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ABSTRACT
We construct pseudorandom generators for combinatorial
shapes, which substantially generalize combinatorial rectan-
gles, ε-biased spaces, 0/1 halfspaces, and 0/1 modular sums.
A function f : [m]n → {0, 1} is an (m,n)-combinatorial
shape if there exist sets A1, . . . , An ⊆ [m] and a symmet-
ric function h : {0, 1}n → {0, 1} such that f(x1, . . . , xn) =
h(1A1(x1), . . . , 1An(xn)). Our generator uses seed length
O(logm+logn+log2(1/ε)) to get error ε. When m = 2, this
gives the first generator of seed length O(logn) which fools
all weight-based tests, meaning that the distribution of the
weight of any subset is ε-close to the appropriate binomial
distribution in statistical distance.

For our proof we give a simple lemma which allows us to
convert closeness in Kolmogorov (cdf) distance to closeness
in statistical distance. As a corollary of our technique, we
give an alternative proof of a powerful variant of the classi-
cal central limit theorem showing convergence in statistical
distance, instead of the usual Kolmogorov distance.

1. INTRODUCTION
Pseudorandom generators are of fundamental importance

in complexity theory, cryptography, and beyond. A pseu-
dorandom generator (PRG) takes as input a short random
seed and outputs a long string which appears random to a
class of functions.

Definition 1.1. A function G : {0, 1}s → [m]n is a pseu-
dorandom generator (PRG) with seed length s and error ε
for a class of functions F : [m]n → {0, 1} – or more suc-
cinctly, G ε-fools F with seed length s – if for all f ∈ F ,∣∣∣ Pr

x∈u{0,1}s
[f(G(x)) = 1]− Pr

y∈u[m]n
[f(y) = 1]

∣∣∣ ≤ ε.
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While we know very strong PRGs under computational
assumptions, constructing provably-good PRGs without as-
sumptions is a major challenge. Some of the most power-
ful unconditional constructions are PRGs for space-bounded
computations. In particular, the PRGs of Nisan [Nis92] and
Impagliazzo, Nisan, and Wigderson [INW94] use a seed of
length O(log2 n) to fool polynomial-width branching pro-
grams. These generators have played a central role in study-
ing the relative strength of randomness vs. memory. In
particular, reducing their seed length to O(logn)-bit would
show that RL=L, namely every randomized algorithm can
be derandomized with only a multiplicative constant blow-
up in its memory. Improving [Nis92, INW94] is a cen-
tral open question, not only for the possibility of proving
RL=L, but also for other important applications [Ind00,
Siv02, KNR05, HHR06]. Despite much effort, the above
seed lengths have not been improved in nearly two decades.

While PRGs with logarithmic-seed that fool polynomial-
width branching programs are still not known, logarithmic-
seed PRGs for weaker classes of distinguishers have been
previously constructed and found many applications. In this
paper we define a natural common generalization and signif-
icant extension of many of these distinguisher classes, which
we name combinatorial shapes. Combinatorial shapes look
at their inputs in consecutive chunks of logm bits (usually
m would be at most polynomial in n). On each chunk of bits
the combinatorial shape may apply an arbitrary boolean
function. Nevertheless, these Boolean functions are com-
bined into a single output by a symmetric (i.e., order in-
dependent) function. Combinatorial shapes generalize com-
binatorial rectangles, halfspaces with 0/1 coefficients, and
modular sums. Our main result is a construction of PRGs
with seed length O(logn) that fools combinatorial shapes.

Definition 1.2. A function f : [m]n → {0, 1} is an (m,n)-
combinatorial shape if there exist sets A1, . . . , An ⊆ [m]
and a symmetric function h : {0, 1}n → {0, 1} such that
f(x1, . . . , xn) = h(1A1(x1), . . . , 1An(xn)). We denote the
class of such functions by CShape(m,n).

We call them combinatorial shapes because they general-
ize combinatorial rectangles, which are simply the subset of
CShape(m,n) where the symmetric function h is the AND
function. PRGs for combinatorial rectangles have received
considerable attention [EGL+92, ASWZ96, Lu02], and have
applications to numerical integration.

The class CShape(2, n) is interesting in its own right, as
it comprises all Boolean functions f : {0, 1}n → {0, 1} that
are symmetric functions of a subset S ⊆ [n] of variables. In



order to fool CShape(2, n), the distribution of
∑
i∈S xi needs

to be ε-close to BIN(|S|, 1
2
) in statistical distance for every

S ⊆ [n]. 1 Prior to our work, the best known generator
for this problem was Nisan’s generator [Nis92] which gives
seed-length O(log2 n). Similarly, PRGs for CShape(m,n)
imply generators that can fool such tests under multinomial
distributions, by choosing the set Ai so that 1Ai(xi) = 1
with probability pi.

Parities of subsets are a special case of CShape(2, n); hence
PRGs that fool CShape(2, n) are a strengthening of the ever
so versatile ε-biased generators [NN93]. Recently, a different
strengthening of ε-biased generators was considered, where
bit-generators were given that fool sums modulo larger primes
or even composites [LRTV09, MZ09]. The seed-length of
these constructions is super-logarithmic unless the moduli
is constant. It is easy to argue that a generator that fools
CShape(2, n) also fools sums modulo an arbitrary moduli, or
even non-modular sums.2

Note that in the above examples of combinatorial shapes,
the symmetric function h could be computed by a con-
stant width branching program. In this sense, combinatorial
shapes seem significantly more powerful. Halfspaces with
0/1 coefficients are also special cases of CShape(2, n), where
the symmetric function cannot be evaluated by a constant
width branching program. PRGs which fool halfspaces were
recently given in [DGJ+10, MZ10]; the latter will be a use-
ful tool in our construction. Note however that these results
only guarantee that

∑
i∈S xi is close to BIN(|S|, 1

2
) in Kol-

mogorov distance, whereas our goal is to get closeness in
statistical distance. (For definitions of these distances, see
Section 2.)

1.1 Main Results
Our main result is a PRG construction which fools CShape(m,n).

Theorem 1.3 (Main). For every ε > 0, there exists a
PRG that ε-fools CShape(m,n) with seed-length O(logm +
logn+ log2(1/ε)).

When m is polynomial in n, these PRGs have seed length
O(logn+ log2(1/ε)). Previously, the best known PRGs had
seed length O(log2 n), even for m = 2; these were the PRGs
for space-bounded computation by Nisan and Impagliazzo,
Nisan and Wigderson.

Along the way we also give a new PRG for combinatorial
rectangles with seed-length O(log3/2 n) and error 1/poly(n).
This matches the parameters of the previous best generator
due to Lu [Lu02] for polynomially small ε.

Theorem 1.4. For every ε > 0, there exists a generator
that ε-fools (m,n)-combinatorial rectangles with seed-length

O(logn
√

log(1/ε)).

Our constructions are based on a simple lemma about the
convolution of two real-valued distributions. This lemma
enables us to amplify closeness in Kolmogorov distance to
closeness in statistical distance. We further use this lemma

1For n > 0, p ∈ [0, 1], BIN(n, p) denotes the binomial distri-
bution of order n and bias p.
2Note that [LRTV09, MZ09] gives generators that fool
sums with arbitrary coefficients. Generators that fool
CShape(2, n) also fool modular (and non-modular) sums
with 0/1 coefficients.

to give a new proof of a powerful variant of the classical
Central Limit Theorem which guarantees convergence to the
appropriate binomial distribution in statistical distance, as
opposed to Kolmogorov distance.

The classical Central Limit Theorem (CLT) says that a
sum of independent random variables should be close, in
Kolmogorov distance, to the corresponding Gaussian or Bi-
nomial random variable. The Kolmogorov distance is weaker
than statistical (total variation) distance dTV, since Kol-
mogorov distance allows only special types of statistical tests,
namely threshold functions. Nevertheless, if the random
variables are integer-valued, then under some reasonable
conditions it is known that a sum of independent variables
approaches the appropriate binomial distribution in statisti-
cal distance. Such theorems are called discrete central limit
theorems.

For clarity, in the introduction we only state our discrete
central limit theorem for the case of multinomial distribu-
tions.

Theorem 1.5. Let X1, . . . , Xn be independent indicator
random variables with Pr[Xi = 1] = pi. Let X =

∑
iXi,

E[X] = µ,Var(X) =
∑
i pi(1 − pi) = σ2. Then, for Z ←

BIN(m, q), where m = µ2/(µ−σ2), q = (µ−σ2)/µ, dTV(X,Z) =

O
(√

log(σ)/σ
)

.

The parametersm, q above are chosen so that E[Z] = E[X]
and Var[Z] = Var[X]. Limit theorems as above with almost
optimal error estimates (Θ(1/σ)) are known in the proba-
bility literature (see [BX99, BC02] and references therein).
However, most previous results use Fourier techniques or
Stein’s method and appear significantly more complicated,
at least to us. In contrast our proof is elementary, relying
only on the classical Berry-Esséen theorem and few simple
properties of the binomial distribution. We also obtain a
more general invariance principle, Theorem 4.2, for the case
of sums of integer-valued random variables.

Discrete central limit theorems as above have, at least im-
plicitly, been used before in computer science. Two promi-
nent instances are the works of Daskalakis and Papadim-
itriou [DP07, DP08]. A main technical result in these works
can be viewed as a discrete limit theorem and roughly says
the following: given a multinomial distribution (or more gen-
erally, a multivariate-multinomial distribution), the proba-
bilities of each of the indicator variables can be rounded to
multiples of a parameter 1/ε, so as to not incur too much
of a loss in statistical distance. Their arguments for show-
ing the discrete CLT are quite involved and use a variety
of sampling and Poisson approximation techniques. Given
the generality of our argument for proving Theorem 1.5, it
is conceivable that a similar argument can be extended to
the more nuanced discrete limit theorems of [DP07, DP08].

1.2 Outline of Constructions
We say that a random variable Y is α-shift invariant if

dTV(Y, Y + 1) ≤ α. Several common distributions, such as
binomial, Gaussian, and multinomial distributions, are all
shift-invariant, roughly, inversely proportional to their stan-
dard deviation.

The starting point for our results is the following lemma,
which says that two distributions that are close in Kol-
mogorov distance when convolved with a shift-invariant dis-
tribution become close in statistical distance.



Lemma 1.6 (Main Convolution Lemma). Let X be
a α-shift invariant distribution and let Y,Z be integer-valued
distributions with support contained in [a, a + b] for some
a ∈ R, b > 0 ∈ R. Then,

dTV(X + Y,X + Z) ≤ 4
√
αbdcdf(Y,Z).

We next sketch the proof of the discrete central limit the-
orem Theorem 1.5, as similar (though somewhat more in-
volved) ideas underlie our PRG for fooling combinatorial
shapes. We partition the variables into two sets S and T
such that XS =

∑
i∈S Xi and XT =

∑
j∈T Xi have approxi-

mately the same mean and variance. We introduce variables
YS and YT which are two independent copies of BIN(m/2, q).
Then, the Berry-Esséen theorem, which is a quantitative
form of the classical central limit theorem, guarantees the
closeness of XS , YS and XT , YT in Kolmogorov distance.
Secondly, multinomial distributions are shift-invariant. Hence
we bound the statistical distance between XS + XT and
YS +YT , by using our Convolution lemma to show that each
of them is close to XS + YT in statistical distance.

1.2.1 PRG for Combinatorial Shapes
For intuition, it is easier to work with the equivalent goal

of fooling combinatorial sums in statistical distance.

Definition 1.7. A function f : [m]n → [n] is an (m,n)-
combinatorial sum if there exist sets A1, . . . , An ⊆ [m] such
that f(x1, . . . , xn) ≡ 1A1(x1) + 1A2(x2) + · · ·+ 1An(xn). We
denote this class of functions by CSum(m,n).

It is straightforward to verify that fooling combinatorial
shapes is equivalent to fooling combinatorial sums in the
stronger, statistical distance.

The basic building block for our constructions is a nat-
ural extension, GH,k,t, of the main generator for fooling
halfspaces over {0, 1}n of Meka and Zuckerman [MZ10] (see
Equation 5.1 for the exact definition), which in turn is a
simplified version of a hitting set generator due to Rabani
and Shpilka [RS10]. The generator GH,k,t uses a random
hash function from H to map variables to t buckets pairwise
independently and then uses k = O(1)-wise independence
within each bucket.

Our high level approach to fooling combinatorial sums is
as follows:

1. We first show that GH,k,t fools combinatorial sums with
small variance in statistical distance. We show that since
the combinatorial sum restricted to each bucket has very
small variance, bounded independence fools the sum re-
stricted to a bucket in statistical distance. We then
take a union bound across the different buckets. A weak
bound for fooling the sum in each bucket is easy; how-
ever to apply the union bound requires a much stronger
bound, which we prove using the “sandwiching polyno-
mials” technique introduced by Bazzi [Baz09].

2. We then show that GH,k,t fools combinatorial sums with
high variance in Kolmogorov distance. We use the pair-
wise independence of H to argue that the total variance
is well spread among the t buckets and then apply the
Berry-Esséen theorem to show that the distribution is
close to the right distribution in Kolmogorov distance.
The analysis for this case is similar to the argument of
Meka and Zuckerman [MZ10] for regular halfspaces.

3. We construct a generator Hm,n fooling n dimensional
combinatorial sums in statistical distance by recursively

combining a generator fooling n/2 dimensional sums in
Kolmogorov distance with a generator fooling n/2 di-
mensional sums in statistical distance. Unfolding this
recursion, the generator Hm,n hashes variables into logn
buckets of geometrically increasing sizes and applies the
generator GH,k,t to each bucket. We analyze this gen-
erator by exploiting the recursive construction to apply
Lemma 1.6 at every step. We view this recursive con-
struction and analysis of the Hm,n as the most novel part
of our PRG construction. The analysis, while similar in
spirit to our proof of the discrete central limit theorem
Theorem 1.5 is more involved.

4. Finally, we show that one can generate the seeds for
each bucket using the PRGs for small-space sources of
[INW94], [NZ96] rather than independently. This is done
by constructing small-width sandwiching branching pro-
grams for combinatorial sums.

We obtain our result on fooling combinatorial rectangles
by setting the parameters of GH,k,t appropriately and then
derandomizing the construction using [Nis92, INW94] as
above. The analysis however is different and uses a sim-
ple application of the principle of inclusion-exclusion and
few properties of k-wise independent hash functions.

1.3 Related Work
Independently and simultaneously, Watson [Wat11] stud-

ied the special case of combinatorial shapes where the sym-
metric function h is the parity function. Watson terms such
functions combinatorial checkerboards and obtains a PRG
with a seed-length of O(logm+ logn log log n+ log3/2(1/ε))
which is better than the seed-length we get for small ε.

As indicated earlier, PRGs for several special cases of com-
binatorial shapes have been studied previously. There was a
lot of classical work on low-discrepancy sets for axis-parallel
rectangles in low dimension; see for example [Mat99]. Even,
Goldreich, Luby, Nisan, and Velickovic [EGL+92] were the
first to give good constructions in high dimension; they gave
PRGs for combinatorial rectangles which used an O(log2 n)
bit seed to achieve error 1/poly(n) when m = poly(n). Ar-
moni, Saks, Wigderson, and Zhou [ASWZ96] improved the
parameters to achieve a seed of length O(logm + logn +
log2(1/ε)). The best construction is by Lu [Lu02], who

achieved a seed length of O(logm+ logn+ log3/2(1/ε)).
Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola [DGJ+10]

showed that O(log2(1/ε)/ε2)-wise independence ε-fools half-
spaces, which gives a seed of length O((logn) log2(1/ε)/ε2).
Meka and Zuckerman [MZ10] gave a different PRG with seed
length O(logn+ log2(1/ε)).

The notion of ε-biased spaces was introduced by Naor and
Naor [NN93], who gave a PRG using O(logn + log(1/ε))
bits. Alon, Goldreich, Hastad, and Peralta [AGHP92] gave
alternate constructions matching this bound. Lovett, Rein-
gold, Trevisan, and Vadhan [LRTV09] gave a PRG over
bits that fools sums modulo m, requiring a seed of length
O(logn + log(m/ε) log(m log(1/ε))). A similar, somewhat
weaker construction was found independently by Meka and
Zuckerman [MZ09].

2. NOTATION AND PRELIMINARIES
We use the following notation.



1. Most upper case letters X,Y, Z, . . . denote real-valued
random variables.

2. For integer-valued random variables X,Y , the statistical
distance dTV(X,Y ) between X,Y is defined as follows:

dTV(X,Y ) ≡ 1

2

∑
i

|Pr[X = i]− Pr[Y = i]|.

3. For real-valued random variables X,Y , the Kolmogorov
distance (or cdf distance) dcdf(X,Y ) between X,Y is de-
fined by dcdf(X,Y ) ≡ supθ∈R |Pr[X < θ]− Pr[Y < θ]|.

4. For a real-valued random variable X, we let E[X], σ(X),
Var[X] denote the expectation, standard deviation and
variance of X respectively. For a, b > 0, N (a, b) denotes
the Gaussian distribution with mean a and variance b.

We use the following formulation of the Berry-Esséen theo-
rem:

Theorem 2.1 ([Fel71], [She07]). For Y =
∑
i Yi a

sum of independent random variables and Z ← N (0, 1),

dcdf

(
Y − E[Y ]

σ(Y )
, Z

)
≤

(
∑
i E[ |Yi − E[Yi]|4 ] )1/2

σ(Y )2
.

The proofs of the following simple facts can be found in the
full version.

Corollary 2.2 (Berry-Esséen for Multinomials).
For Y =

∑
i Yi a sum of independent indicator variables,

Z ← N (0, 1),

dcdf ( (Y − E(Y ))/σ(Y ), Z ) ≤ 1/σ(Y ).

Proof. Follows from Theorem 2.1, as for 0, 1 valued Yi,∑
i E[|Yi − E[Yi]|4] ≤

∑
i E[|Yi − E[Yi]|2].

Fact 2.3. For Z1 ← N (µ1, σ1), Z2 ← N (µ2, σ2), for
σ1 ≥ 1,

dcdf(Z1, Z2) = O

(
|µ1 − µ2|

σ1
+

√
|σ2

1 − σ2
2 | log(σ1)

σ1

)
.

Fact 2.4. Any multinomial distribution X with Var(X) =
σ2 is (2/σ)-shift invariant.

Fact 2.5. For any multinomial distribution X, and δ >
0, Pr[ |X − E[X]| ≥ 3σ(X)

√
log(1/δ) ] ≤ δ.

Below we define some of the standard tools in derandom-
ization that we use.

Definition 2.6 (Hash Families). A family of hash func-
tions H = {h : [n] → [t]} is k-wise independent if for all
distinct i1, . . . , ik ∈ [n] and `1, . . . , `k ∈ [t],

Pr
h∈uH

[h(i1) = `1 ∧ h(i2) = `2 ∧ · · · ∧ h(ik) = `k ] =
1

tk
.

Efficient constructions of H as above with |H| = O(nk)
are known. A family of Pairwise-independent permutations
H = {h : [n] → [n]} is defined similarly, with the addi-
tional requirement that the hash functions h : [n] → [n] be
permutations.

Definition 2.7 (k-wise independent spaces). A gen-
erator G : {0, 1}r → [m]n is said to generate a k-wise inde-
pendent space if for y ∈u {0, 1}r, for all distinct i1, . . . , ik ∈
[n], b1, . . . , bk ∈ [m],

Pr[ (G(y))i1 = b1 ∧ (G(y))i2 = b2 ∧· · ·∧(G(y))ik = bk ] =
1

mk
.

Efficient constructions of generators G as above with r =
O(k(logm + logn)) are known. We also use the follow-
ing generalization of k-wise independence to arbitrary non-
uniform distributions.

Definition 2.8. A collection of random variables (X1, . . . , Xn)
over a universe U is k-wise independent if for all i1, . . . , ik ∈
[n], u1, . . . , uk ∈ U ,

Pr[Xi1 = u1 ∧ Xi2 = u2 ∧ · · · ∧Xik = uk ] =

Pr[Xi1 = u1 ] · Pr[Xi2 = u2 ] · · ·Pr[Xik = uk ].

Finally, we describe the pseudorandom generators for small-
width read-once branching programs (ROBPs) of [Nis92,
INW94, NZ96] which play a crucial role in reducing the seed
length of our constructions. We remark that we only use
these results in a black-box fashion.

Definition 2.9 (ROBP). A (S,D, T )-ROBP (read-once
branching program) M is a layered directed multi-graph with
T + 1 layers and at most 2S vertices in each layer. The
first layer has a single start vertex v0 and the vertices in
the last layer are labeled 0 (accepting) or 1 (rejecting). For
0 ≤ i < T , a vertex v in layer i of M has at most 2D

outgoing edges labeled with distinct elements of {0, 1}D, all
leading to a vertex in layer i+ 1.

A ROBP M as above defines a function M : ({0, 1}D)T →
{0, 1} naturally, where on input (z1, . . . , zT ) we traverse the
graph according to the edge labels z1, . . . , zT and output the
label of the final vertex reached.

Definition 2.10 (PRGs for ROBPs). A generator G :
{0, 1}r → ({0, 1}D)T is said to ε-fool (S,D, T )-ROBPs if for
all (S,D, T )-ROBPs M ,∣∣∣∣ Pr
y∈u{0,1}r

[M(G(y)) = 1 ]− Pr
x∈u({0,1}D)T

[M(x) = 1 ]

∣∣∣∣ ≤ ε.
Nisan [Nis92] gave a PRG that ε-fools (S,D, T )-ROBPs with
seed length O((S+D+log(T/ε)) log T ). We use the PRG of
Impagliazzo et al. [INW94] who gave a slightly better PRG
with seed length O(D + (S + log(T/ε)) log T ) for fooling
(S,D, T )-ROBPs with error ε. We also use the result of
Nisan and Zuckerman [NZ96] who obtained a better PRG
for the case when T = poly(S,D). In particular, they gave a
PRG with seed length O(S+D) for fooling (S,D, T )-ROBPs

with error ε, when T = poly(S,D) and ε ≥ 2log1−γ(S+D) for
arbitrary γ > 0.

3. MAIN CONVOLUTION LEMMA
We now prove Lemma 1.6. Recall that it enables us to

translate closeness in Kolmogorov distance to closeness in
statistical distance, and hence plays a key role in our results.
The lemma says that if we consider two distributions Y,Z
that are close in cdf distance and bounded by b, and convolve
them with a distribution which is (1/b)-shift invariant, then
the resulting distributions are statistically close.

Proof of Lemma 1.6. Without loss of generality sup-
pose that Y,Z are supported in [0, b). For d ∈ Z+ to be cho-
sen later, let Yd be the integer random variable with support
over Sd = {id : i ∈ Z+, i ≤ bb/dc}, with pdf pd defined by,
pd(id) = Pr[Y ∈ [id, (i+ 1)d)]. We first show that

dTV(X + Y,X + Yd) ≤ αd. (3.1)



There is a natural coupling of Y and Yd: we set Yd = id with
probability pd(id) and then sample Y = Yd + Ȳ from the
interval [id, (i+ 1)d) according to the marginal distribution
of Y conditioned on the event that Y ∈ [id, (i + 1)d). Note
that Ȳ ∈ {0, 1, . . . , d− 1} and it is an integer. We have

dTV(X + Y,X + Yd) = dTV(X + Yd + Ȳ , X + Yd).

Further, conditioned on a particular value of Yd = id,

dTV(X + Yd + Ȳ , X + Yd) = dTV(X + Ȳ , X) ≤ αd,

where the last inequality follows from the shift invariance of
X and the fact that Ȳ ∈ {0, . . . , d− 1}. Therefore,

dTV(X + Y,X + Yd) = dTV(X + Yd + Ȳ , X + Yd) ≤ αd.

We define Zd similarly. It follows that dTV(X+Z,X+Zd) ≤
αd. Next we bound dTV(Yd, Zd).

Observe that Yd, Zd both have supports of size at most
b/d. For any i,

| Pr[Yd = id]− Pr[Zd = id] | =
| Pr[Y ∈ [id, (i+1)d) ]−Pr[Z ∈ [id, (i+1)d) ] | ≤ 2dcdf(Y,Z).

Hence dTV(Yd, Zd) ≤ (2b/d)dcdf(Y,Z). Combining the
above equations,

dTV(X + Y,X + Z) ≤ dTV(X + Y,X + Yd)+

dTV(X + Yd, X + Zd) + dTV(X + Zd, X + Z)

≤ 2αd+
2bdcdf(Y,Z)

d
.

The lemma now follows by setting d = d
√
bdcdf(Y,Z)/αe.

One can weaken the boundedness requirement to say that
Y and Z rarely exceed b. We record the following easy
corollary without proof.

Corollary 3.1. Let X be a α-shift invariant distribution
and let Y,Z be two integer-valued distributions. Then, for
a ∈ R and b ∈ R+ and I = [a, a+ b),

dTV(X+Y,X+Z) ≤ 4
√
αbdcdf(Y,Z)+Pr[Y 6∈ I]+Pr[Z 6∈ I].

4. DISCRETE CENTRAL LIMIT THEOREMS
We now prove the discrete central limit theorem Theo-

rem 1.5. As outlined in the introduction, the proof proceeds
by partitioning the variables appropriately and using the
convolution lemma. The following easy fact (whose proof
we omit) is used to partition the variables.

Fact 4.1. Let 0 ≤ a1 ≤ · · · ≤ an ≤ 1. Let S ⊂ [n] consist
of all odd indices. Then |

∑
i∈S ai − (

∑
j aj)/2| ≤ an/2.

Proof of Theorem 1.5. Without loss of generality sup-
pose that σ1 ≤ σ2 ≤ · · · ≤ σn, where σi = σ(Xi). Let
S and T consist of odd and even indices respectively. Let
XS =

∑
i∈S(Xi − E[Xi]) and XT =

∑
i∈T (Xi − E[Xi]). Let

σ2
S = Var(XS). Then, from Fact 4.1 |σ2

S − σ2/2 | ≤ 1/2.
Let YS , YT denote two independent copies of (BIN(m/2, q)−

µ/2) for m, q as in the theorem statement. Note that YS+YT
has distribution BIN(m, q) − µ and that E[YS ] = E[YT ] = 0
and Var(YS) = Var(YT ) = σ2/2.

We proceed to bound the various quantities (α,B and
dcdf) required to apply the convolution lemma. By Fact 2.4,

XS , YS , XT , YT are all α = (2/σ)-shift invariant. By Theo-
rem 2.1 and Fact 2.3,

dcdf(XS , YS) ≤ dcdf(XS ,N (0, σ2
S)) + dcdf(YS ,N (0, σ2/2))+

dcdf(N (0, σ2
S),N (0, σ2/2))

≤ 1

σ
+

1

σ
+O

(√
log(σ)

σ

)
= O

(√
log(σ)

σ

)
.

(4.1)

A similar bound holds for dcdf(XT , YT ).
Next we show that XS , XT , YS , YT are bounded in a range

[−B,B] with probability (1 − 1/σ). By Fact 2.5, for B =
12(σ
√

log σ), Pr[ |XS | > B ] ≤ 1/4σ, and a similar state-
ment holds for XT , YS , YT . We then apply the union bound.
Therefore, applying Corollary 3.1,

dTV(XS +XT , YS + YT ) ≤ dTV(XS +XT , XS + YT )+

dTV(XS + YT , YS + YT )

≤ 4
√
αBdcdf(XT , YT ) + 4

√
αBdcdf(XS , YS) +

1

σ

= O
(√

log(σ)/σ
)
. (By Equation 4.1)

We next generalize Theorem 1.5 to sums of independent
integer-valued variables (as opposed to indicator random
variables). The error term in the statistical distance guar-
antee we get depends on the Kolmogorov distance guarantee
given by the Berry-Esséen theorem and on the shift invari-
ance of the individual random variables. The dependence
on these terms is in some sense unavoidable (as explained
below). As for the case of indicator random variables our
bound is weaker those those of the more fine-grained results
of [BX99, BC02]. However, the arguments and exact tech-
nical conditions of [BX99, BC02] are complicated and the
parameters we get are comparable up to Ω(1) factors in the
exponents.

Theorem 4.2. Let X̄ = (X1, . . . , Xn), Ȳ = (Y1, . . . , Ym)
be two sets of independent integer-valued variables. Let X =∑
iXi, Y =

∑
i Yi and let E[X] = E[Y ], σ2 = Var(X) =

Var(Y ). Further, let

max
i
{Var(Xi),Var(Yi)} ≤ σ2/2,

max(
∑
i

E[ |Xi − E[Xi]|3 ],
∑
i

E[ |Yi − E[Yi]|3 ] ) ≤ ρ,

4 ≤ U = min(
∑
i

(1−dTV(Xi, Xi+1)),
∑
j

(1−dTV(Yj , Yj+1)) ).

Then,

dTV(X,Y ) = O

((
ρ log(1/σ)

σ2U1/2

)1/2

+
ρ

σ3
+

1

σ

)
.

Note that for a limit theorem as above to hold, we need as-
sumptions on X,Y stronger than matching means and vari-
ances which was enough for the Berry-Esséen theorem. For
instance, the Xi’s could be supported on even integers and
Yi’s on odd integers with X,Y having the same mean and
variances. In this case the statistical distance between X,Y
is 1, whereas the Kolmogorov distance could still be small.



Thus, the additional assumption that Xi’s, Yi’s have some
shift-invariance is a natural restriction to have.

The proof of the above theorem can be found in the full
version of our paper.

5. PRGS FOR COMBINATORIAL SHAPES
We use the following extension of the main generator for

fooling halfspaces over {0, 1}n of Meka and Zuckerman [MZ10].
Fix k, t > 0 and let d = n/t. Let H = {h : [n] → [t]}
be a pairwise independent family of hash functions. Let
Gk : {0, 1}rk → [m]d generate a k-wise independent space
over [m]d. Efficient constructions of H with |H| = poly(n)
and Gk with rk = O(k(logm+ log d)) are known. The gen-
erator GH,k,t : H× ({0, 1}rk )t → [m]n is defined as follows:

GH,k,t(h, z
1, . . . , zt) = x, where xh−1(i) = Gk(zi) for i = 1, . . . , t.

(5.1)
As sketched in the introduction we work with fooling combi-
natorial sums in statistical distance and first study the case
of combinatorial sums with small variance.

Definition 5.1. A generator G : {0, 1}r → [m]n ε-fools
CSum(m,n) in statistical distance if for any f ∈ CSum(m,n),
the random variables X = f(G(x)), x ∈u {0, 1}r and Y =
f(y), y ∈u [m]n satisfy dTV(X,Y ) ≤ ε. Similarly, we say
that G ε-fools CSum(m,n) in Kolmogorov (cdf) distance if
X and Y satisfy dcdf(X,Y ) ≤ ε.

We first set up some notation to be used henceforth. Let
f : [m]n → [n] be an (m,n)-combinatorial sum with f(x) =∑n
i=1 1Ai(xi) for Ai ⊆ [m]. For xi ∈u [m], define the indi-

cator variable Xi = 1Ai(xi). Let

pi = E[Xi], σ
2
i = Var[Xi] = pi(1−pi), µ =

n∑
i=1

pi, σ
2 =

n∑
i=1

σ2
i .

Let X =
∑n
i=1 Xi, so E[X] = µ and σ2(X) = σ2 provided

the Xi’s are pairwise independent.

5.1 Fooling Small Combinatorial Sums
We now study the case of combinatorial sums with small

variance. The strategy is as follows: since Var[f ] is small,
there is a small set L ⊆ [n] of large variance variables, such
that all other indicator random variables Xi = 1Ai(xi),
i 6∈ L, have small variance. To handle variables in L, we
argue that they will each be hashed into a different bucket.
Thus the distribution on these variables is truly uniform, and
moreover, conditioned on their values, the distribution of the
output of the generator in each bucket is (k − 1)-wise inde-
pendent. We then use the fact that the combinatorial sum
restricted to each bucket has very small total variance and
show that bounded independence fools the sum restricted
to a bucket in statistical distance. Finally we take a union
bound across the different buckets to show the desired claim.
As mentioned in the introduction, we use the “sandwiching
polynomials” technique introduced by Bazzi to show a suf-
ficiently strong bound for fooling the sum in each bucket so
as to apply a union bound.

Theorem 5.2 (Fooling Small Combinatorial Sums).
Let f ∈ CSum(m,n) with Var[f ] ≤ 6/ε2. For k = 35 and
t = C/ε15, the generator GH,k,t O(ε)-fools f in statistical
distance.

Fix a f ∈ CSum(m,n) with σ2 ≤ 6/ε2 and let k, t be as
above. Let L = {i : σ2

i ≥ ε5}. Since σ2 =
∑
i σ

2
i ≤ 6/ε2, we

have |L| ≤ 6/ε7. For each bucket Bj we define the variable
Tj =

∑
i∈Bj\L σ

2
i . We say a hash function h ∈ H is good if

the following conditions hold:

1. All variables in L are mapped to distinct buckets.

2. For every bucket Bj , Tj ≤ ε.

Lemma 5.3. A random hash function h ∈u H is good with
probability at least 1− 2ε.

Proof. By the pairwise independence of H, each pair of
variables i 6= j ∈ Lmaps to the same bucket with probability
1
t
. By a union bound, the probability that condition (1) fails

is at most |L|2/2t ≤ ε.
Fix j ∈ [t] and for i ∈ Lc, let Ii be the indicator of the

event h(i) = j. Then Tj =
∑
i∈Lc σ

2
i Ii,

E[T 2
j ] = E[ (

∑
i∈Lc

σ2
i Ii)

2 ] ≤
∑
i∈Lc

σ4
i

t
+

∑
i 6=l∈Lc

σ2
i σ

2
l

t2

≤ (max
i∈Lc

σ2
i )
∑
i∈Lc

σ2
i

t
+

1

t2

(∑
i∈Lc

σ2
i

)2

≤ ε5σ2

t
+
σ4

t2
≤ 12ε3

t
.

Therefore, by Markov’s inequality

Pr[Tj > ε] <
E[T 2

j ]

ε2
≤ ε

t

By a union bound, Tj ≤ ε holds for all j ∈ [t] except with
probability ε.

Thus overall h is good with probability 1− 2ε.

The above lemma essentially reduces us to the case where
all the indicator random variables in each bucket have very
small variance, and thus have bias very close to 0 or 1. The
following lemma whose proof can be found in the full version
lets us handle such variables.

Lemma 5.4. Let X =
∑n
i=1 Xi and Y =

∑n
j=1 Yj be

sums of independent indicator random variables such that
E[X],E[Y ] ≤ ε. Let D be a (2d+2)-wise independent distri-
bution over {0, 1}2n with the same coordinate-wise marginals
as (X1, . . . , Xn, Y1, . . . , Yn). Then, for (X ′1, . . . , X

′
n, Y

′
1 , . . . ,

Y ′n) ← D, (
∑
iX
′
i,
∑
i Y
′
i ) is Od(ε

d)-close in statistical dis-
tance to (X,Y ).

We note that a bound of O(ε) is trivial for the lemma
above: each of X and Y are non-zero with probability at
most ε under a pairwise independent distribution. However
we need a stronger O(εd) bound so that we can use the
union bound over all buckets, and this requires more work.
We first prove Theorem 5.2 assuming the above lemma.

Proof of Theorem 5.2. Let x ∈ [m]n be the string gen-
erated by GH,k,t and let y ∈u [m]n. Let Xi = 1Ai(xi) and
Yi = 1Ai(yi) be the indicator variables on each co-ordinate.
Assume that the hash function h is good in the sense of
Lemma 5.3. Then, each variable in L is mapped to a dis-
tinct bucket, so the values of {xi}i∈L are uniform and in-
dependent. By coupling the variables xi and yi for i ∈ L,
it suffices to show that

∑
i∈Lc Xi and

∑
i∈Lc Yi are close in



statistical distance when the distribution within each bucket
Bj is (k−1)-wise independent, and the buckets are indepen-
dent. To simplify our notation, we henceforth assume that
L = ϕ and Lc = [n].

Fix a bucket Bj . We can partition Bj into B0
j = {i ∈ Bj :

pi <
1
2
} and B1

j = {i ∈ Bj : pi ≥ 1
2
}. Let X̄i = 1 − Xi

for i ∈ B1
j , so that Pr[X̄i = 1] = 1 − pi. Define variables

Zj =
∑
i∈B0

j
Xi and Z′j =

∑
i∈B1

j
X̄i.∑

i∈Bj

Xi =
∑
i∈B0

j

Xi +
∑
i∈B1

j

(1− X̄i) = Zj − Z′j + |B1
j |.

Now, since h is good, Tj ≤ ε, and E[Zj ],E[Z′j ] ≤ 2ε. Since
the distribution in each bucket is k − 1 ≥ 34-wise inde-
pendent, we can apply Lemma 5.4 to the collections {Xi :
i ∈ B0

j }, {1 − Xi : i ∈ B1
j } with d = 16 to conclude that

(Zj , Z
′
j) is O(ε16)-close in statistical distance to the distri-

bution when the variables Xi ∈ Bj are truly independent.
This implies that

∑
i∈Bj Xi is O(ε16) close in statistical

distance to
∑
i∈Bj Yi. Since variables across buckets are

independent of one another, we conclude by a union bound
that

∑
i∈[n] Xi =

∑
j∈[t]

∑
i∈Bj Xi is O(tε16) = O(ε) close

in statistical distance to
∑
i∈[n] Yi.

5.2 Fooling Large Combinatorial Sums in Kol-
mogorov Distance

We next show that the generator GH,k,t fools combinato-
rial sums in Kolmogorov distance when the variance σ2 of
the sum is large.

Theorem 5.5 (Fooling Large Combinatorial Sums).
Let f ∈ CSum(m,n) with Var[f ] ≥ 1/ε2. Then for k ≥ 4 and
t ≥ 1/ε2, the generator GH,k,t O(ε)-fools f in Kolmogorov
distance.

We use the following property of pairwise independent hash
functions. For a hash function h ∈u H, Let Bj = {i : h(i) =
j} denote the jth bucket of variables. Let Pj =

∑
i∈Bj pi

and Sj =
∑
i∈Bj σ

2
i . Finally, let Sh = (

∑t
j=1 S

2
j )

1
2 .

Lemma 5.6. We have Eh[Sh] ≤ σ + σ2/
√
t.

Proof of Lemma 5.6. Fix j ∈ [t]. For each i ∈ [n], let
Ii be the indicator of the event h(i) = j where h ∈R H.
Then, Eh[Ii] = 1/t and for l 6= i, Eh[IiIl] = 1/t2 by pairwise
independence. As Sj =

∑n
i=1 Iiσ

2
i ,

E
h

[S2
j ] =

n∑
i=1

σ4
i E
h

[Ii] + 2
∑
i6=j

σ2
i σ

2
j E[IiIj ]

≤ 1

t

n∑
i=1

σ2
i +

2

t2

∑
i6=j

σ2
i σ

2
j since σ4

i ≤ σ2
i

≤ σ2

t
+
σ4

t2
.

Since S2
h =

∑t
j=1 S

2
j , using linearity of expectation we get

E
h

[S2
h] ≤

t∑
j=1

E
h

[S2
j ] ≤ σ2 +

σ4

t
.

The claim now follows using Eh[Sh] ≤
√

Eh[S2
h].

Proof of Theorem 5.5. Let random variable Y = f(y)
for y ∈u [m]n. Then, Y has a multinomial distribution with
variance σ2 =

∑
i pi(1 − pi) > 1/ε2. Therefore, by Corol-

lary 2.2,

dcdf

(
Y − µ
σ

,N (0, 1)

)
≤ 1

σ
= ε. (5.2)

Let x ∈ [m]n be generated according to the generator
GH,k,t with parameters as in the theorem and let indicator
random variables Xi = 1Ai(xi) and let X =

∑
iXi. We

shall show that (X−µ)/σ is also close to N (0, 1). Fix a hash
function h ∈ H. Let Zj =

∑
i∈B(j) Xi. Since the Xis are

4-wise independent, E[Zj ] = Pj , Var[Zj ] =
∑
i∈Bj σ

2
i = Sj .

Further, we have

E[(Zj − Pj)4] = E[(
∑
i∈Bj

(Xi − pi))4]

=
∑
i∈Bj

E[(Xi − pi)4]+

3
∑

i6=l∈Bj

E[(Xi − pi)2]E[(Xl − pl)2]

≤
∑
i∈Bj

σ2
i + 3

∑
i 6=l∈Bj

σ2
i σ

2
l

(since (Xi − pi)4 ≤ (Xi − pi)2)

= Sj + 3S2
j .

Therefore, summing over all j we get

t∑
j=1

E[(Zj − Pj)4] ≤
t∑
j=1

Sj + 3

t∑
j=1

S2
j = σ2 + 3S2

h.

Using the Berry-Esséen theorem applied to independent ran-
dom variables Z1, . . . , Zt, for a fixed hash function h,

dcdf

(
X − µ
σ

,N (0, 1)

)
≤ (σ2 + 3S2

h)1/2

σ2
≤ 2

(
1

σ
+
Sh
σ2

)
.

Further, as dcdf is a convex function, using Lemma 5.6,

dcdf

(
X − µ
σ

,N (0, 1)

)
≤ 2

(
1

σ
+

Eh[Sh]

σ2

)
≤

2

(
2

σ
+

1√
t

)
≤ 6ε.

By Equation (5.2) we get dcdf((X−µ)/σ, (Y −µ)/σ) = O(ε)
which implies dcdf(X,Y ) = O(ε).

5.3 Reducing the seed-length via INW
We now derandomize GH,k,t using PRGs for small space

sources of Impagliazzo, Nisan, and Wigderson [INW94], which
we call the INW PRG. The derandomization follows from
Theorems 5.2, 5.5 and replacing the independent seeds z1, . . . , zt

in Equation 5.1 with the output of the INW PRG.

Theorem 5.7 (Derandomizing GH,k,t). There exists
a generator G ≡ Gm,n,ε : {0, 1}rm,n → [m]n with seed-length
rm,n = O(logm+ logn+ log2(1/ε)) such that

1. G O(ε)-fools all f ∈ CSum(m,n) with Var[f ] < 6/ε2

in statistical distance.

2. G O(ε)-fools all f ∈ CSum(m,n) with Var[f ] > 1/ε2

in Kolmogorov distance.



Consider GH,k,t with parameters set so as to satisfy the
conditions of Theorems 5.2, 5.5. Note that the seed length
of GH,k,t is O((logn)poly(1/ε)). We will reduce the seed
length by choosing the seeds z1, . . . , zt from the output of
the INW PRG (instead of independently as before). The
analysis proceeds roughly by arguing that for any (m,n)-
combinatorial sum f and hash function h ∈ H,

f(GH,k,t(h, z
1, . . . , zt)) ≡ gh(z1, . . . , zt)

is computable by a small-space machine when viewed as a
function of z1, . . . , zt.

Let INW : {0, 1}r → ({0, 1}rk )t be the INW genera-
tor that ε-fools (10 log(1/ε), rk, t), read-once branching pro-
grams. Define

G : H× {0, 1}r → [m]n by G(h, y) = GH,k,t(h, INW(y)).

We claim that G satisfies the conditions of Theorem 5.7.

Proof of Theorem 5.7. The claim on the seed length
ofG follows from the seed length of the INW generator which
uses r = O(rk + (log(1/ε) + log(t/ε)) log t) = O(logm +
logn+ log2(1/ε)) bits (see the discussion in Section 2). We
next show that G satisfies properties (1), (2).

Fix an (m,n)-combinatorial sum f and let x be the out-
put of generator GH,k,t with parameters as above. Fix a
hash function h ∈ H and define gh : ({0, 1}rk )t → [n]
by gh(z1, . . . , zt) = f(GH,k,t(h, z

1, . . . , zt)). For ` ∈ [t],
let B` = {i : h(i) = `} and let random variable Y` =∑
j:j∈B`

1Aj (xj). Then, Y` depends only on z` and

gh(z1, . . . , zt) =
∑
` Y`.

There is a natural (logn, rk, t)-ROBP M for computing
gh: the vertices of M are labeled {1, . . . , n} with states in
layer ` corresponding to the possible values of the partial
sum

∑
i≤` Yi and the edges out of layer ` are drawn according

to the change in the value of the partial sum. However,
using M directly to do the derandomization is problematic
as GS only fools O(log(1/ε)) space ROBPs. We get over this
hurdle by appropriately sandwiching M between smaller-
width branching programs. We defer the details to the full
version of the paper.

5.4 Fooling Combinatorial Sums
We now combine the generators from the previous section

to get our final generator fooling combinatorial sums in sta-
tistical distance. The basic idea is as follows: we partition
the n variables into two subsets L,R with |L| ∼ n/2, and
then use Gm,n/2 for the variables in L and an independent
Gm,n/2 on the variables in R. We analyze the construction
by induction and considering two cases. If the variance of
the combinatorial sum is small, we invoke Theorem 5.7 (1).
So now assume that the variance is large.

Let f be a combinatorial sum with Var[f ] > 6/ε2 and
write f = fL + fR, where fL, fR are the combinatorial sums
obtained by restricting to variables in L,R respectively. We
use the induction hypothesis to get a statistical distance
guarantee for fL and use Theorem 5.7 (2) to get a Kol-
mogorov distance guarantee for fR. We then argue that the
combinatorial sum fL has high variance and hence is shift
invariant. We then apply Lemma 1.6 and get a statistical
distance guarantee for f = fL + fR.

Fix ε ∈ [1/
√
n, 1/ logn] and let s = log(n+ 1). Let H1 =

{π : [n] → [n]} be a family of pairwise independent permu-
tations. Efficient constructions of H1 with H1 = poly(n)

are known. We pick π ∈u H1 and use it to partition [n]
into s buckets of geometrically increasing sizes. We de-
fine sets B1, . . . , Bs where Bj = {π(2j−1), . . . , π(2j − 1)},
thus |Bj | = 2j−1. Let rj be the seed-length of the gen-
erator Gm,2j−1,ε from Theorem 5.7. Our main generator
Hm,n : H1 × {0, 1}r1 × · · · × {0, 1}rs → [m]n uses an inde-
pendent sample from Gm,2j−1,ε for each bucket Bj :

Hm,n(π, z1, . . . , zs) = x, where xBj = Gm,2j−1,ε(z
j).
(5.3)

As before, let f(x1, . . . , xn) =
∑n
i=1 Xi whereXi = 1Ai(xi)

has mean pi and variance σ2
i . For each bucket Bj , let

Sj =
∑
i∈Bj σ

2
i . Let q ∈ {1, . . . , s} be the least index

such that E[Sq] > 3/ε2.
Call a permutation π bad if one of the following conditions

holds and good otherwise:

1. There exists an index j ∈ {q, . . . , s} such that Sj /∈
[0.5E[Sj ], 1.5E[Sj ]].

2. There exists j ∈ {1, . . . , q − 1} such that Sj ≥ 6/ε2.

Note that the sequence {E[Sj ]}sj=1 is in geometric progres-
sion. If π is good, then {Sj}sj=q is roughly geometric, and
none of {Sj}j≤q are too large.

Claim 5.8. Prπ∈uH1 [π is bad] ≤ 2ε.

Proof. Fix j ∈ {q, . . . , s}. Let Zi be the indicator of the
event π−1(i) ∈ {2j−1, . . . , 2j − 1} and hence i ∈ Bj . Then

Sj =

n∑
i=1

σ2
iZj ⇒ E[Sj ] =

σ22j−1

n
.

By the pairwise-independence of π,

E[S2
j ] =

∑
i

σ2
i E[Zi] +

∑
i 6=l

2σ2
i σ

2
l E[ZiZl]

≤ σ22j−1

n
+
σ22j−1(2j−1 − 1)

n(n− 1)

≤ σ22j−1

n
+
σ422(j−1)

n2
.

Hence, Var[Sj ] ≤ E[S2
j ]− E[Sj ]

2 ≤ σ22j−1/n = E[Sj ].
We now bound the probability of bad event (1). Fix j ∈
{q, . . . , s} so that E[Sj ] ≥ 3

ε2
. By Chebychev’s inequality

Pr

[
|Sj − E[Sj ]| >

E[Sj ]

2

]
≤ 4 Var[Sj ]

(E[Sj ]2)
≤ 4

E[Sj ]
≤ 2ε2.

Similarly, to bound bad event (2), we observe that E[Sj ] ≤
3/ε2 for j ≤ q − 1, hence

Pr[Sj ≥ 6/ε2] ≤ Pr[|Sj−E[Sj ]| > 3/ε2] ≤ ε4 Var[Sj ]/9 ≤ ε2.

Since ε < 1/ logn, the claim follows by a union bound
over i ∈ {1, . . . logn}.

Theorem 5.9. The Generator Hm,n fools CSum(m,n) with

error O(logn
√
ε log(1/ε)).

Proof. Let x ∈ [m]n be sampled from Hm,n, while y ∈u
[m]n. Let Xi = 1Ai(xi), Yi = 1Ai(yi) and

Xj =
∑
i∈Bj

Xi, Y j =
∑
i∈Bj

Yi,

X≤j =
∑
l≤j

Xl, Y ≤j =
∑
l≤j

Y l.



We assume from now on we condition on the chosen permu-
tation π being good. Observe that E[Xj ] = E[Y j ] and

Var[Xj ] = Var[Y j ] =
∑
i∈Bj

Var[Xi] =
∑
i∈Bj

σ2
i = Sj .

We claim that there is a constant C such that for j ∈ [s],

dTV(X≤j , Y ≤j) ≤ Cj
√
ε(log(1/ε)). (5.4)

The proof is by induction on j. It is easy to prove for j ≤
q. Since Var[Xl] = Var[Y l] = Sl < 6/ε2 for all l ≤ j,
by Theorem 5.7 (1), dTV(Xl, Y l) ≤ ε. As X1, . . . , Xj are
independent of one another, we have dTV(X≤j , Y ≤j) ≤ jε.
Now consider j ∈ {q + 1, . . . , s}. We have

dTV(X≤j−1 +Xj , Y ≤j−1 + Y j) ≤

dTV(X≤j−1+Xj , Y ≤j−1+Xj)+dTV(Y ≤j−1+Xj , Y ≤j−1+Y j).
(5.5)

The first term can be bounded using the induction hypoth-
esis:

dTV(X≤j−1 +Xj , Y ≤j−1 +Xj) ≤

dTV(X≤j−1, Y ≤j−1) ≤ C(j − 1)
√
ε(log(1/ε)). (5.6)

To bound the second term, we will apply Corollary 3.1. As
π is good and j > q, Var[Xj ] = Var[Y j ] = Sj ≥ E[Sj ]/2 >
1/ε2. Thus the variance is sufficiently large to apply The-
orem 5.7 (2), which gives dcdf(X

j , Y j) < ε. Moreover, by
Fact 2.5,

Pr
[
|Y j − E[Y j ]| > 3

√
Sj log(1/ε)

]
≤ ε.

Since Xj and Y j have the same mean and dcdf(X
j , Y j) < ε,

we get similar concentration for Xj :

Pr
[
|Xj − E[Xj ]| > 3

√
Sj log(1/ε)

]
≤ 3ε.

Thus, with probability 1 − 4ε, we have Xj , Y j ∈ [E[Xj ] −
b,E[Xj ] + b], where b = 3

√
Sj log(1/ε). Further, since π is

good, we have

Var[Y ≤j−1] ≥ Var[Y j−1] = Sj−1 > E[Sj−1]/2 ≥ E[Sj ]/4 > Sj/6.

Hence by Fact 2.4, Y ≤j−1 is α = (6/
√
Sj)-shift invariant.

We can now apply Corollary 3.1 with α = 6/
√
Sj and

b = 6
√
Sj log(1/ε) to get

dTV(Y ≤j−1 +Xj , Y ≤j−1 + Y j) ≤ 24
√
ε log(1/ε) + 4ε.

(5.7)

Substituting the bounds from Equations (5.6) and (5.7)
back into Equation (5.5) gives

dTV(X≤j , Y ≤j) ≤ C(j − 1)
√
ε log(1/ε)+

24
√
ε log(1/ε) + 4ε ≤ Cj

√
ε log(1/ε),

where C = 30.

We now derandomize the generator of Theorem 5.9 to get
our main result for fooling combinatorial shapes.

Proof of Theorem 1.3. We derandomize the genera-
tor Hm,n of Equation 5.3 as was done in Theorem 5.7 by
choosing the seeds z1, . . . , zs from the output of PRGs for

ROBPs. Fix δ > 0 and set the parameters of Hm,n as in
Theorem 5.9 with ε = δ/(log(1/δ) · logn). Fix a (m,n)-
combinatorial shape f and note that for a hash function
g ∈ H1, f(Hm,n(g, z1, . . . , zs)) when viewed as a function of
z1, . . . , zs is computable by a (S,D, T )-ROBP, where S =
logn, D = O(logm + logn + log2(1/ε)), and T = s =
O(logn). Further, as T = O(S + D), such ROBPs can
be fooled with error ε and seed length O(logm + logn +
log2(1/ε)) by using the PRG of [NZ96].

Let G be the generator obtained from Hm,n by using the
PRG of [NZ96] with parameters as above to generate the
seeds z1, . . . , zs of Equation 5.3 instead of independently
as before. Then, by Theorem 5.9, G O(δ)-fools (m,n)-
combinatorial sums with seed length O(logm+ logn+
log2(1/ε)) = O(logm+ logn+ log2(1/δ)).

6. PRGS FOR COMBINATORIAL RECTAN-
GLES

We prove that the generator GH,k,t of Equation 5.1 with

k = O(
√

log(1/ε)) and t = exp(O(
√

logn)) and H k-wise
independent fools combinatorial rectangles. We then deran-
domize the generator using the INW generator as in the
proofs of Theorems 5.7 and 1.3 to get our final PRG for
combinatorial rectangles. As mentioned before, though our
result is weaker than Lu’s generator, our construction is per-
haps simpler than Lu’s and our analysis is different from
Lu’s. Moreover, we match Lu’s parameters for the impor-
tant case when the desired error ε = poly(n).

Theorem 6.1. The generator GH,k,t with k = 5
√

log(1/ε)),

t = exp(5
√

log(1/ε)) and H a k-wise independent family of
hash functions, fools combinatorial rectangles with error at
most O(ε).

We use the following properties of k-wise independent fam-
ilies of hash functions. The proofs can be found in the full
version.

Lemma 6.2. For H = {h : [n] → [t]}, k-wise indepen-
dent, the following properties hold.

1. For any L ⊆ [n], |L| ≤ r, Pr[ ∃`, |h−1(`) ∩ L| ≥ k/2 ] ≤
t · (2re/kt)k/2.

2. Let q1, . . . , qn ∈ [0, 1],
∑
i qi = Q and maxi qi ≤ βQ.

Then, for any ` ∈ [t],

Pr[
∑

i:h(i)=`

qi ≥ Q/t+ β1/4Q ] ≤ 2(kβ1/2 log(1/β))k/2.

Proof of Theorem 6.1. Fix a combinatorial rectangle
f : [m]n → {0, 1} with f(x1, . . . , xn) = 1A1(x1) ∧ · · · ∧
1An(xn). Let y ∈u [m]n and Yi = 1Ai(yi), qi = 1 − E[Yi].
Let x be the output of the generator with parameters as in
the statement. Let Xi = 1Ai(xi) and X =

∑
iXi. Note

that

Pr[f(y) = 1] = (1− q1)(1− q2) · · · (1− q)n ≤ exp(−
∑
i

qi).

Therefore, if
∑
i qi > log(1/ε), then Pr[f(y) = 1] < ε. We

accordingly consider two cases to analyze our generator.
Case 1: Q =

∑
i qi ≤ 3 log(1/ε). Let L = {i : qi >

Q/
√
t}, Lc = [n]/L. Then, |L| <

√
t and by Lemma 6.2 (1)

it follows that for h ∈u H, max` |h−1(`) ∩ L| ≤ k/2 with



probability at least 1− 1/tΩ(k) = 1− ε. Consequently, for a
random h we can assume that the variables in L are truly
independent of one another. Moreover, when conditioned
on the variables in L, the variables from Lc in each bucket,
{xi : i ∈ B` = h−1(`), ∧i /∈ Lc} for ` ∈ [t], are (k/2)-wise
independent. To simplify notation we assume that L = ∅
and analyze the case where the Xi’s in a single bucket are
(k/2)-wise independent.

Now, for β = 1/
√
t, maxi qi < βQ. Therefore, by Lemma 6.2

(2), for h ∈u H with probability at least 1 − ε, Q` =∑
i:h(i)=` q

i < 6 log(1/ε)/t1/8 for all ` ∈ [t]. Further, by

the principle of inclusion-exclusion and (k/2)-wise indepen-
dence of Xi, i ∈ B`,

|Pr[∧i∈B`Xi]− Pr[∧i∈B`Yi]| ≤
∑

J⊆B`,|J|=k/2

Pr[∧i∈JXi]

≤

(
|B`|
k/2

)(
Q`

|B`|

)k/2
(power-mean inequality)

≤
(

2eQ`

k

)k/2
=

(
O(
√

log(1/ε))

t1/8

)k/2
= O(ε/t).

Therefore, as the Xi’s in different buckets are independent
of one another, by a union bound over ` ∈ [t] it follows that
|Pr[∧iXi = 1]− Pr[∧iYi = 1]| = O(ε).

Case 2:
∑
i qi > 3 log(1/ε). Let j ∈ [n] be the maxi-

mum index such that
∑
i qi ≤ 3 log(1/ε). Then,

∑
i≤j qi ≥

3 log(1/ε) − 1 > 2 log(1/ε). Therefore, Pr[∧i≤jYi = 1] ≤
exp(−

∑
i≤j qi) ≤ ε. Now, by applying the argument of the

previous case to the collection of variables X1, . . . , Xj it fol-
lows that Pr[∧i≤jXi = 1] = O(ε). Therefore, Pr[∧iXi =
1] = O(ε) from which the claim follows.

Proof of Theorem 1.4. The theorem follows by deran-
domizing GH,k,t with parameters as above by using the INW
PRG to generate z1, . . . , zt of Equation 5.1 instead of inde-
pendently as before.
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