
TMbox: A Flexible and Reconfigurable 16-core
Hybrid Transactional Memory System

Nehir Sonmez∗†, Oriol Arcas∗†, Otto Pflucker∗†, Osman S. Unsal∗,
Adrián Cristal∗‡, Ibrahim Hur∗, Satnam Singh§ and Mateo Valero∗†
∗ Barcelona Supercomputing Center (name.surname@bsc.es)

† Universitat Politècnica de Catalunya ‡ CSIC - Spanish National Research Council
§ Microsoft Research Cambridge (satnams@microsoft.com)

Abstract

In this paper we present the design and implemen-
tation of TMbox: An MPSoC built to explore trade-
offs in multicore design space and to evaluate parallel
programming proposals such as Transactional Memory
(TM). Our flexible system, comprised of MIPS R3000-
compatible cores is easily modifiable to study different
architecture, library and operating system extensions.
For this paper we evaluate a 16-core Hybrid Transac-
tional Memory implementation based on the TinySTM-
ASF proposal on a Virtex-5 FPGA and we accelerate
three benchmarks written to investigate TM.

1. Introduction

A recent alternative for exploring new generations
of multicores is based on building a multiprocessor
system-on-chip (MPSoC). This approach enables the
emulation of large parallel architectures on top of
a reconfigurable FPGA platform whose speed and
process technology (currently 28 nm) are evolving
faster than ASIC. Today’s FPGA systems can integrate
multiple hard/soft processor cores, multi-ported SRAM
blocks, high-speed DSP units, and programmable I/O
interfaces with configurable fabric of logic cells.

With the abundance of pre-tested Intellectual Prop-
erty (IP) cores available, nowadays it is possible to
prototype large architectures in a full-system environ-
ment which allows for faster and more productive
hardware research than software simulation. Over the
past decade, the RAMP project has already established
a well-accepted community vision and various novel
FPGA architecture designs [4], [6], [8], [13], [17], [22].
Another advantage of FPGA emulation over software
simulation is the reduced profiling overhead and the
possibility for a variety of debugging options.

One direction is to choose a well-known architec-
ture like MIPS and utilize the commonly-available
toolchains and library support. Although running a
minimal OS might be acceptable, a deeper software
stack could have many advantages by providing mem-
ory protection, performing scheduling, aiding debug-
ging and file system support. Full OS support can also
be accomplished with a nearby host computer which
serves system calls and handles exceptions, instead of
implementing them in the FPGA model [6].

A proposal that has drawn considerable attention for
programming shared-memory Chip Multi-Processors
(CMP) has been the use of Transactional Memory
(TM), an attractive paradigm for deadlock-free exe-
cution of parallel code without using locks. Locks
are prone to deadlock or priority inversion while TM
provides optimistic concurrency by executing atomic
transactions in an all-or-none manner. The programmer
encapsulates critical sections inside the atomic{}
construct and the underlying TM mechanism auto-
matically detects data inconsistencies and aborts and
restarts one or more transactions. If there are no
inconsistencies, all side effects of a transaction are
committed as a whole.

Transactional Memory can be implemented in hard-
ware (HTM) [3], [16], which is fast but resource-
bounded while usually requiring changes to the caches
and the Instruction Set Architecture (ISA), or software
(STM) [9] which can be flexible, run on off-the-shelf
hardware, albeit at the expense of lower performance.
To have the best of two worlds, there are intermediate
Hybrid TM (HyTM) proposals where transactions first
attempt to run on hardware, but are backed off to
SW when HW resources are exceeded, and Hardware-
assisted STM (HaSTM) which aims to accelerate a
software-controlled TM implementation by architec-
tural means [7], [2].

Despite the fact that FPGA emulators of many com-

plex architectures of various ISAs have been proposed,
only a few of these are on TM research, and only up
to a small number of cores. Furthermore, the majority
of these proposals are based on proprietary or hard
processor cores, which imply rigid pipelines that can
prevent an architect from modifying the ISA and the
microarchitecture of the system.

In this paper, we present TMbox, a shared-memory
CMP prototype with Hybrid TM support. More specif-
ically, our contributions are as follows:

• A description of the first 16-core implementation
of a Hybrid TM that is completely modifiable
from top to bottom. This implies convenience to
study HW/SW tradeoffs in topics like TM.

• We detail on how we construct a multicore with
MIPS R3000-compatible cores, interconnect the
components in a bi-directional ring with back-
wards invalidations and adapt the TinySTM-ASF
Hybrid TM proposal to our infrastructure.

• Experimental results and performance compar-
isons of STM, HTM and Hybrid TM on three
benchmarks designed to investigate trade-offs in
TM. We also discuss the strengths and weaknesses
of our approach.

The next section presents the TMbox architecture,
Section 3 explains the Hybrid TM implementation,
Section 4 discusses the limitations and the results of
running three benchmarks on TMbox. Related work is
in Section 5 and Section 6 concludes the paper.

2. The TMbox Architecture

The basic processing element of TMbox is the Hon-
eycomb CPU core, a heavily modified and extended
version of the Plasma soft core [20]. The synthesizable
MIPS R2000-compatible soft processor core Plasma
was designed for embedded systems and written in
VHDL. It has a configurable 2/3 stage pipeline, a 4
KB direct-mapped write-through L1 cache, and can
address up to 64 MB of RAM. It was designed to run
at a clock speed of 25 MHz, and it includes UART and
Ethernet IP cores. We chose it because it is based on
the popular MIPS architecture, it is complete and it has
a relatively small area footprint on the FPGA. Such
RISC architectures with simpler pipelines are more
easily customizable and require fewer FPGA resources
compared to a deeply-pipelined superscalar processor,
so they are more appropriate to be integrated into a
larger multiprocessor SoC.

To effectively upgrade the MIPS R2000-compatible
Plasma to our MIPS R3000-compatible Honeycomb,
we designed and implemented two coprocessors: CP0

that provides support for virtual memory using a
Translation Lookaside Buffer (TLB), and CP1 encap-
sulating an FPU. We optimized the cores to make
better use of the resources on our Virtex-5 FPGAs
where it can run at twice the frequency (50 MHz);
we modified the memory architecture to enable virtual
memory addressing for 4 GB and caches of 8 KB;
we implemented extra instructions to better support
exceptions and thread synchronization (load-linked and
store conditional) and we developed system libraries
for memory allocation, I/O and string functions [21].
The Honeycomb core (without an FPU and the DDR
controller) occupies 5827 LUTs (Table 1) on a Virtex-
5 FPGA including the ALU, MULT/DIV and Shifter
units, the coherent L1 cache and the UART controller,
a comparable size to the Microblaze core.

The Virtex5-155T FPGA contains 98K LUTs, 212
BRAMs, and 128 DSP blocks. The DDR2 controller
that occupies a small portion of the FPGA (around 2%)
performs calibration and serves requests [23]. Using
one controller provides sequential consistency for our
multicore since there is only one address bus, and loads
are blocking and stall the processor pipeline.

2.1. Interconnection

To interconnect the cores, we designed and imple-
mented a bi-directional ring as shown in Figure 1.
Arranging the components on a ring rather than a bus
requires shorter wires which eases placement on the
chip, relaxing constraints, and is a simple and efficient
design choice to diminish the complexities that arise
in implementing a large crossbar on FPGA fabric.
Apart from increased place and route time, longer
wires would lead to more capacitance, longer delay
and higher dynamic power dissipation. Using a ring
will also enable easily adding and removing shared
components such as an FPU or any application-specific
module, however this is out of the scope of this work.

CPU requests move counterclockwise; they go from
the cores to the bus controller, eg. CPUi - CPUi−1 - ...
- CPU0 - Bus Ctrl. Requests may be in form of read or
write, carrying a type field, a 32-bit address, a CPU ID
and a 128-bit data field, which is the data word size in
our system. Memory responses also move in the same
direction; from the bus controller to the cores, eg. Bus
Ctrl - CPUn - CPUn−1 - ... - CPUi+1 - CPUi. They
use the same channel as requests, carrying responses to
the read requests served by the DDR Ctrl. On the other
hand, moving clockwise are backwards invalidations
caused by the writes to memory which move from the
Bus Ctrl towards the cores in the opposite direction,
eg. Bus Ctrl - CPU0 - ... - CPUi−1 - CPUi. These

Figure 1. An 8-core TMbox infrastructure showing the ring bus, the TM Unit and the processor core.

Table 1. LUT occupation of components

Component 5-LUTs Component 5-LUTs
PC_next 138 Mem_ctrl 156
Control 139 Reg_File 147
Bus_mux 155 ALU 157
Shifter 201 MULT 497
Pipeline 112 Cache 1985

TLB 202 TM_unit 1242
Bus_node 619 DDR_ctrl 1119

UART 77 TOTAL 6946

carry only a 32-bit address and a CPU ID field. When a
write request meets an invalidation to the same address
on any node, it gets cancelled. Moreover, the caches on
each core snoop and discard the lines corresponding to
the invalidation address. We detail how we extend this
protocol for supporting HTM in the next section.

3. Hybrid TM Support for TMbox

TinySTM [9] is a lightweight and efficient word-
based STM library implementation in C and C++. It
differentiates from other STMs such as TL2 and Intel
STM mainly by its time-based algorithm and lock-
based design. By default, it compiles and runs on 32 or
64-bit x86 architectures, using the atomic ops library
to implement atomic operations, which we modified
to include Compare and Swap (CAS) and Fetch and
Add (FAA) primitives for the MIPS architecture using
load-linked and store conditional (LL/SC) instructions.
TinySTM-ASF is a hybrid port that enables TinySTM

to be used with AMD’s HTM proposal, ASF [5],
which we modified to work with TMbox. This version
starts the transactions in hardware mode and jumps to
software if (i) hardware capacity is exceeded, (ii) there
is too much contention or (iii) the application explicitly
requires it. Our hardware design closely follows the
ASF proposal with the exception of nesting support.

A new processor model (-march=honeycomb) was
added by modifying GCC and GAS (the GNU Assem-
bler). This new ISA includes all the R3000 instructions
plus RFE (Return from Exception), LL, SC and the
transactional instructions in Figure 2. All GNU tools
(GAS, ld, objdump) were modified to work with these
new instructions.

To enable hardware transactions, we extended our
design with a per-core TM Unit that contains a trans-
actional cache that only admits transactional loads and
stores. By default it has a capacity of 16 data lines
(256 bytes). If the TM cache capacity is exceeded, the
transaction aborts and sets the TM register $TM2 to
ABORT FULL (explained in the next section) after
which the transaction reverts to software and restarts.

A transactional LD/ST causes a cache line to be
written to the TM Unit. An invalidation of any of the
lines in the TM Unit causes the current transaction
to be aborted. Modifications made to the transactional
lines are not sent to memory until the whole transaction
successfully commits. The TM Unit provides single-
cycle operations on the transactional read/writeset
stored inside. A Content Addressable Memory (CAM)

Table 2. HTM instructions for TMbox

Instruction Description
XBEGIN (addr) Starts a transaction and saves the abort address (addr) in TM register $TM0. Also saves

the contents of the $sp (stack pointer) to TM register $TM1.
XCOMMIT Commits a transaction. If it succeeds, it continues execution. If it fails, it rolls back the

transaction, sets TM register $TM2 to ABORT CONFLICT, restores the $sp register and
jumps to the abort address.

XABORT (20-bit code) Used by software to explicitly abort the transaction. Sets TM register $TM2 to
ABORT SOFTWARE, restores the $sp register and jumps to the abort address. The
20-bit code is stored in the TM register $TM3.

XLB, XLH, XLW, XSB, XSH, XSW Transactional load/store of bytes, halfwords (2 bytes) or words (4 bytes).
MFTM (reg), (TM_reg) Move From TM: Reads from a TM register and writes to a general purpose register.

is built using LUTs both to enable asynchronous reads
and since BRAM-based CAMs grow superlinearly in
resources. Two BRAMs store the data that is accessed
by an index provided by the CAM. Additionally, the
TM Unit can serve LD/ST requests on an L1 miss if
the line is found on the TM cache.

3.1. Instruction Set Architecture Extensions

To support HTM, we augmented the MIPS R3000
ISA with the new transactional instructions listed in
Table 2. We have also extended the register file with
four new transactional registers, which can only be
read with the MFTM (move from TM) instruction.
$TM0 register contains the abort address, $TM1 has
a copy of the stack pointer for restoring when a
transaction is restarted, $TM2 contains the bit field
for the abort (overflow, contention or explicit) and
$TM3 stores a 20-bit abort code that is provided
by TinySTM, eg. abort due to malloc/syscall/interrupt
inside a transaction, or maximum number of retries
reached etc.

Aborts in TMbox are processed like an interrupt,
but they do not cause any traps, instead they jump to
the abort address and restore the $sp (stack pointer)
in order to restart the transactions. Regular loads and
stores should not be used with addresses previously
accessed in transactional mode, therefore it is left to
the software to provide isolation of transactional data
if desired. LL/SC can be used simultaneously with TM
provided that they do not access the same address.

Figure 2 shows an atomic increment in TMbox
MIPS assembly. In this simple example, the abort code
is responsable for checking if the transaction has been
retried a maximum number of times, and if there is a
hardware overflow (the TM cache is full), and in this
case jumps to an error handling code (not shown).

3.2. Bus Extensions

To support HTM, we added a new type of request,
namely COMMIT REQ, and a new response type,

LI $11, 5 //set max. retries = 5
LI $13, HW_OFLOW //reg 13 has err. code
J $TX

$ABORT:
MFTM $12, $TM2 //check error code
BEQ $12, $13, $ERR //jump if HW overflow
ADDIU $10, $10, 1 //retries++
SLTU $12, $10, $11 //max. retries?
BEQZ $12, $ERR2 //jump if max. retries

$TX:
XBEGIN($ABORT) //provide abort address
XLW $8, 0($a0) //transactional LD word
ADDi $8, $8, 1 //a++
XSW $8, 0($a0) //transactional ST word
XCOMMIT //if abort go to $ABORT

Figure 2. TMbox MIPS assembly for
atomic{a++} (NOPs and branch delay slots
are not included).

LOCK BUS. When a commit request arrives to the
DDR, it causes a backwards LOCK BUS message on
the ring which destroys any incoming write requests
from the opposite direction, and locks the bus to
grant exclusive access to perform a serialized commit
action. All writes are then committed through the
“channel” created, after which the bus is unlocked
with another LOCK BUS message, resuming normal
operation. More efficient schemes can be supported in
the future to enable parallel commits [3].

3.3. Cache Extensions

The cache state machine reuses the same hard-
ware for transactional and non-transactional loads and
stores, however a transactional bit dictates if the line
should go to the TM cache or not. Apart from regular
cached RD/WR, uncached accesses are also supported,
as shown in Figure 3. Cache misses first make a
memory read request to bring the line and wait in
WaitMemRD state. In case of a store, the WRback
and WaitMemWR states manage the memory write

Invalidate all writeset entries in cache

Ready

WRcheck UncachedWRUncachedRDRDcheck

WaitMemRD

WRback

WaitMemWR

TMbusCheck

TMlockBus

TMwrite

RD req
Uncached

WR req
Uncached

RD req

WR req

RD Miss RD req
RD req
for WR

RD done

No invalidates,
MemWrite

RD
done

WR done

Lock_bus OK

Commit?

Commit/abort

WR Commit Done

Commit/abort
done

RD hit

Lock_bus
Fail

Abort?

Start WR commit

RD Miss
For WR

WR cancel on invalidate

Figure 3. Cache state diagram. Some transitions
(LL/SC) are not shown for visibility.

operations. While in these two states, if an invalidation
arrives to the same address, the write will be cancelled.
In case of a store-conditional instruction, the write
will not be re-issued, and the LL/SC will have failed.
Otherwise, the cache FSM will re-issue the write after
such a write-cancellation on invalidation.

While processing a transactional store inside of an
atomic block, an incoming invalidation to the same
address causes an abort and possibly the restart of
the transaction. Currently our HTM system supports
lazy version management: the memory is updated at
commit-time at the end of transactions, as opposed to
having in-place updates and keeping an undo log for
aborting. We also provide lazy conflict detection which
implies that data inconsistencies are detected only
after the speculative data is committed to the memory.
Each transactional write successfully committed causes
an invalidation signal, which aborts the transactions
that already have those lines in the TM cache. So a
transaction can only be aborted due to data conflicts
during transaction execution (between XBEGIN and
XCOMMIT/XABORT).

To support HTM, the cache state machine is ex-
tended with three new states, TMbusCheck, TMlock-
Bus and TMwrite. One added functionality is to dictate
the locking of the bus prior to committing. Another
duty is performing burst writes in case of a successful
commit which runs through the TMwrite-WRback-
WaitMemWR-TMwrite loop. The TMwrite state is also

responsible for the gang clearing of all entries in the
TM cache and the writeset entries that are also found in
L1 cache after a commit/abort. To enable this, address
entries that are read from the TM Unit are sent to
L1 cache as invalidation requests, after which the TM
cache is cleared in preparation for a new transaction.

4. Experimental Evaluation

TMbox can fit 16 cores in a Virtex-5 FPGA, oc-
cupying 86,797 LUTs (95% of total slices) and 105
BRAMs (49%). In this section, we first examine the
trade-offs of our implementation, we then discuss the
results of three TM benchmarks.

4.1. Architectural Benefits and Drawbacks

On the TM side, the performance of our best-effort
Hybrid TM is bounded by the size of the transactional
cache of the TM unit. Although for this work we chose
to use a small, 16-entry TM cache, larger caches can
certainly be supported on the TMbox on larger FPGAs
(keeping in mind the extra area overhead introduced).

In pure HTM mode, all 16 lines of the TM cache
can be used for running the transaction in hardware,
however the benchmark can not run to completion
if there are larger transactions that do not fit in the
TM cache, since there is no hardware or software
mechanism to decide what to do in this case. The
largest overhead related to STM is due to keeping
track of transactional loads and stores in software. The
situation can worsen when the transactions are large
and there are many aborts in the system.

In Hybrid TM mode it is desired to commit as
many transactions as possible on dedicated hardware,
however when this is not possible, it is also im-
portant to provide an alternative path using software
mechanisms. All transactions that overflow the TM
cache will be restarted in software, implying all work
done in hardware TM mode to be wasted in the end.
Furthermore to enable hybrid execution, TinySTM-
ASF additionally keeps the lock variables inside the
TM cache. This results in allowing a maximum of 8
variables in the read/writesets of each transaction as
opposed to 16 for pure HTM. Of course this is true
provided that neither the transactional variables, nor
the lock variables share a cache line, in which case,
in some executions we observed some transactions
having a read/writeset of 9 or 10 entries successfully
committing in hardware TM mode.

On the network side, the ring is an FPGA-friendly
option: we have reduced the place and route time of
an 8-core design to less than an hour using the ring

Table 3. TM Benchmarks Used

TM Benchmark Description
Eigenbench[11] Highly tunable microbenchmark for TM with orthogonal characteristics. We have used this benchmark (2000

loops) with (i) r1=8, w1=2 to overflow the TM cache and vary contention (by changing the parameters a1 and
a2) from 0–28%, and (ii) r1=4 and w1=4 to fit in the TM cache and vary the contention between 0–35%.

Intruder[15] Network intrusion detection. A high abort rate benchmark, contains many transactions dequeuing elements
from a single queue. We have used this benchmark with 128 attacks.

SSCA2[15] An efficient and scalable graph kernel construction algorithm. We have used problem scale = 12

network, whereas it took more than two hours using
a shared crossbar for interconnection and we could
not fit more than 8 cores. However, each memory
request has to travel as many cycles as the total
number of nodes on the ring plus the DDR2 latency,
during which the CPU is stalled. This is clearly a
system bottleneck: using write-back caches or relaxed
memory consistency models might be key in reducing
the number of messages that travel on the ring to
improve system performance.

On the processor side, the shallow pipeline neg-
atively affects the operating frequency of the CPU.
Furthermore larger L1 caches can not fit on our FPGA,
however they could be supported on larger, newer gen-
eration FPGAs, which would help the system to better
exploit locality. Having separate caches for instructions
and data would also be a profitable enhancement.

4.2. Experimental Results

Eigenbench is a synthetic benchmark that can be
tuned to discover TM bottlenecks. As Figure 4 shows,
the transactions in EigenBench with 2R+8W variables
overflow (since TinySTM-ASF keeps the lock variables
in the transactional cache) and get restarted in software,
exhibiting worse performance than STM. However, the
4 read-4 write variable version fits in the cache and
shows a clear improvement over STM.

In the SSCA2 results presented in Figure 5, we
get an 1-8% improvement over STM because this
benchmark contains small transactions that fit in the
transactional cache. Although Intruder (Figure 6) is a
benchmark that is frequently used for TM, it is not a
TM-friendly benchmark, causing a high rate of aborts
and non-scalable performance. However, especially
with 16-cores, our scheme achieves in (i) discovering
conflicts early and (ii) committing 48.7% of the total
transactions in hardware, which results in almost 5x
superior performance compared to direct-update STM,
which has to undo all changes on each abort. We were
unable to run this benchmark on pure HTM because
it contains memory operations like malloc/free inside
transactions that are complex to run under HTM and
are not supported yet on TMbox.

0,380,210,110,060,040,030,02

0

1

2

3

4

5

6

7

8

9

Eigenbench - 2R/8W variables

Hybrid HTM
STM
Pure HTM

Contention (%)

E
xe

cu
tio

n
 ti

m
e

 (
se

co
n

d
s)

0,380,210,110,060,040,030,02

0

1

2

3

4

5

6

Eigenbench - 4R/4W variables

STM
Hybrid HTM
Pure HTM

Contention (%)

E
xe

cu
tio

n
 ti

m
e

 (
se

co
n

d
s)

Figure 4. Eigenbench results (16 cores).

These three benchmarks can benefit from our hybrid
scheme because they do not run very large transactions,
so most of the fallbacks to software caused are due
to repeated aborts or mallocs inside transactions. For
SSCA2, we see good scalability for up to 8 cores, and
for Intruder for up to 4 cores. The performance degra-
dations in STM for Intruder are caused by the fact that
the STM directly updates the memory and as the abort
rates increase, its performance drastically decreases.
Furthermore the system performance is benchmark-
dependent: compared to sequential versions, the TM
versions can perform in the range of 0.2x (Intruder)
to 2.4x (SSCA2). We will be looking more into over-
coming the limitations of the ring bus, improving on
the TM implementation (serialized commits) and the
coherency mechanism.

5. Related Work

Few mostly initial work has been published in the
context of studying Transactional Memory on FPGA
prototypes. ATLAS is the first full-system prototype of
an 8-way CMP system with PowerPC hard processor
cores, buffers for read/write sets and per-CPU caches

1 2 4 8 16

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

HTM
HyTM
STM

Number of threads

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Figure 5. SSCA2 benchmark results.

1 2 4 8 16

0

0,5

1

1,5

2

2,5

STM
HyTM

Number of threads

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Figure 6. Intruder benchmark results.

augmented with transactional read-write bits and TCC-
type HTM support, with a ninth core for running Linux
and serving OS requests from other cores [17].

Kachris and Kulkarni describe a TM implementation
for embedded systems which can work without caches,
using a central transactional controller on four Microb-
laze cores[12]. TM is used as a simple synchronization
mechanism that can be used with higher level CAD
tools like EDK for non-cache coherent embedded
MPSoC. The proposal occupies a small area on chip,
but it is a centralized solution that would not scale as
we move up to tens of cores. Similarly, the compact
TM proposal, composed by off-the-shelf cores with a
software API managing transactions, can be useful for
early validation of programs to TM [19].

Recent work that also utilizes MIPS soft cores fo-
cuses on the design of the conflict detection mechanism
that uses Bloom filters for an FPGA-based HTM [14].
Application-specific signatures are compared to detect
conflicts in a single pipeline stage. The design takes
little area, reducing false conflicts. The underlying
bit-level parallelism used for signatures makes this
approach a good match for FPGAs. This proposal was
the first soft core prototype with HTM albeit only with
2 cores; it is not clear what is done in case of overflow
or how the design would scale. Another approach that
uses Bloom filters on FPGAs to accelerate STMs on

commodity cores was presented by Casper et al. [2].
Ferri et al. proposed an energy-efficient HTM on a

cycle-accurate SW simulator, where transactions can
overflow to a nearby victim cache [10]. It is a realistic
system with cache coherence, and non-centralized TM
support, running a wide range of benchmarks on vari-
ous configurations, however bus-based snoopy protocol
would not scale with more cores, the simulator is not
scalable and would suffer from modelling larger num-
bers of processors, and no ISA changes are possible to
the ARM hard CPU core.

Recently, an HTM was proposed by C. Thacker for
the Beehive system [24]. In case of overflow the entire
transaction is run under a commit lock without using
the transactional hardware. We believe that software
transactions might have more to offer. The Beehive
design also uses a uni-directional ring where messages
are added to the head of a train with the locomotive
at the end [24]. Ring networks are suggested as a
better architecture for shared memory multiprocessors
by Barroso et al. [1] and a cache coherent bi-directional
ring was presented by Oi et al. [18], but as far as we
know, using backwards-propagating write-destructive
invalidations is a novel approach. Unlike some of the
proposals above, our system features a large number of
processors and is completely modifiable which enables
investigating different interconnects, ISA extensions or
coherency mechanisms.

6. Conclusions

We have presented a Hybrid TM design, where we
fit 16 cores on an FPGA providing hardware support
and accelerating a modern TM implementation running
benchmarks that are widely used in TM research.

The results agree with our insights and findings
from other works [15]: Hybrid TM works well when
hardware resources are sufficient, providing better per-
formance than software TM. However, when hardware
resources are exceeded, the performance can fall below
the pure software scheme in certain benchmarks. The
good news is that Hybrid TM is flexible; a smart
implementation should be able to decide what is best
by dynamic profiling. We believe that this is a good
direction for further research.

We have also shown that a ring network fits well on
FPGA fabric and using smaller cores can help building
larger prototypes. Newer generations of FPGAs will
continue to present multicore researchers with interest-
ing possibilities, having become so mature as to permit
investigating credible largescale systems architecture.
We are looking forward to extending the TMbox with
a memory directory and to use multiple-FPGAs.

Acknowledgements

We would like to thank Adrià Armejach, Miquel
Pericàs and all anonymous reviewers for their com-
ments and valuable feedback. This work is supported
by the cooperation agreement between the Barcelona
Supercomputing Center and Microsoft Research, by
the Ministry of Science and Technology of Spain and
the European Union (FEDER funds) under contract
TIN2007-60625 and TIN2008-02055-E, by the Eu-
ropean Network of Excellence on High-Performance
Embedded Architecture and Compilation (HiPEAC)
and by the European Commission FP7 project VELOX
(216852). The TMbox is available at http://www.velox-
project.eu/releases.

References

[1] L. A. Barroso and M. Dubois. Cache coherence on a
slotted ring. In International Conference on Parallel
Processing, 1991.

[2] J. Casper, T. Oguntebi, S. Hong, N. G. Bronson,
C. Kozyrakis, and K. Olukotun. Hardware accelera-
tion of transactional memory on commodity systems.
ASPLOS ’11, pages 27–38, 2011.

[3] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald,
C. C. Minh, W. Baek, C. Kozyrakis, and K. Oluko-
tun. A scalable, non-blocking approach to transactional
memory. HPCA ’07, pages 97–108, 2007.

[4] D. Chiou, H. Sunjeliwala, H. Sunwoo, J. D. Xu,
and N. Patil. FPGA-based Fast, Cycle-Accurate,
Full-System Simulators. Number UTFAST-2006-01,
15(5):795–825, November Austin, TX, 2006.

[5] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth,
M. Pohlack, C. Fetzer, M. Nowack, T. Riegel, P. Felber,
P. Marlier, and E. Rivière. Evaluation of AMD’s
advanced synchronization facility within a complete
transactional memory stack. In EuroSys ’10, pages 27–
40, 2010.

[6] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and
K. Mai. A complexity-effective architecture for ac-
celerating full-system multiprocessor simulations using
FPGAs. In FPGA ’08, pages 77–86, 2008.

[7] P. Damron, A. Fedorova, Y. Lev, V. Luchangco,
M. Moir, and D. Nussbaum. Hybrid transactional
memory. ASPLOS ’06, 2006.

[8] N. Dave, M. Pellauer, and J. Emer. Implementing a
functional/timing partitioned microprocessor simulator
with an FPGA. WARFP, 2006.

[9] P. Felber, C. Fetzer, and T. Riegel. Dynamic per-
formance tuning of word-based software transactional
memory. In PPoPP, pages 237–246, 2008.

[10] C. Ferri, S. Wood, T. Moreshet, R. Iris Bahar, and
M. Herlihy. Embedded-TM: Energy and complexity-
effective hardware transactional memory for embed-
ded multicore systems. J. Parallel Distrib. Comput.,
70:1042–1052, October 2010.

[11] S. Hong, T. Oguntebi, J. Casper, N. Bronson,
C. Kozyrakis, and K. Olukotun. EigenBench: A simple
exploration tool for orthogonal TM characteristics. In
IISWC’10, 2010.

[12] C. Kachris and C. Kulkarni. Configurable transactional
memory. In FCCM ’07, pages 65–72, April 2007.

[13] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling,
and P. yves Droz. RAMP Blue: A message-passing
manycore system in FPGAs. In FPL 2007, pages 27–
29, 2007.

[14] M. Labrecque, M. Jeffrey, and J. Steffan. Application-
specific signatures for transactional memory in soft
processors. In ARC 2010, pages 42–54. 2010.

[15] C. C. Minh, J. W. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for
multi-processing. In IISWC, 2008.

[16] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. LogTM: Log-based transactional memory.
In HPCA 2006, pages 254–265, 2006.

[17] N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge,
C. Kozyrakis, and K. Olukotun. ATLAS: A chip-
multiprocessor with TM support. In DATE’07, pages
3–8, 2007.

[18] H. Oi and N. Ranganathan. A cache coherence protocol
for the bidirectional ring based multiprocessor. In
PDCS’99, pages 3–6, 1999.

[19] M. Pusceddu, S. Ceccolini, G. Palermo, D. Sciuto, and
A. Tumeo. A compact TM multiprocessor system on
FPGA. FPL’10, pages 578–581, 2010.

[20] S. Rhoads. Plasma soft core. http://opencores.org/
project,plasma.

[21] N. Sonmez, O. Arcas, G. Sayilar, O. S. Unsal,
A. Cristal, I. Hur, S. Singh, and M. Valero. From
Plasma to BeeFarm: Design experience of an FPGA-
based multicore prototype. In ARC’11, March 23-25
2011.

[22] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook,
D. Patterson, and K. Asanović. RAMP gold: An FPGA-
based architecture simulator for multiprocessors. In
DAC ’10, pages 463 – 468, 2010.

[23] C. Thacker. A DDR2 controller for BEE3. Microsoft
Research, 2009.

[24] C. Thacker. Hardware Transactional Memory
for Beehive. In http://research.microsoft.com/en-
us/um/people/birrell/beehive/hardware transactional
memory for beehive3.pdf. MSR Silicon Valley, 2010.

