Hierarchical Classification via Orthogonal Transfer*

Dengyong Zhou DENZHO@MICROSOFT.COM
Lin Xiao LIN.XIAO@MICROSOFT.COM
Mingrui Wu MINGRUIW @MICROSOFT.COM

Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052, USA

MSR-TR-2011-54 May 2, 2011

Abstract

We consider multiclass classification problems where the set of labels are organized hier-
archically as a category tree. We associate each node in the tree with a classifier and
classify the examples recursively from the root to the leaves. We propose a hierarchical
Support Vector Machine (SVM) that encourages the classifier at each node to be different
from the classifiers at its ancestors. More specifically, we introduce regularizations that
force the normal vector of the classifying hyperplane at each node to be orthogonal to
those at its ancestors as much as possible. We establish conditions under which training
such a hierarchical SVM is a convex optimization problem, and develop an efficient dual-
averaging method for solving it. We evaluate the method on a number of real-world text
categorization tasks and obtain state-of-the-art performance.

1. Introduction

In many multiclass classification problems, such as document and web categorization, the
set of possible labels are often organized in a hierarchical structure, i.e., a category tree or
a more general taxonomy. While we can approach such problems using a generic multiclass
classifier such as the multiclass Support Vector Machine (SVM) (Weston and Watkins, 1999;
Crammer and Singer, 2001), a challenging question is how we can improve the classification
accuracy by using the hierarchical structure as side information.

One straightforward way for exploiting the hierarchical structure is to decouple the prob-
lem into a set of independent classification problems, each defined for an internal node in
the hierarchy, for classification between its immediate subclasses (Koller and Sahami, 1997;
Weigend et al., 1999; Dumais and Chen, 2000). To better exploit the semantic relationship
embedded in the hierarchy, some researchers imposed statistical similarity constraints be-
tween the probabilistic models for adjacent nodes in the hierarchy (e.g., McCallum et al.,
1998). Similarly, several work on multi-task and transfer learning employed hierarchy-
induced regularizations that try to make the classifiers at adjacent nodes as close as possible
(Cai and Hofmann, 2004; Dekel et al., 2004; Evgeniou et al., 2005).

*. This technical report is identical to our paper in ICML 2011 with the same title, except that we added
the proofs of the theorems as appendices, which were omitted in the ICML paper due to space limit.



Another popular method for hierarchical classification is to use tree-induced loss func-
tions (Cai and Hofmann, 2004; Dekel et al., 2004; Cesa-Bianchi et al., 2006). Roughly
speaking, a tree-induced loss for misclassifying two classes is proportional to the length of
the undirected path connecting these two classes (their graph distance). A closely related
approach is to embed the category tree into a Euclidean space such that two classes con-
nected by a shorter path stay closer in the embedding space (Weinberger and Chapelle,
2008). Using tree-induced losses captures the idea that misclassifications between similar
classes with shorter graph distances are less severe thus should receive less penalty. On
the other hand, it is often the case that classification between classes with shorter graph
distances are much harder than classifying classes with longer graph distances. In a sense,
this approach does not deal with the hardness of classifying similar classes at lower levels
in the hierarchy, but rather downplays the difficulty by assigning them small penalties.

In this paper, we develop a hierarchical classification method that directly tackles the
difficulty of classifying very similar classes at lower levels of the hierarchy. In particular,
our formulation encourages the classifier at each node be different from the classifiers at
its ancestors. The key observation is that the semantic relationships among the categories
in a hierarchical structure are usually of the type of generalization-specialization. In other
words, the lower level categories are supposed to have the same general properties as the
higher level categories plus additional more specific properties (a similar observation was
made in Koller and Sahami, 1997). For example, for classification between documents on
sports and computer science, the frequency of the word computer is a very indicative fea-
ture. However, between the two subclasses compiler and operating system in computer
science, the word parsing can be much more indicative than computer. In general, clas-
sifications at different levels of the hierarchy may rely on different features, or different
combinations of the same features.

In the context of hierarchical SVM, we formalize the above observation by introducing
regularizations that encourage the normal vector of the classifying hyperplane at each node
to be orthogonal to those at its ancestors as much as possible. We establish necessary and
sufficient conditions under which training such a hierarchical SVM is a convex optimization
problem. We also develop a variant of the dual-averaging method (Nesterov, 2009; Xiao,
2010) which is very efficient for solving such problems. We evaluate the method on a number
of real-world text categorization tasks and obtain state-of-the-art performance.

2. Problem Setting

Let X C R™ be the instance domain and let ) be the set of labels. Without loss of generality,
let Y = {1,...,m}. In the context of hierarchical classification, the labels in ) are identified
as nodes in a category tree. We assume that the root of the tree does not belong to ),
since it can label all possible instances and does not give meaningful classification. For
convenience, let 0 denote the root and let Y = Y U{0}. For each node i € ), denote by C(i)
the set of children of 7, and S() the set of siblings of 7. In addition, let A(7) be the set of
ancestors of i, excluding 0 and itself; and let D(i) be the set of descendants of i, excluding
itself. Finally, let A1 (i) = A(¢) U {i} and Dt (i) = D(i) U {i}.

Let {(x1,v1), -+, (xn,yn)} be a set of training examples, where each x; € X and each
yr € Y. Our goal is to learn a classification function f : X — Y that attains a small



Figure 1: An example with ) = {1,2,3,4}. The instance x is classified recursively until it
reaches the leaf node y = 3.

classification error. In this paper, we associate each node i € ) with a vector w; € R",
and focus on classifiers f(x) that are parameterized by wi, ..., wy, through the following
recursive procedure:

initialize i := 0

while C(i) is not empty

f(x) = 1 := argmax wlx . (1)
ject)

return ¢
In other words, an instance is labeled sequentially by choosing the category of which the
associated vector outputs the largest score among its siblings, until a leaf node is reached.
An example of this recursive procedure is shown in Figure 1. This classifier always return a
leaf node. For a testing example (x,y) where the label y is not a leaf node, a classification
error is declared if and only if y ¢ AT (f(x)).

Similar recursive classifiers have been used before, e.g., in Koller and Sahami (1997)
and Dumais and Chen (2000). However, the training problem was usually decomposed as
training a separate classifier at each non-leaf node in the category tree. In our work, we
introduce regularizations that couple the classifiers at different levels, and consider a joint
training problem over the whole tree (see Section 3).

Non-recursive classifiers have also been used in hierarchical classification. One popular
choice is

f(x) = argmax wx. (2)
i€y
In order to account for the hierarchical structure, the vectors w; are further parametrized

as
Wi = Z uy, (3)

JEAT (i)
i.e., w; = wW; — W,(;), where p(i) denotes the parent node of i. In similarity-based transfer
learning, the norms of the u;’s are used as regularizations, which encourages w; to be close

to wy,(;) (e.g, Cai and Hofmann, 2004; Dekel et al., 2004).



The recursive classifier (1) allows both training and testing at each internal node to focus
on specific features that are most pertinent to classification among its immediate children,
which usually is a very small subset of all categories. This can lead to much higher accuracy
in classifying the local sibling classes than using the flat classifier (2), which is trained by
always considering all categories in the tree. One might argue that mistakes made at
higher levels in a recursive classifier cannot be corrected at lower levels. However, this is
compensated by higher accuracies at each level.

Another advantage of the recursive classifier (1) is its computational efficiency. For
example, to classify x on a complete d-ary tree with height h, the number of inner products
w!x required for a recursive classifier is O(hd), while the flat classifier (2) requires O(d").
Dumais and Chen (2000) also reported large gains in computational efficiency by using
recursive classifiers.

3. Hierarchical SVM with Orthogonal Transfer

In this section, we describe a hierarchical SVM for training classifiers of the form (1). It is
clear that the task of learning f(x) is reduced to learning the set of vectors {w;|i € V},
which correspond to the normal vectors of the classification hyperplanes.

As explained in the introduction, our method is motivated by the observation that
accurate classification at different levels of the hierarchy may rely on different features, or
different combinations of the same features. In order to capture such effects, we introduce
the regularization terms |WZTW]" to add to the classical hinge loss in an objective function
that is to be minimized. These regularization terms encourage each normal vector w; to
be orthogonal to those at its ancestors. To be precise, given a set of training examples
{(x1,¥1),---,(XN,yn)}, we propose to solve the following optimization problem

minimize ]Zl K;j ‘W wi| + — N ka
subject to WZ- Xp — Wj xp > 1— flm v] € S(i), (4)

Vie At (yp), VE € {1,...,N},
& >0, Vke{l,...,N}.

Here the optimization variables are the normal vectors wy, ..., w,, and the slack variables
&1, ..., &n. The parameter C' controls the relative weights between the regularization terms
and the average hinge loss. We assume the parameters K;; > 0 for ¢, = 1,...,m, and
they can be considered as entries of a nonnegative matrix K € R™*. Without loss of
generality, let K be symmetric, i.e., K;; = Kj; for all 4,5 =1,...,m

We have the following remarks on (4):

e To reflect the hierarchical structure embedded in a tree, we always set K;; = 0 when-
ever node 7 is neither an ancestor nor a descendent of node j. Thus we can rewrite
the regularization terms 3 Lsm

. T . s e
i1 Kij ‘WZ- wj‘ more explicitly as

*ZKM||WZH2+Z Z ij ‘WzTWj"

i€y 1€ jeA(q)



The first term contains the squared Lo norms of w;, which is common for most variants
of SVM. The second term penalizes the absolute values of the inner products between
the vectors w; and w; whenever j € A(7). This effectively encourages orthogonality
among the normal vectors of the classification hyperplanes.

e In the constraints, each example (X, yx) is used for discriminating its category y; and
all its ancestors from their own siblings. Classifier pairs that are not siblings do not
appear together in a constraint. This reflects the recursive nature of the classifier (1),
and also leads to higher computational efficiency. Again consider the example of a
complete d-ary tree with height A. The number of constraints in our formulation is
O(Ndh), which is much smaller than O(Nd") in many other variants of the multiclass
SVM (see Section 5).

e Following Crammer and Singer (2001), we use the same slack variable & for all the
discriminative constraints associated with the example (xj, yr). Nevertheless, the clas-
sification margins at different levels in the hierarchy can be effectively differentiated
by setting the diagonal coefficients Kj;.

3.1 Convexity

We are interested in finding conditions on the parameters K;; (i.e., the matrix K) such that
the problem (4) is a convex optimization problem. Since the constraints and the hinge loss
only involve linear functions, it suffices to establish convexity of the function

1 & T
i,j=1
Here w € R™" denotes the concatenation of the vectors wq, ..., w,,. To present our results,

we first define the comparison matriz K of K, whose entries are given as

= _ [ IKal if i=j,
" —|Kij| otherwis.

Theorem 1 The function Q(w) is convez if the matriz K is nonnegative (entry-wise) and
its comparison matriz K is positive semidefinite. If n > m — 1, then these conditions are
also necessary.

We note that in most applications the number of features n is much larger than the
number of labels m, thus the conditions in Theorem 1 are necessary and sufficient for
convexity for such applications. The proof of Theorem 1 is given in Appendix A.

In Section 4.2, we will develop an efficient algorithm for solving problem (4), which relies
on the concept of strong convexity. The function € is strongly convex if there exists o > 0
such that Yo € [0, 1] and Yu,v € R™",

Q(au+ (1 —a)v) <afd(u)+ (1 — a)Q(v) — %a(l —a)|lu—v|>

The constant o is called the convexity parameter of Q (see, e.g., Nesterov, 2004, §2.1.3). A
slightly stronger condition establishes strong convexity for €2:



Corollary 2 If the matriz K is nonnegative and its comparison matriz K is positive defi-
nite, then Q(w) is strongly convez with a convezity parameter Amin(K), which is the smallest
eigenvalue of K.

The proof of Corollary 2 is given in Appendix B.

It appears that there are still lots of freedom in choosing the parameters K;;. While
further work are needed to develop more principled methods for choosing these parameters,
we found some simple heuristics that work reasonably well in practice. One simple choice

is to set
D) ifi=
Kij = Kji = [0} ifi € A(]), (6)
0 else,

where o > 0 is a parameter. For problems with relatively small tree hierarchy, setting
a = 1 often gives a positive definite K. Otherwise, we can always reduce the value of o, or
increase the diagonal values Kj;, to make K positive definite.

It is worth noticing that the choice of K in (6) implies Kj;; > Kj; whenever ¢ € A(j).
In SVM training, this effectively encourages |w;| < ||w;|| for i € A(j). As shown in
the classical theory on SVM Vapnik (1998), a small norm ||w|| corresponds to a large
classification margin. Hence, the choice of K in (6) tends to give a larger classification
margin at a higher-level classification. This is in accordance with the intuition that the
classification tasks are relatively easier at higher or more general levels, and become more
difficult from the top to the bottom of the tree.

3.2 Representer Theorem

Theorem 3 If the matriz K is nonnegative and its comparison matriz K is positive defi-
nite, then the solution to the optimization problem (4) admits a representation of the form

N
Wi:ZCikxkv Vie),
k=1

where the c;’s are scalar coefficients.

The representer theorem implies that our method can be considered in a more general
reproducing kernel Hilbert space (RKHS) by choosing a problem specific reproducing kernel.
Therefore more expressive nonlinear classifiers can also be established (see, e.g., Scholkopf
and Smola, 2001). The proof of Theorem 3 is given in Appendix C.

4. Optimization Algorithm

Establishing convexity of an optimization problem does not always mean that it can be
readily solved by existing algorithms and available software. This is certainly the case for
the problem (4). In particular, it cannot be easily transformed into any standard conic
optimization form that lends itself to efficient interior-point methods. Neither does it fit
any available general or special-purpose SVM solver.



We propose to transform the problem (4) into an unconstrained optimization problem,
and solve it using a subgradient-based algorithm. More specifically, by eliminating the slack

variables &1, ...,&y in (4), we arrive at the following equivalent problem
minimize J(w) £ Q(w) + H(w), (7)

where H(w) is the hinge loss, given by

NZmaX{O max {1—w X + W xk}}

JES(7)
ic At (yk)

The hinge-loss function H(w) is convex, since it is the sum of N piece-wise linear func-
tions, each being a pointwise maximum of several linear functions (see, e.g., Boyd and
Vandenberghe, 2004, §3.2). If K satisfies the conditions in Theorem 1, then (w) is also a
convex function, and so is their sum J(w). On the other hand, both Q(w) and H(w) are
nondifferentiable. So we resort to subgradient-based methods for solving (7).

Surprisingly, even computing a subgradient of J(w) can be very subtle.

4.1 Computing the Subgradients

The subtlety lies in computing a subgradient for (w). Given its expression in (5), it is
tempting to assembling a subgradient of Q(w) by first obtaining a subgradient for each
summand Kj; ’w;-fwj‘ and then add them together. However, this rule of subdifferential
calculus is valid only if all the summands are convex (see, e.g., Nesterov, 2004, Chapter 3).
Although Q(w) is convex (assuming conditions in Theorem 1 are satisfied), the summands
j, are not convex. Indeed, subgradient does not exist for them almost
everywhere. Therefore, the subdifferential calculus for sum of convex functions does not
apply here.

In general, computing subgradients of a convex function like Q(w) (which is the sum of
both convex and nonconvex functions) requires the theory and heavy machinery of lexico-
graphic differentiation (Nesterov, 2005). Luckily for us, the particular form of Q(w) admits
a simple expression for its subgradient:

Theorem 4 Assume K is nonnegative and K is positive semidefinite. Then a subgradient
of Qw) is given by g = (g¥,...,g2), where

g? = K“Wl + Z sign(wzrwj)Kijo,

J#

and sign(«) equals 1 if « >0, =1 if « <0, and 0 if « = 0.
The form of g above indeed looks as if it were computed by following the subdifferential
calculus for sum of convex functions. Nevertheless, justifying it requires nontrivial proof
(see Appendix D).

In contrast, a subgradient of H(w) can be computed by following the subdifferential
calculus for sum of convex functions. For each example (x,yx), let

(z(k:),j(k:)) =  argmax {1 — WZTX]C + w;‘»r’xk} ,
JES(3), i€ AT (yk)

7



and compute a vector h* = (h¥,... h%) as follows:
o If 1 — wggk)xk + W?(k)xk < 0, then let h* = 0;
e Otherwise, let hf(k) = —Xp, h;?(k) = X, and let h¥ =0 for all i € Y\ {i(k),j(k)}.

Then a subgradient of H(w) is given by the sum gt = %Zi\;lhk. Finally, using again
the subdifferential calculus for sum of convex functions, a subgradient of J(w) is given by
g/ =g +g".

The classical subgradient method for general nonsmooth convex optimization has a
convergence rate O(1/v/t) (see, e.g., Nesterov, 2004, Chapter 3). In this paper, we present
a more efficient algorithm for solving the problem (7) when J(w) is strongly convex (by
choosing K appropriately). Next, we first describe the algorithm in a more general context,
then discuss how to apply it to the problem (7).

4.2 A Regularized Dual Averaging Method

Consider convex optimization problems of the form

minimize J(w) £ ¢(w) + ¥(w), ()
wew
where W is a closed convex subset of R™". The objective function J(w) is decomposed as
the sum of two parts. We assume that ¢(w) is convex, and ¥(w) is strongly convex with
convexity parameter o > 0.

Algorithm 1 is a new variant of the regularized dual averaging (RDA) method Nesterov
(2009); Xiao (2010) that is well suitable for solving (8). In particular, Algorithm 1 without
steps 3 and 4 corresponds to a special case of the RDA method in Xiao (2010). This
algorithm enjoys an O(In(¢)/ot) convergence rate. To be more specific, let J* denote the

optimal objective value, and let w(t) denote the solution among w(1),..., w(t) that has
the smallest objective value (which can be easily recorded), then
In(¢
J(w(t) —J* <0 (’“(t)> . (10)
o

However, this theoretical result does not provide a practical stopping criterion that guar-
antees a solution of specified precision. The difficulty is that the hidden constants in the
O(+) notation is problem-dependent and hard to estimate.

The extra steps 3 and 4 in each iteration of Algorithm 1 provide both an upper bound
and a lower bound on the objective value. Therefore we have an effective stopping criterion
to produce an e-approximate solution, without the need to estimate any problem-dependent
constant. This type of guarantee is very rare for simple subgradient-based methods. Up-
dating the upper bounds J(t) in Algorithm 1 is straightforward, so we only need to explain
the lower bounds J(t). Since g(t) is a subgradient of ¢ at w(t), we have

o(w) > d(w(t)) + g(t)T (W — w(t)), Vw e W.

Therefore, for all w € W,

J(w) >

| =

> (6(w(r) + ()T (w = w(r)) + W(w).

T=1



Algorithm 1 RDA Method with Optimality Bounds
input: training examples {(x1,¥1),- -, (XN, yn)}, constant C' > 0, and accuracy € > 0
initialization: w(1) =0, g(0) =0, §(0) =0
upper bound J(1) = C, and lower bound J(1) =0
repeat fort =1,2,3,...
1. Compute a subgradient g(t) € dp(w(t)), and

_ t—1 1
gt) = ——g(t— 1)+ ;g(t)
2. Compute the next weight vector:
w(t+1) = argmin{g(t)Tw + \If(w)} (9)
wew

3. Update the upper bound J:
J(t+1) = min {j(t), J(w(t + 1))}

4. Update the lower bound J:
t—1
i(t) = —6(15—1) +

J(t+1) =6(t) +
J(t+1) := max {J

H(o(w(n) — g(t)w(r)
gt) ' w(t+1) + U(w(t+1))
t), Jt+1)}

A/‘\

until J(t+1) - J(t+1) <e

Taking the minimum on both sides, we have

in J
iy, (W)

> %{i(ﬂw(m (0w w(r) + ¥(w)}

= 3 (6(w() ~g(r)Tw(r) )+ min {g(1)w + W(w)}
T=1

wew

= 5(t) +g®)TW(t+ 1)+ U(w(t+1)).

The last line above is precisely what is used to compute the new lower bound in step 4.

The complexity in (10) is given in terms of number of iterations (i.e., number of sub-
gradient queries). For Algorithm 1 to be practically efficient, The minimization problem
in (9) needs to be easy to solve. For example, in the special case of ¥(w) = (¢/2)||w||? and
W = R™" it has a closed form solution

wit+1) =~ g(t), (11)

and the computational cost per iteration is O(mn).



4.3 Splitting the Objective

Algorithm 1 can only be applied to solve the problem (7) when J(w) is strongly convex.
This can be guaranteed by choosing the matrix K properly. Assuming that K is nonnegative
and its comparison matrix K is positive definite, then the function Q(w) is strongly convex
(Corollary 2). Since J(w) is the sum of Q(w) and a convex function H(w), it is also
strongly convex with the same convexity parameter (see, e.g. Nesterov, 2004, Chapter 2).
Let Amin > 0 be the smallest eigenvalue of K, then both Q(w) and J(w) are strongly convex
with convexity parameter o = Apip.

To apply Algorithm 1, we also need to split J(w) into the form of (8) appropriately. In
particular, the obvious splitting by assigning ¢(w) = H(w) and U(w) = Q(w) does
not work, because in this case the minimization problem in (9) does not admit a simple
solution. In our implementation, we use

Blw) = (w) — 22w 4 H(w),

)\min
U(w) = T”WHZ-

With this splitting, the function ¥(w) is strongly convex with convexity parameter o =
Amin- The function ¢(w) is convex, since subtracting Apmin from the diagonals of K still leaves
the corresponding comparison matrix positive semidefinite. With this splitting, we can

calculate subgradients of ¢(w) following Section 4.1, and the equation (9) can be replaced
by (11).

5. Related Work

We had a general discussion of related work in the introduction. Here we give the exact
formulations of some of them that we will compare with in Section 6.

e FraTrMuLT. This is the flat multiclass SVM of Crammer and Singer (2001). It uses
the flat classifier (2) and trains the classifier by solving

1 O
C .. 2
minimize 5 Z [|wl© + N Zﬁk (12)
€y k=1
subject to ngxk —wixp>1—&, YieY\{wm}, Vke{l,...,N},
& >0, VkE{l,...,N}.

Since this formulation ignores the hierarchical structure, we apply it only to the leaf
labels in the tree, i.e., we replace ) by the set of leaves L.

e HierMuLT. This is the hierarchical multiclass SVM suggested by Dumais and Chen
(2000). It uses the recursive classifier (1), and solves a separate flat multiclass SVM
at each non-leaf node. That is, for each j € Y \ £, we solve a problem like (12) by
replacing ) with C(j).

10



e TRANSFER. This approach uses the recursive classifier (1), and employs a regulariza-
tion that encourages the classifiers to be close to its ancestors:

N
. 1
minimize QZ(”W’H Z [|wi — W]H) ng
k:l

iy JEC(d)
subject to Wi wp —wizp >1-&, VjeS(i), VieAt(y), Vke{l,...,N},
& >0vke{l,...,N}.

In light of the parametrization (3), we have the relationship ||w; — w;|| = [|u;|| for
Jj € Ci).

e TREELOSS. This is a form of the hierarchical SVM of Cai and Hofmann (2004). It
uses the flat classifier (2) and solves a training problem in terms of the incremental
vectors u; that appeared in the parametrization (3). More specifically,

1 &
o 2
minimize 5 Z lw;||* + N Z &k

(1SN
subject to Z ul x;, — Z u; Xk>1—A§7k, Vy e Y\ {v}
i€ A (yr) JEAT (y) (96 9)

& >0, Vke{l,...,N}.

The path-loss coefficient A(yg,y) is set to be half of the graph distance (length of
shortest path) between y; and y in the tree structure.

6. Preliminary Experiments

We evaluated our method on the widely used text categorization benchmark called RCV1-
v2/LYRL2004 Lewis et al. (2004). The documents have been tokenized, stopworded and
stemmed to 47,236 unique tokens (features) and represented as L2-normalized log TF-IDF
vectors. The top categories MCAT, CCAT and ECAT were used to form three classification
tasks. For each task, we excluded documents with multiple labels to stick with a tree
structure. The other top category GCAT was not considered because its structure is flat
rather than organized hierarchically. Some statistics of the dataset are summarized in
Table 1, where |)| is the number of all categories and |L£] is the number of leaf categories.

We compared our method with the four methods described in Section 5. We converted all
of them into unconstrained optimization problems by eliminating the slack variables, similar
to (7). Then we solved them using Algorithm 1, as they all fit into the structure of (8). We
used the parameter C' = 1 in all formulations, which is common in text classification (e.g.,
Joachims, 1998; Lewis et al., 2004; Cai and Hofmann, 2004). We also tried different values
of C varying from 1 to 100, but didn’t observe significant differences in the results.

Our method is listed as ORTHOGNL. We chose the matrix K according to (6). For this
dataset, setting @ = 1 makes the comparison matrices positive definite.

The evaluation metrics include 0/1 loss (error rate), tree-induced loss (half of the graph
distance between two categories), and micro-average F1 score (see, e.g., Lewis et al., 2004).

11



Table 1: Some statistics of RCV1-v2/LYRL2004

Y| |£] TortAL TRAIN TEST
CCAT | 31 26 209,133 5,810 203,323
MCAT | 9 7 189,211 5,438 183,773
ECAT | 23 18 71,356 2,196 69,160

Table 2: Testing performance on CCAT (%)

0/1 Loss TREE Loss Micro F1

FraTtMuLT | 26.93(+0.28) 37.46(+0.47) 73.07(£0.28)
HieErRMuLT | 26.19(£0.28) 35.80(£0.45) 73.81(£0.28)
TRANSFER | 26.21(£0.26) 35.60(£0.42) 73.79(£0.26)
TreeLoss | 37.57(+£0.35) 50.45(£0.49) 62.43(£0.35)
ORTHOGNL | 23.62(£0.43) 33.12(+0.58) 76.38(+0.43)

— — — —

Table 3: Testing performance on MCAT (%)

0/1 Loss  TrEeg Loss  Micro F1
FraTtMurt | 7.03(£0.20) 8.96(£0.27) 92.97(+0.20)
HieErRMurT | 7.36(£0.21) 9.32(£0.27) 92.64(%0.21)
TRANSFER | 8.20(£0.22) 10.72(£0.31) 91.80(%0.22)
( )
(

TREELOSS | 26.16(£0.34) 34.28(+0.45) 73.84(£0.34
ORTHOGNL | 6.57(+0.19) 8.74(£0.27) 93.43(+0.19)

Table 4: Testing performance on ECAT (%)

0/1 Loss TREE Loss Micro F1

FraTtMurT | 16.36(£0.30) 23.71(+0.40) 83.64(+0.30)
HIERMULT | 15.99(4+0.31) 22.77(+£0.40) 84.01(4+0.31)
TRANSFER | 17.04(£0.36) 24.33(+0.48) 82.96(+0.36)
TreEeLoOss | 26.71(+£0.51) 36.49(£0.74) 73.29(£0.51)
ORTHOGNL | 16.18(4+0.31) 24.21(40.45) 83.82(+0.31)

The results are summarized in Tables 2-4, all shown in percentage. Each entry in the tables
shows the average metric, as well as standard deviation, computed over 50 rounds of random
samplings. The training/testing split ratio for each round is the same as shown in Table 1.
The numbers in bold fonts are best results judged by t-test with a significance level of
0.01. We see that our method outperformed other approaches on CCAT and MCAT, but
is slightly worse than HIERMULT on ECAT, mainly in terms of tree-induced loss.

We also did experiments on a particular subset of RCV1-v2/LYRL2004. This subset was
built simply by removing the first-level categories that have no descendants. In other words,
we only kept those branches in the tree that have at least two levels. This subset emphasizes
the effects of hierarchical structure. The statistics of this subset are summarized in Table 5
The classification performances of different methods are summarized in Tables 6-8. We see
that on this subset of data, our orthogonal transfer method performed even better compared

with other approaches.

12



Table 5: Some statistics of the hierarchical subset
Y| |£] TorAaL TRAIN TEST
CCAT | 16 12 138,125 3,676 134,449
MCAT 7 5 123,343 3,682 119,661
ECAT 18 13 57,582 1,734 55,848

Table 6: Testing performance on CCAT .Hierarchical (%)

0/1 Loss TREE LoOss Micro F1

FLATMULT | 21.39(£0.29) 32.66(£0.56) 78.61(£0.29)
HieErRMuLT | 21.41(£0.29) 32.23(+0.53) 78.59(£0.29)
TRANSFER | 21.91(+0.31) 33.45(+0.56) 78.09(£0.31)
TREELOSS | 26.32(£0.39) 40.95(4+0.66) 73.68(%0.39)
ORTHOGNL | 17.46(+0.74) 28.97(+0.95) 82.54(+0.74)

Table 7: Testing performance on MCAT.Hierarchical (%)

0/1 Loss  TrEE Loss  Micro F1
FLarMurt | 5.23(#0.21) 5.90(£0.23) 94.77(+0.21)
HIERMULT | 4.84(£0.20) 5.41(£0.21)  95.16(=0.20)
TRANSFER | 4.70(£0.20) 5.27(£0.22)  95.30(%0.20)

( )
(

TREELOSS | 13.34(+0.71) 16.31(+1.00) 86.66(=£0.71
ORTHOGNL | 3.00(+0.14) 3.56(+0.15) 97.00(+0.14)

Table 8: Testing performance on ECAT .Hierarchical (%)

0/1 Loss TREE LoOss Micro F1
FLATMULT | 13.57(£0.26) 20.76(£0.39) 86.43(%0.26
HIERMULT | 13.57(£0.27) 20.53(40.40) 86.43(£0.27
TRANSFER | 13.67(£0.28) 20.88(+0.41) 86.33(+0.28
TREELOSS | 17.13(£0.37) 26.20(£0.63) 82.87(40.37
ORTHOGNL | 12.47(£0.30) 20.89(+0.57) 87.53(+0.30)

~— — — —

7. Conclusions

We proposed a novel method called orthogonal transfer for hierarchical classification, which
specifically tackles the difficulty of classifying similar classes in the lower levels of the cat-
egory hierarchy. We presented a convex optimization formulation for the problem and
devised an efficient dual averaging method for solving it. Preliminary experiments show
that our method can effectively exploit the hierarchical structure and is able to produce
improved classification accuracy.

Several results of this paper can be of independent interests: the necessary and sufficient
conditions for Q(w) to be convex, the derivation of its subgradient, and the general RDA
method with optimality bounds.

As a future work, we are very interested in analyzing orthogonal transfer from a learning
theory perspective. We also hope to investigate more principled methods for choosing or
learning K for better performance.

13



Acknowledgments

We thank Professor Yurii Nesterov for comments on the convexity conditions and pointers
to the subject of lexicographic differentiation.

Appendix A. Proof of Theorem 1
A.1 Proof of Sufficiency

We need to show that if the matrix K is entry-wise nonnegative and its comparison matrix
K is positive semidefinite, then the function

1 m m
=1 j=1

is convex. We will directly verify the definition of convexity. In other words, we show that
for any u,v € R™" and any « € [0, 1], the following inequality holds:

Qau+ (1 —a)v) < aQu) + (1 — a)Q(v).

First, we have

aQd(u) = —ZKmu u; + — ZKU|u ujl,
1#]
(1-a) — )
(1-a)Q(v) = T ZKZ‘Z‘VZTW + T ZKiﬂVzTVj\a
i oy
and
1
Qau+ (1 —a)v) = B ZK“ (ou; + (1 — a)vi)T(aui + (1 —a)vy)
T
+- ZK’J ou; + (1 —a)v;)” (au; + (1 — oz)vj)‘
l;éj
1
= 3 Z Ki;; (aQUiTui +2a(1 — a)uiTVi +(1- oz)QVTw)
i
1
+§ ZKZ-J- ?ul'uj +a(l —a)ul'v; +a(l —a)viu; + (1 - a)’vivy|.
1#]
Then

aQ(u) + (1 —a)Q(v) — Qau+ (1 — a)v)
= 1—a ZKHU u; + (1—a ZK“V vi —a(l — ) ZKnu A\

+—- ZK”]u u]\—i— ZKU|V \21

25 i#j

1
—§ZKM

i#]

o?uluj +a(l —a)ulv; +a(l —a)viu; + (1 - oz)2v2-ij‘.

14



Using the inequalities

‘aQu;-ruj +a(l—a)ufv;+a(l—a)viu;+ (1 - a)2viTuj‘

< on‘uiTuj‘ +a(l - a)!ulij + ViTuj‘ +(1- a)Q‘vlij , Vi#j

and the assumption that K;; > 0 for all 7 and j, we have
aQ(u) + (1 —a)Q(v) — Qau+ (1 —a)v)
a(l —« a(l —«
> 7( 5 ) ZK” <u;TFui + VZTVi — Qu?Vi) + 7( 5 ) ZK@'(‘U?IJJ" + |VZTV]“ — \u?vj + V;-‘Fuj\).
i i#j
Next, using the inequality

s = villwy =il > | = va) (= v)| = [ulw; +vIv; —ulv; = vy,

T T T T
u; v +v; uj’ — [uj uj| = |vi v,
and the nonnegativity of K;;, we have

aQ(u) + (1 — a)Q(v) — Q(au+ (1 — a)v)

a(l —« al —a
> S Kl il = 2 S vl =
- i#j
a(l —« =
R T
2
> 0.

In the last inequality, we used the assumption that K is positive semidefinite.

It looks that we only need the comparison matrix K to be copositive (positive semidefi-
nite on the set of nonnegative vectors) for the last inequality above to hold. In fact, since its
off-diagonal entries are all nonpositive, K is copositive if and only if it is positive semidefinite
(see, e.g., (Hiriart-Urruty and Seeger, 2010, Corollary 3.7)).

A.2 Proof of Necessity
First we show that K being nonnegative is necessary, regardless of the condition n > m — 1.

e Suppose K;; < 0 for some i. Then we have Q(w) = (K;;/2)|w;||? in the subspace
{(w1,...,wp)|w; =0, Vj # i}, which is not convex.

e Suppose K;; < 0 for some 7 and j such that ¢ # j. Consider the function € restricted
on the one-dimensional affine set parametrized by a scalar 6:

{(Wl,...,wm) w; = (6,0,...,0), w; = (1,0,....0), wk201fk¢{z’,j}}.

Let ¢(0) denote the function  restricted on the above affine set, i.e.,
0(0) = %02 + Ki510] + %

This function is not convex. More specifically,

15



— if Ky = 0, we have ¢(6) = K;;|0| + K;;/2, which is apparently nonconvex with
Ki]’ < 0;
— If Kj; >0, then for ) = —K;;/K;; and 0y = K;;/Ky;, we have
2
K _ _Kj K

Lo v Lo\ = o) = Bii K _ 1 1
o (304 50) =0 =13 > = L B0+ (o).

This means ¢(6) is not convex.

Therefore we must have K;; > 0 for all4,j = 1,...,m.

Next we show that K being positive semidefinite is necessary when n > m — 1. We do
this by constructing a point w € R"" such that € is twice continuously differentiable in a
small neighborhood of w, and the Hessian V2Q(w) = K ® I,,, where ® denotes the matrix
Kronecker product, the I,, denotes the n-dimensional identity matrix. Since K ® I,, shares
the same set of distinct eigenvalues (see, e.g., Horn and Johnson, 1991), K being positive
semidefinite is necessary for €2 to be convex.

e First consider the case n = m. Let e; be the ith unit vector in R™, i.e., e; has 1 as
its ith entry and zero elsewhere. Consider the point

w = (Wi,...,wW,,) where w; =€, ——1, i=1,...,m.
m

Here 1 denote the vector of all ones in R"™. We have wiij = —1/m whenever i # j.
Therefore in a small neighborhood of w, we can write

It is clear that Q is twice differentiable at w, and V2Q(w) = K ® I,,.

e With the above construction, we have 17w; = 0 for all i = 1,...,m, i.e., the vectors
W1i,..., Wy, all lie in an (m — 1)-dimensional subspace. This means that we can
find (via orthogonal transformation) uy,...,u, € R™ ! such that u/u; = —1/m

whenever ¢ # j. Therefor, for the case n = m — 1, we can still construct a point u
such that ) is differentiable at u and V2Q(u) = K ® I,,.

e The case for n > m is obvious, since we only need to construct m vectors in R™ such
that their pairwise inner products are all negative.

Appendix B. Proof of Corollary 2

At the end of the proof of sufficiency for Theorem 1, we established the inequality

0u) + (1 - )0(v) ~ Ao + (1 - a)v) > S R v - v

]

16



Assume K is positive definite and let A\pi, be the smallest eigenvalue of K. Then we have

1 — Ami
5 2 Kl = villJwj = v = =5 fu = v
i7j

Therefore for any « € [0, 1],

)\ .
Qau+ (1 —a)v) <aQ(u) + (1 — a)Q(v) — r;unoz(l —a)|u—-v|? Vu,veR™,
which means € is strongly convex with convexity parameter Apyip.

Appendix C. Proof of Theorem 3

Suppose that {w;|i € Y} and {{x|k = 1,..., N} are the optimal solution to the optimization
problem (4) in the main paper. Define a subspace H = span{xy|l < k < N}. Let H* denote
the orthogonal complement of H. Thus, for each i € ), we can decompose w; such that
w; = u; + v; with u; € # and v; € H'. Then we immediately have

T T T T
WiXk—Wij:uiXk—quk.

Therefore {u;|i € YV} together with {{x|k = 1,..., N} satisfy all the constraints in the
optimization problem (4). Moreover,

Qw) = Kl will* + ) Kij [wiw;|

i#
= Kii ([will* + lIvill?) + Y Kij [l wj + v vy
i i#
> Kallwil® + ) K [ufw + Y Kallvil> =Y Kijlvil v,
i i#j i i#£]
=Qu) + Y Kijlvillv]
i

The second term in the last line above is nonnegative since K is positive semidefinite. Hence,
Q(w) > Q(u). On the other hand, since w together with &1, ..., &y is the optimal solution,
we should also have Q(w) < Q(u) with &,...,{y fixed. So we must have Q(w) = Q(u).
Since K is positive definite, by the derivation above, this only can happen if v; = 0 for all
i € Y. Therefore, we have w; = u; € H for all : € ). In other words,

N
Wizzcikxka \V/Zey,

k=1

where the ¢;;’s are scalar coefficients.

17



Appendix D. Proof of Theorem 4

We need to show that if K is nonnegative and K is positive semidefinite, Then the vector
g? = (gf,...,g), where

g’ = Kyw; + Z sign(w{ w;) Ki;wj,
i

is a subgradient of Q2 at w. The sign function is defined as

1 if6>0,
sign(f) = 0 if6=0,
-1 if 6 <0.

It seems the above expression can be obtained directly from the standard subgradient cal-
culus for sum of convex functions (e.g., (Nesterov, 2004, Chapter 3)). However, in this case
the components Kij|w;~fwj| are not convex whenever ¢ # j. In general, for such functions,
we need to resort to the theory and heavy machinery of lexicographic differentiation Nes-
terov (2005). Here, instead of diving into such subtleties, we directly show that the above
expression indeed gives a correct subgradient for Q(w).

For any fixed w € R™", we define the following set

I(w) = {(i,) | wjw; =0andi# j}.
Then we can view the function (u) as the sum of two parts:

04 (u) = Z Kij\u?uﬂ, Qg(u) = Z Kij|ll,LTllj‘, YueR™.
(i,3)¢1(w) (@3)el(w)

Here Q; is differentiable within a small neighborhood of w, and €2, is not differentiable
at w.

We first show that € is a convex function. Let K! denote the matrix with entries
KZIJ = K;; if (¢,7) ¢ I(w), and KZIJ =0if (4,5) € I(w). Also let K’ denote its comparison

matrix. Apparently K’ is nonnegative. If we can show that K is positive semidefinite,
then Q is convex (by Theorem 1). To this end, we use results for M-matrices (Berman and
Plemmons, 1994, Chapter 6). In fact, when a comparison matrix K is positive semidefinite,
it precisely fit the definition of an M-matrix. A necessary and sufficient condition for a
comparison matrix K to be an M-matrix is that there exist positive numbers dy, ..., dn,
such that
Kiidi>Z’Kij‘dj7 1=1,....,m.
J#1
(See (Berman and Plemmons, 1994, Page 142).) Now it is clear that if K satisfies this
condition, then K’ must also satisfy this condition. Therefore K is positive semidefinite,
hence €4 is a convex function.
Since €27 is convex and differentiable within a small neighborhood of w, we have

Q) > O (w)+ (Vi(w) (u—w), VueR™,

18



where VQi(w) is the gradient of Q at w. The function Qs may not be a convex func-
tion. However, by the definition of I(w), we always have {23(w) = 0, hence the following
inequality always hold:

Qg(u) > QQ(W) =0, Yue R™.

Summing the above two inequalities together, we have
Qu) > Q(w) + (VQl(w))T(u - w), YueR™.

This means that VQ;(w) is a subgradient of Q at w. Finally, it is not hard to recognize
that VQ(w) is precisely the vector g.

References

A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sciences. Clas-
sics in Applied Mathematics. STAM, 1994.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

L. Cai and T. Hofmann. Hierarchical document categorization with support vector ma-
chines. In Proceedings of the 13th ACM International Conference on Information and
Knowledge Management, pages 78-87, 2004.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms for hierarchical
classification. Journal of Machine Learning Research, 7:31-54, 2006.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Research, 2:265-292, 2001.

O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. In Proceedings
of the 21st International Conference on Machine Learning, pages 27-34, 2004.

S. T. Dumais and H. Chen. Hierarchical classification of web content. In Proceedings of
SIGIR’00, pages 256263, 2000.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods.
Journal of Machine Learning Research, 6:615-637, 2005.

J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM
Review, 52(4):593-629, 2010.

R. A. Horn and C. R. Johnson. Topics in Matriz Analysis. Cambridge University Press,
1991.

T. Joachims. Text categorization with support vector machines: Learning with many rel-
evant features. In Proceedings of the 10th European Conference on Machine Learning,
pages 137-142, 1998.

19



D. Koller and M. Sahami. Hierarchically classifying docuemnts using very few words. In
Proceedings of the 14th International Conference on Machine Learning, pages 171-178,
1997.

D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361-397, 2004.

A. K. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving text classification
by shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference
on Machine Learning (ICML), pages 359-367, 1998.

Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004.

Yu. Nesterov. Lexicographic differentiation of nonsmooth functions. Mathematical Pro-
gramming, 104:669-700, 2005.

Yu. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Pro-
gramming, 120:221-259, 2009.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, 2001.

V. N. Vapnik. Statistical learning theory. John Wiley & Sons, New York, 1998.

A. S. Weigend, E. D. Wiener, and J. O. Pedersen. Exploiting hierarchy in text categoriza-
tion. Information Retrieval, 1:193-216, 1999.

K. Weinberger and O. Chapelle. Large margin taxonomy embedding with an application
to document categorization. In Advances in Neural Information Processing Systems 21,
pages 1737-1744, 2008.

J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition.
In Proceedings of the 6th European Symposium on Artificial Neural Networks (ESANN),
pages 219-224, 1999.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11:2543-2596, 2010.

20



