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ABSTRACT
We postulate that the nature of information items plays a
vital role in the observed spread of these items in a social net-
work. We capture this intuition by proposing a model that
assigns to every information item two parameters: endogene-
ity and exogeneity. The endogeneity of the item quantifies
its tendency to spread primarily through the connections
between nodes; the exogeneity quantifies its tendency to be
acquired by the nodes, independently of the underlying net-
work. We also extend this item-based model to take into
account the openness of each node to new information. We
quantify openness by introducing the receptivity of a node
as an additional parameter in our model. Given a social
network and data related to the ordering of adoption of in-
formation items by nodes, we develop a maximum-likelihood
framework for estimating endogeneity, exogeneity and recep-
tivity parameters. We apply our methodology to synthetic
and real data and demonstrate the efficacy of our framework
as a data-analytic tool.

1. INTRODUCTION
Since their introduction, online social networks have at-

tracted millions of users, many of whom have integrated
online social-network activity into their daily lives. This
global phenomenon has inevitably increased the exposure of
people to new information and affected the way information
propagates. Recent research has focused on understanding
the role that node characteristics (i.e., homophily) and peer

influence, (i.e., link structure), play in explaining the ap-
pearance of information items on certain nodes of the social
network [1, 2, 4, 6, 7, 16]. These studies rely on the assump-
tion that it is the nature of the people, or the nature of the
people’s connections, that determines the form of informa-
tion cascades.

While we recognize the impact of network structure and
nodes’ characteristics on information propagation we pos-
tulate that the very nature of information items is an addi-
tional important parameter that affects the observed spread.
We claim that certain information items are endogenous and
they indeed propagate primarily through the connections
between the nodes. On the other hand, some information
items are exogenous – they will be acquired by many nodes
independently of the underlying network. For example, con-
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sider the social network of people living in Boston. There,
information about “global warming” is primarily exogenous,
whereas information about “good physicians in the area” is
primarily endogenous. Endogeneity and exogeneity need not
be mutually exclusive; some items can be both highly en-
dogenous as well as highly exogenous. For example, the
propagation of the iPhone “Ocarina” application through
friends has certainly played a key role in its huge popularity.
However, many have discovered Ocarina by reading about
it in various media.

In this paper, we define a probabilistic model that as-
sociates each information item i with two parameters: its
endogeneity and its exogeneity. The endogeneity captures
the effect of the network in the propagation of i. The exo-
geneity quantifies the extent to which the spread of i is due
to factors external to the network. We further enhance our
model with one more parameter per user to accommodate
different users’ behaviors; we call this parameter receptivity.
Receptivity is a property of people, not of information items,
and aims to capture each person’s tendency to accept new
information.

Given a social network and data related to the ordering
of adoption of items by nodes, we develop a maximum-
likelihood framework for learning the model parameters ef-
ficiently from the observed data. The obtained estimates do
not depend on the granularity of the observation intervals,
but rather on the sequence of the observed events. Using
synthetic data we demonstrate that our learning methods
accurately recover the parameters used for data generation.
Finally, applying our framework on real data from online
media sites we demonstrate its computational efficiency and
its efficacy as a data-analysis tool.

Roadmap: After a brief overview of the related work in
Section 2, we describe the item-based model and the cor-
responding parameter-estimation problem in Section 3. In
Section 4 we describe our algorithm for solving this problem.
We extend the basic item-based model with user receptiv-
ities in Section 5. We present experiments with real and
synthetic datasets in Section 6 and conclude in Section 7.

2. RELATED WORK
We are not aware of any prior work that focuses on the

characterization of information items as exogenous or en-
dogenous based on their propagation patterns. Recent work
on information propagation is focused on distinguishing be-
tween different types of peer effects. For example, Anagnos-
topoulos et al. [1] proposed a methodology for distinguish-
ing between peer influence and peer correlation. Similarly,



Aral et al. [2] considered the problem of separating influence-
based contagion from homophily-driven diffusion. The con-
clusion of these studies is that the role of peer influence has
been overestimated. However, in all these studies, all infor-
mation items are considered to have identical propagation
properties. We focus on unraveling the differences in the
nature of the information items themselves.

A large body of work in algorithmic social-network anal-
ysis has focused on identifying influential nodes [9, 10, 11,
13]. Different definitions of influential nodes lead to differ-
ent problems. But a common characteristic of all these ap-
proaches is that they assume a peer-influence model that de-
fines the propagation of information in the network. Again,
this propagation model is assumed to be identical for all
items. Our work does not assume how information prop-
agates in the network. Instead, we learn the specifics of
information propagation from the observed data, allowing
for each item to define its own propagation model.

Learning, rather than assuming, the strengths of influence
between nodes was posed as a graph reconstruction problem
by Mannila and Terzi [14]. Inferring the underlying influence
network after observing the spread of a particular informa-
tion item has also been studied by Rodriguez et al. [6]. Sim-
ilarly, Goyal et al. [7] develop a framework for learning the
influence probabilities between friends in a social network.
All these methods quantify the influence between neighbors
assuming that all items behave identically. Rather than fo-
cusing on identifying a global influence network, on which all
items propagate, we focus on unraveling the specific propa-
gation pattern of each item separately.

Rodriguez et al. [6] also include an external source to their
model (similar to our exogenous node) to explain cascade
jumps; they set the probability of the edges of that node to
a small ǫ. Instead, we use one such node per item and learn
its influence probability; besides, our experiments indicate
that the distribution of the exogeneity is skewed amongst
items.

Analysis of social-media data with respect to the informa-
tion items has appeared in the work of Gruhl et al. [8] and,
more recently, in the work of Mathioudakis et al. [15]. The
focus of Gruhl et al. [8] is on topic modeling, and their goal
is to identify long-running and spiky topics. The problem of
grouping information items into topics is orthogonal to our
work. Mathioudakis et al. [15] work in an online setting and
their goal is to predict which items will attract large atten-
tion. Although we mainly focus on offline characterization
of items, we also perform prediction experiments to validate
our model.

3. THE ITEM-BASED MODEL e2
In this section, we present our basic model and the corre-

sponding parameter-estimation problems. First, we present
some preliminaries and some notational conventions.

3.1 Preliminaries
We assume that the social network is a directed graph G =

(V,E) with |V | = n users. There is a link between two nodes
u, u′ ∈ V , denoted by (u → u′) if node u follows node u′.
Such a directed link suggests that there is potential influence
(i.e., propagation of information) from u′ to u. Throughout
the paper, we consider all links as equally significant1. We

1Our methods can be generalized to the case where these

also assume a finite set of information items I with |I| = m.
At every point in time t, every node u ∈ V is associated

with an m-dimensional vector At
u. Every element of the vec-

tor is associated with an information item i ∈ {1 . . .m}. We
write At

u(i) = 1 if node u is active with respect to informa-

tion item i at time t; otherwise At
u(i) = 0. If A

(t−1)
u (i) = 0

and At
u(i) = 1, then we say that an activation has occurred

to node u with respect to item i at time t. We also as-
sume that once a node becomes active with respect to an
item, then it remains active; this assumption is also known
as progressive item propagation [10]. Finally, we use A to
denote the n×m matrix that encodes the observed activa-
tion state at the end of the observation period. In other
words, A(u, i) = 1 if node u has, at some point, become
active with respect to item i. Otherwise, A(u, i) = 0. We
call this matrix the activation matrix.

In addition to the activation matrix A, we also use the
n × m active-neighborhood matrix Γ. Element Γ(u, i) de-
notes the number of neighbors of u that were active with re-
spect to item i, the moment u became active with respect to
i. If A(u, i) = 0, then Γ(u, i) is the number of neighbors of u
that were active at the end of the observation period. Given
graph G = (V,E) and the sequence of activations encoded in
vectors At

u, we can construct the active-neighborhood ma-
trix Γ in O(nm) time.

3.2 Thee2 model
We claim that the propagation of an information item in

a given network depends on the item’s nature. More specif-
ically, every item i ∈ I is characterized by two parameters:
its endogeneity, ei ∈ [0, 1] and its exogeneity, xi ∈ [0, 1].
That is, every item i is characterized by the pair of parame-
ters θi = (ei, xi). The endogeneity parameter characterizes
the item’s tendency to propagate through the network due
to the peer effect. The exogeneity parameter captures the
item’s tendency to be independently generated by nodes in
the network. This model is consistent with our thesis that
not all items are equally endogenous and equally exogenous.

Parameters ei and xi have a probability interpretation:
node u becomes active with respect to i, independently of
its neighbors, with probability xi. If u has Γ(u, i) neigh-
bors that are already active with respect to i, then each one
of them succeeds in activating u with probability ei. Note
that our model assumes that each active neighbor tries to
independently activate u. At the end of the observation pe-
riod, u becomes active with respect to i, with probability:
1− (1− xi)(1− ei)

Γ(u,i).
We call this item-based model the e2 model. For a dataset

with m items, there is a total of 2m parameters. We use e

and x to represent the vectors of all items’ endogeneity and
exogeneity parameters. We use Θ = 〈e,x〉 to denote the
vector of these pairs of values for all items.

Generative model: Our model defines a generative pro-
cess in which every item i ∈ I is given a set of chances
to activate the nodes in G = (V,E). Intuitively, for ev-
ery item i ∈ I, our model assumes activation graph Hi =
(V ∪ {si}, Ei). The nodes of Hi consist of all the nodes in V
plus an additional node si that corresponds to item i. The
set of links Ei contains all the links in E plus n additional

links are associated with weights (e.g., influence probabil-
ities). Such weights can be obtained via existing tech-
niques [6, 7].



directed links (u → si). That is, in Hi every node follows

the item-node si. Initially, only node si is active and the
rest n nodes are inactive. An information item propagates
from an active node only to its inactive followers. The ac-
tivation process proceeds in discrete steps. At each time
step, activation of any node u, through links (u → si), suc-
ceeds with probability xi. At the same time, activation of u
through links (u → u′) for u′ ∈ V succeeds with probability
ei. At most one activation attempt can be made by every
link. Thus, there can be at most |Ei| activation attempts.
The final activation state of all nodes with respect to all
items is stored in the final activation matrix A.

The assumption that every active node has a single chance
to propagate an item to each one of its inactive neighbors
is common in many propagation models e.g., Independent
Cascade (IC) model [5, 10]. In IC, every active node is given
a single chance to activate any of its inactive neighbors. The
success of the activation is a model parameter and depends,
in principle, on the pair of nodes and the information item.
IC can simulate e2 if executed on the activation graph Hi

with parameters θi.

3.3 Problem Definition
Given the active-neighborhood information Γ and param-

eters Θ, we can compute the likelihood of the observed ac-
tivation matrix A as follows:

Pr (A | Γ,Θ) =

m∏

i=1

n∏

u=1

Pr (A(u, i) | Γ(u, i), ei, xi) . (1)

The probability that node u becomes active with respect to
i given that u has Γ(u, i) active friends can be computed
using the basic assumptions of the e2 model as follows:

Pr (A(u, i) = 1 | Γ(u, i), ei, xi) =

= 1− (1− xi)(1− ei)
Γ(u,i)

.

Naturally,

Pr (A(u, i) = 0 | Γ(u, i), ei, xi) =

1− Pr (A(u, i) = 1 | Γ(u, i), ei, xi) .

Our goal is to estimate parameters θi = (ei, xi) for every
item. In other words, given Γ and A, we want to estimate
vectors e and x such that the compatibility between the ob-
served activation matrix A and the estimated parameters,
Θ = 〈e,x〉, is maximized. Different definitions of compati-
bility lead to different problems. We focus on the parameters
Θ that maximize the loglikelihood of the data:

L (A | Γ,Θ) = log Pr (A | Γ,Θ) . (2)

We call this problem the Ml-e2 problem and we formally
define it as follows:

Problem 1 (Ml-e2). Given activation matrix A and

the active-neighborhood matrix Γ, find parameters Θ = 〈e,x〉,
such that the loglikelihood of the observed activations, given

these parameters, is maximized, i.e.,

Θ = argmax
Θ′

L
(
A | Γ,Θ′

)
. (3)

4. PARAMETER ESTIMATION
In this section, we present an efficient method to solve

Problem 1. We also demonstrate how analytic manipula-
tions of the loglikelihood function (Equation (2)) can lead
to significant speedups.

Using Equation (1), we rewrite the likelihood as

L (A | Γ,Θ) =
∑

i∈I

∑

u∈V

log (Pr (A(u, i) | Γ(u, i), ei, xi)) .

(4)

If we use Li(ei, xi) to represent the quantity

Li(ei, xi)
△
=

∑

u∈V

log (Pr (A(u, i) | Γ(u, i), ei, xi)) , (5)

then we can rewrite the likelihood as:

L (A | Γ,Θ) =
∑

i∈I

Li(ei, xi).

This implies that parameters (ei, xi) of every item i can
be computed independently by solving a two-variable opti-
mization problem in the [0, 1] × [0, 1] range. Further, the
independence of the items allows us to parallelize the item-
parameter estimation. Therefore, an off-the-shelf optimiza-
tion method (e.g., Newton Raphson method [17]) can be
used to efficiently find the optimal values of the parameters.
In our experiments we initialized our optimization routine
from multiple starting points. However, we always com-
puted the same parameters regardless of the starting point.

We refer to the method of estimating the 2m items’ pa-
rameters as the Item-Fit algorithm. The running time of
Item-Fit is O(mT ), where T is the time required by the
optimization algorithm to find the optimal values of (ei, xi)
of a single item i. Common optimization algorithms are
iterative. In every iteration t there is an estimate of the

parameters (e
(t)
i , x

(t)
i ). Given these estimates the algorithm

recomputes the value of Li(e
(t)
i , x

(t)
i ) as well as the value

of its gradient and uses these values to update parameters

(e
(t+1)
i , x

(t+1)
i ). Computing the value of Li(e

(t)
i , x

(t)
i ) and its

gradient using the evaluation procedure implied by Equa-
tion (5) takes O(n) time per iteration.

Speeding up Item-Fit: The sparsity of real data allows
us to speedup the computation of Li(ei, xi) and its gradient.
Observe that Pr (A(u, i) = 1 | Γ(u, i), ei, xi) is the same for
all active (resp. inactive) users that have the same number
of active neighbors at the time of their activation (resp. end
of observation period). For item i, consider all active nodes
that had Γ(u, i) = γ active neighbors when they themselves
became active. If we use Bi(γ) to denote this set of active
nodes, then for every u ∈ Bi(γ)

Pγ
△
= Pr (A(u, i) = 1 | Γ(u, i) = γ, ei, xi)

= 1− (1− xi)(1− ei)
γ
.

For item i, we also use B̂i(γ) to refer to the set of inactive

users that have γ active neighbors. Then, for each u ∈ B̂i(γ)

Pr (A(u, i) = 0 | Γ(u, i) = γ, ei, xi) = 1− Pγ .

We rewrite Equation (5) as follows:

Li(ei, xi) = (6)
∑

γ

( ∑

u∈Bi(γ)

log (Pγ) +
∑

u∈B̂i(γ)

log (1− Pγ)
)

=
∑

γ

( ∣∣∣Bi(γ)
∣∣∣ log (Pγ) +

∣∣∣B̂i(γ)
∣∣∣ log (1− Pγ)

)
.

Using Equation (6) for evaluating the value of Li(ei, xi)
within every iteration of the optimization procedure results



to processing time that depends on the distinct values of γ
that appear in the dataset. The number of distinct values
of γ that occur for each item is a small constant. So using
this transformation we achieve time O(1) per iteration. We
remark that the optimization routine rarely exceeded 10 it-
erations in our experiments. Therefore, the overall running
time is, in practice, linear to the number of items.

5. THE e2r MODEL
Although e2 captures the observed variation between the

items, it does not capture that different nodes may react
differently to the same information item. In this section, we
present the e2r model which incorporates one receptivity

parameter per user.
Every node u is associated with a single parameter ru ∈

[0, 1]; this parameter quantifies the node’s tendency to be
receptive to information items coming either from u’s neigh-
bors or from sources outside the network. Same as with
ei and xi, ru has a probabilistic interpretation: node u ac-
cepts any candidate activation with probability ru. We use
r to denote the n-dimensional vector with the receptivity
parameters of all users.

We incorporate the user-receptivity parameters in the e2
model. The probability of the observed activation matrix
A given the item parameters Θ and user receptivities r is
given by:

Pr (A | Γ,Θ, r) = (7)
∏

i∈I,u∈V

Pr (A(u, i) | Γ(u, i), ei, xi, ru) .

The probability of node u being active with respect to item
i is computed as follows:

Pr (A(u, i) = 1|Γ(u, i), ei, xi, ru) =

1− (1− ru · xi)(1− ru · ei)
Γ(u,i)

.

The sole difference between Pr (A | Γ,Θ, r) and Pr (A | Γ,Θ)
is that for every user u and item i, terms xi and ei are mul-
tiplied by the factor ru. Intuitively, every time we have an
endogenous or exogenous attempt to activate a user, the user
also needs to accept that activation. Clearly, the e2r model
is equivalent to the e2 model when ru = 1 for every node u.

Using Equation (7), the loglikelihood of e2r is

LR (A | Γ,Θ, r) = (8)

= log (Pr (A | Γ,Θ, r))

=
∑

i∈I,u∈V

log (Pr (A(u, i) | Γ(u, i), ei, xi, ru)) .

Modeling power of receptivity: Receptivity is both a
characteristic of the nodes and a means to allow items to
reveal their true nature. Consider the extreme case of a
very endogenous item that all, but a small fraction of the
nodes, adopt through their neighbors. In order to capture
the behavior of this minority of nodes, the e2 model would
assign to i endogeneity value lower than 1. On the other
hand, the e2rmodel will capture the behavior of these nodes
through receptivity and will assign to i larger endogeneity
value, allowing it to reveal its true nature.

We now define the maximum-likelihood estimation prob-
lem for the e2r model.

Problem 2 (Ml-e2r). Given activation matrix A and

active-neighborhood matrix Γ, find parameters Θ = 〈e,x〉
and r such that the loglikelihood of the data given these pa-

rameters is maximized, i.e.,

〈Θ, r〉 = arg max
Θ′,r′

LR

(
A | Γ,Θ′

, r
′
)
. (9)

Disentangling the effect of dependent factors in informa-
tion propagation is challenging. Accordingly, the Ml-e2r is
harder than Ml-e2. In fact, the addition of users’ receptiv-
ity yields a high dimensional optimization function (2m+n
parameters); this problem is hard to solve optimally. There-
fore, we describe an efficient coordinate descent procedure
to find a local optimum for Problem 2. Our solution builds
upon the parameter-estimation methodology developed in
Section 4.

The core of our method for solving this problem, which
we call ItemUser-Fit, is the following: if parameters r are
fixed we have a two-variable optimization problem similar to
Ml-e2 and we can use Item-Fit presented in Section 4 to
efficiently estimate parameters Θ. Similarly, if parameters
Θ are fixed, we can efficiently estimate the user parame-
ters r. This last step can be done by optimizing LR where
the only variables are users’ receptivities. Since users are
independent, this estimation can be done separately, this
time for every user, by solving a single-variable optimiza-
tion problem. Algorithm User-Fit iterates between the two
convex problems. Since the value of the likelihood decreases
at each iteration, ItemUser-Fit converges to a local opti-
mum. However, the speedup of Item-Fit cannot be used
due to the mixing of the users’ and the items’ parameters.
In practice, ItemUser-Fit handled our dataset efficiently
and it converged in a dozen iterations.

6. EXPERIMENTS
In this section, we present experimental results using real

and synthetic datasets. First, we show that our algorithms
accurately recover the model parameters using synthetic data.
Next, we report interesting quantitative and qualitative re-
sults and demonstrate the fit of our model to real data. We
implemented our solution using C++ and Matlab’s opti-
mization toolbox. We ran our experiments on 64-bit Intel
Xeon 2.66 GHz, 6 GB RAM running Windows 7.

6.1 Experiments with synthetic data
Our experiments with synthetic data illustrate that Item-

Fit recovers exogeneity and endogeneity values that are very
close to the values used for data generation.

Data-generation. Since many real world datasets, includ-
ing the data we analyze, have power-law degree distribution,
we generate synthetic ScaleFree graphs using the model
proposed by Barabási and Albert [3]. For every item i we
pick uniformly at random an endogeneity parameter ei in
the interval [0, 0.8] and an exogeneity parameter xi from
the interval [0, 0.8]. The graphs generated by this model
are undirected. We convert them into directed graphs by
creating two directed edges for every undirected edge.

Next, we run the following propagation procedure: For ev-
ery item i we create the activation graphHi = (V ∪ {si}, Ei)
as described in Section 3 (recall that si is the exogenous
node). During the propagation, we maintain a set R of edges
that are ready to cause activation. All the edges (v → u)
in R consist of active node u and inactive node v. Initially,
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Figure 1: ScaleFree graphs with n = 1000 number of nodes,

1% density, and m = 1000 items. Figure 1(a): X-Error for

various combinations of input parameters x and e. Figure 1(b):

E-Error for various combinations of input parameters x and e.

Lighter cell color corresponds to smaller error.

only node si is active and R contains |V | edges (u → si) for
all u ∈ V . At every step, the data-generation process picks
uniformly at random, without replacement, an edge (u → v)
from R. If the active node v is node si then the activation
of u succeeds with probability xi. If the active node v is
an active node from V , then the activation of u succeeds
with probability ei. If the activation of u succeeds, we set
A(u, i) = 1 and Γ(u, i) is set to be the number of active
neighbors of u that are in V . Also, all edges (w → u) such
that w is inactive are inserted in set R. The data-generation
process stops when R becomes empty.

Evaluation metrics. Denote θ̂i = (êi, x̂i) the recovered
parameters for every item i. For the set of m observed items
I, we quantify the quality of the recovery using the average
absolute recovery error. We define the exogeneity absolute

error for the exogeneity parameters as

X-Error(Θ, Θ̂) =
1

m

∑

i∈I

|xi − x̂i| .

The endogeneity absolute error, E-Error, is defined simi-
larly.

Results. The ScaleFree graphs of this experiment have
n = 1000 nodes, m = 1000 items, and density equal to 1%
– each node has at least 5 neighbors. The results for graph-
densities in the range [0.4, 4]% are similar. Also, varying the
number of nodes and the number of items does not affect
the recovery results. For each set of exogeneity/endogeneity
parameters we generate 30 independent graphs and average
the results.

Figure 1 shows the X-Error and E-Error values with
respect to the range of values from which the data-generation
parameters x and e are selected. Every interval in the x-
axis (y-axis) corresponds to the interval from which the ex-
ogeneity (endogeneity) parameter was sampled uniformly at
random. The average value of each interval is shown on the
axes. Darker colors correspond to larger average errors.

Observe that the smaller the values of the input parame-
ters, the lower the X-Error and the E-Error. Small val-
ues of these parameters generate sparse data, i.e., data with
small number of activations. Real data exhibit this behav-
ior; the most frequent item in the dataset we consider in the
next section appears in less than 10% of the nodes. Even
if all these activations are due to exogeneity the exogene-
ity value cannot be larger than 0.1. Thus, the information
items always fall in the leftmost column of the plots pre-
sented in Figure 1. There, both X-Error and E-Error
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Figure 2: e2 model on MemeTracker dataset; y-axis in logarith-

mic scale. Figure 2(a): histogram of exogeneity of quotes. Fig-

ure 2(b): histogram of endogeneity of quotes (the scale on the

x-axis is different in the two histograms).

are negligible.

6.2 Experiments withMemeTracker data
We next turn our attention to the practical utility of our

models in real data. Apart from giving several insightful
quantitative and anecdotal findings that highlight the effi-
cacy of our model as a data analysis tool, we also validate
the fit of our data via a prediction experiment after appro-
priately splitting the data into training and test sets.

Description of the data. We use the memetracker data [12].
This dataset consists of quotes that have been posted on
articles/blogposts from August 2008 to April 2009. Times-
tamps in the data capture the time that a quote was used in
a post. Finally, there are directed hyperlinks among posts.

From these data we construct our network GB = (VB, EB)
by selecting as nodes all the blogs hosted either by blogspot.
com or by wordpress.com. For blogs b, b′ ∈ VB , there is a
directed link (b → b′) if there exists at least one blogpost of
b linking to b′. The set of information items consists of the
set of quotes that appeared in at least one blogpost of any of
the blogs in VB . We denote this set by Q. We say that blog
u became active with respect to quote q ∈ Q at time t, if t
was the first timestamp that u used q in one of his blogposts.
We refer to the dataset consisting of graph GB = (VB, EB)
along with the set of quotes Q as the MemeTracker dataset.
It consists of 49373 distinct blogs and 56888 quotes. There
are 171653 directed links among blogs and 605777 activa-
tions of blogs with respect to quotes (i.e., appearances of
the quotes on the blogs). The distributions of the number
of blogs each quote appears in, the number of quotes per
blog, and the number of incoming and outgoing links per
blog, resemble power-laws.

6.2.1 Analyzing MemeTracker data using e2

We use the Item-Fit algorithm to compute the endogene-
ity and exogeneity parameters for all the quotes in Meme-

Tracker. Running Item-Fit on MemeTracker takes about 3
minutes.

Distribution of Endogeneity and Exogeneity Values.

In Figure 2, we present the distribution of endogeneity and
exogeneity values of the quotes. Note that in both plots the
y-axis is in log-scale, and also that the x-axes are scaled dif-
ferently. The skewed distribution of both exogeneity and en-
dogeneity values shows that a non-negligible number of items
are much more endogenous/exogenous than most items.

Most of the quotes have a small exogeneity value, while
the maximum value of exogeneity on the x-axis is 0.032.



0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Quotes

← hate that i love you so

← yes we can yes we can

← i don’t know what to do

← i think when you spread the wealth around it’s good for everybody

← joe the plumber
← you can put lipstick on a pig

← life liberty and the pursuit of happiness

← oh my god oh my god

Exogeneity

E
nd

og
en

ei
ty

Figure 3: e2 model on MemeTracker dataset: x-axis: exogeneity

of quotes. y-axis: endogeneity of quotes and marker area propor-

tional to frequency.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Quotes

←you can put lipstick on a pig

←joe the plumber

←he is not spreading the wealth around

←i barack hussein obama do solemnly swear

←the chant is drill baby drill

←yes we can yes we can

←i think when you spread the wealth around it’s good...

←not god bless america god damn america

Exogeneity

E
nd

og
en

ei
ty

Figure 4: e2r model on MemeTracker dataset: x-axis: exogeneity

of quotes, y-axis: endogeneity of quotes and marker area propor-

tional to frequency.

Figure 2(b) shows a histogram of the endogeneity values.
Contrary to the exogeneity values, the endogeneity in Fig-
ure 2(b) spans the whole range [0, 1]. Some quotes of high
endogeneity propagate through most network edges they
come across. These are infrequent quotes that propagate
in small, isolated parts of the network. Therefore, they are
highly endogenous.

Figure 3 is a scatter-plot of the exogeneity (x-axis) and
the endogeneity (y-axis) of the quotes. The area covered by
each marker is proportional to the frequency of the quote
(i.e., the number of nodes it appears). We have also printed
frequent dominant quotes. Observe that there are many
items that exhibit high endogeneity and small exogeneity.
Exogeneity appears to correlate well with frequency. This is
expected since exogeneity is the probability that a random
isolated node has a particular item; such a probability can
only be large for frequent items.

Anecdotal results. In Figure 3, contrast the popular
quote of Barack Obama in the 2008 U.S. presidential elec-
tions i think when you spread the wealth around it’s

good for everybody with the phrase from the U.S. Decla-
ration of Independence life liberty and the pursuit of

happiness. They both have similar exogeneity but the for-
mer is far more endogenous than the latter. We conjecture
that this is due to the fact that the former was a new quote
– as such it heavily used the network to propagate. The
latter is a classic phrase, often used without triggering any
cascade.

Table 1: MemeTracker dataset. Top-5 frequent quotes with Ex-

ogeneity=H that correspond to buckets (H,H) and (H,L) of the

equi-depth (X,E)-histogram.

Endogeneity=H

Top-5 frequent quotes from (H,H) bucket

1. yes we can yes we can

2. hate that i love you so

3. joe the plumber

4. i think when you spread the

wealth around it’s good for everybody

5. you can put lipstick on a pig

Endogeneity=L

Top-5 frequent quotes from (H,L) bucket

1. i don’t know what to do

2. oh my god oh my god

3. hi how are you doing today

4. why where are you going to john

5. what is it

Table 2: MemeTracker dataset. Top-5 frequent quotes with Ex-

ogeneity=L that correspond to buckets (L,H) and (L,L) of the

equi-depth (X,E)-histogram.

Endogeneity=H

Top-5 frequent quotes from (L,H) bucket

1. there appears to be a sizeable number of duplicate

and fraudulent applications

2. we shouldn’t let partisan politics derail what

are very important things that need to get done

3. likened zionist settlers on the west bank to

osama bin laden saying both had been blinded by ideology

4. as far as the eye can see

5. she doesn’t know yet that she has been married

Endogeneity=L

Top-5 frequent quotes from (L,L) bucket

1. the age of turbulence adventures in a new world

2. i’ve got friends in low places

3. you shall not bear false witness against your neighbor

4. instead of complaining about the state of the education

system as we correct the same mistakes year after year

i’ve got a better idea

5. a woman who loves me as much as she loves

anything in this world but who once confessed her...

In order to present anecdotal findings in a principled man-
ner we use the estimated endogeneity and exogeneity values
of every quote to construct a 2-dimensional, 2×2 equi-depth
histogram of the quotes. We call this 2-dimensional his-
togram the (X,E)-histogram. Using “H” (“L”) to represent
“High” (“Low”) values of exogeneity or endogeneity, the 4
buckets of the equi-depth histogram correspond to the com-
binations (H,H), (H,L), (L,H) and (L,L) of values that (ex-
ogeneity, endogeneity) pairs take. Every bucket described
by such a pair contains quotes with the same cumulative
frequency. Within every bucket, we sort the quotes in de-
creasing frequency.

Table 1 shows the top-5 frequent quotes from buckets with
high exogeneity, that is, buckets (H,H) and (H,L). Table 2
shows the top-5 frequent quotes from buckets with low exo-
geneity, that is, buckets (L,H) and (L,L).
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Figure 5: e2r model on MemeTracker dataset; Figure 5(a): Convergence of the ItemUser-Fit algorithm. x-axis: iteration number of

ItemUser-Fit; y-axis: marginal difference in the average receptivity estimates between rounds. Figures 5(b) 5(c) 5(d): y-axis: frequency

in logarithmic scale. Figure 5(b): histogram of exogeneity of quotes. Figure 5(c): histogram of endogeneity of quotes. Figure 5(d):

histogram of receptivity of blogs.

Before we go into more detail we make two observations:
first, quotes with “Exogeneity=H” (Table 1) exhibit shorter
length than quotes with “Exogeneity=L” (Table 2). Sec-
ond, a web search reveals that most quotes with “Endo-
geneity=H” (upper part of both tables) were news-stories or
popular quotes of the observation period.

Amongst the high-exogeneity quotes shown in Table 1 we
can distinguish between those with “Endogeneity=H” and
those with “Endogeneity=L”. Quotes joe the plumber, you
can put lipstick on a pig etc. from the (H,H) bucket
are front-page quotes that drew notable attention during the
2008 elections period. They are highly exogenous because
they gained popularity via external media such as the televi-
sion. They are also highly endogenous because they heavily
propagated through the network links of the blogs. Contrast
these quotes with the (H,L) quotes reported in the lower part
of Table 1. Quotes i don’t know what to do, oh my god,
hi how are you doing today, and what is it, are popu-
lar phrases that appear in various contexts ranging from ca-
sual conversations to pop songs. Such quotes are expected
to be purely exogenous – they do not trigger cascades.

Amongst the low-exogeneity quotes shown in Table 2 we
can again distinguish between those for which “Endogene-
ity=H” and those with “Endogeneity=L”. The first (shown
in the upper part of Table 2) correspond to long phrases
that were news stories during the observation period. For
example, the quote she doesn’t know yet that she has

been married, propagated in a set of connected blogs that
discussed the case of the marriage of a fourth-grade girl.
Similarly, the rest of the quotes in (L,H) (except for as far

as the eye can see) were also news stories of that period.
These are highly endogenous quotes. Compare these quotes
with the quotes in bucket (L,L), shown in the lower part of
Table 2. Neither exogenous sources nor peer influence affect
the propagation of these quotes. These are all infrequently
occurring phrases, e.g., lyrics from older songs and previous
year book titles.

6.2.2 Analyzing MemeTracker data using e2r

After exploring the utility of e2 as a data analysis tool we
move on to explore the e2r model.

The parameter estimation for the e2r model was made
using the ItemUser-Fit algorithm. It took about two hours
for the algorithm to converge on a single-thread implemen-
tation. In our experiment with the MemeTracker dataset
the algorithm converged after a small number of iterations,
which shows that the algorithm is quite usable in practice de-

spite its iterative nature. Figure 5(a) illustrates the marginal
average difference in the receptivity values obtained per iter-
ation. We plot the first 22 iterations. Observe that changes
are negligible after a dozen iterations. The convergence plots
for the endogeneity and exogeneity parameters are similar
and not shown.

The distributions of exogeneity and endogeneity using the
e2r model are shown in Figures 5(b) and 5(c). The his-
togram of receptivity of nodes is shown in Figure 5(d). In
all three plots the y-axis is in logarithmic scale. Observe
that the distribution of exogeneity in e2r is almost identi-
cal to the distribution of exogeneity in e2 (see Figure 2(a)).
Their correlation coefficient is 0.99 indicating that the in-
troduction of receptivity hardly affected the exogeneity. On
the other hand, the correlation between the e2 and e2r en-
dogeneity values is equal to 0.66. This indicates that the
introduction of receptivity has an effect on the endogeneity.

Anecdotal results obtained from the e2r model are shown
in Figure 4. This is a scatter-plot similar to the one depicted
in Figure 3. There are some changes in the anecdotes of
the (X,E)-histogram: Some frequent quotes, namely, yes we

can, life liberty and the pursuit of happiness, and hate

that I love you so moved from bucket (H,H) to the low
endogeneity bucket (H,L). Interestingly, in contrast with e2,
e2r found negligible endogeneity for these popular quotes
(note that all lie on the x-axis of Figure 4). These quotes
did not propagate to nodes that were highly receptive with
other quotes. The inference procedure of e2r penalizes their
endogeneity to capture that fact. Indeed, yes we can, yes

we can, even though used heavily during that period, is
also a popular phrase and song lyric, while life liberty

and the pursuit of happiness is a classic quote. e2r ex-
plains the popularity of these quotes through large exogene-
ity. The top-5 most frequent quotes of the (H,H) bucket for
the e2r model are: joe the plumber, I think when you

spread the wealth around it’s good for everybody, you
can put lipstick on a pig, not god bless america god

damn america, and the chant is drill baby drill. In
contrast with the (H,H) quotes of the e2 model all of these
quotes were born in the 2008 U.S. Presidential elections.
Thus they gained popularity not only through external me-
dia but also through the blogs network. As expected, the
more powerful e2r model refines e2’s anecdotal findings.

7. CONCLUSIONS
We claimed that information propagation in a social net-

work depends not only on the dyadic relationships between



the nodes but also on the nature of the information that
propagates. We characterized the nature of information
items using two parameters: endogeneity and exogeneity.
Given a social network and a sequence of adoptions of infor-
mation items by nodes, we defined the problem of estimat-
ing the exogeneity and endogeneity parameters of the items,
that best explain the observed activations. For this, we as-
sumed that endogeneity and exogeneity are characteristics of
the items that determine their propagation. We called this
basic model e2. We incorporated the users’ receptivity to
new information in the extended model e2r. We presented
efficient methods for estimating the parameters of e2 and
e2r. We also showed that the estimation can be achieved
with very high accuracy in synthetic scale-free graphs. Our
extensive experiments with real data validated our model
and yielded insightful anecdotes demonstrating the power of
our model as a data-analytic tool. In the future, we plan to
extend our methods for online early-prediction of exogeneity
and endogeneity of items and receptivities of users. This will
enhance the utility of our framework in designing the right
intervention strategies for information communication.
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nodes in a diffusion model for social networks, ICALP,
2005.

[10] D. Kempe, J. Kleinberg, and E. Tardos, Maximizing

the spread of influence through a social network, KDD,
2003.

[11] T. Lappas, E. Terzi, D. Gunopoulos, and H. Mannila,
Finding effectors in social networks, KDD, 2010.

[12] J. Leskovec, L. Backstrom, and J.M. Kleinberg,
Meme-tracking and the dynamics of the news cycle,
KDD, 2009.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. M. VanBriesen, and N.S. Glance, Cost-effective
outbreak detection in networks, KDD, 2007.

[14] H. Mannila and E. Terzi, Finding links and initiators:

A graph-reconstruction problem, SDM, 2009.

[15] M. Mathioudakis, N. Koudas, and P. Marback, Early
online identification of attention gathering items in

social media, WSDM, 2010.

[16] J.-P. Onnela and F. Reed-Tsochas, Spontaneous
emergence of social influence in online systems,
Proceedings of the National Academy of Sciences,
PNAS (2010).

[17] T.J. Ypma, Historical development of the

Newton-Raphson method, SIAM Rev. 37 (1995), no. 4.


