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Abstract Providing enterprises with reliable and available
Web-based application programs is a challenge. Applica-
tions are traditionally spread over multiple nodes, from user
(client), to middle tier servers, to back end transaction sys-
tems, e.g. databases. It has proven very difficult to ensure
that these applications persist across system crashes so that
“exactly once” execution is produced, always important and
sometimes essential, e.g., in the financial area. Our system
provides a framework for exactly once execution of multi-
tier Web applications, built on a commercially available Web
infrastructure. Its capabilities include low logging overhead,
recovery isolation (independence), and consistency between
mid-tier and transactional back end. Good application perfor-
mance is enabled via persistent shared state in the middle tier
while providing for private session state as well. Our exten-
sive experiments confirm both the desired properties and the
good performance.
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1 Introduction

1.1 The current situation for enterprise Web apps

There are a number of widely used commercial infrastruc-
tures that support Web applications [20,27,33,34]. These
permit integration across client, middle tier, and back-end
transaction systems. In the absence of system crashes in
the middle tier, these systems are quite effective in meet-
ing requirements. They partition functionality, protect data,
support a rich client experience, and provide scalability and
decent availability.

The problem that they all suffer is that a crash can be a non-
transparent event. That is, they do not provide exactly once
execution in the presence of system crashes. A system crash
can require extensive human intervention by system opera-
tors. Alternately, the error may be exposed to the user/cus-
tomer, who experiences the need to re-execute the interaction
with the system because the prior input has been lost. While
these events are not common, even when systems do fail, they
are not prevented. The impact can be very negative indeed,
resulting in unhappy customers and substantial extra costs.

Classic transaction processing (TP) systems (e.g. involv-
ing a TP monitor) coped with system crashes and did provide
exactly once execution. TP systems frequently dealt with cli-
ent/server system configurations, though additional middle
tier systems could be supported, with all system elements
being typically managed within a single enterprise. Distrib-
uted transactions using two-phase commit were used to main-
tain appropriate middle tier state and keep it consistent with
back end state.

Applying classical transaction processing to enterprise
Web applications that can span multiple enterprises and
almost always span protection domains encounters two
primary problems.
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– Enterprises are reluctant to rely on two-phase commit
(2PC) across protection domains. 2PC is a blocking pro-
tocol, and no one wants to be a participant held hostage to
the availability of a remote transaction manager in another
organization.

– Using transactions throughout the middle tier is
expensive. Transactions require an application model
sometimes called a “string of beads”, where state is com-
mitted, usually to a transactional queue or database, after
each step (bead). This is also called the “stateless” appli-
cation approach, as no important application state exists
in the application outside of a transaction. All such state is
stored in a transactional resource manager. This approach
increases the complexity of developing the applications
and introduces extra code path for the I/Os and extra
latency for the frequent log forces needed to ensure that
the state is captured on disk.

This has led to some leading internet sites “rolling their
own” enterprise Web application infrastructure, e.g. Amazon.
This is fine if you regard, as Amazon does, your infrastructure
as part of your business, e.g. it sells its hosting service to a
large number of other businesses. But this situation does not
generalize to many enterprises, and in particular, it is a devel-
opment model that is very difficult for mid-sized businesses
to emulate. What they need is an infrastructure that provides
a complete set of enterprise application attributes, and spe-
cifically, an infrastructure that guarantees exactly once exe-
cution.

There have been a number of research efforts to provide
an infrastructure for enabling robust Web applications [16,
17,23,31,32,35,36,44,45]. In particular, Melliar-Smith pro-
vides a replication-based method to assure that middle tier
state can persist across system crashes. Replication is enabled
by using atomic broadcast to ensure that messages arrive in
the same order at all replicas. After one replica server crashes,
it does not restore middle tier state by recovering the failed
server using its persistent storage, instead, middle tier state
is available immediately in other replica servers, thus poten-
tially eliminating outages entirely. This is a high availability
solution but requires duplicate computing resources and thus
is a relatively expensive solution. We have pursued a different
direction.

1.2 A recovery oriented approach

We look for a low-cost way to provide state persistence for
middle tier applications and to unify these mechanisms with
back-end transaction system state management to produce
the desired exactly once execution property. This leads us to
use recovery technology as the basis for our solution, simi-
lar to the approach taken in the Phoenix project [1,5], which

provided an end-to-end exactly once execution framework
for Web applications based on recovery.

A recovery oriented approach, as we have pursued it,
is based on logging the information needed to rebuild the
desired application state. This is very flexible. The log can
be used to provide (1) conventional recovery at the site of
the original application execution; (2) cold replication where
the log is used to completely recreate and rebuild application
state at a secondary server; (3) warm replication where the
log is replayed at an already allocated secondary server; and
(4) hot replication where the log is continuously replayed to
keep the secondary server up-to-date.

Our solution extends the basic Phoenix approach and pro-
vides “stateful” application persistence based on recovery
to enable exactly once application execution for the middle
tier and back end. (Shegalov [2] showed how to empower
a client so as to complete the end-to-end story.) We have
focused on reducing logging overhead, especially of forced
logging, and on how to handle interactions with back-end
transactional systems so as to avoid the need for changing
them.

1.3 Areas of improvement

Logging Cost: Logging to persistent storage determines the
cost of providing application recovery, and success in reduc-
ing this cost is always beneficial. Given the rarity of crashes,
we use optimistic logging to greatly reduce the number of log
forces needed to provide persistence in a distributed system.

Recovery Independence: Using optimistic logging has a
large performance benefit but can lead to two difficulties.
The larger the number of systems involved, (1) the greater
the overhead of tracking logging dependencies; and (2) the
larger the number of systems that need to be involved in
recovering from the crash of any system. To cope with these
problems, we introduce the notion of a “service domain”.
Logging within a domain is optimistic, while messages cross-
ing domain boundaries result in pessimistic logging. This
makes the service domain a recovery domain as well and iso-
lates both logging dependencies and crash effects to within
a domain.

Back-End Interactions: The existing transaction systems
do not provide idempotent execution of transactions previ-
ously executed. Resubmission of a previous transaction may
lead to duplicated executions, e.g. redundant e-commerce
orders. It is impractical to require that the existing transaction
systems provide idempotence to enable exactly once execu-
tion for the middle tier and back end. Instead, our approach
exploits the idempotence provided by the transaction man-
ager (TM) coordinating two-phase commit. TM idempotence
only requires that the TM remember the outcome of the
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transaction, i.e. committed or aborted. Our 2PC can be
restricted to the back end mostly or to within an adminis-
trative or security domain. That is, wide-scale 2PC is not
required.

Application Performance via Middle Tier State Persistence:
Another way that we improve system performance is via the
kinds of persistent state that we support in middle tier appli-
cations. Most precursor research systems support persistent
private state, usually called session state.

Shared persistent state in the middle tier has great value
and has the advantage of being accessed at low cost. It has
not, except at rather great cost, been made persistent. Many
applications use cached out-of-date and non-persistent state
to improve performance. This is very effective. What is less
common is an ability to make this shared state and changes to
it persistent. This is sometimes done via posting shared state
changes to a back-end transaction system on every update,
which is an effective but expensive mechanism. We provide
this with much lower overhead, supporting both transactional
and non-transactional reading and writing of this state. This
allows more flexible system designs, since part of shared
application state can be moved out from back-end transac-
tion systems to the middle tier, without losing persistence
and recoverability.

1.4 Our system and its technology

We have implemented our system on a commercial middle
tier application framework, ASP.NET [27]. It attacks the
problems enumerated above in an integrated and effective
way. This has required that we invent and develop a number
of new technologies that are the core of our contribution.

Locally Optimistic Logging: This greatly reduces the over-
head for forcing the log, limiting it to only the places where
service domains are crossed. Making optimistic logging
“local” solves two problems: (a) the dependency information
needed is restricted to only a small number of systems; and
(b) the requirement for a system to be involved in recovery is
restricted to its local service domain and does not propagate
further.

Back-End Integration: We introduce a special middle tier
service method called transactional method. State modified
within this method has transactional isolation. Its transactions
can be tied to transactions at back-end transaction systems,
with commit coordinated by a transaction manager. It gen-
eralizes the back-end transaction manager idempotence for
the rest of our middle tier application, so that they are only
dependent upon the results produced by this transactional
method and do not directly interact with the back-end trans-
action systems. A transactional method uses what we call

“results logging” to provide idempotence, without requiring
idempotence from the back-end transaction system.

Shared Application State: When a middle tier application
program accesses (reads or writes) a variable of the shared
application state, a read or write lock is acquired internally
by our infrastructure, transparent to the application program.
Shared state accesses are logged. This permits us to capture
the nondeterminism introduced by the unpredictable access
sequence produced by multiple concurrent sessions. We log
non-deterministic accesses to shared state using state-based
logging, i.e. value logging, to make shared state recovery
independent of the need to recover individual sessions. This
makes recovery much more flexible and reduces its latency.

Integrated Recovery Using Multiple Technologies: To real-
ize our multi-tier infrastructure, we integrate a number of dif-
ferent logging and recovery technologies: locally optimistic
message logging (a transition based technique); value log-
ging where the after state is captured explicitly in the log;
results logging, which captures the total effect of a transac-
tional method; fuzzy checkpointing of a middle tier server;
and parallel recovery of session states. The impact of fuzzy
checkpointing on server performance is small, while parallel
recovery is much faster than replaying all activities sequen-
tially in log order.

1.5 Paper organization

Section 2 provides an overview of our middleware server
(i.e. mid-tier application server) system. Section 3 elaborates
on normal execution. Section 4 explains recovery. Section 5
presents performance measurements. We review related work
in Sect. 6 and conclude in Sect. 7. Throughout, we use bold-
face for definitions and italics for emphasis.

2 System overview

Figure 1 illustrates the middleware server architecture. In this
section, we begin by describing the nature of our application
server and how it provides services. We next describe the cor-
rectness criteria related to distributed systems and messages.
Then, we enumerate the different forms of application server
state, followed by how we treat transactions and interactions
with back-end transaction systems. Finally, we describe sys-
tem assumptions and recovery requirements.

2.1 Services and sessions

A middleware server provides its service through service
methods. A client, either an end client process or another
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Fig. 1 Middleware server architecture

middleware server, uses the service via (synchronous) remote
procedure calls to service methods.

Each middleware server maintains a request queue and a
thread pool. A request message arrives first at the request
queue and is served by a thread dispatched from the thread
pool. The thread will execute the required service method,
returning the result in a reply message. Messages between
a middleware server and its clients are thus request/reply
exchanges.

A client can start or end a session at a middleware server.
Within a session, at most one request is processed at a time
and the client will not send a new request before receiving the
reply for the previous request. Requests over different ses-
sions are processed concurrently inside a middleware server.

A service method is allowed to access (read or write)
in-memory application state and can be declared either
as transactional or recoverable. A request to execute a
transactional method or recoverable method is thus called
a transactional request or recoverable request.

A transactional method can access transaction systems
such as DBMSs but cannot call any other service method.
A recoverable method cannot access transaction systems but
can call recoverable or transactional methods of the same or
a different middleware server. In this way, a transactional
method provides idempotence to its callers on behalf of
the back-end transaction systems, and the middle tier ser-
vice becomes composable and extensible via a recoverable
method calling other service methods.

2.2 Global state consistency

Global state consistency requires that if the state of a pro-
cess (a middleware server or an end client process) includes a
message receive, either request or reply, the sender process’s
state must include the message send [13]. Figure 2 illustrates
a violation of such consistency.

Process p1 receives an input message m1 from outside
and logs it but does not flush the log record to disk before
sending m2 to p2. Then, p1 crashes and the log record for
m1 gets lost. Since we cannot guarantee the same message

m2
p1

p2

m1(input)

Fig. 2 Processes with message logging

m1 will be received again, we cannot guarantee m2 will be
reconstructed and resent by p1. However, p2 believes that
m2 has been sent. Thus, message m2 is an orphan message,
and the current state of p2 becomes an orphan. Global state
consistency requires there to be no orphans after recovery.

2.3 In-Memory application state

A middleware server maintains two types of in-memory
application state: session state and shared state.

For each client session, a middleware server maintains pri-
vate session state that consists of session variables. A session
variable can be accessed only in service methods that serve
the requests of its session. A value can be saved (written)
in a session variable when a request is processed and can
be retrieved (read) any time later when this or a subsequent
request over the same session is processed.

A middleware server maintains global shared state, which
consists of shared variables. A shared variable is shared by
all sessions of a middleware server, i.e. it can be accessed by
any service method over any session. A value can be saved
(written) in a shared variable whenever a request is processed
and can be retrieved (read) later when the same or another
request is processed, possibly over a different session. Shared
variables may be accessed in an arbitrary non-deterministic
order by concurrent threads.

Given that shared variables may be accessed at any time
by transactional or recoverable methods, we acquire read or
write locks when accessing shared variables. A transactional
method lock spans the method execution, i.e. it is released
when the method completes. This is strict two-phase lock-
ing [7], which ensures both isolation and recovery for trans-
actional methods. A recoverable method lock encompasses
only the variable access, i.e. it is released once the access
is finished. This permits a shared variable’s changes outside
of transactions to be seen “immediately”. Locking is imple-
mented by the middleware infrastructure and is transparent
to middleware application programs.

2.4 Transactions

The transaction support here is designed for the typical short
duration database style transactions, not for long running
business transactions with compensations. Because of this,
it does not implement the Web services Atomic Transaction
specification [21], which defines contracts for Web services
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to participate in distributed transactions. Rather, our transac-
tions support more traditional 2PC with a traditional trans-
action manager.

2.4.1 Transactional methods

A transaction is initiated when a transactional method
is invoked. All operations within a transactional method
execute in this transaction. If the transaction commits, all
its modifications to shared variables, session variables, and
external persistent resources are guaranteed to persist. If it
is aborted, no modifications take effect. If a transactional
method does not interact with back-end transaction systems,
the transaction is a local transaction; otherwise, the transac-
tion is a distributed transaction and is managed by an exter-
nal transaction manager. The transaction can be committed
when the transactional method returns to its caller within
a session. Thus, only the session calling the transactional
method can commit the transaction by notifying the transac-
tion manager, while other transaction participants, including
participating transaction systems, can vote to abort the trans-
action.

2.4.2 Distributed transactions

In our system, a transactional method is not allowed to call
other transactional methods, and thus, a distributed trans-
action always involves only a single transactional method,
possibly interacting with one or more transaction systems.

A transactional method interacts with transaction systems
over a connection. Because it is costly to create and delete
connections, a common practice is to maintain a connection
pool at the middleware server and to map logical connections
to connections in this pool. To access a transaction system, a
transactional method obtains a connection from the pool and
returns it to the pool when the method execution completes.
Thus, a transactional method keeps a logical connection open
only during the method execution.

Transaction managers (i.e. two phase commit coordina-
tors), such as those used in traditional transaction processing,
retain the state of the transaction until all participants have
acknowledged that they have been notified of the outcome
[18]. (Optimizations can be used to reduce the amount of
state retained, e.g. “presumed abort”.) We likewise require
this from our transaction manager. This is the only require-
ment on any existing transactional infrastructure for it to work
with our logging and recovery framework.

2.4.3 Transactional consistency

Transactional consistency requires a transactional method
be atomic (all or nothing) and durable, i.e. when a transac-
tional method commits, all modifications to shared variables,

session variables and persistent resources become permanent
and cannot be undone. If a transactional method interacts with
transaction systems, its transaction outcome is determined by
an external transaction manager.

The completion of a distributed transaction requires the
two-phase commit protocol [18] involving the transaction
manager. Once a transaction initiator acknowledges a trans-
action commit, the transaction manager may discard this
commit. However, the transaction initiator, from the point
of acknowledgement onward, needs to remember the trans-
action outcome. Consistency is violated if, e.g. after recov-
ery, a transactional method is recovered as if aborted, but the
transaction was instead committed by the transaction man-
ager, which has forgotten this commit.

2.5 System assumptions and recovery

We assume fail-stop operation, i.e. once a failure occurs,
the whole server crashes. We do not handle a faulty server
continuing to run after a failure occurs. We do handle multi-
ple concurrent crashes of middleware servers and transaction
managers, although these crashes are rare in practice.

Message communication between a client and a middle-
ware server is assumed to be unreliable, i.e. messages may
arrive out of order, may be duplicated, or get lost. Due to pos-
sible message loss, the client may resend the same request
until its reply is received. The middleware server can iden-
tify any duplicate or out-of-order request, and the client can
identify any duplicate reply.

After a crash occurs, a middleware server must be recov-
ered to a state that is at least as late as its most recent “visible”
state. This state must satisfy both global state consistency and
transactional consistency. These requirements, together with
a client resend of the same request until the corresponding
reply is received, guarantee exactly once execution of service
requests, both recoverable and transactional.

3 Normal execution

During normal execution of a middleware server, requests
are processed and nondeterminism is logged so that recov-
ery of the middleware server after a crash can reconstruct the
in-memory application state by replaying the logged requests.
We elaborate on normal execution in six aspects: message
handling, session handling, shared state handling, recover-
able method handling, transactional method handling, and
middleware server checkpointing.

3.1 Message handling

To identify duplicate or out-of-order messages, we associ-
ate a request sequence number with both a request and its
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reply [1]. Over each session, the client maintains a next avail-
able request sequence number and the middleware server
maintains a next expected request sequence number. In
addition, the middleware server buffers the reply of the latest
request for each session, so that this buffered reply can be
resent should it get lost due to network failure or client crash
[1]. To log request and reply messages, we exploit an inte-
gration of two classical logging methods: pessimistic logging
and optimistic logging.

3.1.1 Pessimistic versus optimistic logging

Pessimistic logging guarantees that no orphans are ever cre-
ated. One form of pessimistic logging [1,3] is that messages
are written to a buffer upon receipt. Before this receiver sends
a message, it flushes the buffer to disk. In Fig. 2, with pessi-
mistic logging, before m2 is sent, the log record for m1 must
be on disk. Even if p1 crashes, it can still be recovered up
to having received m1 and re-executed to enable the resend
of m2. So m2 never becomes an orphan. Pessimistic logging
incurs disk write overhead for this log flush.

Optimistic logging does not flush the log buffer before
sending a message, thus allowing orphans to be created, but
orphans will be detected later via dependency vectors (DVs)
[9,40] and eliminated via recovery. A process’s DV includes a
state identifier for each process on which this process depends
and is attached to any message this process sends. A process’s
state identifier consists of a state number and an epoch
number. Its state number is its most recent log record’s log
sequence number (LSN). A process’s epoch number identi-
fies a failure-free period of its execution and is incremented
after recovery from a crash. A process always depends on
itself at its current state identifier. (We elide the epoch num-
ber to simplify the following presentation.)

Referring to Fig. 3, when process p1 receives a message
m1, p1 posts it to a buffer with log sequence number 10.
Before sending message m2 to p2, the DV is attached in m2

to include 10 as p1’s state number. When p2 sends m3 to p3,
the log record written by p2 has log sequence number 20.
Hence, both 10 and 20 are in the DV sent with m3. The DV
is transitive as LSNs from all processes on which a sender
depends are sent with its message. After m3 is received, p3’s
DV is [p1:10, p2:20, p3:30]. When m5 is received, m5’s DV
[p1:11] is merged (via item-wise maximization) into p3’s
DV, which becomes [p1:11, p2:20, p3:31].

m1 (input) m4 (input)
p1

p2

p3

m2 [p1:10] m5 [p1:11]

m3 [p1:10,p2:20]

3130

20

10 11

[p1:10,p2:20,p3:30] [p1:11,p2:20,p3:31]

Fig. 3 Messages with dependency vectors

Later, if p1 crashes, after crash recovery, p1 broadcasts a
recovery message indicating the state to which it has recov-
ered (called the recovered state number) for the previous
epoch. Other processes log and remember this recovered state
number. If p1 is unable to recover to state 10, both p2 and
p3 will know they are orphans by checking their DVs against
this recovered state number, and must do orphan recovery
to roll back to a state before they got the orphan messages.

Note that a process R does not process any application
specific message from another process’s new epoch, until R
has received and processed recovery messages from the send-
ing process S’s past epochs. Otherwise, were an application
specific message to be processed and its DV is merged into
R’s DV, R’s orphanhood may be undetectable.

An output message (to the external world) should never
become an orphan. Thus, before it is sent, the sender issues a
distributed log flush following its DV. If p3 sends an output
message after getting m5, p1, p2, and p3 are notified to flush
their log up to 11, 20, and 31, respectively.

Optimistic logging reduces logging overhead by reduc-
ing log flushes. However, system complexity increases, and
a process crash may cause another process to roll back. Mes-
sage overhead is increased by recovery message broadcasting
and the notification required for distributed log flush. When
the number of processes is large, the size of DVs becomes
large, increasing message size.

3.1.2 Locally optimistic logging

A middleware server may send requests to other middleware
servers. Thus, there are message interactions among mid-
dleware servers. Some interacting middleware servers are
provided by the same service provider and have fast and
reliable communication. We exploit this to configured them
into service domains. Less tightly associated middleware
servers with less reliable communication will usually be in
separate service domains. Service domains partition the mid-
dleware servers. End client processes and transaction systems
are outside of all service domains.

We exploit service domains via locally optimistic log-
ging for request and reply message exchanges. Message
exchanges from a middleware server to systems outside of
its service domain use pessimistic logging, and message
exchanges within a service domain use optimistic logging.
To reduce logging overhead, all sessions inside a middle-
ware server share one physical log. Figure 4 illustrates this
logging. Since an end client process is outside of any service
domain, message exchanges between it and any middleware
server use pessimistic logging.

A message (request or reply) within the service domain
includes the sender’s DV. When a message is sent across
service domains, a distributed log flush is executed in
accordance with the sender’s DV. The separate local flushes
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Fig. 4 Locally optimistic logging

Table 1 Actions for message M (request or reply)

inside service domain across service domains

before attach sender’s DV to M; distributed log flush

send: following sender’s DV;

after check if M is an orphan; log M in buffer;

receive: if yes, discard M and stop;

log M and attached DV in buffer;

merge attached DV into

receiver’s DV;

required by a distributed log flush can usually be done in par-
allel, since physical logs of middleware servers in the service
domain will rarely share a disk controller. Once the distrib-
uted log flush succeeds, this externally directed message will
never be an orphan and the sender’s DV does not need to be
attached to this message. Table 1 lists the actions associated
with message exchanges.

Locally optimistic logging combines advantages from
both optimistic logging and pessimistic logging. Optimis-
tic logging within a service domain reduces log flushes.
With pessimistic logging across service domains, the ser-
vice domain becomes the boundary for dependency vector
propagation. Since the DV contains only the dependency on
middleware servers in the service domain, it has a limited
size and adds only limited overhead to messages sent within
the service domain.

A middleware server crash can cause only other mid-
dleware servers in the same service domain to roll back.
Thus, recovery independence is maintained across service
domains. After its crash recovery, a middleware server broad-
casts recovery messages only within its service domain. Each
middleware server needs to keep recovered state numbers
only for middleware servers in its service domain. Finally,
since middleware servers within a service domain usually
have fast and reliable communication, the message over-
head for recovery message broadcasting and distributed log
flushes will normally be modest.

3.2 Session handling

3.2.1 Session as recovery unit

When a middleware server sends a request to another mid-
dleware server, it is a session of the sending server, say SEc,

that works as a client and starts a session, say SEs , at this
other middleware server. The request is sent over the session
SEs . In this case, SEs is called an outgoing session started
by SEc.

When a middleware server crashes, another middleware
server in the same service domain may become an orphan,
but usually only some of its sessions are orphans and need
recovery. Non-orphan sessions can continue normal execu-
tion. Thus, sessions are the unit of recovery, while middle-
ware servers are crash units, i.e. all sessions executing on
a middleware server “crash” when the middleware server
crashes.

If a DV were maintained to capture dependencies for a
middleware server as a whole, all its sessions would require
roll back, possibly unnecessarily, whenever any one of its
sessions required rollback. To avoid this, we associate a DV
with each session. This enables sessions to recover sepa-
rately, avoiding unnecessary rollback cost. Thus, in Table 1,
sender’s DV refers to the DV of the sending session, and
receiver’s DV means the DV of the receiving session.

Correspondingly, each session must have its own state
number, which is the most recent LSN of the session. Since
any session does not crash by itself but only as part of its
middleware server crash, every session’s epoch number is
the same as its middleware server’s epoch number.

3.2.2 Session checkpointing

All requests over a session are logged to enable session state
recovery via replaying logged requests. To speed up ses-
sion recovery, a session checkpoint is taken whenever its
logged information since the previous checkpoint reaches a
threshold. Each session is checkpointed independently, and
only between requests during normal execution. Because of
this, a session checkpoint contains only session variables, the
buffered reply, the next expected request sequence number,
and every outgoing session’s next available request sequence
number. It does not contain control state, e.g. stacks and pro-
gram counters. New requests are held until the checkpoint is
completed. As part of a session checkpoint, a distributed log
flush is issued according to the session’s DV to ensure that
the state as of checkpoint cannot become an orphan. On com-
pletion, the session’s previous log records can be discarded.

3.2.3 Session log management

All sessions of a middleware server share one physical log.
To recover a session, its log records need to be extracted
from the shared log. To make such extraction efficient, each
session maintains a position stream consisting of the posi-
tions (inside the physical log) of its log records since the
latest session checkpoint. An in-memory position buffer is
associated with each position stream. When a session’s log
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records are written, their positions are sequentially written to
its position buffer. Only when the position buffer becomes full
is it flushed to disk. So the cost of writing positions is low. In
case of a middleware server crash, positions that are still in the
buffer get lost. Missing positions of persistent log records will
be reconstructed from the physical log during crash recovery.
After a session checkpoint is taken, the session’s previous
position stream is discarded. The position stream’s maximum
length is determined by the session checkpointing frequency
and is usually small. When a session ends, its position stream
is discarded and a log record is written to mark the session
end.

3.3 Shared state handling

Like a session, a shared variable is a recovery unit and has
its own DV and state number, which is the log record LSN
of its most recent write. The DV indicates whether the var-
iable’s value is an orphan. Since a shared variable does not
crash in isolation but only as part of its middleware server
crash, every shared variable’s epoch number is the same as
its middleware server’s epoch number. (Once again, the mid-
dleware server is the crash unit, and here a shared variable is
the recovery unit.)

When a session accesses a shared variable, we need to
track the dependencies introduced by that access. By con-
sidering read/write semantics separately, we can see how to
deal with these dependencies, i.e. how to update DVs for both
session and variable.

Read: For a read, the variable’s dependency is passed to the
reader session, but the reader session’s dependency does
not need to be passed to the variable. A read has no effect
on the variable. Thus, reading a shared variable merges
this variable’s DV into the reader session’s DV.

Write: For a write, the writer session’s dependency is passed
to the variable, and the variable’s dependency does not
need to be passed to the writer session. Since a write com-
pletely replaces the variable’s existing value with a new
value, the variable’s existing dependency is replaced by
the writer session’s dependency. Thus, writing a shared
variable replaces this variable’s DV with the writer ses-
sion’s DV.

If a shared variable is read before it is written, then
the DV processing will go in both directions as described
individually.

3.4 Recoverable method handling

When a request is received by a recoverable method, it is
first logged. Then, the method is executed. Within a session,
at most one service method can be executed at a time.
Thus, the access order to the session state is captured by

the order of logged method requests. During recovery, the
execution effect of the method on the session state is recov-
ered by re-executing the method. Because of this, accesses
to session variables inside a recoverable method need not be
logged. However, accesses to shared variables by a recover-
able method do need to be logged.

3.4.1 Value logging for shared variables

Access order logging was suggested for shared state access
[37]. That is, the access order is logged, and the same access
order is followed during recovery to reconstruct the shared
state. However, this approach can mean that recovery for one
session becomes dependent on another session’s recovery.
For example, if session R reads a shared variable that was
written by another session W , should R become an orphan,
its recovery will require the writer (whether orphan or not)
to roll back. This enables the writer to recreate and rewrite
the value for the variable, enabling the reader session to read
this value for its recovery.

With access order logging, deadlocks involving thread
pooling are possible. Each request (or logged request) is pro-
cessed (or replayed) by a thread, which is dispatched from
the thread pool. When a shared variable becomes an orphan,
access order logging requires other orphan sessions to roll
back and replay logged requests to bring the shared variable
to its most recent non-orphan value. Now, if a thread process-
ing a new request tries to read a shared variable and finds this
variable an orphan, it has to be blocked until orphan sessions’
recovery brings this variable to the most recent non-orphan
value. It is possible that so many threads are blocked for
similar reasons that the thread pool has no threads left for
orphan sessions to recover the orphan shared variable. This
is a deadlock and the middleware server hangs.

To overcome the above two drawbacks of access order
logging, we exploit value logging. For a read, the variable’s
value with its DV is logged. Hence, a recovering reader ses-
sion can obtain the value from the log directly. This means
that reader session recovery does not depend on the writer’s
recovery. For a write, in addition to the written value and
the writer session’s DV, the LSN of the previous write log
record for the same variable is logged, meaning that write log
records are chained backward. If any session tries to read a
shared variable and this variable’s value is an orphan, session
recovery can roll back this variable to its most recent non-
orphan value by following this chain. In this way, no other
session need be recovered to recreate the earlier value. Since
shared variables are expected to have small storage sizes,
value logging should incur only modest overhead compared
to access order logging.

Table 2 lists actions involved with accessing a shared
variable inside a recoverable method. This includes depen-
dency tracking and value logging. There exist two more
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Table 2 Actions for accessing shared variable SV inside a recoverable
method

read write (NewValue)

check SV’s DV: if SV is an log writer session’s DV,

orphan, roll SV back to its NewValue and LSN of

most recent non-orphan value; previous write log record;

log SV’s value and DV; replace SV’s DV with writer

merge SV’s DV into reader session’s DV;

session’s DV; change SV’s state number

change reader session’s state to the new log record LSN;

number to the new log set SV’s value to NewValue;

record LSN; return;

return SV’s value;

differences between read and write accesses. First, when a
session writes a shared variable, it need not check whether the
variable’s existing value is an orphan, because this value will
be replaced by a new value. (Unlike a writer session, a reader
session needs to check whether the variable is an orphan so
that the value returned to the reader is not an orphan.) Second,
reading a shared variable causes the reader session’s state
number to change, while writing a shared variable causes the
variable’s state number to change.

3.4.2 Shared variable checkpointing

To shorten the part of the log that needs to be read to roll
back a shared variable to its most recent non-orphan value,
we take a shared variable checkpoint whenever the num-
ber of writes since the previous checkpoint reaches a thresh-
old. Shared variable checkpoints are taken independently. To
checkpoint a shared variable, a distributed log flush is issued
following its DV. Then, its value is logged and this value will
never become an orphan.

A checkpoint’s subsequent write log record points back
to the checkpoint. But a checkpoint does not point back to
any previous write log record as no earlier log records are
required in order to recover a shared variable. The backward
chain breaks at checkpoints. Figure 5 illustrates this.

3.5 Transactional method handling

We do not want recovery of a transactional method to involve
re-execution of the method. If that was required, it would be

read write writewrite checkpoint

Fig. 5 A log record sequence of a shared variable

necessary to replay the method’s interactions with back-end
transaction systems. Transaction systems, as well as their
clients, would then need modification to support such replay
idempotently, and clients would need to maintain virtual con-
nections with DBMSs across failures [4]. Since any connec-
tion of a transactional method with a transaction system is
kept open only for the method duration, there is no con-
trol state maintained with the transaction system outside the
method. This makes it possible to avoid re-executing inter-
actions with transaction systems during recovery.

We exploit results logging to capture the execution effect
of a transactional method by logging the reply of the method
call and the values of session and shared variables written by
the method. This avoids the need to re-execute a transactional
method as there is no middle tier control state associated
with a transaction outside the method that requires its replay.
Thus, a recoverable method’s call to a transactional method
inside the same middleware server can be replayed from the
log, without the need to re-execute the transactional method
itself. The recoverable method’s control state resumes after
the transactional method call, using only the transactional
reply returned together with the values of written session
and shared variables, all of which we ensure are on the log.

Before we delve into results logging, we describe the pre-
processing to establish the execution context for results log-
ging.

3.5.1 Execution context

At the start of a transactional method, the session’s DV is
saved in-memory, and the transactional request message’s
DV, if it exists, is merged into the session’s DV. Prior to a
session variable or shared variable being written for the first
time within a transaction, its value (and DV, for a shared
variable) is saved. If the transaction be aborted, transaction
undo replaces written variables with their saved values (and
DVs, for shared variables) and sets the session’s DV back to
the saved one. Back-end transaction systems guarantee that
modifications to their resources are undone on abort. Depen-
dency is tracked along with shared variable access inside a
transactional method. Read and write locks on a shared var-
iable are held until transaction method end.

Figure 6 illustrates execution of a transactional method.
Middleware servers MS1 and MS2 are in the same service
domain. MS2 sends a transactional request message M with
a DV [p1:1,p2:5] to MS1 over the session SE1. This DV
shows dependencies on MS1 (symbolized by p1) at state
number 1 and on MS2 (symbolized by p2) at state number 5.
During the transactional method execution, SE1 first reads
the shared variable SVx, then writes SVy. DV changes are
listed in Table 3, where each column represents an occa-
sion, “-” indicates no change and DVs indicate those before
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write

read

SVy

SVxA

SE1

MS1

B

transactional request M

MS2

Fig. 6 A transactional method execution, where A and B are log
records

Table 3 DV changes in the scenario of Fig. 6

request read write commit

M [p1:1,p2:5] – – –

SE1 [p1:2,p2:3] [p1:3,p2:5] [p1:3,p2:6] [p1:4,p2:6]

SVx – [p1:1,p2:6] – –

SVy – – [p1:4,p2:7] [p1:3,p2:6]

various occasions. For simplification, epoch numbers are
elided from DVs.

Before the request message M is received, SE1’s DV is
[p1:2,p2:3]. When the request message is received, the mes-
sage’s DV [p1:1,p2:5] is merged into SE1’s DV. The message
is logged in the request log record A with an LSN 3. So before
the read, SE1’s DV is [p1:3,p2:5]. Upon the read, SVx’s DV
[p1:1,p2:6] is merged into SE1’s DV. So after the read (that
is, before the write), SE1’s DV is [p1:3,p2:6]. Before the
write, SVy’s DV is [p1:4,p2:7]. Upon the write, SVy’s DV is
replaced with the session’s DV [p1:3,p2:6].

3.5.2 Results logging

We exploit results logging for transactional methods in order
to avoid re-executing interactions with back-end transaction
systems during recovery. When a transactional method starts
to commit its transaction at method end, a committing log
record is written (into the log buffer), which contains the
transactional reply, and the final values of session variables
and shared variables written by the method. In Fig. 6, upon
commit, a committing log record B is written with an LSN 4
and SE1’s DV becomes [p1:4,p2:6].

To reproduce the effect of replaying a committed transac-
tional request, we replace the session variables and shared
variables with their logged values, and return the logged
reply. Transaction systems guarantee that the transactional
modifications to their resources are durable. Results logging
guarantees durability for the effects of the transactional
method execution.

No matter whether a transaction is committed or abo-
rted during normal execution, a result-status log record

indicating the transaction outcome is always written for a
transactional request. The result-status log record is manda-
tory in case that the transaction method votes to abort, and it
simplifies session recovery processing in other cases.

With results logging, the execution effect of a transac-
tional method can be obtained from its committing log record
and/or its result-status log record. This reduces or eliminates
logging for other occasions. First, the transactional request
message’s DV, if any, need not be logged with the trans-
actional request message. Second, no logging is required
when a session variable or shared variable is accessed.
Further, detailed interactions with transaction systems, e.g.
database query results, need not be logged. Figure 7 illus-
trates log records and actions of results logging during nor-
mal execution. We discuss the cases we need to deal with
next.

Abort Before Vote (branch I): If the session is found to be
an orphan before the method votes, no committing log record
is written, the transaction is aborted, and a result-status log
record indicating “orphan-initiated abort” is written but not
immediately flushed to disk. If this log record get lost due to
a crash, this transactional request would be simply recovered
as “aborted”, since recovery would find neither a committing
log record nor a result-status log record for this request.

Transaction Votes Abort (Branch II): If a method invoca-
tion votes to abort its transaction, a result-status log record
containing a specific aborting reason (related to the applica-
tion logic) is written and immediately flushed to disk. This
local log flush is necessary because recovering a transac-
tional method does not re-execute this method but re-obtains
the result, referring to a specific aborting reason, from the
log. If the middleware server crash, the “abort” result can
be obtained from the log after the middleware server recov-
ers.

When a transactional method votes abort, it finishes as
if it was not executed. Before the transactional reply is sent
out, the session’s DV is restored to the DV saved when the
transaction request was received. The reply message does not
have the dependencies on other middleware servers that are
indicated by this restored DV. So if the reply is sent within the
service domain, this DV is not attached to this reply message.
Further, if the reply is sent across service domains, before it
is sent, a distributed log flush following this DV need not be
issued.

Transaction Votes Commit (Branch III): A method can
vote to commit its associated transaction only at method
end (just before it returns its results). If the method votes
to commit, a committing log record is written (into the log
buffer). In addition to the transactional reply and the values of
written session variables and shared variables, the session’s
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Fig. 7 Log records and actions
of results logging transactional request log record

distributed log flushlocal log flush

local transaction

send "commit" to transaction manager
get transaction outcome 

flush succeeds

distributed transaction

result−status log record: committed or aborted

flush fails

committing log recordresult−status log record: aborted

vote commitvote abortabort before vote

result−status log record: aborted

result−status log record: aborted

III III

IV

VIV

result−status log record: committed

DV is included in the committing log record when the trans-
action is local, and the transaction identifier is included when
the transaction is distributed.

Then, a distributed log flush is issued in accordance
with the session’s DV to ensure that the session’s current
state never becomes an orphan. This distributed log flush is
required for transactional consistency.

When the transaction is local, i.e. not interacting with
transaction systems, a transactional method independently
decides whether to commit or abort the transaction. Before
the committed reply is sent to the client, transactional consis-
tency requires that all modifications to session variables and
shared variables become permanent and that the session’s
current state never becomes an orphan.

When the transaction is distributed, the transaction out-
come is decided by the transaction manager that coordi-
nates the transaction. For transactional consistency, before
this method sends its “commit” vote to the transaction man-
ager, it must guarantee that its current state never becomes
an orphan (like the state and message stability requirement
before the commit request [3]). Otherwise, the transaction
may be committed by the transaction manager, but later this
session’s current state becomes an orphan and needs roll-
back, which would “abort” the transactional method part of
the transaction.

The distributed log flush also tries to flush the committing
log record to disk. After the committing log record is flushed
to disk, regardless of whether the result status is “commit-
ted” or “aborted”, a result-status log record will be written.
However, it need not be flushed to disk immediately, since
the result status can be derived during recovery should this
log record be lost due to a crash.

Now, we elaborate on writing a result-status log record
and how to resolve the transaction outcome when the result-
status log record is lost.

branch IV: If the distributed log flush fails because one or
more middleware servers in the same service domain have
crashed, making the session an orphan, the transaction
needs to be aborted. A result-status log record indicating
“aborted” is written but not flushed. If this log record get
lost after a crash, the result status would be resolved as
“aborted” during recovery.

– For a local transaction, its resolution relies on the logged
DV in the committing log record.

– For a distributed transaction, with its identifier being
included in the committing log record, its resolution relies
on the transaction manager.

branch V: If the distributed log flush succeeds, when the
transaction is local, a result-status log record indicating
“committed” is written but not flushed. If this log record
get lost after a crash, the logged DV is used during recov-
ery to determine the result status.

branch VI: When the transaction is distributed, the method
sends its “commit” vote to the transaction manager. Once
the method receives the transaction outcome from the
transaction manager, this outcome will be logged in a
result-status log record but not flushed. If this log record
be lost after a crash, the transaction manager is queried
for the outcome.
When the outcome is “committed”, the session saves the
transaction identifier. After the next session checkpoint is
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taken, the session tells the transaction manager to discard
the status information of all committed distributed trans-
actions that were initiated by this session since the previ-
ous session checkpoint. Session checkpointing makes all
transaction results recoverable at the middleware server
and permits the transaction manager to forget transaction
outcomes.
If a transaction needs to abort due to a failed distributed log

flush or a transaction manager’s decision, transaction undo is
executed, like the votes abort case, except that no local flush
is required for the result-status log record.

An abort is required should the distributed log flush fail
or the session be detected as an orphan before the vote. In
this case, no reply is sent out. If the transactional request
message itself is not an orphan (as indicated by its associated
DV), the client will resend the same request after a timeout
as it would for a lost message. If the transactional method
has accessed transaction systems, the corresponding distrib-
uted transaction is aborted by the transaction manager by
transaction timeout.

After a transaction, either local or distributed, is commit-
ted successfully at the method end, the distributed log flush
(following the session’s current DV) must have succeeded
and the current session state will never become an orphan.
Regardless of whether the reply message is sent within the
service domain or across service domains, the session’s DV
need not be attached to this reply because the distributed log
flush has removed all dependencies.

Dependency tracking for shared variables read or written
by the method will, at the method end, also have their depen-
dencies transitively included in the session’s DV. Thus, suc-
cess of the distributed log flush means that the current values
of these variables never become orphans. Since the values
of variables written by this method are included in the com-
mitting log record, the committing log record can serve as a
checkpoint for these variables. However, this log record does
not serve as a checkpoint for variables read by this method,
since their values are not included in this log record.

For example, in Fig. 6, if the transaction is committed, the
distributed log flush following the session’s DV [p1:4, p2:6]
must have succeeded. Thus the current values of SVx (with
a DV [p1:1,p2:6]) and SVy (with a DV [p1:3,p2:6]) will
never become orphans. The committing log record B serves
as a checkpoint for SVy, but not for SVx.

3.5.3 Summary

As Fig. 7 shows, during normal execution there are four abort
types: orphan-initiated abort, transaction votes abort, abort
by failed distributed log flush, and transaction manager abort,
while there are two commit types: local commit and trans-
action manager distributed commit. Using results logging,
a transactional method writes at most three log records and

requires at most one local log flush or one distributed log
flush at the middleware server. Except for the outcome of a
distributed transaction, we do not log any other interaction
with transaction systems. So the overhead of results logging
is very low. In addition, supporting recovery requires little or
no modification to existing transaction systems.

3.6 Middleware server checkpointing

To reduce crash induced outages, a middleware server peri-
odically takes a checkpoint, which mainly contains recovered
state numbers of middleware servers in the service domain,
the LSN of each session’s most recent checkpoint, and
the LSN of each shared variable’s most recent checkpoint.
Taking a middleware server checkpoint does not block ongo-
ing session activities. This is a fuzzy checkpoint [18] and
has little impact on server performance.

The minimum LSN of all sessions’ and all shared variables’
most recent checkpoints will be the start point of the log scan
during crash recovery. Similar to ARIES [29], after a middle-
ware server checkpoint is taken, its LSN is recorded in the log
anchor, a log block located at a specific location inside the
physical log, such as the log header. After a crash, recovery
will look for the most recent middleware server checkpoint’s
LSN inside the log anchor. Figure 8 illustrates a middleware
server checkpoint and its relationship with others.

If a session remains inactive for a long period, no new
checkpoint will be taken for this session, causing the mini-
mal LSN to become very old. To advance the start point and
shorten the log scan, we force a checkpoint for a session if
the number of middleware server checkpoints taken since the
previous session checkpoint reaches a threshold. This simply
writes the checkpoint record again later in the log. Check-
points for shared variables are similarly forced. Note that a
shared variable checkpoint may be in a committing log record
of a committed transaction.

4 Recovery

After a middleware server crashes, crash recovery is per-
formed using the physical log. At the end of recovery, the
middleware server broadcasts within the service domain its

SE1Cp MSCpSV1Cp

minimal LSN

log anchor
most recent middleware server checkpoint’s LSN

Fig. 8 SE1Cp, SV1Cp and MSCp are a checkpoint of session SE1,
shared variable SV1 and middleware server MS, respectively
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recovered state number from the previous epoch. Based on
this, sessions or shared variables of another normally exe-
cuting middleware server within the service domain may
find they have become orphans. Orphan recovery of these
sessions or shared variables ensures global state consis-
tency. Thus there are three types of recovery: session orphan
recovery, shared variable orphan recovery, and middleware
server crash recovery. A middleware server crash recovery
will include session recovery and shared variable recovery.
Session recovery, either session orphan recovery or session
recovery during middleware server crash recovery, is done
by replaying logged recoverable requests and transactional
requests. Transactional request replay ensures transactional
consistency.

4.1 Session orphan recovery

During normal execution, when a middleware server receives
a recovered state number, the DV of any idle (i.e. not cur-
rently executing a method) session is checked to see whether
the session has become an orphan. For a non-idle session, the
session’s DV is checked whenever the recovery infrastruc-
ture can intercept method execution. Interception can occur
at the following occasions:

– at a service method start;
– when a service method accesses (reads or writes) a ses-

sion or shared variable;
– when a recoverable method sends or receives a message

(request or reply);
– before a transactional method votes;
– during the distributed log flush either when sending a

request or a reply across service domains or when a trans-
actional method votes to commit.

If the session is found to be an orphan while a transactional
method is executing, transaction undo is initiated. First, a
result-status log record indicating orphan-initiated abort is
written (not immediately flushed). Then, the session’s DV is
restored to the DV saved when the request was received. If
the restored DV still indicate the session is an orphan, session
orphan recovery is initiated.

In other cases when the session is found to be an orphan,
session orphan recovery is immediately initiated. Thus, when
a middleware server is executing, some sessions may be in
normal execution while others may be recovering.

To recover a session to the most recent non-orphan
state, the session is initialized from its most recent check-
point. Then, the session performs redo recovery by replay-
ing the logged requests indicated by its position stream.
During recovery, the session’s state number and DV, the
next expected request sequence number and every outgoing

session’s next available request sequence number are updated
in the same way as they were during normal execution.

4.1.1 Recoverable method recovery

Recovery for recoverable methods relies on the logging
of non-deterministic events together with re-execution of
the methods. The logging of events, i.e. messages and
shared variable accesses, captures all non-determinism and
makes replay of recoverable methods deterministic and hence
repeatable.

Replay of a logged recoverable method is done in the fol-
lowing way:

– Accessing a session variable is done as in normal execu-
tion.

– Reading a shared variable gets its value from the log.
– Writing a shared variable is skipped due to the variable’s

own separate recovery.
– A request to another middleware server is not sent. Rather,

its reply is read from the log.

4.1.2 Transactional method recovery

We capture the transactional method execution in the same
way that we capture events. That is, we log the execution
effect of a transactional method and feed this effect to the
recovery process in the same way that we feed logged events
to the recovery process for recoverable methods. Thus, dur-
ing session recovery, replay of a logged transactional request
does not re-execute the transactional method. Rather, it reads
the results of the transactional method from the log and
installs them as appropriate. This makes the transactional
request idempotent. The transactional method’s execution
effect is as if the transactional method was executed (com-
mitted) or avoided (aborted), as determined by the transac-
tion result status. This is the essence of the “results logging”
recovery process.

With results logging, we do not log the transactional meth-
ods’ interactions with back-end transaction systems because
we need never recreate the transactional method control state.
If the transaction finishes and commits, we only need its
effect, which is logged. If it finishes and aborts, we similarly
only need its effect, which does not change any variable or
persistent data. If a crash during the transactional method
execution causes loss of the result-status log record and if
we are unable to derive the transaction outcome, we abort
the transaction, again avoiding any need to recover the con-
trol state.

We next describe the specific log states and how recovery
responds to them in order to produce this effect.
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Committed Transactions: If the result-status log record for
this transactional request exists and the result status is “com-
mitted”, its committing log record must also exist. Values
in the committing log record are used to replay the execu-
tion effect: the logged transactional reply is returned, and the
logged values for session variables written by this method are
used to replace their current values. Shared variables written
by this method are ignored by the replay, because shared
variables are recovered separately from session recovery.

In case of a committed distributed transaction, its trans-
action identifier is saved so that after the next session check-
point is taken, the session can tell the transaction manager to
discard the status of all committed transactions which were
initiated by the session since the previous session checkpoint.

Aborted Transactions: If the result-status log record for this
transactional request exists, but the result status is “aborted”,
this transactional method’s execution effect is to leave the
state unchanged. In this case, there may or may not be a com-
mitting log record. If the result-status log record indicates that
the abort is a “transaction votes abort” or a “transaction man-
ager abort”, an “aborted” reply, which may include a specific
aborting reason, is returned. If the abort is due to a failed dis-
tributed log flush or due to the session being detected as an
orphan before the vote, no reply is returned. Nothing else
needs to be done, and session recovery continues at the ses-
sion’s next logged request.

Result-Status Availability: During normal execution, a
result-status log record is always written right after a trans-
actional method is executed. However, a crash may occur
before this log record is flushed to disk. Thus, the subsequent
session recovery that replays a logged transactional request
may not find its result-status log record. Once the result sta-
tus is resolved, a result-status log record for the request will
be written at the session recovery end.

Session orphan recovery may be initiated during normal
execution and re-initiated during an ongoing session recov-
ery. With result-status log records being written during nor-
mal execution and during session recovery after a crash, we
guarantee that when session orphan recovery is replaying a
logged transactional request, it can always find the corre-
sponding result-status log record.

4.1.3 Session orphan recovery end

Since session orphan recovery is initiated after the session
has been found an orphan, this recovery following the ses-
sion’s log records will encounter an orphan log record, that
is, a log record containing a DV, which indicates an orphan.
This orphan log record may be a log record for a request or
a reply from the same service domain, or a log record for
reading a shared variable.

There may exist multiple orphan log records. When the
session encounters the first orphan log record during recov-
ery, it shows that the session became an orphan because of the
action associated with this orphan log record: receiving this
request or this reply, or because of reading this shared vari-
able. At this point, the session skips this orphan log record
and all subsequent log records of the session and switches to
normal execution, hence terminating replay and eliminating
the orphan state.

The committing log record for a local transaction also
contains a DV, which may indicate an orphan. However, ses-
sion orphan recovery does not handle such a committing log
record as an orphan log record, i.e. it does not skip this log
record and all subsequent log records of the session, but
replays this transactional request as aborted and recovery
continues with the subsequent logged request.

Before switching to normal execution, the session trun-
cates its position stream to remove the positions of all those
skipped log records. After switching, the session continues
the action occurring at the recovery end, i.e. waiting for a
new request or a reply, or reading the shared variable.

Those skipped log records are left in the physical log
(shared by all sessions). However, their positions are removed
from the session’s position stream. Since session recovery
follows the session’s position stream, even if the session
becomes an orphan again due to another crash of other
middleware servers, those log records will be invisible to
(skipped without being read during) the subsequent session
orphan recovery.

If this middleware server crashes, the session’s position
stream gets lost and has to be reconstructed from the phys-
ical log during crash recovery. To ensure that those skipped
log records can be identified after a crash, at the end of session
orphan recovery, in addition to truncating its position stream,
the session writes an end-of-skip (or EOS) log record, which
contains the LSN of the orphan log record just found. In
other words, the EOS log record points back to the orphan
log record.

This EOS log record does not need to be flushed to disk
immediately. If it gets to disk before the crash, the session’s
log records beginning with this orphan log record until this
EOS log record can be identified and will be skipped by the
session’s recovery. However, this session’s log records after
the EOS log record will still need to be read after the crash. In
case the EOS log record does not get to disk before the crash,
all the session’s log records beginning with this orphan log
record and thereafter will be skipped.

4.1.4 Session orphan recovery upon multiple crashes

During session orphan recovery, the session’s DV is also
checked in case that the session has become an orphan again
due to another middleware server crash within the service
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EOS1 orphan2 EOS2 disjointed

orphan2 orphan1 EOS1 EOS2 embedded

orphan1

Fig. 9 Combinations of (orphan, EOS) pairs upon multiple crashes

domain. Session orphan recovery can be initiated during an
ongoing session orphan recovery. This permits us to deal with
multiple concurrent crashes promptly. However, no matter
how many concurrent crashes there are, one crash can cause
one session to initiate orphan recovery at most once. Figure 9
illustrates the only two possible combinations of (orphan log
record, EOS log record) pairs for a session upon multiple
crashes. Log records between orphanx and EOSx will be
skipped during any subsequent session recovery.

Specially, the embedded combination could occur in the
subsequent scenario: the session conducts orphan recovery
with EOS1 written, then before a session checkpoint is taken,
it becomes an orphan again due to another middleware server
crash, and finally the subsequent orphan recovery finds the
orphan log record orphan2 and writes the corresponding
EOS2. Any future orphan recovery of this session will skip
all its log records between orphan2 and EOS2, which include
those between orphan1 and EOS1.

4.2 Shared variable orphan recovery

During normal execution, before a session reads a shared
variable, the session checks the variable’s DV to see if this
variable has become an orphan. When a shared variable is
to be checkpointed, during the distributed log flush follow-
ing this variable’s DV, this DV will also be checked. So read
and checkpointing during normal execution are the only two
occasions to trigger an orphan check for a shared variable.
Once a variable is detected as an orphan, orphan recovery
of this variable will be initiated. Only after this variable’s
most recent non-orphan value is recovered, will this value be
returned to the reader session.

To do orphan recovery for a shared variable, the reader
session or the checkpointing thread will follow the back-
ward chain of write log records of this variable and roll this
variable back to the most recent non-orphan value (based on
the middleware server’s current knowledge of other middle-
ware servers’ recovered state numbers). So, shared variable
orphan recovery can be considered as undo recovery. Due
to such separate recovery of shared variables, session redo
recovery does not need to recover shared variables. This sim-
plifies session recovery.

Table 4 Actions during middleware server crash recovery

re-initialize from most recent middleware server checkpoint;

scan persistent log:

a. reconstruct position streams;

b. roll forward shared variables;

c. update knowledge about recovered state numbers;

broadcast a recovery message;

resolve crash-interrupted transactions;

make a middleware server checkpoint;

recover sessions in parallel and accept new sessions;

4.3 Middleware server crash recovery

After a middleware server crashes, crash recovery is started
following the procedure in Table 4.

First, the middleware server is re-initialized from its most
recent checkpoint, whose LSN is in the log anchor. Then, a
single-threaded analysis scan of the physical log is started at
the minimum LSN as recorded in this checkpoint, to recon-
struct position streams for all sessions and to update all
shared variables to their most recent logged values. When log
records containing recovered state numbers of other middle-
ware servers in the service domain are encountered, the scan
will update this middleware server’s knowledge about those
recovered state numbers.

When the scan is finished, the largest persistent LSN
before the crash has been determined and it is broadcast in a
recovery message within the service domain as the middle-
ware server’s recovered state number of its previous epoch.

Next, for all transactions that were interrupted by the
crash, their result status is resolved and after resolution, the
middleware server makes a checkpoint. Finally, all sessions
start to recover in parallel following their reconstructed posi-
tion streams, and the middleware server can start accepting
new sessions.

Now, the middleware server crash recovery can be consid-
ered as finished. From this point on, recovering sessions and
new sessions in normal execution may coexist. New requests
of a recovering session are held until recovery of this session
finishes.

4.3.1 Shared variable roll forward

During the scan, checkpoints and write log records of shared
variables, and committing log records are used to roll forward
shared variables.

When a checkpoint of a shared variable is encountered, the
variable is updated with the checkpointed value. This value
will never be an orphan. For any shared variable that appears
in a committing log record, its current value is saved and
the variable is updated with the value from this log record.
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Table 5 Crash-interrupted transaction resolution

no committing log record Aborted

distributed in-doubt query transaction manager
with logged transaction ID

local in-doubt 1 re-issue distribute log flush

following logged DV;

2 committed if flush succeeds

and aborted otherwise

If the result-status log record for this transactional request
encountered later in the scan indicates that the transaction
was aborted, this variable is reset to the saved value. Other-
wise, if the transaction was committed, this committing log
record serves as a checkpoint for this variable and the saved
value is discarded.

When a write log record of a shared variable is encoun-
tered, both the variable’s value and DV are updated with the
logged value and DV. The logged DV cannot indicate that
the logged value is an orphan. This is because this logged
DV was indeed the writer session’s DV right before the write
during normal execution. This DV was checked then to see
whether the session had become an orphan and it did not
indicate an orphan. So the logged value was not an orphan
then. After a crash, the middleware server scans its physical
log to recover. During this scan, at the point when this write
log record is encountered, the middleware server has no more
knowledge about recovered state numbers than it had when
the write occurred during normal execution. So at this point,
this logged DV cannot indicate an orphan.

At the scan end, each shared variable has been updated to
the most recent logged value. Since all log records containing
recovered state numbers have been encountered, the middle-
ware server has built up all its knowledge about recovered
state numbers from its physical log. If a shared variable’s
most recent value was obtained from a write log record, this
value may be an orphan according to the middleware server’s
current (more recent) knowledge about recovered state
numbers. However, orphan recovery for this variable is not
initiated immediately, but later when a session in normal exe-
cution tries to read this variable or when this variable is to be
checkpointed.

4.3.2 Crash-interrupted transaction resolution

At the log analysis scan end, there may exist a transactional
request log record for which the result-status log record
has not been found in the log. This occurs when the crash
occurred during transaction execution. Table 5 lists the result-
status resolution for crash-interrupted transactions.

Transactions without Committing Log Records: If the com-
mitting log record for a transactional request does not exist,
the associated transaction has not been committed. Hence,
whether the transaction is local or distributed, we resolve its
result status as “aborted” and the transactional method exe-
cution has no effect. For a distributed transaction, where the
transactional method interacts with transaction systems, the
transactional method must have not sent its vote (“commit”
or “abort”) to the transaction manager before the crash. The
transaction manager aborts the transaction due to the transac-
tion timeout (either already or in the near future). Transaction
system participants in the aborted transaction guarantee that
modifications to their own resources are undone eventually.

In-Doubt Transactions: If the committing log record for a
transactional request does exist, we do not know whether the
associated transaction has been committed or aborted. We
call such a transaction an in-doubt transaction.

Note that the committing log record contains information
about which shared variables were written by the transac-
tional method. Before the result status is resolved, new ses-
sions (which may be started after the scan end) cannot access
these variables. We choose to resolve any in-doubt transac-
tion at the log analysis scan end, rather than at a later stage
(e.g. at the session recovery end). This makes these vari-
ables immediately accessible to new sessions, and also sim-
plifies the subsequent session recovery, which thus does not
need to handle (e.g. lock) these variables. How to resolve the
result status of an in-doubt transaction depends on whether
the transaction is distributed or local.

Distributed In-Doubt Transactions: In case of a distributed
in-doubt transaction, whose transaction identifier is included
in the committing log record, the transaction manager is que-
ried for this transaction’s outcome.

If the transaction manager knows the outcome, which is
“committed”, it replies with a result status “committed”. Oth-
erwise, the transaction manager replies with a result status
“aborted”. It is possible that the required distributed log flush
succeeded for this transaction during normal execution, but
the middleware server crashed before the vote “commit” was
sent to the transaction manager. In this case, the transaction
manager has no result status for this transaction, and will
reply with a result status “aborted” as required for the “pre-
sumed abort” protocol.

Queries for the outcome of all distributed in-doubt trans-
actions are combined so that the transaction manager is con-
tacted just once, thus reducing the message overhead.

Local In-Doubt Transactions: In case of a local in-doubt
transaction, we do not know whether the distributed log flush
issued before the end of the transaction succeeded or not. If it
succeeded, the transaction should be committed; otherwise,
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the transaction should be aborted. Note that we could force to
abort the transaction no matter the distributed log flush suc-
ceeded or not, since the client of this transactional request
is not aware of the result status yet. But we want to avoid
unnecessary aborts.

The logged DV in the committing log record is utilized to
determine the transaction outcome. We re-issue a distributed
log flush following this DV. If the flush succeeds, the transac-
tion is resolved as “committed”, otherwise, as “aborted”. The
distributed log flushes for all local in-doubt transactions at
this middleware server are combined (in a batch) so that any
other middleware server in the service domain is contacted
only once. This reduces the overhead of both messages and
flushes.

When a middleware server is doing a distributed log flush
at the end of the log analysis scan, although it has not started
to accept new sessions or to process new requests of existing
recovering sessions yet, it must be ready to process requests
(sent from other middleware servers in the service domain) of
flushing its log. Since all log records of the recovering mid-
dleware server are already persistent (only those log records
survived the crash), this middleware server will simply return
its largest persistent LSN in response to distributed flush
requests from other middleware servers.

Figure 10 illustrates this necessity. The two middleware
servers, MS1 and MS2, are in the same service domain. Both
have crashed and have come to the log analysis scan end.
MS1 has a persistent log up to LSN 20. To resolve the result
status of a local in-doubt transaction, it has issued a distrib-
uted log flush following the DV [p1:15,p2:30]. MS2 has a
persistent log up to LSN 40. To resolve the result status of
a local in-doubt transaction, it has issued a distributed log
flush following the DV [p1:21,p2:35].

The distributed log flush issued by MS1 results in a flush
request (up to LSN 30) sent to MS2. The distributed log flush
issued by MS2 results in a flush request (up to LSN 21) sent
to MS1. So MS1 is waiting for the reply of its flush request to
MS2, and MS2 is waiting for the reply of its flush request to
MS1. If MS1 and MS2 were unable to process flush requests
from each other when they themselves are doing a distributed

flush up to 21
20

flush up to 30

[p1:21,p2:35]

40

MS2

[p1:15, p2:30]

MS1

Fig. 10 Two middleware servers send flush requests to each other at
the scan end. A solid box indicates a log record

log flush, a deadlock would form between MS1 and MS2, and
both MS1 and MS2 would hang.

Here, MS1 returns 20 for the flush request (up to 21) from
MS2. The distributed log flush issued by MS2 thus fails. MS2
returns 40 for the flush request (up to 30) from MS1. The
distributed log flush issued by MS1 thus succeeds.

Discussion: Resolution for in-doubt transactions may
require other middleware servers in the same service domain
and the transaction manager to be online. If there are mul-
tiple concurrent crashes, recovery blockage among middle-
ware servers may occur. If the transaction manager is offline,
crash recovery of a middleware server may be blocked until
the transaction manager is brought online. Due to rareness of
crashes and reliability of transaction managers, such block-
age is usually short and not noticeable.

4.3.3 Session recovery after scan

Session recovery after the scan is similar to session orphan
recovery. Each session recovers by replaying its logged
requests. Replaying a recoverable request re-executes the
recoverable method following the log. With results log-
ging for a transactional method, instead of re-executing
the method, the method’s execution effect is supplied from
the log. Besides, during recovery, the session’s DV is also
checked to see whether the session has become an orphan
due to another middleware server crash in the same service
domain.

The main difference lies in the recovery end condition.
Unlike session orphan recovery, session recovery after the
scan may not encounter an orphan log record. In case that a
recovering session does not encounter an orphan log record
after all its log records are consumed, the session simply
switches to normal execution immediately, unless the ses-
sion’s last persistent log record is a transactional request log
record or a committing log record, in which case the result sta-
tus of the transaction has already been resolved at the scan end
and the session will write a result-status log record, before
switching to normal execution.

In case an orphan log record O is encountered, similar to
session orphan recovery, the session skips those log records
beginning with O until the end-of-skip log record EOS which
points back to O, or until the session’s last persistent log
record, if such an EOS does not exist.

EOS Found: In case such an EOS is found, the session
removes from its position stream the positions of all skipped
log records beginning with O and ending with EOS. If there
are no more log records after EOS, the session switches to
normal execution; otherwise, the session continues to recover
following those subsequent log records.
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EOS Not Found: In case such an EOS does not exist, the
session writes an EOS log record pointing back to O, trun-
cates its position stream to remove positions of skipped log
records beginning with O, and switches to normal execution.

5 Performance discussion and measurement

We implemented a prototype for recovery of Web services
with transaction support using the Microsoft .NET middle-
ware infrastructure. The prototype demonstrates the feasi-
bility of our logging and recovery methods for middleware
servers.

5.1 Prior performance work

In our prior work [41], we measured and analyzed locally
optimistic logging and pessimistic logging in terms of nor-
mal execution overhead and recovery speed. We present an
overview of that here, prior to describing our new experi-
ments that include measuring performance when transaction
support is also included.

With Microsoft .NET, session state can be stored at a
standby in-memory state server or in a DBMS. Our prior
measurements confirmed that making session state persis-
tent at the middle tier, either by pessimistic logging or locally
optimistic logging, incurs less overhead than storing it into
a DBMS, but more overhead than storing it into a standby
state server. It is important to note, however, that this later
method does not provide state persistence. When the pro-
gram implementing business logic does not access the disk,
the logging cost for recovery is significant, compared to not
providing recovery and hence avoiding logging. However,
multi-tier applications usually access the disk, either to use
files or databases. In this setting, the relative overhead of
making shared state or session state persistent is modest.

With locally optimistic logging, the larger the fraction of
messages confined within a service domain compared to mes-
sages crossing service domains, the lower the logging over-
head compared to purely pessimistic logging. Configuration
of service domains is a tradeoff between logging cost and
failure isolation, which business can use to create the appro-
priate balance.

Recovery performance is affected by both the crash fre-
quency and the checkpoint frequency. Our measurements
showed that replaying a logged request is faster than pro-
cessing a request during normal execution, since a portion
of the execution effect can be obtained from log, e.g. get-
ting a reply. When crashes are rare, which is the usual case,
and especially for enterprise servers, locally optimistic log-
ging produces higher throughput than pessimistic logging by
reducing log flushes. However, when a crash occurs, recov-
ery with locally optimistic logging takes longer, since orphan

rollback may be required. The more frequent checkpointing
is, the faster recovery becomes. Hence, the checkpoint fre-
quency can be used to reduce the recovery time to a specified
range, while incurring some modest normal execution over-
head.

Replicating mid-tier server state during normal execution
can reduce or eliminate outage time, since recovery and even
failover are not required after a crash. However, this both
doubles the resources needed for middle tier applications
and does not preserve state should overlapping failures of
the replicas occur, e.g. as in a power failure.

5.2 Performance impact of transaction support

The prior work did not measure the impact of transaction sup-
port. Here, we focus on evaluating the impact of “results log-
ging”, our technique for recovering transactional methods,
when either locally optimistic logging or pessimistic logging
is used. Our new experiments show that although transactions
incur additional forced logging, the locally optimistic logging
still preserves its performance advantage.

Figure 11 shows our experimental configuration. We have
one or more end clients, two middleware servers (MS1 and
MS2) hosted by Web servers, and one DBMS. An end client
starts a session SE1 with MS1, then sends request1 to exe-
cute RecoverableMethod1 a number of times. SE1 at MS1
further starts a session SE2 with MS2. RecoverableMethod1
reads and writes shared variable SV1, sends request2 to exe-
cute RecoverableMethod2, then reads and writes SV2, next
sends request3 to execute ServiceMethod3 and reads and
writes SV3, finally writes SE1’s session variables. Over SE2,
RecoverableMethod2 reads and writes SV4, and writes SE2’s
session variables. ServiceMethod3 reads and writes SV5, and
writes SE2’s session variables. ServiceMethod3 may be a
recoverable method, or a transactional method which may
access the back-end database.

Both the parameter and the returned value of a request are
100 bytes. The session state size for each of SE1 and SE2 is
8K bytes. All service methods write 512 bytes of their session
state. Each shared variable is 128 bytes. Such a configuration
is consistent with the observation that the shared in-memory
state is relatively small. A database access includes a read of
3K bytes and a write of 150 bytes of persistent business data.

Our hardware consists of four computers: one client, two
Web servers and one DBMS server, connected via Ethernet.
Table 6 lists the hardware parameters. Each computer has
one disk. The disk on MS1 is used for MS1’s log and the
operating system virtual memory. The disk on MS2 is used
for MS2’s log, the operating system virtual memory and the
distributed transaction manager’s log. Since the servers have
large memories, the operating system virtual memory did not
incur disk I/Os during our experiments.
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Table 6 Hardware parameters

network bandwidth 100 Mbps

client CPU 2.33 GHz, memory 512 MB

Web servers CPU 2.66 GHz, memory 1 GB

DBMS server dual core 2.16 GHz, memory 2 GB

server hard disks 7200 RPM

avg seek 10.5 ms(W)/9.5 ms(R)

track/track seek 1.2 ms(W)/1 ms(R)

default sectors per track 63

We first measured and analyzed the response times of
transactional methods, when using results logging, with a
single end client for both locally optimistic logging and pessi-
mistic logging, respectively. We then measured and analyzed
the response time and throughput with multiple concurrent
end clients. In both cases, the transactional method results
logging preserves the performance advantage of locally opti-
mistic logging, with the appropriate configuration of service
domains, when compared with pessimistic logging.

5.3 Performance with single client

We measured the response time of requests from a single end
client for the experimental configuration shown in Fig. 11.
We explored six different scenarios. We compared locally
optimistic logging (labelled LoOptimistic), where MS1 and
MS2 are configured into the same service domain, to pessi-
mistic logging (labeled Pessimistic), where MS1 and MS2 are
configured into different service domains, and thus pure pes-
simistic logging is used. We tested these logging strategies
using three alternatives for ServiceMethod3: (1) a recover-
able method (labeled Rec); (2) a transactional method that
does not access the DBMS (labeled TraLoc); and (3) a trans-
actional method that does access the DBMS (labeled TraDis).

Table 7 Response time (ms) with a single end client

Rec TraLoc TraDis

Pessimistic 62.84 62.75 70.85
LoOptimistic 29.82 41.59 48.73

Table 7 displays the average response times over 20,000 end
client requests.

5.3.1 Recoverable methods case

For case Rec, messages flow between MS1 and MS2, which
are both recoverable methods. With pessimistic logging, each
end client request requires five log flushes in sequence: (1)
at MS1 before sending request2; (2) at MS2 before sending
reply2; (3) at MS1 before sending request3; (4) at MS2 before
sending reply3; and (5) at MS1 before sending reply1. Each
log flush writes 2 sectors to disk. With locally optimistic
logging, each end client request requires only one distrib-
uted log flush at MS1 before sending reply1. This distributed
flush incurs two log flushes in parallel: one 4-sector flush at
both MS1 and MS2.

The log is written in units of log blocks, aligned at sec-
tor boundaries. When a log block is flushed, its last sector
may not be full. More forced logging hence results in more
partially filled sectors. This accounts for our observation that
locally optimistic logging saves log space due to less frequent
log flushes.

The following simplified analysis explains the response
time difference between locally optimistic logging and pessi-
mistic logging. We assume a constant time for each log flush
of TF because seek time is much larger than data transfer
time determined by log write size, and hence is the domi-
nant factor in response time. The response time difference
between pessimistic logging and locally optimistic logging
is thus approximately equal to 5 · TF − max(TM + TF , TF )),
where TM is the time of the message round trip to request
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MS2 to flush during the distributed log flush. The difference
is equal to 4 · TF − TM .

The average disk seek is about 10.5 ms. Considering that
disk access for log flushes is not completely random, but
more sequential, we crudely estimate TF to be 9 ms for our
analysis. The message round trip time TM was measured
as 4 ms. The response time difference is thus calculated as
32 ms (= 4∗9−4), which accounts for most of the measured
response time difference 33.02 ms (= 62.84 − 29.82).

5.3.2 Local transactional case

For case TraLoc, ServiceMethod3 is a transactional method
and uses results logging. With pessimistic logging, each end
client request requires five log flushes in sequence, the same
as for case Rec. The difference is that one more disk sector
is written by the fourth flush at MS2, because slightly more
data needs to be logged by results logging for a transactional
method.

When locally optimistic logging is in use, each end client
request requires two distributed log flushes. The first distrib-
uted flush occurs at MS2 to commit the transaction. This first
flush incurs two log flushes in parallel, i.e. one 5-sector flush
at MS2 and one 3-sector flush at MS1. The second distributed
flush occurs at MS1 before sending reply1. This second flush
incurs two log flushes in parallel, i.e. one 0-sector flush at
MS2 and one 2-sector flush at MS1. Here 0-sector flush indi-
cates that there is no log to be flushed, but a message round
is still required in order to discover this.

The time difference in log flushes between pessimistic
logging and locally optimistic logging is thus equal to 5 ·
TF − max(TM + TF , TF ) − max(TF , TM ), i.e. 3 · TF − TM ,
which, using the same estimates as before, is calculated as
23 ms, very close to the measured response time difference
21.26 ms (62.75 − 41.59). The measured response time dif-
ference is smaller, partly because when locally optimistic
logging is adopted transactional method processing has extra
overhead on execution context.

The response time difference, i.e. saving by locally opti-
mistic logging compared to pessimistic logging, in case
of TraLoc (21.26 ms) is smaller than case Rec (33.02 ms),
exactly because of the extra distributed log flush required to
commit the transaction. This extra log flush would be needed
for transaction commit as long as a logging-based approach
is adopted.

5.3.3 Distributed transactional case

Compared to case TraLoc, in case of TraDis, the response
time is 7 or 8 ms longer, for both pessimistic logging and
locally optimistic logging. This increase in response time
occurs as a result of the DBMS access and is very close to
the time of one disk log flush. Each DBMS access results

in one database transaction, which requires one DBMS log
flush at transaction commit.

5.4 Performance with multiple clients

To observe the performance of transactional method han-
dling with multiple concurrent end clients, we measured the
response time and throughput for case TraLoc when there
are multiple clients, each of which continuously submits
requests. In this set of experiments, we enabled batch flush-
ing, i.e. a request to flush the log is not executed immedi-
ately, but rather after a specified timeout, providing a chance
to batch several flush requests into a single write. Batch
flushing is a log write optimization similar to group com-
mit [18], adopted commonly by commercial DBMSs. With
batch flushing, recovery may require more rollbacks, both
for crash recovery and for orphan recovery. However, given
the low incidence of crashes, batch flushing is a good strat-
egy. It reduces the amortized logging overhead and improves
the throughput. We chose 8 ms as the batch flushing timeout,
which is close to the time of a disk log write.

Figures 12 and 13 show the response time and the through-
put change as the number of concurrent clients increases.
With increasing clients, the response time becomes longer.
However, locally optimistic logging always has a shorter
response time than pessimistic logging.

With increasing end clients, the throughput increases,
because the system resources including CPU, disk I/O and
network bandwidth become more heavily utilized. When the
number of clients reaches 4, the throughput reaches a max-
imum for locally optimistic logging, while the throughput
reaches its maximum for pessimistic logging when the num-
ber of clients reaches 5. Further increase in concurrent end
clients leads to lower throughput.

These experimental results should not be interpreted as
the system being limited to supporting only a few clients.
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Fig. 12 Response time (ms) versus number of end clients
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Fig. 13 Throughput (requests per second) versus number of end clients

With a real workload, end clients do not continuously submit
requests, but rather are idle most of the time, which permits
many more clients to be supported simultaneously.

With locally optimistic logging, the distributed log flush
issued at “transaction votes commit” takes TM + TF

(= max( TM + TF , TF )), while with pessimistic logging,
only a local log flush TF is required at “transaction votes com-
mit”. Since a transactional method (using strict two phase
locking) holds locks on shared variables until end of trans-
action, the lock duration with locally optimistic logging is
longer than with pessimistic logging, reducing concurrency.
In spite of this negative impact, the performance results
reported in Fig. 13 reveal that the highest throughput sup-
ported by locally optimistic logging is still 47% higher than
the highest throughput supported by pessimistic logging.

Determining the timeout value for batch flushing should
take into account the specific system configuration and the
workload, e.g. the number of concurrent clients. The timeout
(8 ms) used in our experiments might not lead to the highest
throughput supportable by our recovery system.

6 Related work

6.1 Commercial providers

Commercial Web servers [6,19,28] make session states resil-
ient to failures by replicating session states to a standby pro-
cess or Web server, or saving session states to disk files or
databases synchronously. They do not support fault tolerance
for shared in-memory state.

Certain Web services infrastructures [14] provide transac-
tional Web methods, where the transactional access
semantics is applied only to the persistent state of transaction
systems, not to the in-memory state of middleware servers.
Recovery of in-memory state is not provided, nor is coordi-
nated recovery of in-memory state with persistent state.

6.2 Research efforts

6.2.1 Persistence approach

Replication: Fault tolerance of middleware servers incor-
porating transaction processing could be implemented via
replication [23,31,32,35,36,44,45], which requires dupli-
cate resources and additional infrastructure support, such as
totally ordered multi-cast communication infrastructure.

In case of replication with transaction support [23,36],
both middleware components and back-end transaction sys-
tems had replicas, changes to back-end transaction systems
were captured and replicated to backup middleware compo-
nents and applied to redundant transaction systems.

Logging: Log-based techniques are less expensive yet
effective, though typically with longer outages. Log-based
recovery for general application processes over a Java
virtual machine was partially implemented [30], but no
consistency among interacting processes was considered.
Pessimistic logging and optimistic logging were invented
in the fault tolerance community [13] and were used for
consistent recovery of message passing systems, where enti-
ties interacted with one another via message exchanges only.
Individual threads were considered as separate recovery units
with optimistic logging [10]; however, log management of
a multi-threaded process with optimistic logging was not
explored.

The Phoenix project [1,3,4,25] exploited message
logging to enable recovery, including interactions with
back-end transaction systems. Middle tier recovery [3]
involved message logging as well.

E-transactions [17] with exactly once execution seman-
tics in three-tier systems were implemented [16] by stor-
ing transaction results, including replies and side-effects on
middleware server state, into backup servers or back-end
databases. This might require modification to DBMS com-
mitting processing and overload DBMS servers. This is an
implicit (degenerate) case of logging where the need for a log
was removed from the middle tier by restricting function-
ality. Logless components [26] generalized this, explicitly
revealing the value of client logging in supporting a richer
set of capabilities while retaining the absence of logging in
the middle tier.

None of the above approaches directly supported concur-
rent accesses to shared state by multiple threads.

6.2.2 In-memory state

In-memory state is usually located inside the same process
as the middleware server.
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Private State without Concurrent Access: Private in-
memory state for single-threaded “sessions” is not subject
to race conditions on access, and can be recovered via mes-
sage logging alone, or the usual replication techniques.

Transactional access to in-memory state within a
single-threaded process was implemented [22,43]. If the
business logic could be captured in a chain of transactions
[22], each of which accessed the in-memory state, the state
simply consisted of the finishing status of those transactions.
From the log of those transactions, the state could be easily
recovered. More complicated business logic was supported
[43] with the in-memory state access being implemented as
part of the two phase commit protocol. In this case, a distrib-
uted transaction coordinator was needed.

Shared State with Concurrent Access: When the state is
accessible by multiple threads, one needs to use concurrency
control to protect such state, e.g. by using locks to control
access. Access to in-memory state needs to be logged for
recovery. Lock acquisition can be used to trigger appropriate
logging for logging-based approaches.

Transactional access to shared in-memory state concur-
rently by multiple threads was implemented with all the
in-memory objects of an object-oriented program being
shared and implicitly protected by read or write locks [38].
Since the number of objects and threads might be large, it was
critical to implement the lock manager efficiently [11,12].

6.2.3 Resource manager interactions

Persistent application state stored in disk files, database sys-
tems and transactional message queues is usually managed by
a separate process, called a transactional resource manager.
There was an exception [43] of having no separate manager
process for disk files, where transactional access to disk files
was supported only for a single-threaded process and the disk
files could be accessed only by this single process.

When the transactional resource manager is a separate
process, messages are exchanged for accessing transactional
persistent state. Usually, before any request message is sent
to another process, the client process needs to flush its log
records to ensure deterministic replay. However, since a
transaction can be canceled later, flushing is required only
when the committing request message is sent [3].

Messages from a transactional resource manager back to
a client process, such as query results from a DBMS, were
logged by the client process [3,4,15,25]. On the other hand,
intermediate results from a transactional resource manager
within a transaction might not be logged by the client [39].
Instead, only the transaction outcome (either committed or
aborted) was logged, thus resulting in less logging.

To interact with back-end transactional resource
managers, Phoenix/ODBC used ODBC (Open Database

Connectivity). For recovery of ODBC sessions [4], this
sometimes involved storing result messages in persistent
tables at the DBMS server, especially when there were large
results. Handling short results was optimized by logging
at the client. In both cases, storing complete results prior
to delivering them to a client ensured that all transaction
results were delivered when the transaction committed but
the server crashed before the client had completed process-
ing the results. Update consistency with the back end was
provided via idempotence. The idempotence guarantee was
realized by storing transaction result status in a persistent
table at the DBMS server. Involving middle tier servers in a
transaction was not explicitly treated.

6.2.4 End-to-end story

With traditional transaction processing, when a client process
accessed a server such as a DBMS, the client requests could
be guaranteed to be processed exactly once by the server via
recoverable queues [8]. However, the client business logic
was only expressible as a chain of transactions and no more
complicated business logic was allowed.

Recovery for middleware components such as CORBA
components [31,32], Microsoft .NET components [1], J2EE
components [23,36] and PHP serverlets [2] have been stud-
ied. Some work used replication [23,31,32,36], while oth-
ers used optimized pessimistic message logging [1,2] to
approach exactly once execution of requests.

The Phoenix/App effort [1,5] provided an end-to-end
exactly once execution framework for Web applications
based on recovery. It supported a stateful application pro-
gramming model, realizing persistence via recovery based
on application replay. It recognized the importance of reduc-
ing the overhead of logging, developing a number of tech-
niques. It compartmentalized recovery via “contracts” that
required forcing the log, providing, in some cases, failure
isolation in which parts of the system that did not fail were
isolated from having to deal with the failure. The Phoenix
approach to interacting with a back-end transaction system
was to require that it provide idempotence. Idempotence is,
indeed, a requirement for recovery [2]. The notion of a trans-
actional component was introduced to provide idempotence
for the rest of the distributed system. Such a component can
be located at the back end or at the middle tier. However, there
exist several ways in which idempotence might be provided
naturally within an application. Phoenix did not describe a
particular approach. The transactional method in our work is
a form of transactional component located at the middle tier.
It relies on the transaction manager for distributed commit
idempotence and builds on that to provide idempotence for
the rest of the middle tier.
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In a Web services setting, idempotent services were advo-
cated to enable recovery of applications via replay if they did
appropriate (optimized pessimistic) message logging [24].

6.2.5 Our work

For recovery of interacting middleware servers, locally opti-
mistic logging was introduced [41] to reduce logging over-
head. For interactions with back-end transaction systems, we
have introduced results logging (described briefly in [42])
where what is logged is the result of executing a transac-
tional method (its reply and its impact on shared state and
session state). Our paper here further develops results log-
ging and recovery in the context of locally optimistic logging
and measures its performance. It presents a complete persis-
tent state solution for middleware servers interacting with
transactional back ends.

7 Conclusions

We have described our system for log-based recovery of mid-
dleware servers with transaction support. By using locally
optimistic logging for message exchanges, we reduced
logging overhead and maintained recovery independence
across service domains. Value logging for shared variables
increased recovery independence inside a middleware server.
It also kept logging overhead modest in the usual case where
shared variables are small. Fuzzy checkpointing incurred
only minimal impact during normal system execution. We
enabled parallel recovery of multiple sessions after a crash
while using a common physical log for all sessions.

Using results logging for transactional methods ensured
coordinated recovery of both in-memory state and persistent
state. Results logging incurred modest logging overhead in
maintaining transactional consistency and required little or
no modification to existing transaction systems. Our perfor-
mance measurements of our prototype system showed that
our transactional method processing has low overhead and
preserved the performance advantage of locally optimistic
logging over pessimistic logging.

Our system has demonstrated the feasibility of using
results logging to provide coordinated recovery for both
in-memory state and transactional persistent state, and having
the system infrastructure transparently provide persistence
guarantees for middleware servers. Our technology thus
supports the high performance and availability needed by
transactional business applications, without the need for
major modification to existing transactional system infra-
structure. Utilizing our middleware server infrastructure and
the existing transaction system recovery facilities, applica-
tion programmers no longer need to cope with system fail-
ures and thus are able to focus on the business logic of the
applications.
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