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Abstract. Given recent advances in automated theorem proving, we present a
new method for determining whether database transactions preserve integrity
constraints. We consider check constraints and referential-integrity constraints—
extracted from SQL table declarations—and application-level invariants expressed
as formulas of first-order logic. Our motivation is to use static analysis of database
transactions at development time, to catch bugs early, or during deployment, to
allow only integrity-preserving stored procedures to be accepted. We work in
the setting of a functional multi-tier language, where functional code is com-
piled to SQL that queries and updates a relational database. We use refinement
types to track constraints on data and the underlying database. Our analysis uses a
refinement-type checker, which relies on recent highly efficient SMT algorithms
to check proof obligations. Our method is based on a list-processing semantics
for an SQL fragment within the functional language, and is illustrated by a series
of examples.

1 Introduction

This paper makes a case for the idea that database integrity should be maintained by
static verification of transactional code, rather than by relying on checks at run time.
We describe an implementation of this idea for relational databases, where schemas
are defined using SQL table descriptions, and updates are written in a functional query
language compiled to SQL. Our method relies on a semantics of SQL tables (including
constraints) using refinement types, and a semantics of SQL queries in terms of list pro-
cessing. We describe a series of database schemas, the implementation of transactions
in the .NET language F#, and the successful verification of these transactions using the
refinement-type checker Stateful F7. Like several recent tools, Stateful F7 relies in part
on pushing verification conditions to external SMT solvers, provers whose effective-
ness has recently improved at a remarkable rate. Our aim is to initiate the application of
modern verification tools for functional languages to the problem of statically-verified
database transactions, and to provide some evidence that the idea is at last becoming
practical.

1.1 Background: Database Integrity Constraints

SQL table descriptions may include various sorts of constraints, as well as structural
information such as base types for columns.

A check constraint is an assertion concerning the data within each row of a table,
expressed as a Boolean expression.



A primary key constraint requires that a particular subset, the primary key, of the
columns in each row of the table identifies the row uniquely within the table. A key
consisting of multiple column labels is called a composite key. A uniqueness constraint
is similar to a primary key constraint but based on a single column (and introduced by
the unique keyword).

A foreign key constraint requires that a particular subset, a foreign key, of the
columns in each row of the table refers uniquely to a row in the same or anot her table.
Satisfaction of primary key and foreign key constraints is known as referential integrity.

To illustrate these constraints by example consider a table recording marriages be-
tween persons, represented by integer IDs. A key idea is that the marriage of A and B is
encoded by including both the tuples (A,B) and (B,A) in the table.

An Example Table with Integrity Constraints: Marriage

create table [Marriage](
[Spouse1] [int] not null unique,
[Spouse2] [int] not null,

constraint [PK Marriage] primary key ([Spouse1],[Spouse2]),
constraint [FK Marriage] foreign key ([Spouse2], [Spouse1])

references [Marriage] ([Spouse1], [Spouse2]),
constraint [CK Marriage] check (not([Spouse1] = [Spouse2])))

The two columns Spouse1 and Spouse2 in the Marriage table store non-null integers.
Database integrity in this example amounts to three constraints: marriage is monoga-
mous (you cannot have two spouses), symmetric (if you marry someone they must be
married to you), and irreflexive (you cannot marry yourself).

– The primary key constraint PK Marriage in conjunction with the uniqueness con-
straint on the column Spouse1 asserts that nobody is Spouse1 in two different mar-
riages, hence enforcing monogamy.

– The self-referential foreign key constraint FK Marriage asserts that whenever row
(A,B) exists in the table, so does the row (B,A), hence enforcing symmetry.

– The check constraint CK Marriage asks that nobody is married to themselves, hence
enforcing irreflexivity.

A buggy transaction on this table may violate its constraints. The sorts of bugs we aim
to detect include the following: (1) insertion of null in Spouse1 or Spouse1 (violating
the not null type annotation); (2) inserting (A,C) when (A,B) already exists (violating
the primary key constraint); (3) inserting (A,B) but omitting to insert (B,A) (violating
the foreign key constraint); and (4) inserting (A,A) (violating the check constraint). We
aim to eliminate such integrity violations by static analysis.

1.2 Background: Multi-Tier Functional Programming

We consider the common situation where database updates are not written directly in
SQL, but instead are generated from a separate programming language via some object-
relational mapping. In particular, we consider database transactions expressed in the
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functional language F# [28], but compiled to SQL for efficient execution in the rela-
tional backend. This is an instance of multi-tier functional programming, where a single
functional program is split across tiers including the web server and the database.

Our mapping is based on three ideas:

(1) We model SQL table definitions as F# types: the whole database is a record type db

consisting of named tables, where each table is a list of records, corresponding to
the rows of the table.

(2) We provide the user with standard functions for create, read, update, and delete op-
erations on each table. We also allow user-supplied custom SQL stored procedures,
and provide F# functions to call these procedures. Both standard and custom func-
tions are implemented as SQL queries, and can be thought of as imperative actions
on a global state of type db.

(3) Users write a transaction as an F# function that interacts with the database by call-
ing a sequence of standard SQL functions and custom stored procedures.

To illustrate point (1), we model our example table definition with the following F#
types, where the whole database db is a record with a single field holding the marriages
table, which itself is a list of rows.

type marriage row = { m Spouse1:int; m Spouse2:int; }
type db = { marriages: marriage row list; }

A row (A,B) is represented by the record:

{ m Spouse1=A; m Spouse2=B; }

The marriage of A and B is represented by the list:

[{ m Spouse1=A; m Spouse2=B }; { m Spouse1=B; m Spouse2=A }]

Regarding point (2), we have (among others) the following standard queries as F# func-
tions:

– hasKeyMarriage (A,B) computes whether a row with primary key (A,B) exists in
the marriages table.

– deleteMarriagePK (A,B) deletes the row with primary key (A,B) from the marriages
table, if it exists.

We have no user-supplied custom SQL queries for the marriages example, but show
such queries in some of our later examples.

Actual transactions (point (3) above) are written as functional code. The following
example of a user-written transaction is to dissolve a marriage. Given two spouses A
and B, we have to check whether the rows (A,B) and (B,A) exist in the database and
remove them both.

An Example Transaction: Divorce

let divorce ref (A,B) =
if hasKeyMarriage(A, B) then

deleteMarriagePK(A, B);
deleteMarriagePK(B, A);
Some(true)

else Some(false)
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The body of the function is an expression of type bool option.

– Some true means there was a marriage successfully removed, and we commit;
– Some false means there was no marriage to remove, and we commit;
– None would mean that the transaction failed and any updates are to be rolled back

(a return value not illustrated by this code).

The code above takes care to check that a marriage between A and B already exists be-
fore attempting to delete it, and also to remove both (A,B) and (B,A). Instead, careless
code might remove (A,B) but not (B,A). Assuming that the foreign key constraint on the
marriage table is checked dynamically, such code would lead to an unexpected failure
of the transaction. If dynamic checks are not enabled (for instance since the underlying
database engine does not support deferred consistency checking) running invalid code
would lead to data corruption, perhaps for a considerable duration. Our aim is to de-
tect such failures statically, by verifying the user written code with a refinement-type
checker.

1.3 Databases and Refinement Types

The values of a refinement type x:T{C} are the values x of type T such that the formula
C holds. (Since the formula C may contain values, refinement types are a particular form
of dependent type.) A range of refinement-type checkers has recently been developed
for functional languages, including DML [31], SAGE [12], F7 [3], DSolve [23], Fine
[27], and Dminor [5], most of which depend on SMT solvers [22].

A central idea in this paper is that refinement types can represent database integrity
constraints, and SQL table constraints, in particular. For example, the following types
represent our marriage table.

SQL Table Definitions as Refinement Types:

type marriage row = { m Spouse1:int; m Spouse2:int }
type marriage row ref = m:marriage row {CK Marriage(m)}
type marriage table ref = marriages:marriage row ref list
{ PKtable Marriage(marriages) ∧Unique Marriage Spouse1(marriages) }

type State = { marriage:marriage table ref }
type State ref = d:State {FK Constraints(d)}

The refinement types use predicate symbols explained informally below. We give for-
mal details later on.

– CK Marriage(m) means the record m satisfies SQL constraint [CK Marriage].
– PKtable Marriage(marriages) means the list of records marriages satisfies the primary

key constraint with label [PK Marriage].
– Unique Marriage Spouse1(marriages) means marriages satisfies the SQL uniqueness

constraint on column [Spouse1].
– FK Constraints(d) means the database d satisfies the SQL foreign key constraint

with label [FK Marriage].
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1.4 Transactions and the Refined State Monad

The state monad is a programming idiom for embedding imperative actions within func-
tional programs [29]. Pure functions of type State→ T ∗State represent computations
that interact with a global state; they map an input state to a result paired with an output
state. The refined state monad [(s0)C0]x:T [(s1)C1] is the enrichment of the state monad
with refinement types as follows:

[(s0)C0]x:T [(s1)C1], s0:State{C0}→ x:T ∗ s1:State{C1}

The formula C0 is a pre-condition on input state s0, while the formula C1 is a post-
condition on the result x and output state s1.

A new idea in the paper is to represent SQL queries and transactions as computa-
tions in a refined state monad, with the refinement type State being a record with a field
for each table in the database, as above. For example, the function divorce ref has the
following type, where the result of the function is a computation in the refined state
monad.

val divorce ref: (int×int)→
{(s) FK Constraints(s)} r:bool option {(t) r 6=None⇒FK Constraints(t)}

The return type states that if the function is called in a state s satisfying the foreign key
constraints, and it terminates, then it returns a value r of type bool option. Moreover,
if r6=None, then the state t after the computation terminates satisfies the foreign key
constraints. The type reflects that the code performs sufficient dynamic checks that it
never causes a dynamic failure, and that it returns None whenever it leaves the database
in an inconsistent state. The case of the function returning None is caught by a trans-
action wrapper (not shown here) which then aborts the transaction, rolling back the
database to its initial state. Buggy code that removes say (A,B) but not (B,A) is caught
by type-checking, as it does not re-establish the foreign key constraint FK Constraints(t).

1.5 An Architecture for Verified Database Transactions

We verify a series of example user transactions, according to the diagram below. Each
example starts from a database schema in SQL. From the schema our tool generates
refinement types to model the database, and also a functional programming interface
for a set of pre-packaged stored procedures in SQL (for actions such as querying and
deleting items by key, exemplified by the functions lookupMarriagePK etc mentioned
above). Against this interface, the user writes transactional code (exemplified by the
function marry ref mentioned above) in F#, which is invoked from their application. We
verify the code of the user transactions using the typechecker Stateful F7 [6], which
implements the refined state monad on top of the typechecker F7 [3]. Additionally, not
shown in the diagram, in some examples the schema may also include queries written
directly as custom SQL stored procedures; we can also verify these queries by mapping
SQL into F#.
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Our examples are as follows.

(1) Marriages (see above and Section 3).
We have a single table Marriage(Spouse1,Spouse2) with integrity expressed using
SQL table constraints. We describe verifiable transactions to create and delete mar-
riages.

(2) Order processing (see Section 4).
We have tables Orders(OrderID,CustomerID,Name,Address) and Details(OrderID,
ProductID,UnitPrice,Quantity) with integrity expressed using primary key, foreign
key and check constraints. We show that an addOrder function, which creates an
order with a single detail row, respects the primary key, foreign key and check con-
straints.

(3) Heap data structure (see Section 5).
We have a table Heap(HeapID,Parent,Content) where each row represents a node in
a heap data structure. Integrity is expressed with SQL constraints plus user-defined
constraints written in first-order logic (and not expressible using SQL). We verify
that integrity is preserved by recursive functions to push and pop elements, which
make use of user-defined stored procedures getRoot and getMinChild.

1.6 Contributions of the Paper

Our main contribution is to interpret SQL table descriptions as refinement types, and
database updates as functional programs in the refined state monad, so as to verify, by
refinement-type checking, that updates preserve database integrity. Hence, verification
of the F# and SQL source code proceeds by sending a series of verification conditions
in first-order logic to an automatic theorem prover.

Our source code is in the .NET language F#, but our method could be recast for
other functional multi-tier languages, such as Links [9], HOP [25], or FLAPJAX [16],
and also for object-oriented programming models such as LINQ [18]. We use the type-
checker Stateful F7, but we expect our approach to queries and transactions would
easily adapt to related verifiers for functional code with state such as Why [11] or
YNOT [19], and indeed to verifiers for imperative code, such as those using Boogie [1].

The idea of static verification of database transactions goes back to the 1970s, to
work on computing the weakest precondition needed for a transaction to succeed [14, 7,
26, 4]. Theorem proving technology has improved considerably since the idea of static
verification of database transactions was first mooted, and an implication of our work is
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that the idea is at last becoming practical. Moreover, the success of languages with func-
tional features such as F#, Scala [20], and indeed recent versions of C# with closures,
is compelling evidence for the significance of functional programming as an object-
oriented technology. Hence, our work lays a foundation for statically verifiable database
access from mainstream object-oriented platforms.

Additional details are available at http://johannes.borgstroem.org/drafts/
integrityTR.pdf.

2 A Tool to Model SQL with Refinement Types

This section fleshes out the architecture diagram of our system.
Section 2.1 describes the details of the SQL schemas input by our system, including

both the data definition part defining the structure of tables, and also the data manipu-
lation part of queries invoked from stored procedures.

Section 2.2 details how our tool generates data types and a database interface from
a schema. The database interface consists of a set of F# functions with types, including
preconditions and postconditions, specified in the syntax of Stateful F7. When generat-
ing the database interface, our tool automatically includes functions to access a set of
standard queries, as well as functions to access any custom stored procedures included
in the schema.

Section 2.3 gives a symbolic reference implementation for the generated database
interface. The symbolic implementation relies on list processing in a similar fashion to
Peyton Jones and Wadler [21], serves as a formal semantics for the interface, and can be
typechecked using Stateful F7. We trust, but do not formally verify, that the behaviour
of the symbolic implementation corresponds to our concrete implementation in terms
of sending queries to an actual SQL database.

Finally, Section 2.4 extends our schema syntax with the ability to write integrity
constraints directly as first-order predicates.

2.1 SQL Schemas: Tables and Stored Procedures

Let c range over constants, x over variables and f ,g over table column names. Then,
boolean expressions and value expressions occurring within SQL queries are defined by
the syntax below. Value expressions include (boolean, integer, and string) constants, bi-
nary operations, variables and table field names. Boolean expressions include equations
between value expressions, comparisons, conjunction, disjunction and negation.

Values and Expressions

B ::= E = E | E�E | B∨B | B∧B | ¬B Boolean expression
� ::= < |<= |> |>= Comparison operator
E ::= E⊕E | c | x | f Value expression
⊕ ::= + | − | ∗ | / Binary operator

A table declaration defines a table t, and gives a name fi and type Ti to each of its
columns. To indicate uniqueness constraints, each column has a tag ui, either unique or
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empty. SQL supports several data types; in this work, we only consider Boolean, Int and
String data types which are defined as their counterparts in F#, and we interpret more
complex types using appropriate encodings over the three basic types. We assume that
each table has exactly one primary key, which may be composite, exactly one check
constraint, and no multiple foreign key references to the same table. (SQL syntax al-
lows multiple check constraints, but these may be conjoined to produce a single check
constraint.) Additionally

Data Definition

DT ::= Table declaration
table t (ui fi : Ti)

i∈1..n, name and fields
primary key g, primary key
check B, check constraint
κ1, . . . ,κm foreign keys

κ ::= foreign key f references t ′(g)
T ::= Boolean | Int | String Type

The syntax of supported SQL queries includes those necessary for selecting, inserting
and deleting rows from a table. Let t denote an SQL table name and let f be a shorthand
for f1, . . . , fn (all the columns of the table) and g be a shorthand for g1, . . . ,gm (denoting
some of the fi).

Data Manipulation

Q ::= QS | QI | QD | QU Query
QS ::= Select query

select [top 1] g selector
from t source
where B criterion
[order by f {asc | desc}] ordering

QI ::= Insert query
insert into t target table
( f1, . . . , fn) table fields
values (E1, . . . ,En) field values

QD ::= Delete query
delete from t target table
where B criterion

QU ::= Update query
update t set target table
(g1, . . . ,gm) = table fields
(E1, . . . ,Em) field values
where B criterion

A QS query filters all the rows of a table t, based on a boolean criterion B, and projects
the selected fields g. The result of a select query is a table of rows matching the crite-
rion. We consider only select queries that contain top 1 if and only if they contain an
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order by clause. In this case, the resulting table is ordered in either ascending or de-
scending order based on the single field f , and the first element of the table is returned
as the result. A QI query adds a row consisting of the values E1, . . . ,En in table t. In
insert into t ( f1, . . . , fn) values (E1, . . . ,En), we expect each Ei to be either a variable or
a constant. The result of a QI query is a number indicating the count of successful inser-
tions. A QD query removes from table t all the rows matching the boolean criterion B.
Again, the result is a number indicating the count of successful deletions. Finally, a QU
query modifies fields g to contain values E for all rows of table t that match the boolean
condition B.

The SQL schema syntax includes constructs for databases, tables, procedures and
constraints. A schema is a named tuple of declarations. A declaration can be either a
procedure or a table. A procedure abstracts a query Q by giving a name h and parametrises
it through the arguments a1, . . . ,an. We assume that in a procedure declaration, the query
Q only contains variables from a.

SQL Schema

S ::= schema s(DT i∈1..n
i ,DP j∈1..m

j ) Schema
DP ::= procedure h (ai : Ti)

i∈1..nQ Procedure declaration

In subsequent sections, we adopt a convenient syntax for advanced queries and assume
standard encodings of these syntactic forms in terms of the core query syntax. For
example, multi-row insertion is defined in terms of multiple single-row insertions and
the star (*) syntax in QS queries corresponds to explicitly naming all the columns in the
table, in order of their appearance in the table declaration.

2.2 Generating Types and Database Interfaces from Schemas

Our tool maps an SQL schema S to a Stateful F7 module [[S]] by assembling a series of
type definitions, predicate definitions, and function signatures. This section describes
each of the five components in turn.

Translation from S in SQL to [[S]] in Stateful F7:
Let [[S]] be the Stateful F7 module obtained from schema S by concatenating the type
and function definitions displayed below: (S1) types from schema declarations; (S2)
refinement formulas from constraints; (S3) signatures of standard functions; (S4)
signatures of custom functions.

First, we fix a type for table declarations and the global type State of the refined state
monad used by Stateful F7. Second, we define logical axioms which correspond to the
database constraints. Third we give types to queries and procedures that manipulate
the global state. As discussed earlier, expressions get computation types of the form
[(s0)C0]x:T [(s1)C1]. Finally we generate standard API functions for manipulating the
global state. We use val f : T to give a type to a function in the API.

We assume a fixed schema s defined by S. For every table t in s, assume the defi-
nition table t (ui fi : Ti)

i∈1..n,primary key g,check B,κ1, . . . ,κl . Given table t, the trans-
lation algorithm works as follows: We generate the type t key as a tuple of the corre-
sponding types of the primary key fields and let Tf, the type of field f, be given by Ti
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when f = fi. For each row in the table we create an unrefined record type t row with
the labels corresponding to the column names from the table definition. To associate a
check constraint with each table row, we refine the row type with the formula CK t(row)
(defined below) and create the refinement type t row ref. Values of this type represent
rows in the table t for which the check constraint holds. The table t itself is modelled
as a list of refined rows (t table). Finally, we refine the table type by associating the
primary key constraint formula PKtable t(tab) (defined below) with it. Values of this
type represent tables for which the primary key constraint holds. Basic types translate
directly to their equivalents in Stateful F7. We deal with not null and null constraints by
declaring nullable types as option types.

We can now proceed to the definition of the type corresponding to the database (for a
single schema). Without loss of generality, assume that the tables t1, . . . , tn belong to the
fixed schema s. The database type is a record of refined tables. In the refined state type,
the refinement asserts that values of this type will satisfy the foreign key constraints
on the database. The normal state type does not have this refinement, denoting that
top-level constraints may temporarily be invalidated. A valid transaction may assume
that the foreign key constraints hold, and must enforce them on exit, but may internally
temporarily violate the constraints.

(S1) Types from Table Declarations
type t key = Tg1× ... ×Tgn
type t row = {f1:T1; ...; f n:Tn}
type t row ref = row:t row {CK t(row)}
type t table ref = tab:t row ref list {PKtable t(tab) ∧

∧
ui=UNIQUE Unique t fi}

type State = { (t i : ti table ref) i∈1..n }

Here check constraints are written as refinements on the row type, while primary key
constraints are refinements on the table type. Finally, foreign key constraints are written
as refinements on the database type.

We now define logical predicates corresponding to SQL table constraints. We as-
sume a translation [[·]]Lr from SQL boolean and value expressions to logical formulas
and terms with the function; the translation is homomorphic except for the base case
[[ f ]]Lr , r. f .

– CK t(row) means the check constraint of table t holds of the tuple row.
– PK t(r,k) means the primary key of row r of table t is k.
– PKtable t(tab) means the contents tab of table t satisfies its primary key constraint.
– Unique t f(tab) means the contents tab of table t satisfies the uniqueness constraint

for field f.
– FK t u(tab1,tab2) means the contents tab1 of table t satisfies the foreign key con-

straint with reference to the contents tab2 of table u.
– FK Constraints(db) means all foreign key constraints in the database db are satisfied.

In the table below, the Stateful F7 keyword assume introduces a universally quantified
formula to define each new predicate symbol.
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(S2) Refinement Formulas from Constraints
assume ∀row. CK t(row)⇔ [[B]]Lrow
assume ∀row,x . PK t(row,(x ))⇔

∧
i xi = row.gi

assume ∀tab. PKtable t(tab)⇔∀row1, row2.
(Mem(row1,tab) ∧Mem(row2,tab) ∧PK t(row1,(row2.g1, . . . , row2.gm)))⇒ row1 = row2

assume ∀tab. Unique t f(tab)⇔∀row1, row2.
(Mem(row1,tab) ∧Mem(row2,tab) ∧ row1.f = row2.f)⇒ row1 = row2

assume ∀t,u. FK t u(t,u)⇔∀x. Mem(x,t)⇒ (∃ y. Mem(y,u) ∧
∧

i x. fi = y.gi)
if ∃κi = foreign key f1 . . . fm references u(g1 . . .gm)

assume ∀s. FK Constraints(s)⇔
∧

t,u FK t u(s.t, s.u)

Now that we have translated SQL data declarations, we may proceed to the query and
data manipulation languages. A simple select query does not modify the state, and re-
turns a list whose elements are exactly the rows in the table matching the select con-
dition. A select top 1 query also does not modify the state, and returns a list which is
either empty or contains one element from the table that matches the select criterion and
is greater than (or less than, not shown) any other such element. An insert query may
only be called if inserting the row does not invalidate any table constraints, and the new
table after running the query is the old table with the inserted row prepended to it. A
delete query modifies the corresponding table to contain only those rows not matching
the query condition. An update query also modifies the table to contain exactly those
rows that do not match the where clause, or the updated version of the rows that do.

Types of SQL Queries

T[[select g from t where B ]],
[(s)] l:Tg list [(s’) s=s’ ∧ (∀ x. Mem(x,l)⇔∃r. ∧ [[B]]Lr ∧r.g = x.g ∧Mem(r,s.t) )]

T[[select top 1 g from t where B order by f asc ]],
[(s)] l:Tg list [(s’) s=s’ ∧ ((l = [] ∧ (∀r. Mem(r,s.t)⇒¬[[B]]Lr )) ∨

(∃x. [[B]]Lx ∧Mem(r,s.t) ∧ l = [{g = r.g}] ∧ (∀r. [[B]]Lr ∧Mem(r,s.t)⇒ r.f >= x.f)))]
T[[insert into t ( f1, . . . , fn) values (E1, . . . ,En) ]],

[(s) TC t({ f = E}::(s.t))] unit [(s’) s= {s’ with t = { f = E}::(s.t) }]
T[[delete from t where B ]],

[(s)] int [(s’) ∃t’. s’= {s with t = t’} ∧ (∀r. Mem(r,t’)⇔ [[¬B]]Lr ∧Mem(r,s.t))]
T[[update t set g = E where B ]],

[(s)] int [(s’) ∃t’. s’= {s’ with t = t’} ∧ (∀x. Mem(x,t’)⇔ (Mem(x,s.t) ∧¬[[B]]Lr ) ∨
(∃r.Mem(r,s.t) ∧ [[B]]Lr ∧x= {r with g = [[E]]Lr }))]

The standard API defines functions that look up the existence of keys inside a table,
generate fresh keys for a table, checks that an unrefined row satisfies the constraints,
inserts a refined row in a table, deletes a row from a table and updates a row in a
table. The function fresh t is only defined when the primary key is non-composite, i.e.
constraint contains a single field f , and indeed is an integer. The lookup t function takes
a numeric key and returns true if it exists inside the table; the fresh t function generates
a new key that does not exist inside the table; the check t function takes an unrefined
row and makes sure that all the check constraints are satisfied for it; the insert t function
takes a refined row to be inserted in a table and starting from a state that satisfies all
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the primary key and foreign key constraints performs the insertion; the delete t function
takes a key for a table and removes the associated row from the table.

(S3) Signatures of Standard Functions

PKfresh t(tab, (x )) , ∀r. Mem(r, tab)⇒
∨

i(xi 6= r.gi)

PKexists t(tab, (x )) , ∃r. Mem(r, tab) ∧
∧

i(xi = r.gi)

val hasKey t: k:t key→
[(s) True] b:bool [(s’) s=s’ ∧ (b=false⇒PKfresh t(s.t,k)) ∧ (b=true⇒PKexists t(s.t,k))]

val lookup t: k:t key→
[(s) True] o:t row ref option [(s’) s=s’ ∧ (o=None⇒PKfresh t(s.t,k)) ∧

(∀r. o=Some(r)⇒Mem(r,s.t) ∧PK t(r,k))]
val fresh t: unit→ [(s) True] k:t key [(s’) s=s’ ∧PKfresh t(s.t,k)]
val check t: r:t row→ [(s) True] b:bool [(s’) s=s’ ∧ (b=true⇒CK t(r))]
val insert t: r:t row ref→ [(s) True] b:bool [(s’) (b=false⇒s=s’) ∧ (b=true⇒ ...)]
val update t: r:t row ref→ [(s) True] b:bool [(s’) (b=false⇒s=s’) ∧ (b=true⇒ ...)]
val delete t: k:t key→ [(s) True] unit [(s’) (b=false⇒s=s’) ∧ (b=true⇒ ...)]

To complete the four parts of the definition of [[S]], each custom stored procedure ex-
plicitly listed in the schema S is translated to a function signature as follows.

(S4) Signatures of Custom Functions

[[procedure h (ai : Ti)
i∈1..n Q ]],

val h : a1 : T[[T1 ]]→ . . .→an : T[[Tn ]]→T[[Q ]]

2.3 Reference Implementation of Database Interface

The dynamic semantics for the subset of SQL that we consider follows Peyton Jones
and Wadler [21]. In the following, we assume standard map and filter functions on lists,
and also functions max and min that select the maximum and minimum of a list of or-
derable values. As a convention, we use f for the full tuple of columns, and g for a
subset of the columns. The variable s in the translation represents the entire database
record, and therefore the expression s.t projects the table t over which the query is per-
formed. The translation [[·]]Fr , from SQL boolean and value expressions to F7 expressions
is homomorphic except for the base case [[ f ]]Fr , r. f .

Semantics of SQL Queries

[[select g from t where B]],
let s = get() in map (fun f → g)(filter (fun r→ [[B]]Fr ) (s.t))

[[select top 1 g from t where B order by f asc]],
match [[select f from t where B]] with []→ [] | xs→
let m = max(xs) in [hd([[select g from t where ( f = m)∧B]])]

[[insert into t ( f1, . . . , fn) values (E1, . . . ,En)]],
let s = get() in set {s with t = { f1 = E1, . . . , fn = En} :: (s.t)}

[[delete from t where B]],
let s = get() in set {s with t = [[select ∗ from t where ¬B]]}
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[[update t set g = E where B]],
let s = get() in
let t1 = [[select ∗ from t where ¬B]] in
let tB = [[select ∗ from t where B]] in
let t2 = map (fun r→{r with [[g]]Fr = [[E]]Fr}) tB in
set {s with t = t1@t2}

To translate a simple QS query, we first obtain the current database and project the table
t we are interested in. We then filter every row r using the translation of the boolean
condition B. Finally, we map a projection function, which selects the required subset of
columns g, onto the filtered result. The translation of a QS query with top and order by
first narrows the result set using the boolean criterion B. If no rows match the criterion,
we simply return the empty list. If multiple rows match the criterion, we find the maxi-
mum value of the field f within any row and store that to a temporary variable m. We,
finally, use a simple QS query to find all the rows that satisfy B for which the field f
has the value m and return the head of the list. The translation of a QI query involves
getting the current database value, and immediately writing it back with the new row
being prepended to the existing table. The translation of a QD query follows a similar
pattern; we get the current database and immediately write back a table consisting of
all the row that do not match the boolean condition. The translation of a QU query first
saves the initial state, as well as the rows of table t that do not match the criterion B. We
then extract the rows that match the criterion B, and map the update over them. Finally,
the modified state is written back.

Here is the semantics for the API in F#, with appeal to our semantics of SQL in F#.
Below we write pk(t) for the non-empty tuple of field names making up the primary
key of table t, and we write ck(t) for the check constraint of table t.

Semantics of API Functions
let hasKey t k = [[select ∗ from t where pk(t)=k]] 6= []
let lookup t k =

match [[select ∗ from t where pk(t)=k]] with
| [r]→Some r
| →None

let fresh t () =
genKey t [[select top 1 pk(t) from t where true order by pk(t) asc]]

let check t r = [[ck(t)]]Fr
let insert t r= [[insert into t (f1,...,fn) values (r.f1,...,r.fn)]]=1
let delete t k = let n = [[delete from t where pk(t)=k]] in ()
let update t k r = (delete t k; insert t r)

The user code is written in F# and can be executed symbolically against the refer-
ence implementation of the database access API above. The same user code is type-
checked against the F7 interface and linked against the concrete implementation of the
API functions that use a relational database.
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2.4 Extension with Application Constraints

We extend the SQL table syntax from Section 2.1 in order to allow user-specified in-
variants, written in first-order logic. We also replace the definition of refined tables, and
the definition of the global database constraint FK Constraints as follows.

User Constraints

κ ::= · · · | p p is a unary predicate symbol
D ::= · · · | p p is a unary predicate symbol

type t table ref = tab:t table{PKtable t(tab) ∧
∧

i=1...k pt
i (tab)}

assume ∀db. FK Constraints(db)⇔
∧

t,u FK t u(s.t, s.u)∧
∧

i pD
i

User constraints p(x), where x will be instantiated either by a table or the entire database,
are defined by a user-specified first order logic formula Cp that can contain boolean ex-
pressions, quantifiers, and other axiomatized predicates. When defining these formulas,
care must be taken to avoid introducing inconsistencies—any program satisfies an in-
consistent specification.

3 Completing the Marriages Example

Our goal is to type-check application code that accesses the database and to ensure that
it respects the database constraints. To achieve this we need a model of the database,
the tables and the constraints inside the host language of the application. Based on the
rules from section 2.2 and we translate the Marriages table declaration from section 1.1
and generate the appropriate F7 data types with refinements. We now give the complete
translation of the marriage example.

3.1 Database Schema

We here repeat the definition of the refined data types corresponding to the marriage
table and its rows.

Marriage Data Types

type marriage row = { m Spouse1:int; m Spouse2:int }
type marriage row ref = m:marriage row {CK Marriage(m)}
type marriage table ref = marriages:marriage row ref list
{ PKtable Marriage(marriages) ∧Unique Marriage Spouse1(marriages) }

type State = { marriage:marriage table ref }
type State ref = d:State {FK Constraints(d)}

The check constraint, primary key constraint, uniqueness constraint and foreign key
constraint are defined as first-order logical formulas, using the keyword assume. We
define two auxiliary predicates: PK Marriage(m, k) states that the primary key of row m

is k, and FK Constraints(d) states that all foreign key constraints (of which there is only
one) are satisfied for the database d. The predicate Mem(r,t) checks if row r is present in
table t.
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SQL Constraints as Formulas
assume ∀x,y. CK Marriage((x, y))⇔x 6=y
assume ∀m,k. PK Marriage(m, k)⇔k = (m.m Spouse1, m.m Spouse2)
assume ∀xs. PKtable Marriage(xs)⇔
∀x,m. Mem(x, xs) ∧Mem(m, xs) ∧PK Marriage(x, (m.m Spouse1, m.m Spouse2))

⇒x = m
assume ∀l. Unique Marriage Spouse1(l)⇔
∀x,y. Mem(x, l) ∧Mem(y, l) ∧x.m Spouse1 = y.m Spouse1⇒x = y

assume ∀d. FK Constraints(d)⇔FK Marriages Marriages(d.marriages, d.marriages)
assume ∀marriages’, marriages. FK Marriages Marriages(marriages, marriages’)⇔
∀x. Mem(x, marriages’)⇒
∃u. Mem(u, marriages) ∧PK Marriage(u, (x.m Spouse2, x.m Spouse1))

3.2 Access function API

From the database schema, our tool also generates data manipulation functions which
carry pre-conditions and post-conditions corresponding to the database constraints on
their arguments. We generate two implementations of these functions: one that works on
the abstract model, and one that works on the actual SQL server database via ADO.Net.

The following code fragment contains the type signatures of the automatically gen-
erated functions for the marriage example.

Specification of API Functions
val checkMarriage :

r:marriage row→ [(s)] b:bool [(s’)(s = s’ ∧b = true⇒CK Marriage(r))]

val hasKeyMarriage :
k:(int ×int)→ [(s)] b:bool [(s’)(

s = s’ ∧
b = false⇒PK Marriages Fresh(s.marriages, k) ∧
b = true⇒PK Marriages Exists(s.marriages, k))]

val deleteMarriagePK :
k:(int ×int)→ [(s) PK Marriages Exists(s.marriages, k)] unit [(s’)

ContainsiffNotPKMarriage(s, s’, k)]

val insertMarriageRowi :
r:marriage row ref→ [(s)] b:bool [(s’)(

b = true⇒s’.marriages = r :: s.marriages ∧
b = false⇒s = s’)]

assume (∀marriages,spouse1,spouse2. (PK Marriages Fresh(marriages, (spouse1, spouse2))
⇔ (∀x. (Mem(x, marriages)⇒ (spouse1 6=x.m Spouse1 ∨spouse2 6=x.m Spouse2)))))

assume (∀marriages,spouse1,spouse2. (PK Marriages Exists(marriages, (spouse1, spouse2))
⇔ (∃x. ((Mem(x, marriages) ∧spouse1 = x.m Spouse1) ∧spouse2 = x.m Spouse2))))
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3.3 User-Written Transactions

In addition to the divorce transaction seen in section 1, the user also writes a transaction
to marry two people. Note that the foreign key constraint (symmetry) is temporarily in-
validated between the two row insertions. The verification will ensure that it is properly
reestablished at the end of the transaction.

Marriage Transaction

let marry ref (A,B) =
if hasKeyMarriage(A,B) then Some(false)
else if A=B then Some(false)
else

insertMarriageRowi {m Spouse1=A; m Spouse2=B};
insertMarriageRowi {m Spouse1=B; m Spouse2=A};
Some(true)

let marry m = doTransact marry ref m

The final line above defines a transaction marry by calling the transaction wrapper
doTransact, which ensures that transactions that may violate database integrity are rolled
back. The marriage transaction, wrapped and unwrapped, and the transaction wrapper,
have the following types.

Wrapping Transactions
type α transaction = [(s) FK Constraints(s)] r:α [(t) FK Constraints(t)]
type α preTransact = [(s) FK Constraints(s)] r: α option

[(t) r 6=None⇒FK Constraints(t)]

val marry ref: int×int→bool preTransact
val doTransact: (α →β preTransact)→α→ (β option) transaction

A transaction returning type α is a computation, which if run in a state satisfying the
foreign key constraints, if it terminates, returns a value of type α in a state that satisfies
the foreign key constraints. Similarly, a pretransaction returning type α is a compu-
tation, which if run in a state satisfying the foreign key constraints, and terminating
with a return value of type α option different from None, preserves the foreign key con-
straints. To go from a pretransaction, e.g., marry ref to a transaction, e.g., marry, we use
the function doTransact which rolls back the pretransaction if it returns None.

We verify that the user code above has the types given above by refinement type
checking; in particular, we get that the functions marry and toTransact divorce ref pre-
serve database integrity.

4 Example: A Simple E-Commerce Application

In this section, we illustrate our approach in the context of a typical e-commerce web
shopping cart. A user can add products to their cart, update the number of products or
remove items from their order. Each operation must leave the database in a consistent
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state satisfying all database contraints. An operation either successfully completes the
database transaction leaving the database in a new state, or it aborts the transaction and
rolls back all the intermediate modifications, leaving the database in its original state.

We store the shopping cart state across two database tables. The first one (Orders)
holds order information like customer name and shipping address, while the second one
(Details) stores specific details about orders, like the codes of the chosen products, their
quantities and their price. A row in the Details table represents a unique product in an
order. The column OrderID is used to associate each order with multiple detail rows.

The following SQL fragment shows the two tables, and defines constraints that must
hold for the database.

SQL Schema

create table [Ordr](
[OrderID] [int] not null,
[CustomerID] [nchar](8) null,
[ShipName] [nvarchar](40) null,
[ShipAddress] [nvarchar](60) null,

constraint [PK Order] primary key ([OrderID])
)
create table [Detail](

[OrderID] [int] not null,
[ProductID] [int] not null,
[UnitPrice] [money] not null,
[Quantity] [smallint] not null,

constraint [PK Detail] primary key ([OrderID], [ProductID]),
constraint [FK Details Orders] foreign key([OrderID])

references [Ordr] ([OrderID]),
constraint [CK Quantity] check (([Quantity]>(0))),
constraint [CK UnitPrice] check (([UnitPrice]>=(0))))

The primary key is the compound key created from the OrderID and the ProductID

fields. To ensure referential integrity, we add the constraint that for every row in the
Details table, the value of the OrderID field must exist in a row of the Orders table.
For data integrity, we ask that for each row in the table, Quantity and UnitPrice are
non-negative.

E-Commerce Data Types (partial)

type State = { ordr : ordr ref; detail : detail ref}
type State ref=d:db{ FK Constraints(d) }
assume ∀d. FK Constraints(d)⇔

FK Detail Ordr(d.detail, d.ordr)
assume ∀ds, os.FK Detail Ordr(ds, os)⇔
∀x. Mem(x,ds)⇒∃u.Mem(u,os) ∧PK Ordr(u,x.d OrderID)

Given the types corresponding to table definitions (omitted), we represent a database
as a record whose labels correspond to the table names. The label types are the refined
table types ordr ref and detail ref. A refined state State ref, is a database for which the
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foreign key constraint between the tables holds. The foreign key predicate definition
says that for every row x of the details table, there exists a row u in the orders table,
such that the primary key of u is equal to the d OrderID field of x.

We verify the user defined transaction addOrder below, which takes the necessary
data items as arguments and returns a boolean value indicating whether the operation
was successful or not.

E-Commerce Transaction

let addOrder ref ord =
let (customerID, shipName, shipAddress, productID, unitPrice, quantity) = ord in
let oid = freshOID () in
let ordr : order row =
{o OrderID = oid; o CustomerID = customerID;
o ShipName = shipName; o ShipAddress = shipAddress} in

let detail : detail row =
{d OrderID = oid; d ProductID = productID;
d UnitPrice = unitPrice; d Quantity = quantity} in

let x3 = checkDetail detail in
if x3 then let r = insertDetailRowi detail in

if r then let r’ = insertOrderRowi ordr in
if r’ then true
else false

else false
else false

let addOrder ord = doTransact addOrder ref ord

User defined transactions consist of two parts; a function which when executed
may violate database integrity, and a corresponding function that wraps the former one
and ensures that the database integrity is reestablished at the end of the transaction,
perhaps through a rollback. In the example function addOrder ref, since the detail is
inserted before the order row, the database passes through a state in which the foreign
key constraint is violated; so this code would fail needlessly in some systems, such
as SQL Server. The function addOrder uses the library function doTransact to wrap
addOrder ref with the necessary transaction handling code.

5 Example: A Heap-Ordered Tree

This example shows the use of more advanced features of our system, such as user-
defined predicates and custom stored procedures. We use a database table to store a
heap-ordered tree, where the child nodes store pointers to their parent but not vice
versa. We add two named application-level invariants (Section 2.4) to the heap table.
TR isHeap states that the value stored at every node is greater than that stored at its
parent; and TR uniqueRoot states that any two root nodes are equal.
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Heap SQL Specification

create table [Heap](
[HeapID] [int] identity (1,1) not null,
[Parent] [int] not null,
[Content] [int] not null,

constraint
[PK Heap] primary key CLUSTERED ([HeapID] asc),

constraint
[FK Heap] foreign key ([Parent]) references [Heap] ([HeapID]),

/×−−− UserConstraint TR isHeap ×/
/×−−− UserConstraint TR uniqueRoot ×/)

The first-order formulas expressing the application-level invariant predicates are defined
in terms of an auxiliary predicate TR isRoot. This predicate denotes that a given node
is the root of a tree, which is defined as the node being its own parent.

User Constraints

assume ∀d. TR isHeap(d)⇔ (∀x,y. (Mem(x, d) ∧Mem(y,d) ∧
x.h Parent = y.h HeapID)⇒x.h Content >= y.h Content)

assume ∀d. TR uniqueRoot(d)⇔
(∀x,y. (TR isRoot(x,d) ∧TR isRoot(y,d))⇒x = y )

assume ∀x,d. TR isRoot(x,d)⇔Mem(x, d) ∧x.h Parent = x.h HeapID

We also define two stored procedures: getRoot returns a root node of the tree, while
getMinChild returns the smallest child of a given node.

Custom Stored Procedures

create procedure getRoot as
select top 1 ∗ from Heap
where HeapID = Parent order by Content asc

create procedure getMinChild @rootID [int] as
select top 1 ∗ from Heap
where (Parent = @rootID and HeapID 6=@rootID)
order by Content asc

The form of these stored procedures is very similar, so we detail the translation of only
getRoot. Its post-condition is defined as follows. The function can return two different
values: the empty list or a list containing one element. If the function returns the empty
list, we learn that there is no root element. If one element was returned, the predicate
GetRootResult states that it satisfies the where clause, and is from the table, and the
predicate GetRootIsMin states that the returned element is the one with the least value
of the elements in the table satisfying the where clause.

getRoot

val getRoot : unit→ [(s)] l:heap row list
[(s’) s = s’ ∧GetRootResult(l,s) ∧
((l = [] ∧GetRootNotFound(s)) ∨ (∃x. l = [x]))]
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assume ∀s,x. GetRootNotFound(s) ∧Mem(x,s.heaps)⇒
not (x.h Parent = x.h HeapID)

assume ∀s,l,x. (GetRootResult(l,s) ∧ (l = [x]))⇒
(x.h HeapID = x.h Parent) ∧Mem(x, s.heaps) ∧
PK Heaps Exists(s.heaps,x.h HeapID) ∧GetRootIsMin(x,s)

assume ∀x,s,r. (GetRootIsMin(x,s) ∧ r.h HeapID = r.h Parent
∧Mem(r, s.heaps))⇒x.h Content >= r.h Content

In this setting, we define two operations. We can insert a node into the tree, using the
function pushAt int, which adds a node with a given value as a child to the nearest
ancestor of a given node that has a value less than the value to insert. With pop int we
can pop the smallest node off the table, causing its smallest child to bubble up the tree,
recursively. This recursive procedure is called rebalanceHeap.

Specifications of User Functions

val pushAt int: int×int→bool preTransact
val pop int: unit→ int preTransact
val rebalanceHeap: i:int→

[(s) FK Constraints(s) ∧PK Heaps Exists(s.heaps,i) ]
unit [(t) FK Constraints(t) ]

To push an element, we compare it to the root. If it is smaller, it becomes the new root
value, otherwise we store it as a child of the root.

Pushing an Element Onto the Heap

let rec pushAt int (i,v) =
let node = lookupHeapPK i in
let newID = freshHID () in
match node with
| None→None
| (Some(nodeRow))→

let {h Content=c ; h HeapID=id; h Parent=par} = nodeRow in
if v > c then

let r = {h Content = v ; h HeapID = newID; h Parent = id} in
if insertHeapRow r then Some(true) else None

else
if hasKeyHeap id then

if hasKeyHeap par then
if id = par then

let nodeRow’ = {h Content=v; h HeapID=id; h Parent=par} in
if updateHeapPK id nodeRow’ then

let r = {h Content=c; h HeapID=newID; h Parent=id} in
if insertHeapRow r then Some(true) else None

else None
else pushAt int (id,v)

else None
else None
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When popping the root, we use rebalanceHeap to let a chain of minimal children “bubble
up” one step.
Popping the Root of the Heap

let rec rebalanceHeap id =
let minM = getMinChild(id) in match minM with
| []→ let res = deleteHeapPK id in res
| [minRow]→match minRow with
| {h Content=mc; h HeapID=mid; h Parent=mpar}→

if hasKeyHeap mid then
let r = lookupHeapPK id in match r with
| None→ ()
| (Some(u))→match u with
| {h Content=rc ; h HeapID=rid; h Parent=rpar}→

let v = {h Content = mc; h HeapID = id ; h Parent = rpar} in
updateHeapPK id v;
let res = rebalanceHeap mid in res

else ()

let pop int () =
let root = getRoot() in match root with
| []→None
| [rootRow]→match rootRow with
| {h Content = c; h HeapID = id; h Parent = par}→

(rebalanceHeap id; Some(c))

To verify this more complex example, we needed to add three axioms to the context of
the SMT solver. The first axiom states that when updating a row, without changing its
primary key, then the same primary keys are present in the database table as before. The
second axiom states that if the foregn key constraints hold, and the primary and foreign
key fields are unchanged by a single-row update, then the foreign key constraints are
not violated. The third axiom states that if a row has no children, then it can be deleted
without violating the foreign key constraint.
Axioms

assume ∀h,h’,k,v,x. UpdateHeap(h’,h,k,v) ∧PK Heaps Exists(h,x)⇒PK Heaps Exists(h’,x)
assume ∀h1,h2,x,y. FK Heaps Heaps(h1,h1) ∧Replace(h2,h1,x,y) ∧x.h Parent = y.h Parent

∧x.h HeapID = y.h HeapID⇒FK Heaps Heaps(h2,h2)
assume ∀s,k,s’. FK Constraints(s) ∧GetMinChildNotFound(k,s) ∧DeletedHeap(s,s’,k)⇒

FK Constraints(s’)

Given these axioms, we verify that transactions that add values to and/or pop values
from the tree do not violate the database integrity, including the application-level con-
straints.

6 Software Architecture and Evaluation

Our implementation consists of a compiler from an SQL schema to a Stateful F7 database
interface implementing the translation in Section 2.2, and from an SQL schema to a
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symbolic implementation of the database in F# implementing the dynamic semantics of
Section 2.3. We use the Stateful F7 typechecker to verify the user supplied transactions
against the generated interface. Additionally we provide a concrete implementation of
the database interface against SQL Server. The core compiler (without Stateful F7)
consists of about 3500 lines of F# code split between the SQL parser, the translation
rules and the implementation of the database interface.

We evaluate our approach experimentally by veryfing all the examples of this paper;
Table 6 summarizes our results. For each example it gives: a) the total number of lines
of user supplied code (this includes the F# transaction code and user-defined predicates,
and the SQL schema declaration), b) the number of lines of the automatically generated
data types and database interface, and c) the verification information consisting of the
number of proof obligations passed to Z3 and the actual verification time. Constraints
that affect individual rows or tables like check, and primary key constraints, unsupris-
ingly add little time to the verification process. This explains the small verification time
of the E-Commerce example, despite having more tables and check constraints than the
other examples. On the other hand uniqueness, foreign key constraints and arbitrary
user constraints require disproportionately more time to verify.

We express constraints in first-order logic with a theory of uninterpreted function
symbols and linear arithmetic. The main challenge when working with first-order solver
like Z3 is quantifier instantiation. In certain examples like heap, we found that Z3 was
unable to prove the automatically generated predicates. As a result and to assist Z3
with its proof obligations, our compiler implements some additional intermediate pred-
icates. In particular, for universally quantified formulas, we gave predicate names to
quantified subformulas such that superfluous instantiations might be avoided. For exis-
tentially quantified formulas, Z3 sometimes has problems constructing the appropriate
witness, and we instead were forced to add an axiom that referred to predicates that
abstracted quantified subformulas. One contributing factor to this problem was that F7
communicates with the SMT solver Z3 using the Simplify format, while the more ad-
vanced SMT-Lib format would permit us to add sorting of logical variables, patterns to
guide quantifier instantiation, and access to the array theory implemented in Z3 for a
more efficient modelling of tables as arrays indexed by the primary key.

Given that our objective is to statically verify that transactional code contains enough
checks to preserve the database invariants, we found that applying our approach inter-
actively as we developed the transactional code, helped us implement an exhaustive set
of checks and made for a pleasant programming experience. Additionally, the standard
database API provides sufficent building blocks to write transactional code. At the same
time our approach leads to very verbose code which, when verified, explicitly handles
any possible transaction outcome.

7 Related Work

The idea of applying program verification to database updates goes back to pioneer-
ing work [14, 7] advocating the use of Hoare logic or weakest preconditions to verify
transactions.
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User supplied Generated Verification
transactions schema data types db interface queries time

Marriages 38 10 38 48 20 20.890s
E-Commerce 41 23 54 74 16 9.183s
Heap 111 30 54 85 76 80.385s

Table 1. Lines of user supplied and generated code, and verification information

Sheard and Stemple [26] describe a system for verifying database transactions in
a dialect of ADA to ensure that if they are run atomically then they obey database
constraints. The system uses higher order logic and an adaptation of the automated
techniques of Boyer and Moore.

In the setting of object-oriented databases, Benzaken and Doucet [4] propose that
the checking procedures invoked by triggers be automatically generated from high-level
constraints, well-typed boolean expressions.

Benedikt, Griffin, and Libkin [2] consider the integrity maintenance problem, and
study some theoretical properties of the weakest preconditions for a database trans-
action to succeed, where transactions and queries are specified directly in first-order
logic and extensions. Wadler [30] describes a related practical system, Pdiff, for compil-
ing transactions against a large database used to configure the Lucent 5ESS telephone
switch. Consistency constraints on a database with nearly a thousand tables are ex-
pressed in C. Transactions in a functional language are input to Pdiff, which computes
the weakest precondition which must hold to ensure the transaction preserves database
integrity.

To the best of our knowledge, our approach to the problem is the first to be driven
by concrete SQL table descriptions, or to be based on an interpretation of SQL queries
as list processing and SQL constraints as refinement types, or to rely on SMT solvers.

A recent tool [10] analyzes ADO.NET applications (that is, C# programs that gen-
erate SQL commands using the ADO.NET libraries) for SQL injection, performance,
and integrity vulnerabilities. The only integrity constraints they consider are check con-
straints (for instance, that a price is greater than zero); they do not consider primary key
and foreign key constraints.

Malecha and others [17] use the Coq system to build a fully verified implementation
of an in-memory SQL database, which parses SQL concrete syntax into syntax trees,
maps to relational algebra, runs an optimizer and eventually a query. Their main concern
is to verify the series of optimization steps needed for efficient execution. In contrast,
our concern is with bugs in user transactions rather than in the database implementation.
Still, our work in F# is not fully verified or certified, so for higher assurance it could be
valuable to port our techniques to this system.

Ur/Web [8] is a web programming language with a rich dependent type system. Like
our work, Ur/Web has a dependently typed embedding of SQL tables, and can detect
typing errors in embedded queries. On the other hand, static checking that transactions
preserve integrity is not an objective of the design; Ur/Web programs may result in
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a “fatal application error if the command fails, for instance, because a data integrity
constraint is violated” (online manual, November 2010).

Refinement-type checkers with state are closely related to systems for Extended
Static Checking such as ESC Java [13] and its descendants [1]. To the best of our knowl-
edge, these systems have not previously been applied to verification of transactions, but
we expect it would be possible.

8 Conclusion

We built a tool for SQL databases to allow transactions to be written in a functional lan-
guage, and to be verified using an SMT-based refinement-type checker. On the basis of
our implementation experience, we conclude that it is feasible to use static verification
to tell whether transactions maintain database integrity.

In future, we are interested to consider an alternative architecture in which our static
analysis of queries is implemented in the style of proof-carrying code on the SQL server
itself. Another potential line of work is to model database state within separation logic,
and to appeal to its tools for reasoning about updates.

Acknowledgements Discussions with Peter Buneman, Giorgio Ghelli, and Tim Griffin
were useful.
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A Stateful F# (Review)

We describe preconditions, postconditions, and refinements for a subset of F#.
We begin with its syntax and operational semantics in Section A.1 and Section A.2.

Section A.3 describes the type system of RIF and its soundness with respect to the
operational semantics.

Our starting point is the Fixpoint Calculus (FPC) [?,15], a deterministic call-by-
value λ -calculus with sums, pairs and iso-recursive data structures.

A.1 A Functional Programming Language

Syntax of the Core Fixpoint Calculus:

s,x,y,z variable
h ::= value constructor

inl left constructor of sum type
inr right constructor of sum type
fold constructor of recursive type

M,N ::= value
x variable
() unit
fun x→ A function
(M,N) pair
h M construction

A,B ::= expression
M value
M N application
M = N syntactic equality
let x = A in B let
let (x,y) = M in A pair split
match M with h x→ A else B constructor match

We identify all phrases of syntax up to the consistent renaming of bound variables.
Here x is bound with scope A in fun x→ A, in match M with h x→ A else B, and in
let x = B in A, and x and y are bound with scope A in let (x,y) = M in A. We write M
as shorthand for a possibly empty sequence M1, . . . ,Mn, and similarly for x, A, etc. We
write the empty sequence as ◦ and denote concatenation of sequences using a comma.
The length of a sequence x is written |x|. If φ is a phrase of syntax (such as an expres-
sion), we let fv(φ) and fn(φ) be the sets of variables and names occuring free in φ . We
write φ {ψ/x} for the outcome of the capture-avoiding substitution of ψ for each free
occurrence of x in the phrase φ .

A value may be a variable x, the unit value (), a function fun x→ A, a pair (M,N),
or a construction. The constructions inl M and inr M are the two sorts of value of sum
type, while the construction fold M is a value of an iso-recursive type.

In our formulation of FPC, the syntax of expressions is in a reduced form in the
style of A-normal form [24], where sequential composition of redexes is achieved by
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inserting suitable let-expressions. The other expressions are function application M N,
equality M = N (which tests whether the values M and N are syntactically identical),
pair splitting let (x,y) = M in A, and constructor matching match M with h x→ A else B.

To complete our calculus, we augment FPC with the following operations for ma-
nipulating and writing assertions about a global state. The state is implicit and is simply
a value of the calculus. We assume an untyped first-order logic with equality over val-
ues, equipped with a deducibility relation S ` C, from finite multisets of formulas to
formulas.

Completing the Syntax: Adding Global State

A,B ::= expression
· · · expressions of the Fixpoint Calculus
get() get current state
set(M) set current state
assume (s)C assumption of formula C
assert (s)C assertion of formula C

C ::= formula
p(M1, . . . ,Mn) atomic formula, p a predicate symbol
M = M′ equation
C∧C′ | ¬C | ∃x.C standard connectives and quantification

The expression get() returns the current state as its value. The expression set(M)
updates the current state with the value M and returns the unit value ().

We specify intended properties of programs by embedding assertions, which are
formulas expected to hold with respect to the log, a finite multiset of assumed formulas.
The expression assume (s)C adds the formula C{M/s} to the logged formulas, where
M is the current state, and returns (). The expression assert (s)C immediately returns
(); we say the assertion succeeds if the formula C{M/s} is deducible from the logged
formulas, and otherwise that it fails. In both assert (s)C and assert (s)C, s is bound with
scope C. This style of embedding assumptions and assertions within expressions is in
the spirit of the pioneering work of Floyd, Hoare, and Dijkstra on imperative programs;
the formal details are simply an imperative extension of assumptions and assertions in
RCF [3].

We use some syntactic sugar to make it easier to write and understand examples. We
write A;B for let = A in B. We define boolean values as true , inl () and false , inr ().
Conditional statements can then be defined as if M then A else B , match M with inl x→
A else B. We write let rec f x=A in B as an abbreviation for defining a recursive function
f , where the scope of f is A and B, and the scope of x is A. When s does not occur in
C, we simply write C for (s)C. In our examples, we often use a more ML-like syntax,
lessening the A-normal form restrictions of our calculus. In particular, we use let f x=A
for let f = fun x→ A, if A then B else C for let x = A in if x then B else C (where
x 6∈ fv(B,C)), let (x,y) = A in B for let z = A in let (x,y) = z in B (where z 6∈ fv(B)),
and so on. See [3], for example, for a discussion of how to recover standard functional
programming syntax and data types like Booleans and lists within the core Fixpoint
Calculus.
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A.2 Semantics

We formalize the semantics of our calculus as a small-step reduction relation on config-
urations, each of which is a triple (A,N,S) consisting of a closed expression A, a state
N, and a log S, which is a multiset of formulas generated by assumptions.

The present the rules for reduction in two groups. The first group consists of rules
that are independent of the current state, and which correspond to the semantics of core
FPC.

Reductions for the Core Calculus: (A,N,S)−→ (A′,N′,S′)

R ::= [ ] | let x = R in A evaluation context

(R[A],N,S)−→ (R[A′],N′,S′) if (A,N,S)−→ (A′,N′,S′)
((fun x→ A) M,N,S)−→ (A{M/x},N,S)
(M1 = M2,N,S)−→ (true,N,S) if M1 = M2
(M1 = M2,N,S)−→ (false,N,S) if M1 6= M2
(let x = M in A,N,S)−→ (A{M/x},N,S)
(let (x,y) = (M1,M2) in A,N,S)−→ (A{M1/x}{M2/y},N,S)
(match (h M) with h x→ A else B,N,S)−→ (A{M/x},N,S)
(match (h′ M) with h x→ A else B,N,S)−→ (B,N,S) if h 6= h′

The second group of rules formalize the semantics of the get and set operators, and
of assumptions and assertions, described informally in the previous section.

Reductions Related to State: (A,N,S)−→ (A′,N′,S′)

(get(),N,S)−→ (N,N,S)
(set(M),N,S)−→ ((),M,S)
(assume (s)C,N,S)−→ ((),N,S∪{C{N/s}})
(assert (s)C,N,S)−→ ((),N,S)

We say an expression is safe if none of its assertions may fail at runtime. A con-
figuration (A,N,S) has failed when A = R[assert (s)C], for some evaluation context
R, and we cannot derive S ` C{N/s}. A configuration (A,N,S) is safe if and only if
there is no failed configuration reachable from (A,N,S), that is, for all (A′,N′,S′), if
(A,N,S)−→∗ (A′,N′,S′) then (A′,N′,S′) has not failed.

The purpose of the type system in the next section is to establish safety by typing.

A.3 Types

There are two categories of type: value types characterize values, while computation
types characterize the imperative computations denoted by expressions. Computation
types resemble Hoare triples, with preconditions and postconditions.

Syntax of Value Types and Computation Types:

T,U,V ::= value type
α type variable
unit unit type
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x:T → F dependent function type
x:T ∗U dependent pair type
T +U disjoint sum type
µα.T iso-recursive type (scope of α is T )
x:T{C} refinement type

F,G ::= expression type
[(s0)C0]x:T [(s1)C1]

Value types are based on the types of the Fixpoint Calculus, except that function types
x:T → F and pair types x:T ∗U are dependent. A refinement type, x:T{C}, denotes
those values x of type T such that C holds. We use these types to describe invariants of
the database. In these types, x is bound, with scope F , U and C, respectively. If x is not
used, these types degenerate to simple types. In particular, if x is not free in U and F ,
we write T ∗U for x:T ∗U and T → F for x:T → F .

An expression type, [(s)C1]x:T [(s′)C2], denotes computations that when started in
a state s satisfying C1, return a value x of type T in a state s′ such that C2 holds. Here
s is in scope in C1, T and C2, and x and s′ are in scope in C2. As above, we write
[(s0)C0]T [(s1)C1] for [(s0)C0]x:T [(s1)C1] when x is not free in C1.

When we write a type T in a context where a computation type F is expected, we
intend T as a shorthand for the computation type [(s0)True]T [(s1)s1 = s0]. This is con-
venient for writing curried functions: x:T→ y:U→F stands for x:T→ [(s′0)True]y:U→
F [(s′1)s

′
1 = s′0].

Typing Rules for Expressions:

(Stateful Exp Let)
E ` A : [(s0)C0]x1:T1 [(s1)C1]
E,s0,x1 : T1 ` B : [(s1)C1]x2:T2 [(s2)C2]
{s1,x1}∩ fv(T2,C2) =∅

E ` let x1 = A in B : [(s0)C0]x2:T2 [(s2)C2]

(Sub Comp)
fv(C0,C′0)⊆ dom(E,s0) fv(C1,C′1)⊆ dom(E,s0,x1,s1)
C′0 `C0 E,s0 ` T1 <: T ′1 (C′0∧C1) `C′1

E ` [(s0)C0]x1:T1 [(s1)C1]<: [(s0)C′0]x1:T ′1 [(s1)C′1]

In a subtype G of an expression type F , we can strengthen the precondition. The post-
condition of G must also be weaker than (implied by) the precondition of G together
with the postcondition of F . As an example, T → {(s)C}U{(t)C{t/s}} is a subtype of
T →U for every C, since `C⇒ True and ` (C∧ s = t)⇒C{t/s}.

Assumptions and Assertions:

(Exp Assume)
E,s0,s1 ` � fv(C)⊆ dom(E,s0)

E ` assume (s0)C : [(s0)True]unit [(s1)((s0 = s1)∧C)]
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(Exp Assert)
E,s0,s1 ` � fv(C)⊆ dom(E,s0)

E ` assert (s0)C : [(s0)C]unit [(s1)s0 = s1]

In (Exp Assume), an assumption assume (s)C has C as postcondition, and does not
modify the state. Dually, in (Exp Assert), an assertion assert (s)C has C as precondition.

Rules for State Manipulation:

(Stateful Get)
E,s0,s1 ` �

E ` get() : [(s0)True]x1:state [(s1)x1 = s0∧ s1 = s0]

(Stateful Set)
E `M : state E,s0,s1 ` �

E ` set(M) : [(s0)True]unit [(s1)s1 = M]

In (Stateful Get), the type of get() records that the value read is the current state.
In (Stateful Set), the postcondition of set(M) states that M is the new state. The post-
condition of set(M) does not mention the initial state. We can recover this information
through subtyping, as seen above.

The main result of this section is that a well-typed expression run in a state satisfying
its precondition is safe, that is, no assertions fail. Using this result, we can implement
different type systems for reasoning about stateful computation in the calculus.

Theorem 1 (Safety). If ∅ ` A : [(s)C] : T [(s′)True], ∅ ` C{M/s} and ∅ ` M : state

then configuration (A,M,∅) is safe.

A.4 Typechecking by Translation

To typecheck a program, we first use the Stateful F7 tool to translate it into a refined
state monad. In particular, a computation of type [(s)C1]x:T [(s′)C2] is translated into
a function of type s:(s:state{C1})→ x:T ∗ s′:state{C2}. The additional state argument
is threaded through the computation. We then apply F7, a refinement type checker for
functional programs.
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B Source code

B.1 Code for the Marriages Example

Marriages

create table [Marriage](
[Spouse1] [int] not null unique,
[Spouse2] [int] not null,

constraint [PK Marriage] primary key ([Spouse1],[Spouse2]),
constraint [FK Marriage] foreign key ([Spouse2], [Spouse1])

references [Marriage] ([Spouse1], [Spouse2]),
constraint [CK Marriage] check (not([Spouse1] = [Spouse2])))

Marriages transactions

let marry ref (A,B) =
if hasKeyMarriage(A,B) then Some(false)
else if A=B then Some(false)
else

insertMarriageRowi {m Spouse1=A; m Spouse2=B};
insertMarriageRowi {m Spouse1=B; m Spouse2=A};
Some(true)

let marry m = doTransact marry ref m

B.2 Code for the Orders Example

Web cart

create table [Ordr](
[OrderID] [int] not null,
[CustomerID] [nchar](8) null,
[ShipName] [nvarchar](40) null,
[ShipAddress] [nvarchar](60) null,

constraint [PK Order] primary key ([OrderID])
)
create table [Detail](

[OrderID] [int] not null,
[ProductID] [int] not null,
[UnitPrice] [money] not null,
[Quantity] [smallint] not null,

constraint [PK Detail] primary key ([OrderID], [ProductID]),
constraint [FK Details Orders] foreign key([OrderID])

references [Ordr] ([OrderID]),
constraint [CK Quantity] check (([Quantity]>(0))),
constraint [CK UnitPrice] check (([UnitPrice]>=(0))))
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Web cart transactions

let addOrder ref order =
let (customerID, shipName, shipAddress, productID, unitPrice, quantity) = order in
let oid = freshOID () in
if quantity > 0
then if unitPrice >= 0
then begin

let order : ordr row = (
{o OrderID = oid;

o CustomerID = Some(customerID);
o ShipName = Some(shipName);
o ShipAddress = Some(shipAddress)}) in

let detail : detail row = (
{d OrderID = oid;

d ProductID = productID;
d UnitPrice = unitPrice;
d Quantity = quantity}) in

if insertDetailRowi detail then
if insertOrdrRowi order then

Some(true)
else None

else None
end
else None
else None

let addOrder order = doTransact addOrder ref order

B.3 Code for the Heap Example

A heap database

create table [Heap](
[HeapID] [int] identity (1,1) not null,
[Parent] [int] not null,
[Content] [int] not null,

constraint
[PK Heap] primary key CLUSTERED ([HeapID] asc),

constraint
[FK Heap] foreign key ([Parent]) references [Heap] ([HeapID]),

/×−−− UserConstraint TR isHeap ×/
/×−−− UserConstraint TR uniqueRoot ×/)
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Heap transactions

let rec pushAt int (i,v) =
let node = lookupHeapPK i in
let newID = freshHID () in
match node with
| None→None
| (Some(nodeRow))→

let {h Content=c ; h HeapID=id; h Parent=par} = nodeRow in
if v > c then

let r = {h Content = v ; h HeapID = newID; h Parent = id} in
if insertHeapRow r then Some(true) else None

else
if hasKeyHeap id then

if hasKeyHeap par then
if id = par then

let nodeRow’ = {h Content=v; h HeapID=id; h Parent=par} in
if updateHeapPK id nodeRow’ then

let r = {h Content=c; h HeapID=newID; h Parent=id} in
if insertHeapRow r then Some(true) else None

else None
else pushAt int (id,v)

else None
else None

let push int i =
let root = getRoot() in
let newID = freshHID () in
match root with
| []→None
| [rootRow]→match rootRow with
| {h Content = c ; h HeapID = id; h Parent = par ;}→

if i > c then
let r = {h Content = i ; h HeapID = newID; h Parent = id ;} in
if insertHeapRow r then Some(true) else None

else
if hasKeyHeap id then

if hasKeyHeap par then
if id = par then

let rootRow’ = {h Content = i ; h HeapID = id; h Parent = par ;} in
if updateHeapPK id rootRow’ then

let r = {h Content = c ; h HeapID = newID; h Parent = id ;} in
if insertHeapRow r then Some(true) else None

else None
else None

else None
else None
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let rec rebalanceHeap id =
let minM = getMinChild(id) in match minM with
| []→ let res = deleteHeapPK id in res
| [minRow]→match minRow with
| {h Content=mc; h HeapID=mid; h Parent=mpar}→

if hasKeyHeap mid then
let r = lookupHeapPK id in match r with
| None→ ()
| (Some(u))→match u with
| {h Content=rc ; h HeapID=rid; h Parent=rpar}→

let v = {h Content = mc; h HeapID = id ; h Parent = rpar} in
updateHeapPK id v;
let res = rebalanceHeap mid in res

else ()

let pop int () =
let root = getRoot() in match root with
| []→None
| [rootRow]→match rootRow with
| {h Content = c; h HeapID = id; h Parent = par}→

(rebalanceHeap id; Some(c))
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