highly ranked web sites.

page may show a path (e.g., Handbags → Girls → $200 Above)
that indicates how the user reaches the entity via exploratory search.
This can be used to make up for the information lost in browsing.
However, such information is not complete either (e.g., there are
multiple paths that can lead to the same product). Our survey finds
that only 25% of exploratory sites show multiple paths on the entity
page, and close to 30% sites do not provide any such information.

In this paper, we introduce a query-centric model for exploratory
web sites, and we develop a crawler based on the model. As we
show in experiments, our approach is general as it can handle 107
out of the 127 (84.3%) exploratory web sites. Please see Table 1 in
Section 5, and Tables 5 and 6 in Appendix D for details.

3. QUERYCENTRIC MODELING

Exploration Queries
An exploratory web site is a web site that allows the user to browse
for entities of interest. The browsing is typically performed by fol-
lowing links that return result pages or list pages. The list pages
contain listings of entities, with links to pages that provide details
about the actual entities (entity pages).

Let E be the set of entities that an exploratory web site provides
information for. Assume that each entity can be described by a set
of attributes A = {a1, . . . , am}. Conceptually, an exploratory web
site executes exploration queries on the set of entities E using some
of the attributes in A. To be more precise, these exploration queries
return a subset of E that satisfies some conjunctive expression over
that set of attributes in A.

To understand the exploration queries in relational terms, assume
that each entity in E has a unique identifier. Let T be a table
with schema ⟨id, a1, . . . , am⟩. Then, an exploration query is of
the form:

q: SELECT id FROM T WHERE a1 = v1, . . . , ak = vk

where a1 . . . ak are attributes in A and v1 . . . vk are some constants
(attribute values). Without loss of generality, we convert predicates
that contain numerical comparisons to predicates without compar-
isons. This is done by introducing new attributes. For example,
given a predicate ai > 100, we convert it into a new predicate
ai>100 = True where ai>100 is a new attribute. Thus, we only
need to handle predicates in the form of ai = vi.

We will represent the queries by just using the conjunctive part of
the WHERE clause as follows: q = {a1 = v1, ..., ak = vk}; and
we will denote as Eq the set of entity (ids) returned by q. We will
employ the standard database-theoretic notion of query inclusion,
where q ⊆ q′ if Eq ⊆ E′

q . Given a query q, We are particularly
interested in its drill-down query q′, which contain one more pred-
icate that q, that is, q′ = q ∪ {ak+1 = vk+1}. In our approach, we
rely on the drill-down relation to eventually recover queries on an
exploratory web site.

Querycentric modeling of an exploratory web site
Just like any web site, an exploratory web site consists of pages
P and links L to pages. But more than that, an exploratory web
site describes a set of entities E, and supports a set of exploration
queries Q. Specifically, each entity is described by an entity page.
Search and browsing is performed by following query links that
return list pages, where each query link represents a query in Q,
and each list page contains listings of entities that satisfy the query.
More precisely, we model an exploratory web site as follows:

DEFINITION 3.1. (Query-centric Modeling) An exploratory web
site is a tuple (P,L,E,Q, f) such that:

• P is the set of pages, including entity pages, list pages, and
other pages;

• L is the set of links, including query links and other links;

• E is the set of entities described by the exploratory web site;

• Q is the set of queries supported on the exploratory web site;

• f : Q → 2P is a function that maps a query to a set of list
pages;

The goal of exploratory-based information extraction is to asso-
ciate entities to their attributes via the queries that can be formu-
lated. However, the problem lies on the fact that the queries are
not explicit in the exploratory web site: all that the crawler sees
is a set of pages, each page containing a set of links. Thus, the
exploratory-based information extraction problem is to first i) re-
cover the queries Q that can be formulated on the web site, and
then ii) for each q ∈ Q, find Eq ∈ E that satisfy q. Once the prob-
lem is solved, then given q and Eq , we can associate entities in Eq

with attribute values defined by q.

Properties of exploratory web sites
The model suggests a new way of thinking about a web site. A
web site is more than a set of web pages: It contains structures that
support a question-and-answer purpose. However, the model itself
does not tell us directly how to derive structures and semantics out
of a set of pages.

Nevertheless, the logic of question-and-answer leads to the fol-
lowing assumptions, which enable us to derive the hidden struc-
tures and semantics. Before we go to the details, we introduce
some notations. Let Pq be the set of list pages returned by f(q):

f(q) = Pq (1)

The list pages Pq contains links to entities Eq that satisfy the query
q. However, the links to Eq are mixed with other content on Pq .
We abuse notation and write

Pq ⊃ Eq ∪Qq ∪ Lq (2)

to indicate that Pq contains the following content: Eq , which rep-
resents links to entities that satisfy q; Qq , which represents links to
queries that are related to q; and Lq , which represents other links.

Assumption 1.
Pq ∩ Pq′ = ∅ if q ̸= q′ (3)

The assumption is that different queries do not share list pages,
even for queries that return the same set of entities. In other words,
each list page can only “belong” to one query. In theory, for a page
p ∈ Pq , it not only contains entities that satisfy q, but also links
that are related to q. Thus, if q ̸= q′, then Qq ̸= Qq′ , which

means pages belonging to different queries have different content,
even if the query results are the same. In practice, the pages are
generated by an algorithm using some template and q as input, then
for different inputs, the pages are different.

Assumption 2.
Eq′ ⊆ Eq if q′ ⊃ q (4)

This assumption is quite straightforward: a more selective query
has a smaller set of results. This assumption is used to identify rela-
tionships among queries, and then reveal the content of the queries.

Assumption 3.
if Eq′ ⊆ Eq and q′ ∈ Qq then it is likely that q′ = q ∪ {ai = vi}

(5)
If Eq′ ⊆ Eq , then there is a possibility that q′ ⊃ q, although q′

and q can be totally irrelevant. But we know from q′ ∈ Qq that
the two queries are related. In an exploratory web site, users are
allowed to construct queries by adding/removing attributes one by
one. We can hence classify queries in Qq into 3 groups: i) queries
that contain one more attribute than q; ii) queries that contain one
less attribute than q; and iii) other queries (e.g., queries for shoes
and accessories when the user is browsing outfits). Thus, a very
likely scenario is the first case, that is, q′ = q ∪ {ai = vi}.

Note that Assumption 3 does not always hold. For example, in
Qq , there might exist a query q′′ = q ∪ {ai = vi, ai+1 = vi+1},
and certainly we have Eq′′ ⊆ Qq . This creates some confusion.
However, our algorithm will also detect the relationship between
q′′ and q′, and the relationship between q′ and q, using the same
mechanism, which help eliminate the confusion.

4. SEMANTIC CRAWLING
Given an exploratory web site, our goal is to find every q and its

corresponding Eq . As q is essentially a set of attribute/value pairs,
{ai = v1, · · · , ak = vk}, we know that each entity in Eq has those
attribute values. Besides, the method we use must be scalable and
general.

4.1 Entity Pages and List Pages
A fundamental challenge we are facing is how to discover queries

from pages and links. We differentiate between two types of pages:

• An entity page describes a single entity. On most exploratory
sites, it is easy to identify entity pages. For example, entity
pages on e-commerce sites usually contain an “Add to Cart”
(or its equivalent) link.

• A list page contains one or more links to entity pages, and
it must not be an entity page itself. Note that an entity page
may also contain links to other entities (e.g., related prod-
ucts), but that does not make it a list page.

On Amazon.com, for example, each book has its own page (en-
tity page), and the best-sellers page (list page) contains links to
best seller books. Using the above definition, once entity pages are
identified, we can identify list pages in a straightforward way.

4.2 An Offline Approach
In this section, we describe an algorithm that allows us to recover

all queries and their associations to entities. The method crawls the
entire exploratory site first, and mines queries from the crawled
data.

Based on Assumption 1 (Eq 3), which says a list page belongs
to at most one query, we can cluster list pages so that each cluster

correspond to (at most) one query. To do this, we need to measure
the similarity between two list pages. Eq 2 says that in addition to
entity links, list pages also contain Lq and Qq . The set of pages
in Pq are usually generated by a same mechanism based on a sin-
gle template. Thus, although each p ∈ Pq contains different entity
links, the Lq and Qq links are roughly the same, as they are gen-
erated by the same template and the same q as input. Given a list
page x, we collect all the links on x. We filter out all entity links
(including Eq and some links in Lq that point to entities), and de-
note the remaining links as lx. We know that lx contain Qq and
part of Lq . Then, for two list pages x and y, we use Jaccard sim-
ilarity coefficient |lx∩ly|

|lx∪ly| to measure their similarity. Based on the
similarity, we cluster list pages by queries.

From the resulting clusters, how do we reveal the queries they
represent? Let Pq and Pq′ denote two clusters corresponding to two
queries q and q′ respectively. Although the queries are “unknown,”
that is, we do not know the attribute/value pairs corresponding to
query q and q′, it turns out that we may be able to decide if q and
q′ has the relationship of q′ = q ∪{ai = vi}. We do this by taking
the following steps.

1. From Pq and Pq′ we find Eq and Eq′ . This is not always triv-
ial, because not every entity link in Pq belongs to Eq (e.g., a
list page on an e-commerce site contains links to productions
under promotion.) However, we can use additional clues,
e.g., entity links in Qq are often inside the same DOM struc-
ture on the list page.

2. We try to invoke Assumption 3. That is, we check whether
Eq′ ⊆ Eq and q′ ∈ Qq are true. For the same reason as
in the previous step, we relax the condition Eq′ ⊆ Eq by

checking if
|Eq′∩Eq|

|Eq′ |
is close to 1.

3. If Assumption 3 holds, we decide what is the attribute/value
pair {ai = vi}. Assume the following snippet contains the
link to q′:

<h2>Brand</h2>
...
Nike
...

From the anchor text, we know q′ is more specific than q
by having an additional descriptor “Nike.” We conclude that
q′ = q∪{brand = Nike}, as either we already know “Nike”
is a brand or we find the name of the attribute “Brand” in the
DOM structure one level above the link.

After we discover all the relationships, we obtain a directed graph,
where each node represents a query, and each edge represents a re-
lationship between two queries. Specifically, an edge qi−1 → qi
means qi is more specific than qi−1 by having an additional ai = vi
condition. Let q0 → · · · → qk be a longest path in the graph (there
is no incoming edges to q0 and no outgoing edges from qk). Then,
we know qi = {aj = vj |j = 1, ..., i}. Thus, we recover all the
queries in the system.

4.3 An Online Approach
In Section 4.2, We crawl the entire web site, then we recover

all the queries from the crawled data. This is however extremely
wasteful, as we may crawl orders of magnitude more pages than
necessary. To see this, assume we are crawling an e-commerce
web site. Consider shoes of size 38, of red color, for ladies. We
can reach products in this category by exploring the site along the
path of Shoes→ Red→ Size 38→ lady. But there are many other

paths to reach these products, and in the worst case, we have N !
paths, where N is the number of attributes. Furthermore, products
in a category can be presented in many different ways, for exam-
ple, they can be sorted by price, popularity, or other features. Note
that each combination of features as well as each presentation cor-
responds to pages with unique URLs. A crawler that does not un-
derstand the semantics of the underlying data will treat each URL
as a new source of information, and explore all the structures from
that URL.

R

RU{A}

RU{A,B’}

Attribute: A

RU{A,B}

RU{B}

Attribute: B

RU{B,A}

RU{A,B’,D}

RU{A,B’,E}

BB’ A

D

E

RU{A,B,D}

RU{A,B,E}

D

E

RU{B,A,D}

RU{B,A,E}

D
E

(a) as a Query Tree

R

RU{A}

RU{A,B’}

Attribute: A

RU{A,B}

RU{B}

Attribute: B

RU{B,A}

BB’ A

D

E

RU{A,B,D} RU{A,B,E}

D E D

E

(b) as a Query DAG

Figure 6: Organization of an Exploratory Web Site

In this section, we introduce a method that avoids unnecessary
crawling. As we crawl an exploratory web site, we discover queries
and the relationship among queries in an online manner. The queries
we have discovered form a set of trees, or a forest. Figure 6(a)
shows one tree in the forest. Each tree node represents a query.
Query R is represented by the root node because we have not yet
discovered any query that is more general to R. Query represented
by each node is denoted in the form of R∪{A,B}, where A and B
are attributes. We may have multiple nodes correspond to the same
set of attributes, for example R∪ {A,B} and R∪ {A,B′}, which
is probably because how the data is presented is different (e.g., in
one set of pages, entities are sorted by attribute B).

Although we do not know the content of R (the attribute/value
pairs it contains) since we are still in the middle of crawling, we can
still prune unnecessary crwaling. Note that in Figure 6(a), we know
that the nodes labeled R∪ {A,B}, R∪ {B,A}, and R∪ {A,B′}
represent three equivalent queries, although R is still unknown to
us. However, since the sets of pages PR∪{A,B}, PR∪{B,A}, and
PR∪{A,B′} are unique, traditional crawling will explore the entire
tree below the three nodes as shown in Figure 6(a), which is to-
tally wasteful. In our approach, we only crawl the subtree under
one query in an equivalent set of queries. This converts the tree
into a DAG as shown in Figure 6(b), through which we reduce the
crawling space dramatically.

The challenges lie in online detection of equivalent queries. We
accomplish this task using two procedures:

Online Clustering. Our goal is the following: Starting from
a list page x, which may belong to some unknown query, find all
the entities that satisfy the unknown query. This is done through
clustering, using the principle outlined by Assumption 1. However,
since we perform clustering in an online manner, we must first find
pages that are potentially part of the cluster.

The intuition is that list pages that belong to the same query form
a connected graph, e.g., through pagination links that connect them.
In other words, starting from any of them, we should be able to find
all the other list pages by following the links. Figure 7 illustrates
the idea. Starting from list page x, we crawl all the hyper links on
x. Then, we identify those hyper links that point to list pages, and
we denote such links as lx. Assume one of the link in lx points

Page x

...

...

lx

...

...

Page y

...

ly

...

...

Page z

...

lz

...

...

Figure 7: Online Clustering

to page y. For each such y, we use the same method to find ly ,
that is, hyperlinks on page y that point to list pages. Then, based
on Assumption 1, x and y should be list pages that belong to the
same query if lx and ly are highly similar (using Jaccard similarity
coefficient as described in Section 4.2). We do this recursively, and
we stop at page x if we cannot find any y such that lx and ly are
highly similar. Finally, we obtain a cluster of pages that correspond
to the same query. The entire process is outlined in Algorithm 1
(see Appendix).

Online Query Discovery. Our goal is to derive a query’s con-
tent (its attribute/value list) from the (drill-down) relationships in a
query DAG. The challenge is that, unlike what we have described in
Section 4.2 where we crawl the entire web site and build the entire
query graph before we discover queries from the query graph, we
must discover queries from DAGs which are still being constructed.

Each time we call OnlineClustering (see Algorithm 1), we
get an unknown query R, which can be considered as a root node of
a new query DAG, as the one shown in Figure 6(b). As we repeat-
edly invoke OnlineClustering, we either expand a current
DAG (if we can find the relationship between the new query and
an exiting query in an exiting DAG), or create a new DAG. In our
approach, we maintain a forest of DAGs, and the online query dis-
covery process is a process of growing DAGs, creating new DAGs,
or merging multiple DAGs, until no more changes can be made.

The central question is how to establish relationships between
two nodes that represent two queries. We are interested in two rela-
tionships: i) Query R is more specific than R′ by having one more
attribute/value pair. If we detect this relationship, we connect the
two nodes by an edge and label the edge with the attribute/value
pair, as edges in Figure 6(b). ii) Query R and R′ are equivalent. If
we detect this relationship, we merge the two nodes (Figure 6(b)
depicts the equivalency by using double arrows for presentation
purpose).

We use the same method as in Section 4.2 to establish the first re-
lationship between two queries (information about the two queries
are derived by the OnlineClustering procedure). To establish
an equivalent relationship, we check two conditions: a) The entities
that satsify the two queries must be the same. This is a necessary
condition but not a sufficient condition, as two different queries can
have same results. b) The set of outgoing edges (attributes) from
the two nodes must be the same. This is under the assumption that
each attribute is used once in the query. If both conditions are sat-
isfied, we consider these two nodes are equivalent.

We then maintain a data structure F , which contains a set of
DAGs, or a forest of DAGs. For new list pages we gather on the
web site (a good starting point is the root page of the query hierar-
chy), we invoke OnlineClustering to discover the query that
the list page belong to, as well as immediate child queries below
this query. The result is then added into F , which may be used to
expand an exiting DAG, merge two DAGs, or create a new DAG
in F . The entire process of online query discovery is outlined in

Algorithm 2 (see Appendix).

5. EXPERIMENTS

Generality of QueryCentric Modeling. In Section 2, we
surveyed 433 highly ranked web sites and found 127 of them are
exploratory web sites. We tested all of them, and found our query-
centric model and our information extraction method based on the
model are general. Table 1 shows we can successfully handle 107
out of 127 (84.3%) exploratory web sites. There are some spe-
cial cases. Some web sites require users to enter keywords (e.g.,
name of a state) instead of letting users choose from a list. How-
ever, if we obtain the list of keywords in advance, our approach
can still handle such web sites. Still, there are 20 sites we can-
not handle, and the reason is they employ complex user interface.
For example, Zagat.com allows multiple selections to take effect
asynchronously using Ajax. Another web site, Compuplus.com
uses HTML FORMs and requires users to press the “submit” but-
ton to refine the search. To support such web sites, we need further
customization of the crawler.

Domain Can be
handled

Need keyword
input

Cannot be
handled

Shopping 52 0 11
Travel 12 0 2
Real Estate 10 0 1
Education 8 0 0
Food 4 4 0
Restaurant Search 4 0 5
Entertainment 2 3 1
Yellow Page 1 2 0
Health 1 0 0
Lifestyle 1 0 0
Digital Library 0 3 0
Total 95 12 20

Table 1: The generality of our approach

Datasets for Performance Study. We select 6 web sites from
the 107 exploratory sites for more experiments (precision, recall,
overhead, etc). Table 2 lists some basic information about the 6
web sites. For convenience, we denote them as D1 to D6.

We choose these 6 web sites to maximize diversity and to en-
able large-scale performance study. The 6 sites are from different
domains including online shopping, real estimate, food and restau-
rants. Furthermore, D1 (Homes.com) does not contain any query
information on its list pages or entity pages, so no template-based
(Wrap) approach can extract the hidden attributes from it. We use
D1 to demonstrate our ability of discovering hidden attributes. D2
(Food.com) is unique because queries are embedded in URLs
without encoding (as shown in the example in Section 1). This
gives us a nice “labeled” dataset for evaluating the precision of our
algorithm. In D3 (menupage.com), the complete information of
an entity is contained in each entity page. Thus, it can be extracted
easily by using traditional technologies. We use D3 to evaluate the
correctness of our approach. D4, D5 and D6 are online shopping
sites (which are the majority of existing exploratory sites). They
have a large number of entities and web pages. In particular, D4
contains almost all of the typical problems of exploratory sites. We
use it to compare the overheads of online approach and offline ap-
proach.

Besides our algorithm, there are four ways to obtain attributes

Web site Content type Subcategory Method # of
real entities

of
real attributes

of
entity-attributes

D1 homes.com Real Estate Subset of New York Manual label 32 34 336
D2 food.com Food Entire Site URL Extraction 434,854 476 5,542,792
D3 menupage.com Restaurant American New Entity page 560 87 57,475
D4 amazon.com Shopping Shoes Templates 248,995 156 1,111,831
D5 shopping.yahoo.com Shopping Electronics Templates 115,866 1,165 670,034
D6 taobao.com Shopping Cell Phone Templates 217,945 127 1,998,446

Table 2: Datasets

Dataset # of uncovered
entities

of uncovered
attributes

of uncovered
entity-attributes # of page scans # of crawled pages Precision Recall

D1 32 34 336 10,121 6426 1.0 1.0
D2 434,854 476 5,542,792 5,124,627 4,702,653 1.0 1.0
D3 560 87 57,475 15,513 11,120 1.0 1.0
D4 248,995 156 1,077,444 2,183,503 1,150,020 0.97 0.94
D5 115,748 1,165 649,522 2,567,322 1,791,050 0.98 0.95
D6 217,933 127 2,107,057 2,348,836 1,335,548 0.92 0.97

Table 3: Final Results

and values associated with entities from the above datasets: man-
ual labeling, automatic extraction from URL, extraction all the in-
formation from entity pages, and the template-based naive solution
discussed in Section 1. First, we derive D1 by manually label-
ing data in a subcategory of Homes.com. Since manual label-
ing is costly, we choose a small subcategory (derived from query
{city=New York, bath rooms=3, neighbor=yorkville}) with only
336 entity-attribute pairs. Second, if attributes and values are inter-
pretable from URLs, we can get high quality real data. Of course,
this is not the case for most of the web sites sites except Food.com.
So we use the entire Food.com data as our second dataset D2.
Third, we use regular expression to extract data from entity pages
on menupage.com. Finally, the naive solution described in Sec-
tion 1 demands complicate templates. So we only design templates
for the shoes department of Amazon.com, the electronics depart-
ment of shopping.yahoo.com and the “cell phone” data of
taobao.com.

Evaluation Metrics. We use precision and recall to evaluate
our method. We focus on attributes and values that are embedded
(hidden) in the browsing process rather than those on the entity
pages. Given a set of web pages, we define precision and recall as:

Precision(S) =
|R(S) ∩M(S)|
|M(S)| (6)

Recall(S) =
|R(S) ∩M(S)|
|R(S)| (7)

where S is a dataset (a web site); R(S) is the set of hidden entity-
attribute pairs; M(S) is the set of entity-attribute pairs extracted
from S by our approach.

We also evaluate the overhead of our approach. The overhead
includes the crawling (network transfer) overhead, and the com-
putation overhead. Crawling (network transfer) overhead is mea-
sured by the number of pages we download from the web. Our
algorithm may scan each downloaded page multiple times to ex-
tract links from the page, and each scan has linear cost. Therefore,
for computation overhead, we use the number of page scans as the
measure.

Experimental Results and Discussion. Table 3 shows the
results for the 6 web sites. For each dataset, we list the precision, re-
call, as well as the number of discovered entities, attributes, entity-
attribute pairs, scanned pages and crawled pages. Besides the re-
sults in Table 3, we also study D4 (Amazon.com) in more depth,
and we show the results in Figure 8.

Specifically, as shown in Table 3, we achieved 1.0 precision
and recall on D1, which shows our approach discovers hidden at-
tributes well. Of course, D1 is small. Our performance on larger
datasets, including D2, D4, D5 and D6, shows our approach is
quite stable in achieving high precision and recall. Moreover, the
fact that these web sites come from various domains also proves the
generality of our approach. Furthermore, the number of scanned
pages and crawled pages are in linear proposition to the number of
entity-attributes, which shows the efficiency of our approach.

The precision and recall are affected by two factors: i) the con-
tent on the list pages, and ii) the frequency of updates on the web
site. List pages may contain entities that do not satisfy the query the
list pages belong to. For instance, list pages on Amazon.com may
contain products under promotion. This is the reason why preci-
sion on datasets D4, D5 and D6 did not reach 100%. Whereas for
D1, D2, D3, the precision is 100% because the list pages of these
web sites do not contain unrelated entities or the unrelated entities
can be easily filtered. The frequency with which a web site updates
its content affects the recall of our method. Our method detects
the relationship between two queries by checking the set inclusion
relationship between the set of entities that satisfy the queries. Let
x and y be two sets of entities. In each snapshot, y ⊆ x holds.
However, crawling takes time, and updates may take place during
the crawling of x and y, which may lead to y ̸⊆ x. This prevents
us from discovering the relationship between the queries that x and
y correspond to, and hence we may not be able to discover some
entity-attributes. This is why recall cannot reach 100%. Obviously,
shopping sites update more frequently than recipe sites and restau-
rant sites. So the recalls of D1, D2 and D3 reach 100%, while the
recalls of D4, D5, and D6 are lower.

The precision and recall of our approach are stable. Figure 8(a)
shows how the precision and recall change when the page set grows
(for D4 Amazon.com). As the dataset becomes larger, the recall
decreases a bit and then recovers and keeps at about 0.94. The
reason is the same as discussed above. Amazon.com update its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

E
v
a

lu
a

ti
o

n
 v

a
lu

e

of Web pages

Precision

Recall

Thousands

(a) Precision and recall

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200

of pages checked by online approach

of pages checked by offline approach

of uncovered entity-attribute pairs

T
h

o
u

sa
n

d
s

Thousands

(b) Computing overhead

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200

of pages crawled by online approach

of pages crawled by offline approach

of uncovered entity-attribute pairs

Thousands

T
h

o
u

sa
n

d
s

(c) Crawling overhead

Figure 8: The Performance

products quite frequently. When the dataset becomes large, some
crawled pages become outdated due to the large time span in crawl-
ing. The reason why the recall goes up again is because the queries
we are crawling becomes more and more specific (containing more
and more predicates). As a result, the results of those queries be-
come smaller. The time span of crawling a smaller set of results
is shorter. So the effect of the web site updates becomes less sig-
nificant. On the other hand, the precision also goes down a bit and
then goes up and maintain at a high level as the dataset grows. The
reason is that the number of unrelated entities (e.g., products under
promotion) on list pages is finite.

From Table 3, we can see the overhead of D1, D2 and D3 are
lower than others. This phenomenon is caused by the page layout
of the three web sites. Every list page on these three web sites con-
tains all of the attributes as its query refinement options. Therefore,
given a list page, say x, after uncovering the queries associated
by the refinement links on x, our approach can obtain all entity-
attribute pairs, as they can be retrieved by the query tree (see Fig-
ure 6(a)) of x. Thus, the approach can discover all entity-attribute
pairs quite fast.

Finally, the online approach is far more efficient than the offline
approach. Figure 8(b) and 8(c) show the overhead comparison of
the online and the offline approach. Obviously, to discover more
entity-attribute pairs, the pages need to be scanned or crawled are
growing. To discover the last 10% part of pairs, the number of
pages which online approach should scans or crawls grows at a bit
higher speed than before because most of the queries uncovered
from this part of pages are pruned and the pruning certainly will
take some overhead. On the other hand, when 50% entity-pairs
has been discovered, the overhead of the offline approach ascends
rapidly. As mentioned, the total number of list pages possibly is ge-
ometric multiple of the attributes. That is why the offline approach
is costly. Due to the high cost, the offline approach is impractical,
especially for sites which contain huge mass of data.

6. CONCLUSION
How to effectively handle heterogenous information sources is

a core problem to information extraction from the web. Most web
crawling and information extraction approaches rely on manually
crafted templates, and the process is page-centric, that is, it fo-
cuses on individual pages that contain information of interest. We
show that a large category of web sites, especially e-commerce web
sites, organize their data to support “exploratory search.” In the
new scenario, web browsing becomes an interactive, query-and-
answer process. A crawler that does not understand the process
will have intrinsic vulnerabilities. We propose a query-centric ap-

proach, which automatically injects the “exploratory search” se-
mantics into crawling and information extraction. Our results show
that the approach is general (70% of exploratory sites can be han-
dled automatically), efficient (reducing crawling cost by orders of
magnitude), and has high quality (precision and recall of 95% and
beyond).

7. REFERENCES[1] A. Arasu and H. Garcia-Molina. Extracting structured data from web
pages. In SIGMOD, page 337348, 2003.

[2] D. Buttler, L. Liu, and C. Pu. A fully automated object extraction
system for the world wide web. In ICDCS, 2002.

[3] M. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Webtables: exploring the power of tables on the web. In PVLDB,
volume 1, 2008.

[4] S. Chakrabarti. Encyclopedia of Database Systems, chapter Focused
Web Crawling, pages 1147–1155. 2009.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. In VLDB, pages
109–118, 2001.

[6] N. Dalvi, P. Bohannon, and F. Sha. Robust web extraction: An
approach based on a probabilistic tree-edit model. In SIGMOD, 2009.

[7] R. Ghani, K. Probst, Y. Liu, M. Krema, and A. Fano. Text mining for
product attribute extraction. ACM SIGKDD Explorations Newsletter,
8(1), 2006.

[8] R. Gupta and S. Sarawagi. Answering table augmentation queries
from unstructured lists on the web. In PVLDB, volume 2, 2009.

[9] J. Huang, H. Wang, Y. Jia, and A. Fuxman. Link-based hidden
attribute discovery for objects on web. To appear at EDBT, 2011.

[10] K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the
structure of web sites for automatic segmentation of tables. In
SIGMOD, 2004.

[11] G. Marchionini. Exploratory search: from finding to understanding.
Communications of the ACM, 49(4), 2006.

[12] H. Nguyen, T. H. Nguyen, and J. Freire. Learning to extract form
labels. In PVLDB, volume 1, pages 684–694, 2008.

[13] K. Probst, R. Ghani, M. Krema, A. Fano, and Y. Liu. Extracting and
using Attribute-Value pairs from product descriptions on the web.
From Web to Social Web: Discovering and Deploying User and
Content Profiles, 2007.

[14] S. Sarawagi. Information extraction. In Foundations and Trends in
Databases, volume 1, pages 261–377, 2008.

[15] F. Wu and D. Weld. Autonomously semantifying wikipedia. In
CIKM, 2007.

[16] Y. Zhai and B. Liu. Web data extraction based on partial tree
alignment. In WWW, 2005.

[17] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W. Ma. 2d conditional random
fields for web information extraction. In ICML, 2005.

[18] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W. Ma. Simultaneous record
detection and attribute labeling in web data extraction. In KDD, 2006.

[19] J. Zhu, Z. Nie, J. R. Wen, B. Zhang, and W. Y. Ma. Simultaneous
record detection and attribute labeling in web data extraction. 2006.

APPENDIX
A. RELATED WORK

Much work has been done on the problem of extracting entity
attribute information from Web pages. Some techniques assume
the existence of an underlying template in Web sites and are based
on wrapper induction (e.g., [5, 1, 6, 16]); while others are template-
independent and rely on machine learning models (e.g., [10, 17, 18,
15]; see [14] for a survey). Another line of work exploits lists and
tables on the Web for attribute extraction [3, 8]. Some of these ap-
proaches leverage, like us, the interrelation between detail and list-
ing pages [10, 18]. Despite their differences, all these techniques
have something in common: they assume that the attribute infor-
mation appears directly associated to the entity (either on the entity
detail page or as a record in a listing page). That is, none of them
exploit the browsing structure of Web sites, which is the main con-
tribution of our paper.

We introduced the problem of attribute extraction leveraging brows-
ing structure in a recent paper [9]. In that paper, we presented a
proof-of-concept algorithm and successfully applied it to two com-
mercial sites: Amazon and Zappos. We now address the challenges
involved in implementing the vision at scale. For example, the al-
gorithm in [9] requires an entire Web site to be crawled before any
extraction can be done. We now present an algorithm that performs
focused crawling of web sites, thereby drastically improving the
efficiency of the system. We also crisply characterize the class of
Web sites that can benefit from browsing-aware extraction, and pro-
vide exhaustive experimental results on the top commercial sites as
per the Hitwise report.

Our system performs a focused crawl of Web pages in order to
obtain the relevant entity attribute information. In contrast, in the
literature on focused crawling (see [4] for a survey), the goal is to
gather pages in a category (not entity attributes). This is a funda-
mental difference, because our crawl is “focused” not by a page
classifier (as in traditional focused crawling), but by the “queries”
that we associate to the browsing elements of the Web site.

In our work, we discover links that contain attribute information
(drill-down links). The attribute information may also be available
in form elements (e.g., drop-down boxes). In such cases, it would
be possible to leverage existing work on labeling Web form ele-
ments (e.g., [12]). Notice that such work is orthogonal to ours, as
it does not deal with the problem of associating entities with struc-
tured information.

B. CRAWLED DATA IS INCOMPLETE
Table 4 uses food.com to demonstrate that a naive crawler may

miss a lot of important information about entities of interest if it
ignores the semantics of exploratory web search. The ‘availability’
column in the table figures out whether the attribute/value is ‘hid-
den’ in the dynamic exploratory process, as the ‘interaction’ means
the attribute/value is ‘hidden’. Here, about 70% of the informa-
tion about a recipe is ‘hidden’ in the interaction process, and is not
available on the final page that shows the selected recipe.

C. ALGORITHMS FOR THE ONLINE AP
PROACH

Algorithm 1 outlines the OnlineClustering procedure. For
a given list page x, the algorithm finds the query that x belongs
to, and outputs a triple ⟨O,Q,C⟩, which are the entities (O) that
satisfy the query, the query links (Q) on the list pages that belong
to the query, and the set of list pages (C) that belong to the query.
It is a recursive depth-first-search procedure, and it stops when no
list page on the next level is considered similar to the current page.

Property Value Availability
Recipe Name Spanish Chicken and Rice
Courses Stews Interaction
Courses Main Dish Interaction
Main Ingredients Poultry Interaction

Vegetables Interaction
Chicken Interaction
Meat Interaction
Rice Interaction
tomatoes Interaction
short-grain-rice Interaction
pasta-rice-and-grains Interaction

Preparation Inexpensive Interaction
Served Hot Interaction
less 4 Hours Interaction
Stove Top Interaction
Easy Interaction

Cuisines Spanish Interaction
European Interaction

Occasion Comfort Food Interaction
Savory Interaction
Potluck Interaction
Spread Interaction
Fall Interaction

Dietary Kid-Friendly Interaction
low-sodium Interaction
low-calorie Interaction
low-carb Interaction

Calories 768.5
Calories from Fat 344
Sodium 176.1 mg
Cholesterol 167.6 mg
Potassium 899.0 mg
Magnesium 82.5 mg
Carbohydrate 60.8 g
Protein 43.3 g

Table 4: incomplete data

Algorithm 1: OnlineClustering
Input: A list page x we have not seen before
Output: Set of entity links O, Set of query links Q, Set of list

pages C
1 C ← {x} ;
2 Px ← all hyper links on x ;
3 lx ← links in Px that point to list pages;
4 foreach t ∈ lx do
5 y ← page pointed to by t;
6 Py ← all hyper links on y ;
7 ly ← links in Py that point to list pages;
8 if y ̸∈ C ∧ |lx∩ly|

|lx∪ly| > 1− ϵ then
9 ⟨Ot, Qt, Ct⟩ ← OnlineClustering(y) ;

10 C ← C ∪ Ct ;
11 end
12 end
13 O ← Entity links on pages in C ;
14 Q← Query links on pages in C ;
15 return ⟨O,Q,C⟩ ;

Here, the similarity is measured by the Jaccard coefficient, and we
use a small ϵ to tolerate certain error.

Algorithm 2 describes the OnlineQueryDiscovery proce-

Algorithm 2: OnlineQueryDiscovery
Input: A list page r we have not seen before; the query forest

F we have discovered so far
Output: query forest F

1 S ← ∅; /* S is a stack that stores crawling tasks*/;
2 Push ⟨r, {}⟩ to S ;
3 while S is not empty do
4 Pop ⟨p,A⟩ from S ;
5 /* Discover the current query: */;
6 ⟨O,L, P ⟩ ← CrawlAndCluster(p) ;
7 /* Initialize buffer to record drill-down queries: */;
8 Q← ∅; ;
9 /* Discover drill-down queries of the current query */;

10 foreach l ∈ L do
11 a← attribute and value associated by l ;
12 p′ ← list page l points to ;
13 ⟨O′, L′, P ′⟩ ← CrawlAndCluster(p′) ;
14 A′ ← A ∪ {a} ;
15 if O′ ⊆ O and A′ ̸∈ Q then
16 Add O

a−→ O′ to Ftmp ;
17 Add A′ to Q ;
18 Push ⟨p′, A′⟩ to S ;
19 end
20 end
21 if exisits u ∈ F such that u.O = O and u.Q = Q then
22 /* the query is equvilent to an existing query in F */;
23 return ;
24 end
25 F ← F ∪ Ftmp ;
26 end

dure. Unlike Algorithm 1, it is a breadth-first procedure. It first
discovers the current query by invoking OnlineClustering,
then it uses the query links to obtain its drill-down queries (i.e.,
queries that are more specific by having one more attribute/value
pair). At the end of each level, we check if the DAG forest F al-
ready contains a query that is equivalent to the current query. Two
queries are considered equivalent if i) ntheir results are the same,
and ii) the set of drill-down queries are the same.

D. MORE SURVEY RESULTS
Table 5 and 6 present the detailed results of the survey on 127 ex-

ploratory web sites. For each site, we investigate three properties:
i)whether the entity pages of the site contain all of the attributes of
the entities, ii) can our approach handle the site, and iii) does the
site need keyword input to generate list pages. These three prop-
erties are the column ‘Entity pages contain complete information’,
column ‘can be handled’ and ‘need keyword input’ respectively.

Web Site Type (Domain) Entity pages conatin
complete information

Can be
handled Need keyword input

www.informatik.uni-trier.de/ ley/db Digital Library No Yes No
www.computer.org/portal/web/csdl Digital Library No Yes No
portal.acm.org Digital Library No Yes No
answers.yahoo.com Education Yes Yes Yes
wiki.answers.com Education No Yes Yes
www.msdn.com Education Yes Yes No
www.answerbag.com Education Yes Yes Yes
zhidao.baidu.com Education Yes Yes Yes
wenda.tianya.cn Education No Yes Yes
books.google.com Education No Yes Yes
www.ehow.com Education Yes Yes Yes
www.youtube.com Entertainment No Yes No
www.youku.com Entertainment No Yes No
movies.xunlei.com Entertainment No Yes Yes
www.pogo.com Entertainment No Yes Yes
video.google.com Entertainment No Yes No
www.flickr.com Entertainment Yes No Yes
www.foodnetwork.com Food No Yes No
allrecipes.com Food No Yes No
www.kraftrecipes.com Food No Yes No
www.food.com Food No Yes Yes
food.yahoo.com Food Yes Yes Yes
www.epicurious.com Food No Yes No
www.cdkitchen.com Food No Yes No
www.bettycrocker.com Food No Yes No
www.drugstore.com Health No Yes Yes
yahoo.match.com Lifestyle No Yes Yes
www.ganji.com Real Estate No Yes Yes
www.soufun.com Real Estate No Yes Yes
www.haozu.com Real Estate No Yes Yes
www.forrent.com Real Estate No No No
www.frontdoor.com Real Estate No Yes Yes
realestate.yahoo.com Real Estate No Yes No
www.realtor.com Real Estate No Yes No
Trulia.com Real Estate No Yes No
www.homes.com Real Estate No Yes No
www.ziprealty.com Real Estate No Yes No
www.apartmentguide.com Real Estate No Yes No
www.menupages.com Restaurant Search Yes Yes Yes
www.restaurant.com Restaurant Search No Yes Yes
www.restaurantrow.com Restaurant Search Yes No No
www.zagat.com Restaurant Search No Yes
dine.com Restaurant Search Yes No Yes
www.dineout.co.nz Restaurant Search Yes No Yes
www.eatability.com.au Restaurant Search Yes No Yes
www.dianping.com Restaurant Search Yes Yes Yes
www.koubei.com Restaurant Search No Yes Yes
www.bluefly.com Shopping Yes Yes Yes
www.urbanoutfitters.com Shopping Yes Yes Yes
www.torrid.com Shopping Yes Yes Yes
www.charlotterusse.com Shopping Yes No Yes
piperlime.gap.com Shopping Yes No Yes
www.finishline.com Shopping Yes No Yes
www.neimanmarcus.com Shopping Yes Yes Yes
www.talbots.com Shopping Yes Yes Yes
www.paulfredrick.com Shopping Yes Yes Yes
www.undergear.com Shopping Yes No Yes
www.ebags.com Shopping Yes Yes Yes
www.anacondasports.com Shopping Yes Yes Yes
www.altrec.com Shopping Yes Yes Yes
www.landsend.com Shopping Yes No Yes
www.skechers.com Shopping No Yes Yes
www.allheart.com Shopping No Yes Yes
shop.pacsun.com Shopping No Yes Yes
oldnavy.gap.com Shopping No No Yes
www.llbean.com Shopping No Yes Yes
shop.nordstrom.com Shopping No Yes Yes
www.payless.com Shopping No Yes Yes
www.rustyzipper.com Shopping No No Yes
www.alight.com Shopping No Yes Yes
www.lavintage.com Shopping No Yes Yes
search.80stees.com Shopping No Yes Yes

Table 5: Exploratory sites

Web Site Type (Domain) Entity pages conatin
complete information

Can be
handled Need keyword input

www.brooksbrothers.com Shopping No No Yes
www.casualmale.com Shopping No No Yes
www.bootbarn.com Shopping No No Yes
www.shoplocal.com Shopping No Yes Yes
www.360buy.com Shopping No Yes Yes
www.dangdang.com Shopping No Yes Yes
www.shopping.com Shopping No Yes Yes
www.ebay.com Shopping No Yes Yes
www.t-mobile.com Shopping No Yes Yes
www.ecost.com Shopping No Yes Yes
www.tigerdirect.com Shopping No Yes Yes
www.jr.com Shopping No Yes Yes
www.compuplus.com Shopping No No Yes
shopping.yahoo.com Shopping No Yes Yes
www.newlook.com Shopping No Yes Yes
www.overstock.com Shopping No Yes Yes
www.become.com Shopping No Yes Yes
www.toysrus.com Shopping No Yes Yes
www.kelleyfurniture.com Shopping No Yes Yes
www.zappos.com Shopping No Yes Yes
www.coggles.com Shopping No Yes Yes
www.ae.com Shopping No Yes Yes
www.abercrombiekids.com Shopping No Yes Yes
www.gap.com Shopping No Yes Yes
www.amazon.com Shopping No Yes Yes
www.footsmart.com Shopping No Yes Yes
www.famousfootwear.com Shopping No Yes Yes
www.softmoc.com Shopping No Yes Yes
www.anntaylor.com Shopping No Yes Yes
www.rustyzipper.com Shopping No Yes Yes
www.ties2pillows.com Shopping No Yes Yes
www.thomaspink.com Shopping No Yes Yes
www.shoebuy.com Shopping No Yes Yes
www.handbagsworld.com Shopping No Yes Yes
www.designer-handbags-city.com Shopping No Yes Yes
www.taobao.com Shopping No Yes Yes
www.buy.com Shopping No Yes Yes
www.shoebacca.com Shopping No Yes Yes
www.hotels.com Travel No Yes No
travelb.priceline.com Travel Yes No No
book.bestwestern.com Travel Yes No No
hotel.qunar.com Travel No Yes Yes
hotels.ctrip.com Travel No Yes Yes
www.elong.com Travel No Yes Yes
www.aa.com Travel No Yes No
travel.yahoo.com Travel No Yes Yes
www.travelocity.com Travel No Yes No
www.orbitz.com Travel No Yes No
www.cheaptickets.com Travel No Yes No
www.tripadvisor.com Travel No Yes No
www.hotwire.com Travel No Yes No
www.kayak.com Travel No Yes No
www.yellowpages.ca Yellow Page No Yes No
www.yellowpages.com Yellow Page No Yes No
www.yellowpages-china.com Yellow Page No Yes No

Table 6: Exploratory sites

