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ABSTRACT

In this paper we report our recent development of an end-to-end in-
tegrative design methodology for speech translation. Specifically,
a novel decision function is proposed based on the Bayesian analy-
sis, and the associated discriminative learning technique is presented
based on the decision-feedback principle. The decision function in
our end-to-end design methodology integrates acoustic scores, lan-
guage model scores and translation scores to refine the translation
hypotheses and to determine the best translation candidate. This
Bayesian-guided decision function is then embedded into the train-
ing process that jointly learns the parameters in speech recognition
and machine translation sub-systems in the overall speech transla-
tion system. The resulting decision-feedback learning takes a func-
tional form similar to the minimum classification error training. Ex-
perimental results obtained on the IWSLT DIALOG 2010 database
showed that the proposed system outperformed the baseline system
in terms of BLEU score by 2.3 points.

Index Terms— speech translation, decision feedback, integra-
tive design, discriminative training

1. INTRODUCTION

Speech translation aims at automatically converting speech input in
one language to text output in another language. A straightforward
way of accomplishing speech translation is to build a two-stage sys-
tem [10, 12], which combines the state-of-the-art techniques from
automatic speech recognition (ASR) and statistical machine trans-
lation (SMT). To improve the translation performance, since there
could be multiple recognition hypotheses available from n-best or
lattice, the SMT engine can be designed to accept multiple input and
make a decision based on some score fusion techniques [1, 6]. One
problem of the direct combination or concatenative approach is the
mismatch between the training corpus (clean) and the decoding en-
vironment (noisy) for the SMT system. In addition, errors made at
the ASR stage cannot be recovered in the subsequent SMT stage.

From the point of view of the Bayesian optimal decision the-
ory, the concatenative approach is clearly sub-optimal. To address
this problem, in our earlier work on speech understanding, where
the understanding module was a classifier trained on clean sentences
with their corresponding semantic labels, we observed that the clas-
sification performance decreased vastly when the classifier’s input
was given with ASR output. A joint optimal design significantly im-
proved the speech understanding performance [13]. Motivated by
this earlier success, in this work, we formulate the speech transla-
tion problem as an optimal Bayesian decision problem. Specifically,
we derive the optimal decision function which integrates acoustic

scores, language model scores and translation scores together to de-
termine the best translation candidate for a given speech input.

The decision function is then embedded into the training objec-
tive function, which enables joint learning of the parameters in the
ASR and SMT sub-systems as the constituents of the overall speech
translation system. The discriminative training strategy developed
in this work is based on the decision-feedback principle, where the
decision function that is used as the scoring function in the decoding
process becomes a part of the optimization procedure of the entire
system. As a result, the parameters in the speech translation system,
including both ASR and SMT sub-systems, can be jointly learned by
adjusting their current values so as to optimize the desired objective
function or evaluation metrics. The optimization direction is guided
by the feedback determined by the current set of parameters.

The rest of this paper is organized as follows. An overview of
the proposed speech translation system design is provided in Section
2, which includes the derivation of the Bayesian decision function.
In Section 3, the decision-feedback learning using the derived deci-
sion function is presented. The evaluation results are reported and
analyzed in Section 4. Finally, we conclude this paper and provide
plans for future work.

2. SPEECH TRANSLATION SYSTEM DESIGN

2.1. System Overview

Our speech translation system takes speech utterances as input, and
outputs the translated utterances in text. Assuming the availability
of existing ASR and SMT systems, the proposed speech translation
system can be built in several steps. First, the existing ASR and SMT
systems are concatenated to produce multiple translation hypothe-
ses for each of the training speech utterances. Second, the transla-
tion hypotheses, together with translation references provided in the
training data, are used to modify the parameters of the existing ASR
and SMT systems using the algorithm described in Section 3. Third,
the adjusted, new ASR and SMT systems are deployed to process
each of the test speech utterances. Both ASR and SMT systems pro-
duce multiple hypotheses as the output, together with the associated
acoustic scores, language model scores, and translation scores. The
final best translated utterance is selected from the SMT hypotheses
using the decision function that integrates these three sets of scores.

2.2. The Integrative Decision Function

The decision function is derived by using the Bayesian analysis. For
concreteness and without loss of generality, we assume that our task
is to translate from Chinese (C) speech utterances to English (E)
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text. The most general form of Bayesian decision for this Chinese to
English speech translation task can be represented as

Êr = arg max
Er

P (Er|Xr) (1)

where Xr is the speech input of rth Chinese utterance and Er is the
corresponding English translation. By applying Bayesian analysis,
the above equation can be expanded and approximated as

Êr = arg max
Er

P (Er|Xr)

= arg max
Er

X
Cr

P (Er, Cr|Xr)

= arg max
Er

X
Cr

P (Er|Cr, Xr)P (Xr|Cr)P (Cr)

≈ arg max
Er

X
Cr

P (Er|Cr)P (Xr|Cr)P (Cr)

≈ arg max
Er

max
Cr

P (Er|Cr)P (Xr|Cr)P (Cr)

(2)

where P (Er|Cr) denotes the translation score given Chinese input
Cr , P (Xr|Cr) represents the acoustic score given Xr , and P (Cr)
is the language model score for the recognized Chinese utterance.
Note that P (Er|Cr, Xr) is approximated by P (Er|Cr) by assum-
ing that the translation is independent from the speech signal given
the speech recognition hypothesis. Although the second approxi-
mation, replacing

P
with max [10], may introduce inaccurate esti-

mations, it greatly simplifies the development of the discriminative
learning algorithm to be described in Section 3.

The product form of the three sets of the probabilities in Eq.2,
or its equivalent form after taking the logarithm, constitutes the inte-
grative decision function for the proposed speech translation system,
which is what we will use to perform decision-feedback learning.

3. DECISION-FEEDBACK TRAINING

While the use of the integrative decision function for speech trans-
lation scoring takes into account the contributions from both ASR
and SMT systems, the direct concatenative approach still has the
deficiency that the parameters in the ASR and SMT systems are op-
timized towards their own respective instead of the combined, end-
to-end speech to text translation performance. To overcome this de-
ficiency, a decision-feedback learning technique is developed based
on the minimum classification error (MCE) formulation [4, 2]. The
MCE objective function is modified from the sentence recognition
error rate, as developed originally for ASR, to the translation error
rate as a measure of the speech translation quality.

3.1. The MCE Objective Function

To derive the objective function for optimization, we first define the
class-discriminant function D(·) as

D(Er, Cr; Xr) = log [P (Er|Cr)P (Xr|Cr)P (Cr)] (3)

which acts as the scoring function for the classification decision
mapping from the Chinese speech input Xr to the corresponding
recognition hypothesis Cr and translation hypothesis Er .

Xr −→ (Er, Cr) (4)

In the conventional MCE training, the correct classification
hypothesis is the true reference. However, for SMT, the transla-
tion reference might not be achievable due to the limitations of the

model [8]. Thus, similar to [8], the best possible translation hy-
pothesis is selected as an approximation of the correct classification
reference. Specifically, to judge the goodness of each classification
decision (Er, Cr), we apply the commonly used BLEU evaluation
metric on Er in each (Er, Cr) pair. Given the translation reference
Rr , the BLEU scoring function is defined as BLEU(Rr, Er)

Note that often times the BLEU score is calculated on the cor-
pus level, while here we use a smoothed version of BLEU score
defined on the sentence level [9]. Since the BLEU score averages
the n-gram appearance in the test translation against reference trans-
lations, it is possible for different translation candidates Ei

r to have
the same BLEU score. As a result, the BLEU score is not enough
to determine the best (Er, Cr) pair. To fix this, for decision pairs
(E1

r , C1
r ) and (E2

r , C2
r ) when BLEU(E1

r ) = BLEU(E2
r ), the pair

with higher D(·) score is chosen as the best decision. Formally, the
correct classification decision pair (Er, Cr) for Xr is determined
in two steps. First, from the translation hypothesis set Tr , the best
translated English sentence E0

r is selected by

E0
r = arg maxEi

r∈Tr
BLEU(Rr, E

i
r) (5)

Second, from the recognition hypothesis set Sr , C0
r is selected by

C0
r = arg maxCi

r∈Sr
D(E0

r , Ci
r; Xr) (6)

Selecting the correct classification pair (Er, Cr) can be viewed
as a two-key sorting process. Given all classification decision pairs
(Ei

r, C
i
r) for the input Xr , a ranked list can be build by considering

the BLEU score of Ei
r in each pair as the primary key and the D(·)

score as the secondary key. The top ranked pair is the correct classi-
fication decision, while all remaining pairs are incorrect/competing
decisions. To build the set of competing decision pairs Ur , the fol-
lowing rules are applied to ensure the correctness of the MCE train-
ing framework. Starting from going down the ranked list from the
second decision pair (the first competing decision), every time a dis-
tinct translation hypothesis Ei

r is seen, if its corresponding recogni-
tion Ci

r is not included in any pairs already in Ur , this (Ei
r, C

i
r) pair

is added into Ur . If there is already a pair containing Ci
r in Ur , this

pair is ignored and the next pair is checked until all recognition hy-
potheses are consumed. Note that this procedure ensures that 1) C0

r

is not equal to any of Ci
r in competing pairs in Ur , which prevents the

contribution cancellation in the MCE update if both the correct and
competing decisions contain the same hypothesis; 2) every speech
recognition hypothesis is used to provide discriminative information
for the final translation decision, which is important because it is
common that top translation hypotheses always come from the first
one or two speech recognition hypotheses.

After collecting all competing pairs into the set Ur , the class-
specific misclassification function dr(·) can be defined to calculate
the raw loss of the current classification decisions given Xr .

dr(Xr) = − D(E0
r , C0

r ; Xr)

+ log

8<
:

1

|Ur|
|Ur|X

i

exp
h
ηD(Ei

r, C
i
r; Xr)

i
9=
;

1
η (7)

This raw loss can be smoothed by the sigmoid function as

lr(Xr) =
1

1 + exp(−αdr(Xr) + β)
(8)

where η, α and β are the standard parameters in the MCE training.
Summing up loss from all training samples, the total loss L is
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L(A(t), LM (t)
c , TM (t)) =

X
r

lr(Xr) (9)

where A(t), LM
(t)
c , TM (t) is the current acoustic model, Chinese

language model and translation model, respectively. Note that the
translation model includes an English language model.

3.2. Parameter Estimation

3.2.1. Language Model Update

Both Chinese and English language models (LMs) are updated. Let
P (wx|wy) denote the bigram (for simplicity but without loss of gen-
erality) log-probability of the word wx given wy . The English LM
update can be derived by using the steepest descent method as

P (wx|wy)t+1 = P (wx|wy)t−

− εα
X

r

lr(dr(Xr))[1 − lr(dr(Xr))]
∂dr(Xr)

∂P (wx|wy)

(10)

As described in Section 3.1, for each Chinese speech input Xr , the
correct classification pair (E0

r , C0
r ) and the competing set Ur can be

obtained by sorting the recognition and translation pairs (Ei
r, C

j
r).

Let N(Ei
r, wx, wy) denotes the number of times the bigram wxwy

appears in sentence Ei
r . The log-probability of the sentence Ei

r can
be then written as

P (Ei
r) = log

2
4 Y

wx,wy

P (wy|wx)N(Ei
r,wx,wy)

3
5

=
X

wx,wy

N(Ei
r, wx, wy) log P (wy|wx)

(11)

Given (E0
r , C0

r ) and the competing set Ur for Xr , we can obtain the
partial derivative of dr(Xr) for English bigrams as

∂dr(Xr)

∂P (wx|wy)
= −N(E0

r , wx, wy) +

|Ur|X
i

Hi
rN(Ei

r, wx, wy) (12)

where

Hi
r =

exp[ηD(Ei
r, C

i
r; Xr)]P|Ur|

i exp[ηD(Ei
r, Ci

r; Xr)]
(13)

is the weighting factor. Note that the Chinese LM update formula
can be obtained by replacing every Ei

r with its corresponding Ci
r .

3.2.2. Phrase Table Update

We consider here only the phrase-based translation models with non-
parametric distributions of P (Er|Cr), which can be further decom-
posed into [5]:

P (Er|Cr) = P P (Er|Cr) · P R(Er|Cr) · P (Er) · ωL(Er)
(14)

where P P is the phrase translation probability, P R is the reordering
probability and ω is the length penalty of the translation output. In
this paper, we only focus on updating the phrase translation proba-
bilities and leave the update of the other parts for future work. Given
an alignment Ar that aligns phrases in Er and Cr , the phrase trans-
lation probability of the sentence pair Er and Cr is defined as [5]:

P P (Er|Cr) =
Y

(pe,pc)∈Ar

P (pe|pc)P (pc|pe)L(pe|pc)L(pc|pe)

(15)

where P (·) is the phrase translation probability in both directions
and L(·) is the lexicon weighting factor for phrases in both direc-
tions. According to the phrase extraction algorithm [5], the lexicon
weighting factor is fixed when a particular phrase pair is extracted.
As a result, we leave L(·) unchanged and only update the phrase
translation probability P (·).

The phrase translation table can be viewed as a “bigram lan-
guage model” capturing phrase co-occurrences between two lan-
guages. Thus, the updating formula (omitted due to the space limit)
similar to the LM update can be derived for the phrase translation
probabilities.

4. EVALUATION

4.1. Dataset and Evaluation Criterion

The experiments were carried out using the IWSLT DIALOG 2010
dataset which contains human-mediated dialogs in travel domain be-
tween Chinese and English. The dataset has two parts. The first part
contains around 30,000 sentences in clean parallel text only, while
the second part includes another 2,952 sentences with both ASR out-
put and clean text. The ASR output is in the standard HTK lattice
format. The dataset also provides the extracted 1-best and 20-best
ASR hypotheses with word segmentation information.

In the current experiments, we only focus on translating from
Chinese to English using Chinese ASR hypotheses as input. 296 and
294 out of 2,952 Chinese utterances were randomly selected as the
development set and test set, respectively. The remaining 2,362 Chi-
nese utterances were used for the decision-feedback training. Each
Chinese utterance has 4 to 16 English translation references. The
standard BLEU score was used as the evaluation criterion.

4.2. The Baseline System

The baseline system directly cascades the existing ASR and SMT
systems without using the integrative decision function and the
decision-feedback training. Since the dataset has already provided
the 20-best ASR hypotheses for each Chinese utterance, the Moses
toolkit [14] was used to train an SMT system on all clean text to
generate 20 translation hypotheses for each ASR hypothesis. The
best translation (among 20x20=400 hypotheses) is determined by
the highest translation score output by the Moses decoder.

4.3. The Proposed System

The proposed speech translation system differs from the baseline
system in two important aspects. First, for each Chinese utterance
with 400 translation hypotheses (20 from ASR with each producing
20 SMT choices), the best translation candidate is determined by the
highest integrative score using Eq.2 instead of only using the trans-
lation score. Second, the proposed decision-feedback training was
applied to optimize parameters in the Chinese LM, English LM and
phrase translation table. The parameters in the decision-feedback
training were tuned on the 296 development set. The 294 test set
was used to evaluate the speech translation performance.

4.4. Results

In Fig.1, the red line illustrates the BLEU score of the training set
against the number of the MCE iterations, and the straight blue line
is the BLEU score of the baseline system. One interesting point to
note is that at iteration zero, the new system already outperforms the
baseline system by 0.65 points. This indicates that the use of the
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Fig. 1. BLEU scores on the training set over the MCE iterations
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Fig. 2. BLEU scores on the development and test sets over the MCE
iterations

integrative decision function alone can improve the translation per-
formance without any help of discriminative training. The reason
for this benefit is that the integrative decision function provides an
end-to-end measure of the translation quality. For example, an En-
glish translation hypothesis with a low score in the baseline system
may be promoted to be the best candidate if its corresponding ASR
hypothesis has a high acoustic score and/or Chinese LM score. On
the other hand, the best English translation candidate in the base-
line system may be degraded if its corresponding ASR score and/or
the Chinese LM score is poor. Another point to note is that a sharp
increase in BLEU (around 1.5 points) happened between 24th and
26th iteration. By carefully examining the translation output in these
iterations, we found that this sharp change is caused by the discon-
tinuity in the BLEU score measurement. For example, in one case,
the best translation hypothesis has a BLEU score of 22.7 while the
second best hypothesis is 30.3. After several rounds of the MCE
training, if the second best hypothesis manages to beat the original
best translation, the BLEU score would have a significant change.

Fig.2 illustrates the translation performance on the development
set (blue) and test set (red). The baseline performance for the devel-
opment and test set are in straight lines. Based on the BLEU score
on the development set, we selected the 31th iteration (denoted by
the vertical line in black) for evaluating the translation performance
on the test set. Comparing with the baseline, the proposed system
improves the BLEU score by 2.3 points. The improvement is par-
ticularly encouraging given that only a small amount (2,362 utter-
ances) of parallel data with acoustic scores was available to apply the
decision-feedback training, and the SMT system was able to quickly
adapt to accept sentences with ASR errors.

5. CONCLUSION AND FUTURE WORK

In this paper a novel decision function for scoring the hypotheses of
speech translation was presented. The associated decision-feedback
training that embeds the decision function was used to further im-
prove the translation performance in terms of the BLEU score. The
experimental results demonstrated the effectiveness of both the de-
cision function and the associated discriminative training algorithm.

The decision-feedback training framework presented in this pa-
per not only permits the estimation of LM and phrase translation
parameters as we have experimented so far, it can also be applied
to estimate HMM parameters if the audio recordings of the train-
ing data are available. In our recent work [3], a log-linear model
is used for speech translation, including not only “features” derived
from Bayesian analysis but a number of other features contributing
to the speech translation quality. It was found that with the end-to-
end optimization on the feature weights, an improved BLUE score
is obtained even at the cost of increased word error rate in speech
recognition. We will also explore the use of an advanced optimiza-
tion technique – growth-transform [2] to improve the current gradi-
ent descent optimization method. The growth-transform technique
allows the removal of the approximations made in deriving the deci-
sion function in Eq.2 so that richer information for competing can-
didates in ASR can be exploited in the end-to-end optimization for
speech translation.
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