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ABSTRACT 

Touch sensing and computer vision have made human-
computer interaction possible in environments where key-
boards, mice, or other handheld implements are not availa-
ble or desirable. However, the high cost of instrumenting 
environments limits the ubiquity of these technologies, par-
ticularly in home scenarios where cost constraints dominate 
installation decisions. Fortunately, home environments fre-
quently offer a signal that is unique to locations and objects 
within the home: electromagnetic noise. In this work, we 
use the body as a receiving antenna and leverage this noise 
for gestural interaction. We demonstrate that it is possible 
to robustly recognize touched locations on an uninstru-
mented home wall using no specialized sensors. We con-
duct a series of experiments to explore the capabilities that 
this new sensing modality may offer. Specifically, we show 
robust classification of gestures such as the position of dis-
crete touches around light switches, the particular light 
switch being touched, which appliances are touched, differ-
entiation between hands, as well as continuous proximity of 
hand to the switch, among others. We close by discussing 
opportunities, limitations, and future work. 
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INTRODUCTION 

As computers become more mobile and more ubiquitous, 
people increasingly expect always-available computing, 
either with devices that they carry on their bodies, or using 
devices embedded in the environment. We see an increas-
ing need for interaction modalities that go beyond the key-

board and mouse, and furthermore, that do not require me-
diated interaction with specialized devices such as styluses.  

Researchers have addressed this need through a variety of 
input channels. Speech recognition enables hands-free in-
teraction for a variety of desktop and mobile applications. 
Similarly, computer vision enables machines to recognize 
faces, track movement, recognize gestures, and reconstruct 
3D scenes. Various techniques, most notably capacitive 
sensing, have been used to instrument surfaces such a ta-
bles, walls, and mobile devices in order to provide touch 
sensing. In addition, specialized depth cameras that allow 
users to interact with their computers using whole-body 
gestures are becoming commercially available to consumers 
(e.g., Microsoft Kinect).  

Speech input comes at a relatively low cost of instrumenta-
tion, but is limited in input bandwidth and may not be ap-
propriate in many scenarios. Vision- and touch-based tech-
nologies offer an array of subtle, natural interaction tech-
niques, but are limited in the potential scale of deployment 
due to their associated installation burden and cost. Conse-
quently, we will likely not see homes or workplaces that 
allow truly ubiquitous input in the foreseeable future using 
these modalities. 
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Figure 1: The human body behaves as an antenna in the pres-

ence of noise radiated by power lines and appliances. Our 

approach analyzes this noise, turning the whole home into an 

interaction surface. 



 

 

Other researchers, realizing these limitations, have explored 
sensors that exploit characteristics of the human body itself 
to turn it into an inherently portable interaction device. Har-
rison et al. utilize bio-acoustic sensors to determine the lo-
cation of taps on the body, and thereby turn it into a 
touchscreen [12]. Saponas et al. use electrical recordings of 
forearm muscles to sense muscle activity and infer finger 
gestures [16]. However, these on-body input systems are to 
date limited to a small number of discrete inputs, and do not 
offer the large-scale interaction that is provided by touch-
sensitive surfaces. 

In this paper, we present a novel interaction modality that 
utilizes the human body as an antenna to receive electro-
magnetic (EM) noise that already exists in our environ-
ments (Figure 1). While this noise is bothersome to nearly 
every other EM sensing application, we treat it as the core 
of our signal. By observing the properties of the noise 
picked up by the body, we can infer gestures on and around 
existing surfaces and objects, specifically the walls and 
appliances in the home. We targeted our initial proof-of-
concept work to the home both because there is growing 
demand for computing in the home, but also because power 
lines in the home have been shown to be a relatively good 
transmitting antenna that creates a particularly noisy (i.e., 
signal-rich) environment for us.  

Specifically, the contributions of this paper are: 

1) A novel technique that uses the human body to sense 
EM noise already present in the environment to infer 
gestures such as touch and hover around various unin-
strumented objects. 

2) A core experiment conducted by 10 people in 10 
homes validating the operation and robustness of the 
technique. Results from this experiment show that we 
can accurately classify the location in the home where 
the interaction occurred and the contact positions 
around light switches. 

3) A set of smaller experiments to explore additional ca-
pabilities and limitations of our approach. Results from 
these experiments suggest that we can infer proximity 
to walls, multi-hand gestures, touched appliances, and 
continuous position along a touched wall.  

BACKGROUND AND RELATED WORK 

The Human Body as an Antenna 

A basic receiving antenna can be thought of as an apparatus 
that converts electromagnetic waves into electrical current. 
An antenna consists of a set of conductors that can be ar-
ranged in a variety different ways, where the size, geome-
try, and material dictate its effectiveness at receiving a par-
ticular frequency. One of the simplest antennas is just a 
loop of wire (commonly used for AM and FM radio), 
whose length determines its effective frequency response. 
In addition, any wire or conductor carrying current or a 
wire exposed to an electromagnetic field may exhibit unin-
tentional antenna characteristics. For instance, it is not un-

common to hear AM or CB radio through a set of speakers 
that is not plugged into a radio. Home electrical wiring also 
makes an effective antenna [4, 13, 15, 20], a phenomenon 
which we leverage in this work. 

It turns out that the human body is also a very effective 
antenna over a broad frequency range. The human body is 
an electrical conductor, and thus when exposed to electro-
magnetic fields, it behaves as an antenna with a frequency 
resonance determined by various factors including height, 
posture, etc. Research suggests that since the human body is 
a lossy conductor (dielectric) with a complex geometry, it 
does not have a single effective resonance frequency, but 
rather a broadly distributed response [7], capturing frequen-
cies from 40 Hz all the way to 400 MHz [8].  

Sometimes referred to as the “body antenna effect,” this 
phenomenon poses significant problems for systems em-
ploying body area networks (i.e., using the body as a con-
ductor to send data from one part of the body to another) 
and for systems analyzing electrical phenomena within the 
body (e.g., muscle activity). Consequently, researchers have 
gone through great lengths to mitigate the problems of am-
bient electromagnetic noise being coupled to the body [2]. 
In contrast, our focus in the present work is to leverage the 
ambient electromagnetic noise picked up by the human 
body as a signal for classifying human interaction with the 
environment.  

Related research has focused on using the human body as a 
conductor for body area networks [6, 10, 22]. For example, 
in the HCI community, Fukumoto and Tonomura demon-
strated the FingeRing [6], a finger-worn sensor that com-
municates to a wrist mounted receiver by using the body as 
an “electric wire.” Although their approach did not use the 
body as an antenna, they noted that touching a surface 
greatly reduced communication reliability because of the 
body being grounded and acting as a human antenna. Other 
work has explored using the human body as a transmis-
sion/reception antenna for inter-body communication [1, 3, 
10].  

Also in the HCI community, near-field electric field sensing 
has been a popular approach for touch and motion gestures, 
where the human body has been used as a disturbance and a 
radiator of an electric field [18, 21]. The DiamondTouch [5] 
employs the human body as both a signal conductor and an 
antenna by passing electromagnetic waves from a conduc-
tive pad into the body; these waves are in turn picked up by 
antennas embedded in a tabletop interaction surface. In the 
present work, we are interested in picking up noise signals 
using the body without instrumenting the environment. We 
use the particular properties of the measured noise to infer 
the gestures performed by the human user. We are not 
aware of other work that has explicitly looked at using am-
bient electromagnetic noise picked up by the human body 
for user interaction. 

Home Power Infrastructure 

There are many sources of electromagnetic noise in the 



 

 

 

environment, but the home power line infrastructure is a 
major source. A home typically consists of electrical wiring 
that supplies power to outlets, appliances, and lighting via 
wall switches. The electrical wiring branches from a central 
circuit breaker, but the ground and neutral wires in the 
home are all tied together. Thus, signals occurring on the 
power line in one part of the house can be measured in oth-
er parts as well. In addition, the walls of the home are die-
lectrics and will radiate electromagnetic fields even if there 
are no power lines in the wall. 

Also, as mentioned earlier, the electrical wiring in the home 
can act as both a reception and transmission antenna. Past 
work has used this phenomenon for indoor location track-
ing, where a tracking signal is radiated off the power line 
[13, 20]. Similarly, [4] used the power line as a large anten-
na for receiving data wirelessly from ultra-low-power sen-
sor nodes. All of these approaches use a known signal that 
is either injected through or received by the power lines. 
Other work has looked at passively monitoring the power 
line using a high-frequency sampling of the voltage at a 
single electrical outlet to infer the activation of appliances 
and electrical devices in the home based on the appearance 
of electrical noise from those devices [9, 14].  

Although similar in spirit, our work monitors only the elec-
tromagnetic noise radiated off of the power lines and re-
ceived by the human body to determine where in the home 
the person is and what type of gesture they are performing. 

Electrical Noise 

The AC signal itself is one of the largest sources of elec-
tromagnetic noise in the home: this signal typically oscil-
lates at 60 Hz1. However, appliances and electronic devices 
attached to the power line also contribute some noise. There 
are roughly three general classes of electrical noise sources 
that may be found in a home: resistive loads, inductive 
loads such as motors, and loads with solid state switching 
(also known as switched-mode power supplies).  

Purely resistive loads, such as incandescent lamps or elec-
tric stoves, do not create detectable amounts of electrical 
noise while in operation, although just like a resistor, they 
can be expected to produce trace amounts of thermal noise 
at an undetectable level. A motor, such as in a fan or a 
blender, is modeled as both a resistive and inductive load. 
The continuous breaking and connecting by the motor 
brushes creates a voltage noise synchronous to the AC 
power at 60 Hz (and at 120 Hz). Solid state switching de-
vices, such as those found in computer power supplies, 
compact fluorescent light (CFL) bulbs, modern TVs, 
TRIAC dimmer switches and microwave ovens, emit noise 
that varies among devices and whose frequency is deter-
mined by an internal oscillator [14].  

The drive towards smaller and more efficient consumer 

                                                           
1 This work was conducted in North America and thus re-
fers to 60 Hz AC power; other parts of the world use 50 Hz. 

electronics has made use of switched-mode power supplies 
(SMPS) increasingly prevalent. In a modern SMPS this 
modulation happens at a very high rate (10 kHz – 1 MHz). 
A side effect of an SMPS’s operation is that the modulation 
of the inductor’s magnetic field produces large amounts of 
unintentional electromagnetic interference (EMI) centered 
at or around the modulation frequency. Due to the physical 
contact between the power line and the power supply, this 
EMI gets coupled onto the power line, which then propa-
gates the noise throughout the entire electrical infrastructure 
of a home. This is known as conducted EMI, which in turn 
is radiated by the power line as radiated EMI. The appli-
ance or device itself can also exhibit radiated EMI. Because 
such EMI may cause problems in the operation of certain 
electronic devices, the US Federal Communications Com-
mission (FCC) sets rules for any device that connects to the 
power line and limits the amount of EMI it can conduct and 
radiate. However, despite these limits, significant and de-
tectable EMI is still coupled back over the power line. 

There are also several significant sources of electrical noise 
on the power line which originate outside the home. Radio 
broadcasts, including commercial AM and FM radio, are 
picked up by the power line, which acts as a receiving an-
tenna over a wide range of frequencies. In addition, noise 
from elsewhere in the neighborhood is often coupled 
through the earth ground connection as well. Pilot tests 
showed that even when we turned off the main power com-
ing into a home, there was still significant baseline noise 
present in the home, and radiated from the power line.  

Combining Power Line Noise and “Body as an Antenna” 

Past work in power line noise analysis and using the human 
body as an antenna has largely explored disparate applica-
tions. Recognizing the potential of using electrical noise as 
a signal and the human body as a receiving antenna, our 
work seeks to enable new user interaction capabilities in the 
home that require no additional instrumentation to the envi-
ronment, and only a simple analog-to-digital converter on 
the body itself. Based on the prior work, we hypothesized 
that the complex shape of the power line infrastructure pro-
vides enough spatial differentiability in the signal space to 
allow us to uniquely identify locations and contact points 
relative to electrical devices and wiring. In other words, by 
looking at a various characteristics of the frequencies (pres-
ence, amplitude, shape, etc.) observed on body, it is possi-
ble to detect gestures. 

CORE EXPERIMENT: VALIDATING THE TECHNIQUE 

Participants and Homes 

We conducted the experiment in 10 homes selected to rep-
resent a variety of constructions, in the Pacific Northwest 
region of the United States. These homes were single-
family and townhouses built between 1948 and 2006 
(µ=1981). They ranged in size between 120 and 290 square 
meters (µ=215), and had between 1 and 3 floors, some of 
them basements. The owner of each of these homes partici-
pated in our experiment. These 10 participants (5 female) 
were between 28 and 61 years old (µ=38), weighed be-



 

 

tween 52 and 82 kg (µ=64), and were between 150 and 
188 cm tall (µ=169 cm). 

Apparatus 

Electromagnetic signals radiating from the power lines and 
walls and picked up by the human body antenna can be 
measured as voltages. Since the body is relatively conduc-
tive, we can measure these voltages by placing a conductive 
pad, connected by a wire to an analog-to-digital converter, 
nearly anywhere on the body. In this experiment, we chose 
to measure voltages on the back of the neck because it is a 
stable point on the body that does not move significantly 
while a person is gesturing with their hands. The neck was 
also a convenient place because it is near our data collection 
equipment, which was housed in a backpack worn by the 
participant (Figure 2). We will validate in additional exper-
iments that wearing the contact pad on a different part of 
the body still permits robust classification of hand gestures. 

We made electrical contact to the skin using a standard 
grounding strap, typically worn around the wrist when 
working with sensitive electronics. We ran a small wire 
from the contact pad to a National Instruments USB-6216 
data acquisition unit, which sampled the voltages at 
400 kS/s. We biased the voltage on the contact point to a 
local ground signal on the data acquisition unit through a 
10 MΩ resistor in order to remove most of the DC offset of 
the single-ended voltage. The data acquisition unit’s local 
ground is internally isolated from the laptop’s ground so 
that the measurements are referenced only to the small local 
ground on the data acquisition unit. The signal was digit-
ized at 16-bit resolution and streamed to disk on an attached 
laptop for subsequent processing. 

Experimental Procedure 

We selected 5 light switches and 1 spot above an electrical 
outlet on a blank wall for testing in each of the 10 homes. In 
order to test whether or not we could differentiate between 
locations in close proximity, we ensured that two of the 
chosen light switches were located in the same room. The 

other locations were distributed around the home with at 
least one location on each floor.  

To minimize the number of variables that changed during 
the experimental session, we turned off appliances to which 
we had reasonable access and that periodically change their 
state, including most computers, as well as heating and air 
conditioning units. We left all light switches used in the 
experiment on, and we did not change the state of any lights 
or appliances once the experiment started.  

Participants stood at arm’s length away from the wall and 
performed 6 specific gestures around each interaction point 
(i.e., light switch or wall). The first was a “rest” gesture in 
which participants placed both hands at their sides. The 
other five involved contacting the wall with the right palm, 
placed flat against the wall for 6 seconds at different posi-
tions around the switch. These positions included directly 
on the light switch plate and at points approximately 20 cm 
above, below, right of, and left of the light switch. In the 
case of the blank wall, the same positions were used, but in 
reference to an arbitrary point at about the height of a light 
switch above the outlet marked on the wall. Each partici-
pant performed these six gestures at all six locations (5 
switches, 1 wall) around their home. Figure 2 shows a par-
ticipant in contact with the wall in the “above light switch” 
position. 

To help participants and to ensure consistency, we marked 
each of the contact points with tape. When obstacles pre-
vented the touch from occurring at 20 cm in any direction 
from the center position, we placed the tape as close as pos-
sible to the target position and noted this. We also taped 
over the ground screws on each light switch to ensure that 
the participant would not be shorted to ground while touch-
ing the switch. This was done to ensure that each contact 
with the switch was conducted under the same known con-
ditions. Subsequent experiments confirmed that the ground 
screw provides a unique signal unto itself that is easy to 
robustly discriminate from the other positions in our exper-
iment.  

Software running on the data collection laptop issued verbal 
commands in order to guide participants through the exper-
iment. In addition, all experiments involved a second per-
son as an observer to check for mistakes and inconsisten-
cies. The observer stood at least 1 m away from the partici-
pant to ensure that his presence did not significantly alter 
the received signals. At each location, the software issued 
commands about which position around the switch the par-
ticipant should touch, followed by a 2-second beep, allow-
ing the participant time to move to that position. Data was 
then collected for 6 seconds before the next command was 
issued. We randomized the order of the gestures at each 
light switch to eliminate any potential temporal bias and to 
ensure that the participant remained cognitively engaged. 
Participants moved from location to location in a predeter-
mined order, and repeated the entire procedure 4 times (144 
total gestures performed).  

 

Figure 2: Experimental setup. A laptop and a USB data acqui-

sition device are worn in a backpack. A wire connects the data 

acquisition device to a conductive pad in contact with the back 

of the participant’s neck. 



 

 

 

Analysis 

Our primary goal is to inform the development of interac-
tive systems that use the sampled signal to recognize ges-
tures. Hence we treated our analysis as a machine learning 
classification problem. Specifically, we used the Sequential 
Minimal Optimization (SMO) implementation of the sup-
port vector machine (SVM) found in the Weka machine 
learning toolkit [11]. An SVM uses labeled data to con-
struct a set of hyperplanes that separate labels in a high-
dimensional feature space, which can then be used for clas-
sification. Fully exploring possible machine learning tech-
niques is outside the scope of this paper; our results can be 
treated as a baseline that may be further optimized.  

In order to prepare data for the SVM, we first segmented 
the 6-second gestures, removing a half-second from the 
front and end of this period to account for potential reaction 
time and anticipatory effects. We then divided the raw volt-
age signal into consecutive 82-millisecond windows. This 
window size allows for very low latency in gesture detec-
tion; however the results of the classification can be im-
proved by smoothing over longer windows. In our analyses, 
each of these windows was treated as being independent 
data points. We then generated the following 1002 features 
for each window, which we used to train our SVM. 

Time-Domain Features (2) 

The most basic feature was the mean of the voltage (DC 
value). We also calculated the root-mean-square, or RMS 
value. The RMS value represents the AC amplitude of the 
voltage, which changes significantly between different ges-
tures, as shown in Figure 3. 

Low-Frequency Features (582) 

Since the power lines are used to carry low-frequency AC 
power (at 60 Hz), it is not surprising that most of the energy 
radiated off of the power line and received by the human 
body antenna is in the low-frequency range. Figure 4 shows 
that the power spectrum is dominated by 60 Hz and its 
harmonics. As a result, these frequencies are important for 
machine learning. We used all of the raw frequency bins 
between DC and 2 kHz (12 Hz resolution) produced from a 

32768-point FFT as features. Since the SVM is a linear 
classifier, we included both the linear and log (dB) versions 
of these features (332 features total). In addition, the har-
monics of 60 Hz seem to become negligible at frequencies 
higher than about 25 kHz, and hence we create a second set 
of low frequency features containing FFT bins between DC 
and 25 kHz at 200 Hz resolution, again using both the linear 
and log (dB) versions (250 features total). 

High-Frequency Peak Features (18) 

Through an initial exploration of the signals received on the 
human body antenna, it became obvious that several high-
frequency peaks were indicative of certain types of ges-
tures. As a result, we also include the maximum value of 
several of these high-frequency peaks as features. The 
peaks that we included are 20k, 30k, 50k, 60k, 80k, 90k, 
110k, 140k, and 150 kHz, again using both the linear and 
log (dB) versions (18 features total).  

Full Frequency Range Features (400) 

In order to encode the general shape of the frequency spec-
trum, we use features containing frequency samples be-
tween DC and 200 kHz with a 1 kHz resolution, again using 
both the linear and log (dB) versions (400 features total).  

Results 

To calculate how accurately we could classify various con-
ditions, we conducted multiple four-fold cross-validations. 
Each fold was made up of data points from a single “round” 
through all locations in the home. This ensured that training 
and testing data points were separated within a fold, and 
that training data and testing data were separated by several 
minutes in time (to avoid over-fitting to transient variations 
in the environment). These numbers are representative of 
what we would expect to see in an interactive system. We 
report average accuracies and standard deviations. 

Wall Touch 

Looking only at the time-domain signals (Figure 3), it is 
easy to see the difference between the time when the partic-
ipant is touching the wall (green) and the time when they 
are not (orange). Therefore, not surprisingly, the classifica-
tion results for this kind of analysis were quite high.  

Two-class classification of wall-touch vs. no-wall-touch 

 

Figure 3: Signal captured from a participant during two 

touches on a wall (red) and a light switch (blue). Green high-

lights (left and right) indicate periods of contact, the orange 

highlight (center) indicates the “rest” period of non-contact. 

Differences between these signals, and between the contact 

and no-contact “rest” states, form the basis of our approach. 

 
Figure 4: A frequency-domain representation of a signal cap-

tured during contact between a participant and a light switch. 

The 60 Hz peak and its harmonics are clearly visible through-

out the low-frequency spectrum. 



 

 

performed at 98.5%, σ=4.1 (chance=50%) when averaged 
across the participants in all 10 homes. Since the strength of 
the signal received on the body is related to the proximity to 
the radiating source, in this case the power lines, we ex-
pected that our wall touch classification would perform 
better on light switches than on the blank walls above out-
lets. However, our results show that the classification 
worked just as well on the blank walls, indicating that ges-
tures do not need to be confined to the area around light 
switches. In fact, touches on most walls are detectable be-
cause of the wiring elsewhere in the wall. 

Location in Home 

The 6-location classification of interaction location in the 
home performed at 99.1%, σ=1.3 (chance=16.7%) when 
using data from all gestures around each light switch in 
each home. This is a very impressive result, made even 
more impressive by noting that by experimental design, two 
of the walls in each classification were located in the same 
room. This suggests the possibility to classify which wall a 
user is interacting with, rather than just which room. 

Perhaps even more interestingly, the same level of accuracy 
can be obtained without even touching the wall. Using only 
the data from when the participant was standing at rest at 
arm’s length from the wall (hands at sides), the 6-location 
classification performed at 99.5% σ=1.2 (chance=16.7%). 
This is a promising result, because it hints at the possibility 
of determining the location of people throughout the home, 
even when they are not interacting directly with the walls. 
This could enable location-aware systems that use in-air 
gestures in addition to on-wall gestures. 

Touch Position on Wall 

The 5-position classification of gesture position around the 
light switches performed at 87.4%, σ=10.9% 
(chance=20%). The touch position on the blank walls can 
be classified at 74.3%, σ=16.1% (chance=20%). This is an 
interesting result, as it suggests that it may be possible to 
classify arbitrary touch positions on blank walls, not just 
touches that are near light switches. We explore this further 
in the exploratory experiments described in the next sec-
tion. 

Location in Home and Touch Position on Wall 

By combining the classification of both the location in 
home and the touch position on the wall, we have a 30-class 
problem, which performed at 79.8%, σ=7.0 (chance=3.3%). 
While this number may not seem high, recall that these are 
unoptimized classifications on individual time-windows 
and that these numbers should increase for entire touches, 
even simply using naïve voting schemes across multiple 
windows. With no additional instrumentation to the home, 
these results are quite promising in terms of the ability to 
both classify touch locations in the home as well as the ab-
solute position on the wall. 

Summary 

Based on the classification results presented in this section, 
we can determine the location of the user in the home, with 

near 100% accuracy, and can determine whether the user is 
touching a wall or not with 98% accuracy. With 87% accu-
racy, we are able to determine the position around a light 
switch on a wall. We can even simultaneously identify the 
location in the home and the position on the wall of a given 
touch with 80% accuracy. 

EXPLORING ADDITIONAL CAPABILITIES 

Our core experiments, described above, confirmed our hy-
pothesis that electromagnetic noise in the home is unique to 
specific locations, allowing discrimination of locations 
within the home and touched wall positions. In order to 
guide future work and understand the boundaries of this 
approach, we conducted a series of additional experiments 
to determine other capabilities that our approach might of-
fer. We also wanted to confirm that decisions we made for 
consistency in experimental design (e.g., choosing the neck 
as the body contact location) are not restrictions that are 
fundamental to our approach.  

We used the data acquisition system and methodology pre-
sented in the previous sections, but the following experi-
ments were performed by two participants (instead of ten), 
each in one (different) home. This reduced participant pool 
allowed us to explore a variety of techniques, while still 
ensuring that results were not unique to a single person or 
home. Unless otherwise indicated, classification results are 
based on the same SVM described above, classifying 82-
millisecond windows within our 5-second gestures, with 
4-fold cross-validation across 4 “rounds” through all ges-
tures in an experiment. 

Each subsection introduces an experimental question that 
we aimed to answer in this additional exploration, along 
with results that provide preliminary answers to those ques-
tions. 

Experiments and Results 

Body Contact Location 

In our core experiment, we placed the contact pad on the 
participant’s neck, which allowed us to eliminate movement 
of the pad for the sake of experimental consistency. How-
ever, for real-world scenarios, connecting a computing de-
vice to a user’s skin would much more likely sit near a loca-
tion on which we already wear computing devices (e.g., the 
wrist). We thus repeated our core 5-position classification 
experiment around a single light switch in each of 2 homes, 
with the contact pad placed on the participant’s forearm, 
instead of the neck. The 5-position classification of position 
around the switch performed at 98% and 97% 
(chance=20%) for our two participants. 

This indicates that our approach performs well with the 
contact pad placed on the arm (where it might be connected 
to a watch), which is more practical for consumer scenarios. 

Appliance Classification 

Home appliances are known to emit a significant amount of 
electromagnetic noise. In addition, they have large sections 
of metal which are well grounded to the home’s power line 



 

 

 

infrastructure. We hypothesized that this would allow us to 
robustly classify contact between a user and a home appli-
ance, suggesting a variety of interaction techniques based 
on touching uninstrumented appliances. In order to address 
this hypothesis, participants touched each of six appliances 
in the same kitchen: refrigerator, freezer, stove, microwave, 
dishwasher, and faucet. All appliances were plugged in, but 
not actively running, during the experiment. 

Consistent with our hypothesis, the measured electromag-
netic noise while touching these appliances was quite dra-
matic, even compared to the noise observed during wall 
touches, and showed strong differences in our feature space 
among appliances (Figure 5). Consequently, classification 
among these six appliances was 100% for both participants 
(chance=16.7%). 

This indicates that direct contact with appliances provides a 
robust signal for classification, suggesting the potential to 
turn uninstrumented appliances into real-world “buttons”. 

Number of Hands 

In the experiments presented in the previous section, partic-
ipants used only their right hand. We hypothesized that 
asymmetries in body conductivity, subtle asymmetries in 
contact pad placement, and differences in contact area 
would allow us to robustly discriminate left-, right-, and 
two-handed contact with a wall or light switch. As a prelim-
inary investigation of this hypothesis, participants made 
left-, right-, or two-handed contact with a single light 
switch, and we attempt to classify among these contact 
types. 

Consistent with our hypothesis, dramatic differences in our 
acquired signal were visible among these states, resulting in 
classification accuracies of 96% and 99% for our two par-
ticipants (chance=33.3%). 

This indicates that our approach allows robust discrimina-
tion among left-, right-, and two-handed contact. 

Proximity to Wall 

Based on initial observations that the amplitude of the sig-

nal received on the human body antenna changes continu-
ously as participants’ hands approached the wall prior to a 
touch, we hypothesized that the captured signal would pro-
vide a robust indication of the distance between a person’s 
hand and the wall when no touch is occurring. 

To investigate this hypothesis, participants rested their right 
hands above a measuring device for several seconds at 5, 
10, 15, 20, 25, and 30 cm away from a light switch (along a 
line perpendicular to the wall). The participant’s body did 
not move throughout this experiment, only the hand.  

We used the same features as in our core experiment, and 
the same cross-validation procedure, but within each fold, 
rather than training a support vector machine classifier 
(which discriminates among discrete states), we trained a 
regression of our features onto the user’s distance to the 
wall, using Weka’s implementation of the SMO regression 
algorithm [17], which uses a support vector machine to map 
features into a high-dimensional space (as in an SVM clas-
sifier) and performs a linear regression in that space. Fig-
ure 6 shows the results across all regressions. The overall 
RMS error was 4.1 cm. 

This indicates that our approach provides an indication of a 
user’s distance from a wall containing electrical wires, with 
a resolution on the order of several centimeters. 

Continuous Position Along Wall 

The success of the “blank wall” results in the core experi-
ment described earlier suggested that noise radiated from 
the power lines would vary continuously and predictably 
along a wall, offering the possibility of continuous touch 
localization. To assess this hypothesis, we again used a re-
gression approach. In this case, participants rested their 
right-hand index finger against a wall at distances from 10 
cm to 60 cm away from a light switch, along the wall, in 
one horizontal direction, at 10 cm increments (i.e., 10, 20, 
30, 40, 50, and 60 cm). Figure 7 shows the results across all 
regressions. The overall RMS error was 8.1 cm. 

 

Figure 6: Regressing captured data onto a participant’s dis-

tance from the wall (hand movement only). Error bars repre-

sent standard deviations. Light gray line indicates correct 

prediction values. 

 

Figure 5: Frequency-domain differences of measured signal 

between a refrigerator, microwave, and a wall touch. Peaks 

show characteristic changes in amplitude that allow our classi-

fiers to discriminate among touched objects. Here we show 

just one set of peaks from the high-frequency spectrum; simi-

lar characteristic peaks occur throughout the spectrum. 



 

 

This indicates that our approach provides an indication of a 
user’s position along a noise-radiating wall, with a resolu-
tion on the order of several centimeters. 

Interaction Switch Off 

Our core experiments focused solely on light switches that 
were on (i.e., passing current). The noise environment at a 
light switch, however, is a function of the complete wiring 
pattern in the wall and the house, suggesting that passing 
current through the light switch at the center of interaction 
may not be necessary. We thus repeated our 5-position clas-
sification experiment around a single light switch in each of 
two homes, with the contact switch off. Classification per-
formed at 99% and 97% (chance=20%) for our two partici-
pants. 

This indicates that our approach performs well even for 
determining position relative to a light switch that is off. 

Number of Fingers 

Our ability to discriminate among one- and two-handed 
contact suggested that changes in contact area would be 
reflected in our signal, and that it might be possible to dis-
criminate finer changes in contact area, such as the differ-
ence between single-finger and multi-finger contact. 

To assess this hypothesis, our two participants conducted 5-
second touches on a light switch using 1, 2, 3, 4, and 5 fin-
gers on a single hand. Classification performed at 53% and 
59% (chance=20%). 

This is significantly lower than classification performance 
for the other capabilities explored in this section, but indi-
cates that there is a relationship between contact area and 
our signal features. Additional work may be required to 
robustly discriminate fine changes in contact area. 

DISCUSSION AND FUTURE WORK 

Through our core experiment, we found that by measuring 
the electromagnetic noise received by the human body an-
tenna, we can classify a person’s location in the home with 
nearly 100% accuracy, and the position that a person is 

touching around a light switch with 87% accuracy on aver-
age. Through our additional explorations, we have demon-
strated the ability to differentiate right and left hands, and 
determine which appliance is being touched. In addition, we 
have shown the ability to estimate the distance between a 
wall and a hand in the air, as well as the position of a hand 
along a wall. 

These are promising results, which we believe can be inte-
grated into an interactive real-time system for gesture sens-
ing in uninstrumented homes. However, note that all of the 
classification accuracies reported in this work are on 82-
millisecond windows. In an interactive system, it would be 
more natural to classify at the level of individual touches, 
which will likely improve classification performance, since 
smoothing can be performed over multiple windows.  

Classification Features 

We analyzed the classifiers built for our experiments to 
determine which features were most informative, by rank-
ing the feature weights generated for each classifier. Over 
several hundred classifiers, the raw FFT amplitude span-
ning 60 Hz was the feature most frequently in the top ten 
highest-weighted features. Other features frequently ranked 
highly in our classifiers included the RMS amplitude and 
the FFT amplitude at 48 Hz (most likely a distortion of the 
60 Hz signal). Perhaps more surprisingly, though, is the fact 
that several of our “high frequency peak” features in the 
kilohertz range were assigned large weights by most classi-
fiers, motivating further exploration of these informative 
signals (Figure 5). 

In addition to further exploring the “high frequency peaks”, 
we would like to conduct an in-depth analysis of the feature 
space for this type of gesture sensing. We are currently us-
ing a naïve feature set, and are confident that our results can 
be improved – and several of our current limitations can be 
addressed – by using more appropriate features. For exam-
ple, we have found examples of high-frequency peaks 
whose center frequency shifts as a function of the gesture. 
Exploration of these features remains future work. 

Limitations and Future Improvements 

Although our approach holds some promise, there are a 
number of limitations that we observed which will require 
further examination. The first is the generalizability of the 
observed noise signals. Since the electrical noise is a side 
effect of the power line infrastructure, there are no simple 
predictive models to infer what the signal will look like at 
different locations. Thus, the fingerprinting (classification) 
approach used here appears to be the most viable solution 
for now. This would require a user to calibrate and train the 
relevant gestures and locations for their home.  

However, there are some simple techniques that could be 
used to help inform the user if a particular location would 
perform well. For example, the relative noise spread at a 
given location compared to the observed baseline noise in 
the house, and the observed signal strength, could be used 
to indicate a good location. Since it is possible to model 

Figure 7: Regressing captured data onto a participant’s touch 

position along a wall; distances indicate cm away from a light 

switch. Error bars represent standard deviations. Light gray 

line indicates correct prediction values. 



 

 

 

certain electronic devices in the home, such as the noise 
emitted from a switching power supply, this could allow us 
to actively reject or select certain features to improve the 
performance at a particular location. 

Alternatively and perhaps more interestingly, if we allow 
ourselves to marginally instrument the environment, previ-
ous work shows that we may be able to infer activities such 
as which light switch has been flipped (and hence touched) 
[15]. Using this system, we might be able to passively train 
the system as the user goes about their daily activities, turn-
ing lights on and off.  

With the electrical wiring being embedded in the walls, it 
may be difficult to determine good locations for interaction. 
Appliances, TVs, light switches, and outlets can all be used 
as a general guide and anchor points. For blank walls, since 
it is hard to see the actual electrical wiring, we could imag-
ine using a “stud finder” approach with our system, in 
which the user runs their hand on the surface and audible 
feedback is played to indicate that the area under the hand 
contains enough signal for interaction. 

Large inductive loads or very noisy dimmer switches may 
pose problems since they generate broadband noise that can 
potentially mask or overwhelm a previously observed noise 
signal. Some of these may only cause localized problems, 
while others may propagate throughout the entire home. 
Similarly, other loads operating in the home may temporal-
ly change the signature of a particular location. A potential 
solution may be to have the wearable device synchronized 
to a single device plugged into an outlet that is continuously 
monitoring the power line noise and computing difference 
vectors for classification. This may only work for a certain 
number of noisy devices, since the response of the power 
line is not necessarily linear and superposition may not 
hold. Another approach may be to have a plug-in device 
that generates a known broadband signal and injects it into 
the power line, similar to [13]. 

In all of our experiments, the electrical state of the home 
(i.e., which appliances and lights were turned on) remained 
constant throughout the testing session. We performed an 
informal exploration of the effects associated with changing 
the electrical state of the home. We found that the classifi-
cation works well when the home is in the same state as it 
was during training; however, causing large changes in 
state (i.e., turning on the air conditioning, or all lights in the 
home) causes the classification accuracy to drop. Smaller 
changes to the electrical state of the home appear to reduce 
the classification accuracy to a lesser extent. We plan to 
develop a feature set that is more robust to these kinds of 
changes. Additionally, the user could train the system using 
a few significantly different electrical states (e.g., all lights 
off, all lights on, and air conditioning on). Using existing 
systems [9, 14, 15] is possible to passively determine when 
each of the electrical appliances in the home change states, 
and therefore our classifier can change its model based on 
the electrical state of the home. 

During our core experiment, we taped over the ground 
screws of all light switches to ensure consistency between 
these touches. We hypothesized that touching the ground 
screw would short the human body antenna to ground, and 
would therefore significantly affect the received signal. We 
performed an informal experiment to test this theory. Based 
on our results, it appears that the received signal is signifi-
cantly different when the body is grounded through the 
screws on the light switch. Not surprisingly, the signal 
looks similar to those seen when touching grounded appli-
ances. Since the signal is significantly different when 
touching the ground screws, these can be considered an 
additional type of gestural input on each switch. 

Our initial results suggest the contact pad may be located 
anywhere on the body. We would like to further explore 
non-intrusive form factors for connecting a computing de-
vice to the body, such as a wrist watch. Another possibility 
is to explore how well a short range air-coupled connection 
to the body may work. In this case, we could imagine hav-
ing sensors integrated into a mobile device, which could 
either reside on belt clip or in a pocket. It would need to be 
able to sense the electromagnetic noise received by the hu-
man body without any physical contact to the body. 

As we described earlier, the shape of an antenna dictates the 
received frequency response. We intend to explore free-
space gestures conducted near the electrical power lines. 
Changes in posture and hand gestures could result in dis-
cernable frequency shifts, which may indicate a gesture.  

We attempted to characterize the side-effects of our particu-
lar hardware, and minimize all effects of noise and interfer-
ence; however, it is possible that the data collection hard-
ware (i.e., the data acquisition unit and laptop) may have 
been injecting noise in the environment (though almost 
certainly not in a gesture-specific manner). We plan to more 
carefully characterize the side-effects of our equipment, and 
if it turns out that noise generated by the current hardware 
is beneficial to the operation or robustness of the system, 
future designs can intentionally generate these signals. 

Applications 

The ability to turn almost any wall surface or electrical de-
vice in the home into an interactive input system enables a 
breadth of applications. In the light switch scenario, we can 
imagine mapping a collection of gestures to digital lighting 
in a room without having to add additional physical switch-
es to the space. Since we are able to identify the location of 
the gesture, the interaction can be mapped to specific parts 
of the home. This enables having arbitrary widgets being 
placed in the environment. Another application is a simple 
gesture that can be used to control the home’s thermostat 
from anywhere in the house. For instance, tapping on the 
wall above and below any light switch could be mapped to 
increasing and decreasing the thermostat temperature. Simi-
larly, these gestures could be mapped to controlling the 
music playing through the intercom or whole-home audio 
system.  



 

 

In addition, the wearable computing unit has the side bene-
fit of identifying the user performing the gesture. Thus, 
each person in a home could have their own device and can 
create custom gestures and map them to their own applica-
tions. The ability to scale the entire home into an input sys-
tem also enables a breadth of new gaming and general 
computing applications that could easily be deployed in any 
home. Exploring and building these applications remains 
future work. 

CONCLUSION 

We have demonstrated the feasibility of a new interaction 
modality that utilizes the human body as a receiving anten-
na for ambient electromagnetic noise already in existence in 
our environments. While this noise poses problems for 
many sensing applications, we have used this phenomenon 
as our signal, thereby reducing the need to instrument the 
environment. By examining the noise picked up by the 
body, we have shown that we can infer the absolute touch 
position around a light switch or blank wall near electrical 
wiring within the home with nearly 87% accuracy. The 
location of which wall in the home a person is touching has 
nearly 100% classification accuracy. We also demonstrated 
the potential for hovering and continuously tracking a hand 
on a wall to enable a richer set of interaction techniques. 
Interacting with electrical devices and appliances also pro-
duces discernable changes in the received signal which 
could provide additional opportunities for further explora-
tion. Although our initial experiments were conducted with 
rather bulky test equipment, this sensing modality only re-
quires a wearable contact pad and an analog-to-digital con-
verter, suggesting incorporation into an easy-to-deploy 
form factor such as a watch or mobile phone. 
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