
Using DryadLINQ for Large Matrix Operations

Thomas L. Rodeheffer
Frank McSherry

Microsoft Research, Silicon Valley

June 17, 2011

1 Overview

DryadLINQ [7] is a system that facilitates the construc-
tion of distributed execution plans for processing large
amounts of data on clusters containing potentially thou-
sands of computers. In this paper, we explore how to use
DryadLINQ to perform basic matrix operations on large
matrices.

DryadLINQ uses Dryad [4] as its execution engine. A
Dryad execution plan is a directed acyclic graph in which
computation occurs in the vertices and communication
occurs on the edges. Dryad schedules vertices onto com-
pute nodes, buffers communication in temporary files on
disk, and masks failures by automatically restarting failed
vertex computations on another compute node.

As compared against cluster computing using MPI [1],
in Dryad the communication graph must be acyclic but
the number of vertices can vastly exceed the number of
compute nodes and failure recovery is automatic.

Our approach is to chop matrixes into an array of square
tiles of uniform size and use DryadLINQ to construct and
execute a distributed execution plan for passing tiles be-
tween compute nodes from stage to stage of the compu-
tation of a large matrix operation. We use HPC Dryad
Beta [5] running on an 85-node cluster for distributed ex-
ecution and BLAS routines from the Intel R© Math Kernel
Libary [3] (via the C# wrappers provided by Coconut [2])
for operations on individual tiles. We discuss various lim-
itations of HPC Dryad Beta and provide preliminary per-
formance numbers.
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Figure 1: Matrix representation

2 Matrix representation

In order to coordinate many computers operating on ma-
trices that are too large to fit into primary memory, we
chop a matrix into an array of square tiles of uniform size,
as shown in Figure 1. Each tile has a position in the ma-
trix given by its tile row and tile column numbers, which
are its tile coordinates. We number the rows and columns
starting at zero.

A tile of size t consists of tile coordinates and a square
t ∗ t array of doubles. In this paper, we consider only
matrices of doubles and we ignore the complexity of han-
dling matrices that are not evenly divisible into tiles.

A matrix consists of an unordered collection of tiles
and metadata that describes the numbers of tile rows and
columns that define the shape of the matrix. The value of
a tile of the matrix at a given tile coordinate is determined
by summing over all tiles in the collection with that coor-
dinate.
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Observe that the matrix representation admits of
sparse, dense, compact, and uncompact variations. Tiles
that contain only zeros can be omitted, giving a sparse
representation. If tiles at all coordinates are present, the
representation is dense. If each coordinate appears at most
once, the representation is compact. Finally, if some co-
ordinate appears multiple times, the representation is un-
compact.

This matrix representation gives several advantages
in organizing distributed computation with DryadLINQ.
First, the fact that the order of tiles is irrelevant is expe-
cially important, since many of DryadLINQ’s distributed
operations run more efficiently when they are not required
to preserve order. Second, since each tile carries its co-
ordinates, collections of tiles can be partitioned as de-
sired without having to worry about tracking which tile
is which. Third, since tiles whose values are all zero can
be omitted, sparse matrices or matrices with particular
shapes (such as lower-triangular matrices) can be stored
and operated upon more efficiently.1 Finally, the tile size
can be chosen to balance a trade off between memory con-
sumption and the efficiency of tile operations.

3 Tile operations
Table 1 lists some basic operations on tiles. Since tiles
carry coordinates in addition to their array of doubles, the
operations also have to specify the coordinates of the re-
sult. For a+ b, a− b, and a ∗ s, the result takes the coor-
dinates of a. (Presumably, tile b has the same coordinates
as tile a in order for these operations to make sense.) For
a ∗ b, the result takes the row of a and the column of b.
For Lts(a, b) the result takes the coordinates of b.

Example listings can be found in the Appendix. Ap-
pendix A shows an example C# implementation of tile
coordinates and Appendix B an example C# implementa-
tion of tiles.

For best performance, we actually implemented tile op-
erations using the BLAS routines from the Intel R© Math
Kernel Libary [3], via the C# wrappers provided by Co-
conut [2]. Table 2 shows the performance we measured
for a tile size of 4096. Although we were unable to find
an efficient use of the MKL for adding two matrices, the

1However, the possibility of omitted tiles creates complexity in some
of the algorithms, as discussed in Section 6.2.

a+ b add two tiles
a− b subtract two tiles
a ∗ s scale tile a by double s
a ∗ b multiply two tiles

Lts(a, b) find tile x such that a ∗ x = b,
where a is lower-triangular

Table 1: Basic tile operations

time operation
1.24s add two tiles
1.24s subtract two tiles
3.23s multiply two tiles (MKL)
2.53s lower-triangular solve (MKL)
0.6s read from local disk
5.7s read from remote disk
0.8s write to local disk

Table 2: Tile operation performance

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core
AMD .6+OpteronTM processor 2373 EE at 2.10 GHz with 2 pro-
cessors and 16 GB memory. Disk operations using HPC Dryad
Beta 3690 with custom serialization. No contention. Average
operation time in seconds over a long sequence of repeating the
same operation.

performance for multiply and LTsolve is over 1000 times
faster than the naive example implementations shown in
Appendix B.

To compare computation against I/O, we also measured
the time required to read or write a tile to disk using
HPC Dryad Beta [5] running on our cluster. Dryad al-
ways writes to the local disk but it can read from either
the local disk or across the network from a remote disk.
Although we measured access to the local disk proceed-
ing at a reasonable fraction of the disk bandwidth, access
from a remote disk was almost ten times slower, even in
the absence of contention. With contention, the remote
access time degrades further.
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4 Matrix operations
In the following sections we explore methods of perform-
ing basic matrix operations in DryadLINQ. Since we are
interested in large matrices, it is important to discover
which methods actually scale. As will become apparent
in later discussion, some innocuous-looking expressions
consume unexpected amounts of memory.

When a compute node runs out of physical memory,
first it starts thrashing and, if demand increases enough,
the computation fails. Although the Dryad vertex sched-
uler automatically tries the computation again on another
compute node, since the failure is deterministic it repeats.
Eventually Dryad gives up and the job fails.

To explore large matrix operations, we adopt the fol-
lowing configuration parameters. We take a tile size of
4096 by 4096 doubles, which results in a tile that occu-
pies 134 MB. We take a matrix size of 16 by 16 tiles,
which results in a matrix of 65536 by 65536 doubles, oc-
cupying 34 GB. We partition a matrix into 8 parts, so that
each part occupies about 4 GB.

Since our compute nodes each have 16 GB of physi-
cal memory, these parameters mean that each node can
hold three matrix parts simultaneously in physical mem-
ory, with about 3 GB left over for operating system, pro-
gram, and other working storage. This design accomo-
dates, for example, holding two input parts and one output
part.

Table 3 summarizes our preliminary performance re-
sults for various matrix operations. These results are dis-
cussed in more detail in the following sections.

5 Repartition
Often when programming DryadLINQ it turns out that
subsequent operations will be more efficient (or even pos-
sible) if only the input data is reorganized in a certain way.
For example, it might help to repartition the matrix so that
the tiles in any given column all fall in the same partition.
This is easy to accomplish in DryadLINQ using HashPar-
tition. Figure 2 shows an example listing and the two-
stage execution plan created by DryadLINQ.

In the first stage of the execution plan, there is one ver-
tex for each of the existing parts. Each vertex reads a part,
hashes the tiles into bins according to the new partition-

public static IQueryable<Tile> ByCols (
IQueryable<Tile> A)

{
return A.HashPartition(a => a.col, numParts);

}

Example code listing.

hash hash hash hash 

merge merge merge merge 

hash hash hash hash 

merge merge merge merge 

Execution plan showing all vertices. Observe the all-to-all com-
munication pattern between the hash stage and the merge stage.

Execution plan showing just the stages. Since diagrams showing
all vertices rapidly get cluttered with detail, it is more useful to
show just the stages. In the stage diagram, an all-to-all commu-
nication pattern is indicated by a heavy arrow.

Figure 2: Matrix partition by rows.
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job runtime in minutes
8 nodes 16 nodes 24 nodes 32 nodes 64 nodes job

8 §5 repartition
matrix addition

- - - - - §6.1 AddByConcat
41 38 29 29 31 §6.2 AddByCoordUnion
33 29 30 29 35 §6.3 AddByCoordUnionV2
18 14 18 14 14 §6.4 AddByHashApply
24 16 15 14 14 §6.5 AddByHashmanyApply

matrix multiplication
- - - - - §7.1 MulByJoinAgg

119 97 110 118 105 §7.2 MulByAstreamBcols
109 71 66 45 34 §7.3 MulByAmwhBcolsApplySide
139 83 59 52 31 §7.4 MulByAmwhBcolsApplyLdoc
100 65 60 47 33 §7.5 MulByAmwhBcolsSelect
143 94 72 63 39 §7.6 MulByAmwhBcolsSelectJoin
249 140 97 81 48 §7.7 MulByArowsBcolsEnv

matrix lower-triangular solve
77 70 73 71 78 §8.1 LtsByAorderBcols
77 71 79 75 78 §8.2 LtsByArangeBcols
78 75 75 76 80 §8.3 LtsByAmwhBcolsmwh
88 56 55 50 62 §8.4 LtsByAmwhmwhBcolsmwh

Table 3: Performance of matrix operations (preliminary).

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD OpteronTM processor 2373 EE at 2.10 GHz with 2 processors
and 16 GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts. HPC Dryad Beta 3702 with custom serialization.
Number of nodes does not count the job manager. Average operation time in minutes over a small number of repetitions.
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ing, and writes them out, creating a temporary file for each
bin. These vertices are “hash” vertices.

In the second stage of the execution plan, there is one
vertex for each of the new parts. Each vertex reads all
of the temporary files destined for its parts and writes a
merged output file. These vertices are “merge” vertices.

The performance of the execution plan depends on how
the input is partitioned, where the files are, how compute
nodes are assigned to vertices, how many files have to be
read remotely, and how much contention there is. For our
configuration parameters, repartitioning a dense compact
matrix generally takes about 8 minutes if 8 compute nodes
are available.

The performance can be analyzed as follows. First we
consider the hash vertices.

Generally, each of the hash vertices has to read and
write 32 tiles. Writing always happens to the local disk.
If the reading is from the local disk, based on the tile op-
eration performance listed in Table 2 this would take each
hash vertex 44 seconds. Instead each hash vertex takes
230 seconds on average. So we looked at detailed perfor-
mance logs.

We discovered that, although in almost all cases the
hash vertex did read its input from the local disk, read-
ing a tile took on average 2.4 seconds. Writing a tile took
on average 4.6 seconds. This contrasts with 0.6 seconds
and 0.8 seconds, respectively, listed for these operations
in Table 2. One difference is that when tile operation pe-
formance was measured for Table 2, we performed a long
sequence of the same operation and measured the aver-
age time. The hash vertex, in contrast, reads a single tile
and then writes it. Presumably, the interleaved reading
and writing of tiles on the local disk seriously affects the
disk performance. Distributing the writing of tiles among
several files may also affect performance.

Combining 32 reads at an average of 2.4 seconds each
and 32 writes at an average of 4.6 seconds each gives each
hash vertex an estimated run time of 224 seconds. This
nicely accounts for almost all of the average 230 second
measured hash vertex run time.

Next we consider the merge vertices.
Generally, each of the merge vertices also has to read

and write 32 tiles, although in their case most of the read-
ing will necessarily be from a remote disk. Looking at
detailed performance logs, we discovered that the merge
vertices took on average 5.0 seconds to read a tile (by far

most of the time remotely) and 0.9 seconds to write a tile.
This corresponds fairly well with the measurements listed
in Table 2.

We note that although the merge vertex reads each tile
and then writes it, almost all of its reading comes from
a remote disk and there seems to be little impact on the
performance of writing to the local disk. This strengthens
the argument that the poor write performance observed in
the hash vertices is due to their alternately reading and
writing from the local disk.

Combining 32 reads at an average of 5.0 seconds each
and 32 writes at an average of 0.9 seconds each gives each
merge vertex and estmated run time of 189 seconds. This
nicely accounts for almost all of the average 190 second
measured merge vertex run time.

Combining the average 230 second measured hash ver-
tex run time with the average 190 second measured merge
vertex run time would yield an estimated run time of 420
seconds, or 7 minutes, if 8 compute nodes were available
and everything performed at its average. Unfortunately,
we actually find that it takes more like 8 minutes to run
this job on 8 compute nodes. This can be explained by
the fact that there is a considerable variance in individual
compute node performance, and the job time reflects the
worst case critical path. Note that none of the merge ver-
tices can start until all of the hash vertices are complete.

6 Addition
Addition of n∗n matrices is theoretically an n2 operation,
since all that needs to happen is the addition of elements
at corresponding coordinates.

For tile size 4096 by 4096 doubles, our measured tile
addition time is 1.24 seconds. Given a matrix size 16
by 16 tiles it theoretically should take one compute node
about 317 seconds to add two matrices. With 8 compute
nodes it should theoretically take about 40 seconds.

Of course, these theoretical times are not achievable,
because it takes time to read and write the matrices on
disk and also time to send tiles around to the right place.
In the case of using DryadLINQ to add large matrices, al-
most all of the elapsed time goes into such organizational
overhead.

Next we present various methods for adding large ma-
trices using DryadLINQ.
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public static IQueryable<Tile> AddByConcat (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
return A.Concat(B)
.GroupBy(c => c.coord)
.Select(cc => cc.Aggregate((x,y) => x + y));

}

Figure 3: Matrix addition method AddByConcat.

6.1 Method AddByConcat

A straightforward method to add two matrices would be
to concatenate their collections of tiles, group tiles by co-
ordinate, and then add up the tiles in each group. We call
this method “AddByConcat”. Figure 3 shows an example
listing. If an uncompact representation of the result were
acceptable, we could even skip the group and aggregate
steps.

Unfortunately, this method cannot be evaluated because
HPC Dryad Beta does not implement Concat.

6.2 Method AddByCoordUnion

If all we had to deal with were dense matrices, in which
tiles of all coordinates were present, we could make each
matrix compact using a GroupBy and Aggregate step,
then perform a Join between the two matrices based on co-
ordinate. However, such an approach will not work if the
matrices are sparse, because any coordinate that appears
in one matrix but not in the other will be omitted from
the Join. The fact that zero-valued tiles may be omitted
from the matrix representation makes it tricky to perform
coordinate-wise aggregation over two matrices.

One method that works is to compute the union of all
coordinates in the two matrices, convert each coordinate
to an explicit zero-valued tile, and then use GroupJoin
to aggregate first matrix A and then matrix B by coor-
dinate into the collection. We call this method “AddBy-
CoordUnion”. Figure 4 shows an example listing and the
resulting execution plan.

Observe that while the execution plan usually sends
tiles between vertices, in some cases it sends coordinates.
This shows some of the expressive power of DryadLINQ.
As long as a type is serializable, DryadLINQ can auto-

public static IQueryable<Tile> AddByCoordUnion (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
return A
// get union of all coordinates in A or B
.Select(a => a.coord)
.Union(B.Select(b => b.coord))

// convert to zero tile at each coordinate
.Select(c => new Tile(tileSize, c))

// accumulate all A tiles at each coordinate
.GroupJoin(A, c => c.coord, a => a.coord,
(c,aa) => aa.Aggregate(c, (x,y) => x + y))

// accumulate all B tiles at each coordinate
.GroupJoin(B, c => c.coord, b => b.coord,
(c,bb) => bb.Aggregate(c, (x,y) => x + y));

}

Figure 4: Matrix addition method AddByCoordUnion.
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matically arrange to send records of that type betweeen
vertices, without any special code needed by the program-
mer.

Next we describe how the execution plan performs
when eight compute nodes are available.

Selecting the coordinates requires reading the input ma-
trixes. Each vertex reads 32 tiles on average, but the
DryadLINQ scheduler almost always arranges for this to
be local, so only about half a minute is required. Less than
a second is required to merge the coordinates.

Computing the union of the coordinates is fast, but then
a zero tile is created for each coordinate, and these are
rehashed by coordinate. The vertexes in this stage take
about 3 minutes to run.

Following the rehash is a merge stage. The merge ver-
tices read and write the zero tiles. These vertices each
take about 4 minutes to run.

Each of the input matrixes has to be hash partitioned by
coordinate. The hash partition vertices each take about 3
minutes and the following merge vertices about 2 minutes.

Then a group join stage adds the parts of matrix A into
the zero tiles and rehashes by coordinate. The vertices in
this stage each take about 6 minutes. Following is a merge
stage whose vertices take about 2 minutes.

Then a group join stage adds the parts of matrix B into
the partial sum. The vertices in this stage each take about
6 minutes.

Table 4 summarizes the breakdown of work in this ma-
trix addition method. Recall that theoretically only about
5 vertex*minutes of work is needed to perform the actual
multiplication. Everything else is overhead.

If every vertex performed at its average rate, eight com-
pute nodes could complete the execution plan in about 32
minutes. We measure the job run time of about 41 min-
utes. The excess is due to variance in the execution times
of vertices and the fact that often a subsequent stage (such
as a merge stage) cannot start until all vertices in the pre-
vious stage are complete.

Inspecting the plan, we see that DryadLINQ spends a
lot of work repartitioning the various data sets by coor-
dinate. It is doing so in order to guarantee that records
relating to the same coordinate appear in corresponding
parts, so that the Union of coordinates and the GroupJoin
according to coordinate can be computed correctly in in-
dependent computations distributed over the separate ver-
tices of a stage.

n m n ∗m what
16 0.5 8 select coord
16 0 0 merge coord
8 3 24 union coord, make zeros
8 4 32 merge zeros

16 3 48 hash matrixes
16 2 32 merge matrixes
8 6 48 group join A, add, rehash
8 2 16 merge group join A
8 6 48 group join B, add

256 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 4: Breakdown of work in matrix addition method
AddByCoordUnion.

6.3 Method AddByCoordUnionV2

Rather than require so many repartitioning steps, we can
instead initially partition the input matrices by coordinate
and then carry that partitioning through the computation.
We call this method “AddByCoordUnionV2”. Figure 5
shows an example listing and the resulting execution plan.

Although each Select transforms the data without
changing the partitioning, DryadLINQ is unable to de-
duce it, so we use AssumeHashPartition to inform
DryadLINQ of the fact. The same thing applies to
GroupJoin. It is also important to know that Union pro-
duces its result partitioned according to AssumeHashPar-
tition.

The “Tee” nodes in the execution plan do not corre-
spond to any compute node. Rather, they are a bookkeep-
ing notation used by Dryad to manage the fact that an in-
termediate result is consumed in more than one place.

Table 5 summarizes the breakdown of work in this ma-
trix addition method. Recall that theoretically only about
5 vertex*minutes of work is needed to perform the actual
multiplication. Everything else is overhead.

If every vertex performed at its average rate, eight com-
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public static IQueryable<Tile> AddByCoordUnionV2 (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
A = A.HashPartition(a => a.coord, numParts);
B = B.HashPartition(b => b.coord, numParts);

var Ac = A.Select(a => a.coord)
.AssumeHashPartition(x => x);

var Bc = B.Select(b => b.coord)
.AssumeHashPartition(x => x);

return Ac.Union(Bc)
// convert to zero tile at each coordinate
.Select(c => new Tile(tileSize, c))

// accumulate all A tiles at each coordinate
.AssumeHashPartition(c => c.coord)
.GroupJoin(A, c => c.coord, a => a.coord,
(c,aa) => aa.Aggregate(c, (x,y) => x + y))

// accumulate all B tiles at each coordinate
.AssumeHashPartition(c => c.coord)
.GroupJoin(B, c => c.coord, b => b.coord,
(c,bb) => bb.Aggregate(c, (x,y) => x + y));

}

Figure 5: Matrix addition method AddByCoordUnionV2.

n m n ∗m what
16 3 48 hash matrixes
16 2 32 merge matrixes
8 4 32 select coord, union, make zeros
8 6 48 group join A, add
8 6 48 group join B, add

208 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 5: Breakdown of work in matrix addition method
AddByCoordUnionV2.

pute nodes could complete the execution plan in about 26
minutes. We measure the job run time of about 34 min-
utes. The excess is due to variance in the execution times
of vertices and the fact that often a subsequent stage (such
as a merge stage) cannot start until all vertices in the pre-
vious stage are complete.

By getting rid of the coordinate repartitioning stages,
the execution plan in this method is simpler than for
method AddByCoordUnion, there is less total work to do,
and it runs considerably faster.

One further improvement that could be made is to elim-
inate the zero tiles, which, for a dense matrix, amounts to
reading and writing 34 GB worth of zeroes. However,
since these reads and writes are almost always to the lo-
cal disk, this only accounts for about one minute of waste
in running the plan. Fixing it produces only a marginal
improvement.

6.4 Method AddByHashApply

Another method for performing matrix addition is to par-
tition the matrices by coordinate and then, within each
pair of corresponding parts, concatenate the pair of parts,
group by coordinate, and aggregate. We call this method
“AddByHashApply”. Figure 6 shows an example listing
and the resulting execution plan.

By using Apply with a DistributiveOverConcat sub-

8



public static IQueryable<Tile> AddByHashApply (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
A = A.HashPartition(a => a.coord, numParts);
B = B.HashPartition(b => b.coord, numParts);
return A.Apply(B, (aa,bb) => LocalAdd(aa,bb));

}

[DistributiveOverConcat]
public static IEnumerable<Tile> LocalAdd (
IEnumerable<Tile> A,
IEnumerable<Tile> B)

{
return A.Concat(B)
.GroupBy(c => c.coord)
.Select(cc => cc.Aggregate((x,y) => x + y));

}

Figure 6: Matrix addition method AddByHashApply.

n m n ∗m what
16 1 16 hash input by coord
16 4 64 merge
8 6 48 compute sum

128 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 6: Breakdown of work in matrix addition method
AddByHashApply.

routine we can control how each vertex in a stage reads
through its input parts and writes its output part. The Lo-
calAdd subroutine uses the IEnumerable methods to con-
catenate, group, and aggregate tiles by coordinate locally
within the vertex.

A disadvantage of using Apply is that we loose any
automatic data parallelism that could be provided by
DryadLINQ. (Many DryadLINQ methods actually spawn
multiple threads within each vertex and distribute their
work among the threads.) On the other hand, we get the
advantage of being able to coordinate how the two input
parts are processed.

Table 6 summarizes the breakdown of work in this ma-
trix addition method. Recall that theoretically only about
5 vertex*minutes of work is needed to perform the actual
multiplication. Everything else is overhead.

If every vertex performed at its average rate, eight com-
pute nodes could complete the execution plan in about 16
minutes. We measure the job run time of about 18 min-
utes, which is very close.

This method has a simpler execution plan, less work,
and completes considerably sooner than method AddBy-
CoordUnionV2. Both plans first partition their input
matrices by coordinate. The difference is that AddBy-
HashApply follows with only one stage of reading the
repartitioned input matrices and writing a result matrix,
whereas AddByCoordUnionV2 has three stages that each
do approximately that amount of work.
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n m n ∗m what
16 4 64 hash input by coord
128 0.50 64 merge
64 0.75 48 compute sum, rehash
8 4 32 merge sum

208 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 7: Breakdown of work in matrix addition method
AddByHashmanyApply.

6.5 Method AddByHashmanyApply

If more than eight compute nodes are available, matrix ad-
dition could be accellerated by partitioning the matrixes
into more parts. To test this idea, we modify method
AddByHashApply to partition into numParts2 parts.
We call this method “AddByHashmanyApply”. Figure 7
shows an example listing and the resulting execution plan.
The method concludes by repartitioning the result matrix
back to the standard number of parts.

Table 7 summarizes the breakdown of work in this ma-
trix addition method, given eight compute nodes.

Compared to method AddByHashApply, the initial
hash partition vertices each take about four times as long.
This appears to be due to the overhead of creating 64 inter-
mediate files instead of 8 intermediate files, even though
the total amount written is the same.

The following merge vertices are eight times as many
but with one-eighth as much work to do each. However,
there is a large variance in how fast they run, with some
taking a few seconds and some taking almost a minute.
This seems to be due to how much contention was present
at the time each vertex ran.

The addition vertices are eight times as many but with
one-eighth as much work to do each.

The final merge vertices to bring the result matrix
back to the standard number of parts were not needed in
method AddByHashPartition.

public static IQueryable<Tile> AddByHashmanyApply (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
var n = numParts ∗ numParts;
A = A.HashPartition(a => a.coord, n);
B = B.HashPartition(b => b.coord, n);
return A
.Apply(B, (aa,bb) => LocalAdd(aa,bb))
.HashPartition(c => c.coord, numParts);

}

[DistributiveOverConcat]
public static IEnumerable<Tile> LocalAdd (
IEnumerable<Tile> A,
IEnumerable<Tile> B)

{
return A.Concat(B)
.GroupBy(c => c.coord)
.Select(cc => cc.Aggregate((x,y) => x + y));

}

Figure 7: Matrix addition method AddByHashmanyAp-
ply.
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Because of the additional work of partitioning the in-
put matrixes more finely and then at the end repartitioning
the result back to the standard number of partitions, this
method performs significantly worse that AddByHashAp-
ply on eight compute nodes. Table 3 shows the per-
formance with various numbers of compute nodes. Al-
though the job time improves with increasing numbers
of compute nodes, the repartitioning overheads prevent
this method from ever being competitive with the simpler
method AddByHashApply.

7 Multiplication
Ignoring refinements such as Strassen’s algorithm [6],
multiplication of n ∗ n matrices is theoretically an n3 op-
eration, requiring n3 multiplications and (n− 1) ∗ n2 ad-
ditions.

For a tile of 4096 by 4096 doubles, our measured tile
addition time is 1.24 seconds and tile multiplication time
is 3.23 seconds. Given a matrix of 16 by 16 tiles it theo-
retically should take one compute node about 300 minutes
to multiply two matrices. With 8 compute nodes it should
theoretically take about 38 minutes.

Of course, these theoretical times are not achievable,
because it takes time to read and write the matrices on
disk and also time to send tiles around to the right place.
For matrix multiplication, sending tiles around efficiently
becomes particularly important, because you have to get
column-row matching pairs of input tiles together to mul-
tiply, and then you have to get same-coordinate product
tiles together to aggregate.

Next we present various methods for multiplying large
matrices using DryadLINQ.

7.1 Method MulByJoinAgg
An elegant method to multiply two matrices is based on
joining the two collections of tiles, forming all pairs in
which a tile from the first collection has a column num-
ber that matches the row number of a tile from the second
collection. The tiles in each pair are then multiplied and
the entire result grouped by coordinate and each group
summed up. We call this method “MulByJoinAgg”. Fig-
ure 8 shows an example listing. If an uncompact represen-
tation of the result were acceptable, we could even skip

public static IQueryable<Tile> MulByJoinAgg (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
return A
.Join(B, a => a.col, b => b.row, (a,b) => a ∗ b)
.GroupBy(c => c.coord)
.Select(cc => cc.Aggregate((x,y) => x + y));

}

Figure 8: Matrix multiplication method MulByJoinAgg.

the group and aggregate steps.
Method MulByJoinAgg perfectly employs the seman-

tics of Join in performing multiplication on matrices rep-
resented as a possibly sparse, possibly uncompact collec-
tion of tiles. If a coordinate is omitted from one of the
input matrices, the Join will form no product, but then
omitting a coordinate means that the value of the tile is
zero and the product would be zero anyway. If a coordi-
nate appears multiple times in one of the input matrices,
the Join will form multiple products, which works out to
the correct result because multiplication distributes over
addition.

Unfortunately, method MulByJoinAgg is completely
impractical for large matrices. The problem arises in com-
puting the Join. DryadLINQ repartitions A by column and
B by row, so that tiles that need to be joined will appear in
corresponding parts. Then DryadLINQ runs a local join
on one compute node for each pair of corresponding parts.
The local join reads all of its input A part into memory and
then reads through its input B part one tile at a time, for
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each B tile finding all of the matching A tiles and comput-
ing their product.

The first problem (in the current version of
DryadLINQ) is that the local join buffers all of its
results in memory until it is completely done, before the
compute node goes on to the grouping and aggregating
actions. When processing dense matrices according to
our configuration parameters, the local join will have
two complete columns of tiles from A to match against
two complete rows of tiles from B. Joining these tiles
produces 1024 product tiles, which would require 137
GB of memory to store. This far exceeds the 16 GB
physical memory capacity of one compute node.

However, even if DryadLINQ could aggressively feed
the result of the local join into the grouping and aggregat-
ing actions, there would still be a second problem. Ob-
serve that the local join produces product tiles covering
all 256 distinct coordinates. Hence, even if there were ag-
gressive local aggregation, the result of the local aggrega-
tion would require 34 GB to store, which still exceeds the
16 GB physical memory capacity of one compute node.

So, in order to multiply large matrices, method Mul-
ByJoinAgg is not going to work. Instead, we will have to
broadcast some of the input so that distributed aggregation
can take place.

7.2 Method MulByAstreamBcols
One method for large matrix multiplication that works is
to partition matrix B by columns, store a small number of
columns in each compute node, and then stream all of ma-
trix A through each compute node, computing all possible
product tiles and aggregating them on the fly.

Because of the way matrix multiplication works, each
product tile a∗b lies in the same column as the right argu-
ment tile b. Since each compute node operates with ma-
trix B tiles from a small number of columns, only a small
number of columns of product tiles will be produced for
local aggregation. Because each compute node joins the
entire matrix A with entire columns from B, the result of
local aggregation will in fact be complete for the product
columns that it has.

This method requires coordinating the entire input A
with each part of input B, which can be accomplished
by using Apply with a LeftDistributiveOverConcat lo-
cal multiplication subroutine. We call this method “Mul-

ByAstreamBcols”. Figure 9 shows an example listing and
the resulting execution plan.

To simplify coding the local subroutine, we employ a
LazyTiles class that manages a lazy array of tiles. Ap-
pendix C contains an example implementation of the
LazyTiles class.

For our configuration parameters, running the Mul-
ByAstreamBcols execution plan takes about 160 minutes.
Note that this is faster than the theoretical time of 300
minutes it would take one compute node to perform this
multiplication, disregarding data movement overhead.

Inspecting the plan, we see that DryadLINQ partitions
matrix B by columns in a hash partition stage followed by
a merge stage. For some reason, the hash partition ver-
tices perform better than we saw when measuring matrix
repartition in Section 5, taking only about 2 minutes each
rather than almost 4 minutes each. Perhaps the files were
laid out differently on disk leading to less disk arm inter-
ference. However, the merge vertices performed worse,
taking about 4 minutes each rather than 3 minutes.

In order to feed the entire collection of tiles for ma-
trix A into each local multiplication vertex, DryadLINQ
merges all of the parts of B into a single, 34 GB interme-
diate file. Actually, in a case like this, when preparing for
a LeftDistributiveOverConcat apply, DryadLINQ creates
a separate merged file for each of the apply vertices. So
there are eight vertices in the merge stage, each reading
all of the parts and creating separate 34 GB intermediate
files.

These merge vertices each takes about 33 minutes to
run. Each merge vertex reads 256 tiles, almost all from re-
mote disks, and writes 256 tiles into its single output file.
Calculating from the tile operation performance numbers
in Table 2, this ought to take about 28 minutes, but of
course there is contention, since all of the vertices in the
stage are reading from the same set of input files.2

Then an apply stage contains the vertices that run the
local multiplication method. Each of these vertices reads
two input files: the first containing a roughly 4 GB part
of matrix B and the second containing a 34 GB copy of
the entire matrix A. One would hope that the Dryad job
scheduler would prefer to schedule the vertex on the com-

2Actually, the contention is not as bad as it might be, because
DryadLINQ employs a clever trick in this case. Each of the merge ver-
tices picks a random permutation of its input files and reads them in that
order.
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public static IQueryable<Tile> MulByAstreamBcols (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
B = B.HashPartition(b => b.col, numParts);
return B.Apply(A, (bb,aa) => LdocMul(aa,bb));

}

[LeftDistributiveOverConcat]
public static IEnumerable<Tile> LdocMul (
IEnumerable<Tile> A,
IEnumerable<Tile> B)

{
// Accumulate all tiles from input A into memory.
var DA = new LazyTiles(tileSize).Acc(A);

// Read through all tiles from input B. For each
// B tile, multiply all of the A tiles by it that
// are in the same column as the B tile’s row.
// Accumulate the products into the proper
// coordinates in the output product C.
var DC = new LazyTiles(tileSize);
foreach (var b in B)
foreach (var a in DA.EnCol(b.row))
DC.Acc(a ∗ b);

// Wherever there is a tile in the product,
// output it.
return DC.En();

}

Figure 9: Matrix multiplication method MulByAstream-
Bcols.

n m n ∗m what
8 2 16 hash matrix B
8 4 32 merge matrix B
8 33 264 merge matrix A to 1 file
8 55 440 compute product

752 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 8: Breakdown of work in matrix multiplication
method MulByAstreamBcols.

pute node that has the local disk containing the 34 GB
copy of matrix A. Inspecting the detailed performance
logs reveals that indeed this does usually happen. How-
ever, sometimes it does not, and in those cases the vertex
takes much longer to run.

Each of the local multiplication vertices reads 32 tiles
of matrix B and 256 tiles of matrix A. It performs 512 tile
multiplications, 480 tile additions, and writes 32 product
tiles as output. Calculating from the tile operation perfor-
mance numbers in Table 2, when matrix A is local and
matrix B is remote the vertex ought to take about 43 min-
utes, which is close to the observed average of about 50
minutes for this case. When matrix A is remote and ma-
trix B is local the vertex ought to take about 62 minutes,
which is close to the observed average of about 70 min-
utes for this case.

In our trial runs, the vertex scheduler got the preferred
locality about three-quarters of the time, so the weighted
average comes out to about 55 minutes for each of the
local multiplication vertices.

Table 8 summarizes the breakdown of work in this ma-
trix multiplication method. Recall that theoretically only
300 vertex*minutes of work is needed to perform the ac-
tual multiplication. Everything else is overhead.

Adding up the run times in each stage, we get an esti-
mated total job time of 94 minutes. This compares with
the measured total job time of 160 minutes. The substan-
tial excess can be explained by two facts. First, there
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Figure 10: Good and poor vertex schedules for executing
matrix multiplication method MulByAstreamBcols.

Each stage contains eight vertices. Eight compute notes are
available. The illustration ignores locality, assuming that the
runtime of a vertex is independent of which compute node runs
it.

is a variance in individual compute node performance,
and the actual job time depends on the worst case criti-
cal path. Note, for example, the substantial difference in
the run time of the local multiplication vertex depending
on whether matrix A is local or not.

Second, the current Dryad job scheduler uses a general-
purpose heuristic that in this case tends to make a poor as-
signment of compute nodes to vertices. Given eight com-
pute nodes to execute the MulByAstreamBcols plan, in
which each stage has exactly eight vertices, it turns out
that making a good assignment of compute nodes to ver-
tices is critical to achieving the earliest completion time.
Figure 10 illustrates a good schedule and a poor schedule.
The good schedule retires the plan by stages in topologi-
cal order.

The current Dryad scheduler does not follow that ap-
proach. Instead, when it has a free compute node, it picks
a runnable vertex from any stage using a general-purpose
heuristic. Presumably the heuristic works well in the gen-

eral case, but it performs poorly with the MulByAstream-
Bcols plan, producing a result somewhat like that shown
for the poor schedule in Figure 10. Typically, the final 40
minutes or more of the job execution consist in waiting
for the last local multiplication vertex to complete.

As shown in Table 3, running the MulByAstreamBcols
plan on more than eight compute nodes produces an im-
proved run time. Actually, as can be seen by comparing
the execution plan with the breakdown of work in Table 8,
there not much vertex parallelism that can be exploited by
additional compute nodes. Instead, the improved run time
is almost entirely due to enabling the scheduler not to get
trapped into a poor schedule.

Method MulByAstreamBcols partitions B by column
and streams all of matrix A through each compute node.
Obviously, there is a dual method that partitions A by
rows and streams all of matrix B through each compute
node. Everything being equal, the performance of the two
methods would be identical. One could choose which al-
ternative to employ based on which of matrix A or B was
larger or whether one of the matrices was already parti-
tioned in the required manner.

7.3 Method MulByAmwhBcolsApplySide

Although method MulByAstreamBcols is fairly straight-
forward, merging matrix A into a single file and then read-
ing the whole thing takes a lot of time. Another approach
would be to partition matrix A by rows, partition matrix
B by columns, and then send each possible pair of parts
to a vertex for local multiplication and aggregation.

Because of the way matrix multiplication works, the
product tile a ∗ b lies in the same row as the left argument
tile a and in the same column as the right argument tile
b. Since each vertex operates with complete rows from
A and complete columns from B, the result of local ag-
gregation will in fact be complete for whatever product
coordinates the vertex has responsibility.

Unfortunately, DryadLINQ provides no mechanism for
coordinating an interaction of partitions in the required
fashion. There is a proposed extension, sometimes called
FrankFork, which would extract each of the partitions of a
data set into a separate IQueryable. Suitable employment
of FrankFork and Concat (also currently unimplemented)
could accomplish many novel varieties of coordination.
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However, even without being able to access the parts
of a partition directly, each individual part can be com-
puted using Where to filter for the desired records. This
work-around is of course considerably less efficient, since
the entire input data set has to be processed for each part
extracted.3

So we can partition matrix B by columns and then co-
ordinate the columns of B with a computed partition of
the rows of matrix A. We use an Apply on matrix B
with a DistributiveOverConcat local multiplcation sub-
routine that receives its A rows via a side-channel. We call
this method “MulByAmwhBcolsApplySide”. Figure 11
shows an example listing of this method and Figure 12
shows the resulting execution plan.

The method iterates through a loop using Where to ex-
tract rows from matrix A corresponding to a partitioning
of matrix A by rows. The renaming of the loop control
variable “lp” to a loop body local variable “p” is a tech-
nical detail required to avoid a particular brain damage in
the way LINQ expressions work.

In each iteration of the loop, we use Apply with a Dis-
tributiveOverConcat subroutine to coordinate each parti-
tion of B with a broadcast copy of the extracted rows from
A sent in as a DryadLINQ “side-channel”. DryadLINQ
arranges for each vertex to have access to a copy of the
side channel data set.

The resulting IQueryables are collected up and then
presented to an N-ary Apply which consolidates them into
a single data set with the standard number of parts.

To simplify coding the local subroutines, we employ a
LazyTiles class that manages a lazy array of tiles. Ap-
pendix C contains an example implementation of the
LazyTiles class.

For our configuration parameters, running the Mul-
ByAmwhBcolsApplySide execution plan takes about 116
minutes.

Inspecting the plan, we see that DryadLINQ partitions
matrix B by columns in a hash partition stage folllowed
by a merge stage. Each hash partition vertex takes about 1
minute to run and each merge vertex takes about 4 minutes
to run. Although they read and write the same number of

3One could employ multiple stages of extraction: for example, first
splitting the entire collection into two parts, then splitting each part into
two subparts, and so on. We do not further investigate this idea. The
ideal solution would be to adopt FrankFork, which would obviate this
work-around.

public static
IQueryable<Tile> MulByAmwhBcolsApplySide (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
B = B.HashPartition(b => b.col, numParts);
var QC = new Queue<IQueryable<Tile>>();
for (long lp = 0; lp < numParts; lp++)
{
var p = lp;
var Aix = A.Where(a => a.row % numParts == p);
QC.Enqueue(B.Apply(Bxj => DocMul(Aix, Bxj)));

}
var C = QC.Dequeue();
return C.Apply(QC.ToArray(), cca => Mcat(cca));

}

[DistributiveOverConcat]
public static IEnumerable<Tile> DocMul (
IEnumerable<Tile> Aix,
IEnumerable<Tile> Bxj)

{
var DA = new LazyTiles(tileSize).Acc(Aix);
var DC = new LazyTiles(tileSize);
foreach (var b in Bxj)
foreach (var a in DA.EnCol(b.row))
DC.Acc(a ∗ b);

return DC.En();
}

[DistributiveOverConcat]
public static IEnumerable<Tile> Mcat (
IEnumerable<Tile>[] cca)

{
var DC = new LazyTiles(tileSize);
foreach (var cc in cca) DC.Acc(cc);
return DC.En();

}

Figure 11: Matrix multiplication method MulByAmwhB-
colsApplySide.
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Figure 12: Execution plan for matrix multiplication
method MulByAmwhBcolsApplySide.

tiles, with ideal scheduling each hash partition reads all
of its tiles locally, whereas each merge vertex has to read
almost all of its tiles remotely. Hence the difference in run
times.

The matrix A is fed into a vector of where stages, each
of which extracts a different part. Each where vertex takes
about 30 seconds to run, reading 32 tiles, usually from its
local disk, and writing 4 tiles.

Each where stage is followed by a merge stage which
merges the outputs into a single file in preparation for
feeding as a side channel. Each of these merge vertices
takes about 2 minutes to run, reading 32 tiles, almost al-
ways from a remote disk, and writing 32 tiles.

Each merge stage is followed by a “Tee” node that in-
dicates that the single file merge output is consumed by
each of the vertices in the following apply stage. Each
of these apply stages also gets a copy of the repartitioned
matrix B, but in this case each part is connected to a sepa-
rate vertex in the stage. Each vertex in these apply stages
takes about 10 minutes to run, reading 32 tiles of matrix
A and 32 tiles of matrix B, usually half from the local disk
and half remote, performing 64 tile multiplications and 60
tile additions, and writing 4 tiles. Depending on how the
vertices are scheduled, there is likely to be contention on
reading the parts of matrix A or reading the parts of matrix
B.

The apply stages all feed into a final apply stage that
consolidates the results. Each vertex in this final apply
stage takes about 5 minutes to run, reading 32 tiles, almost
all remotely, and writing 32 tiles.

Table 9 summarizes the breakdown of work in this ma-
trix multiplication method. If the scheduling were perfect
and all vertices ran at the average rate, with 8 compute
nodes the job should finish in about 96 minutes. Mea-
sured performance is about 116 minutes.

With eight compute nodes, MulByAmwhBcolsApply-
Side runs a little quicker than MulByAstreamBcols, even
though its plan is much more complicated. Since Mul-
ByAmwhBcolsApplySide contains many more vertices
that run for much shorter periods of time than MulByAs-
treamBcols, it has many more checkpoints, and generally
much less work would be lost should a compute node fail.
This could become important at larger matrix sizes.

Another advantage of MulByAmwhBcolsApplySide is
that it contains much more vertex parallelism than Mul-
ByAstreamBrows. Hence if more compute nodes are
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n m n ∗m what
8 1 8 partition matrix B
8 4 32 merge matrix B

64 0.5 32 where matrix A rows
8 2 16 merge matrix A rows

64 10 640 compute product
8 5 40 merge product

768 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 9: Breakdown of work in matrix multiplication
method MulByAmwhBcolsApplySide.

available, it can complete sooner. With 64 compute nodes
available, the MulByAmwhBcolsApplySide plan takes
about 40 minutes to run.4 This is a factor of 3 faster
than with 8 compute nodes, at the cost of using 8 times
as many compute nodes. Table 3 shows the job times for
various numbers of compute nodes. The speedup is sub-
linear because using more compute nodes results both in
more contention and in many vertices having to read re-
motely.

7.4 Method MulByAmwhBcolsApplyLdoc

Instead of using a side-channel to broadcast parts of ma-
trix A into stages partitioned by columns of matrix B, we
could instead use a two-argument Apply with a LeftDis-
tributiveOverConcat local multiplication subroutine. We
call this method “MulByAmwhBcolsApplyLdoc”. Fig-
ure 13 shows an example listing and Figure 14 the result-
ing execution plan.

Inspecting the plan, we see that it differs from the Mul-
ByAmwhBcolsApplySide plan mainly in how the merge
stages for the rows of matrix A are connected to the apply

4With 64 compute nodes available, unfortunately it turns out that the
spurious Merge node that merges the entire matrix B into a single file is,
in some runs, on the critical path to finishing the job. This vertex alone
takes about 34 minutes to run.

public static
IQueryable<Tile> MulByAmwhBcolsApplyLdoc (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
B = B.HashPartition(b => b.col, numParts);
var QC = new Queue<IQueryable<Tile>>();
for (long lp = 0; lp < numParts; lp++)
{
var p = lp;
var Aix = A.Where(a => a.row % numParts == p);
QC.Enqueue(B.Apply(Aix,
(Bxj,Aix0) => LdocMul(Aix0, Bxj)));

}
var C = QC.Dequeue();
return C.Apply(QC.ToArray(), cca => Mcat(cca));

}

[LeftDistributiveOverConcat]
public static IEnumerable<Tile> LdocMul (
IEnumerable<Tile> Aix,
IEnumerable<Tile> Bxj)

{
var DA = new LazyTiles(tileSize).Acc(Aix);
var DC = new LazyTiles(tileSize);
foreach (var b in Bxj)
foreach (var a in DA.EnCol(b.row))
DC.Acc(a ∗ b);

return DC.En();
}

[DistributiveOverConcat]
public static IEnumerable<Tile> Mcat (
IEnumerable<Tile>[] cca)

{
var DC = new LazyTiles(tileSize);
foreach (var cc in cca) DC.Acc(cc);
return DC.En();

}

Figure 13: Matrix multiplication method MulByAmwhB-
colsApplyLdoc.
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Figure 14: Execution plan for matrix multiplication
method MulByAmwhBcolsApplyLdoc.

n m n ∗m what
8 1 8 partition matrix B
8 4 32 merge matrix B
64 0.5 32 where matrix A rows
64 2 128 merge matrix A rows
64 10 640 compute product
8 5 40 merge product

880 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 10: Breakdown of work in matrix multiplication
method MulByAmwhBcolsApplyLdoc.

stages that perform the multiply. In the MulByAmwhB-
colsApplySide plan, each merge stage produces one out-
put that is broadcast to all of the vertices in the following
apply stage. In the MulByAmwhBcolsApplyLdoc plan,
on the other hand, each merge stage is replicated eight
times to produce individual copies for each of the vertices
in its following apply stage.

The result is more total work to be done, but it moves
the broadcast contention from the apply stage inputs back
to the merge stage inputs.

Table 10 summarizes the breakdown of work in this
matrix multiplication method. If the scheduling were per-
fect and all vertices ran at the average rate, with 8 com-
pute nodes the job should finish in about 110 minutes.
Measured performance is about 133 minutes.

Compared with method MulByAmwhBcolsApplySide,
this method spends more work making separate copies of
the parts for matrix A, and yet does not manage to run
the product vertices any faster. The problem is that 64
different files are produced containing the parts of matrix
A and yet there are only 8 compute nodes on which to
store them. Absent an ideal schedule, multiple product
vertices often end up contending on the same remote disk.
So there is still about the same amount of contention for
reading the parts of A and the parts of B as there was in
method MulByAmwhBcolsApplySide. Table 3 shows the
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job times for various numbers of compute nodes.

7.5 Method MulByAmwhBcolsSelect

A limitation in method MulByAmwhBcolsApplySide is
that it fails to fully exploit data parallelism. In the Ap-
ply stages that multiply and accumulate the product each
compute node performs all operations in serial for the A
rows and B columns that are input to that node. That is a
problem with using Apply in DryadLINQ: if there is data
parallelism, you have to program it explictly.

One approach to get around this limitation is to recode
the Apply into a GroupBy that groups the partitioned B
matrix by column and then a SelectMany that computes
the result of multiplying that group by a partition of rows
from matrix A. We call this method “MulByAmwhBcols-
Select”. Figure 15 shows an example listing and Figure 16
the resulting execution plan. The overall structure of the
code and the plan look very much the same as for the Mul-
ByAmwhBcols method.

One hazard that is perhaps not obvious arises with
grouping an entire row or column of the matrix in this
way. For our configuration parameters, if DryadLINQ
constructs a plan in which such a group is sent from one
vertex to another, during execution of the job Dryad will
discover that it needs a record size larger than 2 GB. This
is larger than the capacity of the current Dryad, so the
job will fail. Fortunately, the MulByAmwhBcolsSelect
method creats the column group only for temporary use
within individual vertices, so it does not have this issue.

Table 11 summarizes the breakdown of work in this
matrix multiplication method. If the scheduling were
perfect and all vertices ran at the average rate, with 8
compute nodes the job should finish in about 80 min-
utes. Measured performance is about 103 minutes. This
is 13 minutes faster than running MulByAmwhBcolsAp-
plySide and is entirely due to saving about 2 minutes in
each of the multiply-accumulate vertices through process-
ing two columns of matrix B in parallel.

With 64 compute nodes available, the MulByAmwhB-
colsSelect plan takes about 40 minutes to run, basically
the same as MulByAmwhBcolsApplySide.

public static
IQueryable<Tile> MulByAmwhBcolsSelect (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
B = B.HashPartition(b => b.col, numParts);
var QC = new Queue<IQueryable<Tile>>();
for (long lp = 0; lp < numParts; lp++)
{
var p = lp;
var Aix = A.Where(a => a.row % numParts == p);
var Cix = B
.GroupBy(b => b.col)
.SelectMany(Bxj => LocalMul(Aix, Bxj));

QC.Enqueue(Cix);
}
var C = QC.Dequeue();
return C.Apply(QC.ToArray(), cca => Mcat(cca));

}

public static IEnumerable<Tile> LocalMul (
IEnumerable<Tile> Aix,
IEnumerable<Tile> Bxj)

{
var DA = new LazyTiles(tileSize).Acc(Aix);
var DC = new LazyTiles(tileSize);
foreach (var b in Bxj)
foreach (var a in DA.EnCol(b.row))
DC.Acc(a ∗ b);

return DC.En();
}

[DistributiveOverConcat]
public static IEnumerable<Tile> Mcat (
IEnumerable<Tile>[] cca)

{
var DC = new LazyTiles(tileSize);
foreach (var cc in cca) DC.Acc(cc);
return DC.En();

}

Figure 15: Matrix multiplication method MulByAmwhB-
colsSelect.
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Figure 16: Execution plan for matrix multiplication
method MulByAmwhBcolsSelect.

n m n ∗m what
8 1 8 partition matrix B
8 4 32 merge matrix B
64 0.5 32 where matrix A rows
8 2 16 merge matrix A rows
64 8 512 compute product
8 5 40 merge product

640 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 11: Breakdown of work in matrix multiplication
method MulByAmwhBcolsSelect.

7.6 Method MulByAmwhBcolsSelectJoin

Method MulByAmwhBcolsSelect uses a LocalMul sub-
routine to handle computing the product result in the prod-
uct vertices. This subroutine uses imperative code and
the LazyTiles class. Instead, to be more in the flavor of
DryadLINQ, we could write the local computation using
the IEnumerable Join, GroupBy, and Aggregate methods.
We call the resulting method “MulByAmwhBcolsSelec-
tJoin”. Figure 17 shows an example listing and Figure 18
the resulting execution plan. The overall structure of the
code and the plan look very much the same as for the Mul-
ByAmwhBcols method.

Unfortunately, in the current version of DryadLINQ,
the aggregation of the results does not start until the local
Join is complete. With our configuration parameters, the
grouping of matrix B by column results in two columns (4
GB) being stored in each product vertex. Bringing rows
of matrix A in via a side-channel results in two rows be-
ing stored in each product vertex (4 GB). Each local Join
joins one column of B against two rows of A, producing
32 product tiles, but since two columns of B are present in
each product vertex, there are two local Joins running pro-
ducing a total of 64 product tiles (9 GB). The peak mem-
ory requirement of 17 GB just barely exceeds the memory
capacity of the compute node. As a consequence the com-
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public static
IQueryable<Tile> MulByAmwhBcolsSelectJoin (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
B = B.HashPartition(b => b.col, numParts);
var QC = new Queue<IQueryable<Tile>>();
for (long lp = 0; lp < numParts; lp++)
{
var p = lp;
var Aix = A.Where(a => a.row % numParts == p);
var Cix = B
.GroupBy(b => b.col)
.SelectMany(Bxj => Bxj
.Join(Aix, b => b.row, a => a.col,
(b, a) => a ∗ b)

.GroupBy(c => c.coord)

.Select(cc => cc.Aggregate((x, y) => x + y)));
QC.Enqueue(Cix);

}
var C = QC.Dequeue();
return C.Apply(QC.ToArray(), cca => Mcat(cca));

}

[DistributiveOverConcat]
public static IEnumerable<Tile> Mcat (
IEnumerable<Tile>[] cca)

{
var DC = new LazyTiles(tileSize);
foreach (var cc in cca) DC.Acc(cc);
return DC.En();

}

Figure 17: Matrix multiplication method MulByAmwhB-
colsSelectJoin.

Figure 18: Execution plan for matrix multiplication
method MulByAmwhBcolsSelectJoin.
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n m n ∗m what
8 1 8 partition matrix B
8 4 32 merge matrix B

64 0.5 32 where matrix A rows
8 2 16 merge matrix A rows

64 21 1344 compute product
8 5 40 merge product

1472 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 12: Breakdown of work in matrix multiplication
method MulByAmwhBcolsSelectJoin.

pute node goes into a short spasm of paging.
Table 12 summarizes the breakdown of work in this

matrix multiplication method. Average vertex run times
are identical to those for method MulByAmwhBcolsSe-
lect except for the product vertices, which take about 21
minutes to run instead of 8. This is entirely due to paging.
Hence this method is a bad alternative to MulByAmwhB-
colsSelect.

7.7 Method MulByArowsBcolsEnv

Another approach to coordinating every row of matrix A
with every column of matrix B takes the idea of stuffing
tiles into envelopes that route the tile to the proper compu-
tation vertex. Sending copies of a tile to multiple vertices
can be accomplished by stuffing copies of it into multiple
envelopes. We call this method “MulByArowsBcolsEnv”.

The advantage of this method is that it completely
avoids any contention between multiple compute nodes
reading from the same intermediate file. The disadvan-
tage is that this comes at the price of considerably more
data copying.

The idea is that we will have numParts2 computa-
tion vertices, each responsible for multiplying a part of
the rows of matrix A against a part of the columns of ma-
trix B. Each vertex computes 1/numParts2 of the prod-

uct matrix. For each of the tiles in matrix A and matrix B,
we address envelopes and send a copy of the tile to each
of the computation vertices that needs it.

To manage the envelopes, we use a TileEnv class. An
example listing of the TileEnv class can be found in
Appendix D. Since TileEnv is declared as Serializable,
DryadLINQ can automatically arrange to send records
of that type betweeen vertices, without any special code
needed by the programmer.

Each envelope explicitly identifies which computation
vertex is its destination. The MkPart routine calculates
the part responsible for the product value at a given row
and column. The SpreadOverCols routine takes a tile and
copies it into envelopes addressed to each of the com-
putation vertices responsible for any column combined
with the tile’s row. The SpreadOverRows routine does the
analogous action for rows combined with the tile’s col-
umn.

Using the TileEnv class, it is easy to implement matrix
multiplication using envelopes. Figure 19 shows an ex-
ample listing and Figure 20 the resulting execution plan.

Next we describe the performance of this matrix multi-
plication method given our configuration parameters.

The first step repartitions each input matrix into 64
parts. Inspecting the execution plan, each matrix has a
HashPartition stage to accomplish this, and each of the
vertices in these stages takes about 3 minutes to run. The
purpose of this repartitioning step is to enable more par-
allelism in the next step.

The next step addresses envelopes, spreading copies of
tiles from matrix A over the product columns and spread-
ing copies of tiles from matrix B over the product rows.
Inspecting the execution plan, each matrix has a Super
stage that merges the HashPartition outputs, addresses en-
velopes, and repartitions the envelopes for the product
matrix. Each of the vertices in these stages takes about
5 minutes to run.

The next step merges envelopes from the previous
stage’s outputs. Inspecting the execution plan, each ma-
trix has a Merge stage that accomplishes this. Each of the
vertices in these stages takes about 5 minutes to run.

So far all that has been accomplished is organizing data.
The next step finally does some useful work, by taking
the envelopes and computing the product. Inspecting the
execution plan, there is a Super stage that uses an Apply
with a DistributiveOverConcat subroutine to coordinate
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public static
IQueryable<Tile> MulByArowsBcolsEnv (
IQueryable<Tile> A,
IQueryable<Tile> B)

{
var n = numParts ∗ numParts;
var AE = A
.HashPartition(a => a.coord, n)
.SelectMany(a => TileEnv.SpreadOverCols(a))
.HashPartition(ae => ae.part, n);

var BE = B
.HashPartition(b => b.coord, n)
.SelectMany(b => TileEnv.SpreadOverRows(b))
.HashPartition(be => be.part, n);

return AE
.Apply(BE, (AEix, BExj) => MulEnv(AEix, BExj))
.HashPartition(c => c.coord, numParts);

}

[DistributiveOverConcat]
public static IEnumerable<Tile> MulEnv (
IEnumerable<TileMux> AEix,
IEnumerable<TileMux> BExj)

{
var DA = new LazyTiles(tileSize)
.Acc(AEix.Select(ae => ae.tile));

var DB = new LazyTiles(tileSize)
.Acc(BExj.Select(be => be.tile));

var DC = new LazyTiles(tileSize);
foreach (var a in DA.En())
foreach (var b in DB.EnRow(a.col))
DC.Acc(a ∗ b);

return DC.En();
}

Figure 19: Matrix multiplication method MulByArowsB-
colsEnv.

Figure 20: Execution plan for matrix multiplication
method MulByArowsBcolsEnv.

the two input parts and compute the product by multiply
and aggregate. This stage ends with a HashPartition to
repartition the product back to 8 parts from 64. Each of
the vertices in this stage takes about 10 minutes to run.

Finally, the last step merges product tiles back into 8
partitions. Inspecting the execution plan, there is a Merge
stage the merges the HashPartition outputs from the pre-
vious stage. Each of the vertices in this stage takes about
4 minutes to run.

Table 13 summarizes the breakdown of work in this
matrix multiplication method. Recall that theoretically
only 300 vertex*minutes of work is needed to perform
the actual multiplication. Everything else is overhead.

8 Lower-triangular solve

Lower-triangular solve (LTS) is the simplest instance of a
division analog in matrix operations. The problem is as
follows: given a lower-triangular matrix A and a product
matrix B, find the matrix X such that A ∗ X = B. Fig-
ure 21 gives an illustration.

If you just pick random values for the lower-triangular
entries in matrix A, the solution is not likely to be numer-
ically stable. However, the solution is numerically stable
if A is strongly diagonally definite, that is, if the absolute
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n m n ∗m what
16 3 48 initial repartition

128 5 640 distribute envelopes
128 5 640 merge envelopes
64 10 640 compute product
8 4 32 merge product

2000 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 13: Breakdown of work in matrix multiplication
method MulByArowsBcolsEnv.

a0,0 0 0 0 0 0 

a1,0 a1,1 0 0 0 0 

a2,0 a2,1 a2,2 0 0 0 

a3,0 a3,1 a3,2 a3,3 0 0 

a4,0 a4,1 a4,2 a4,3 a4,4 0 

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 

Find X such that A * X = B 
where A is lower-triangular 

x0,0 x0,1 x0,2 x0,3 

x1,0 x1,1 x1,2 x1,3 

x2,0 x2,1 x2,2 x2,3 

x3,0 x3,1 x3,2 x3,3 

x4,0 x4,1 x4,2 x4,3 

x5,0 x5,1 x5,2 x5,3 

b0,0 b0,1 b0,2 b0,3 

b1,0 b1,1 b1,2 b1,3 

b2,0 b2,1 b2,2 b2,3 

b3,0 b3,1 b3,2 b3,3 

b4,0 b4,1 b4,2 b4,3 

b5,0 b5,1 b5,2 b5,3 

* = 

A X B 

Figure 21: Lower-triangular solve (LTS) problem.

value of each element on the diagonal of A exceeds the
sum of the absolute values of all other elements in its row.
For testing our algorithms, we always used examples of
matrix A that were strongly diagonally definite.

Since each column in the solution matrix X contributes
only to the corresponding column in the product matrix B,
it is possible to solve for each column of X independently.
However, within each column, the rows have to be solved
in order, since the value for each row depends on all the
previous.

For square matrices of 16 x 16 tiles, matrix lower-
triangular solve requires 256 tile lower-triangular solve
operations, 1920 tile multiplications, and 1920 tile sub-
tractions. Based on the times in Table 2, it theoretically
should take one compute node about 154 minutes to per-
form a matrix lower-triangular solve. With 8 compute
nodes it should theoretically take about 19 minutes.

Of course, these theoretical times are not achievable,
because it takes time to read and write the matrices on
disk and also time to send tiles around to the right place.
The fact that the rows have to be computed in order adds
a new level of complexity to solutions of this problem.
This is in contrast with matrix multiplication, in which
rows could be processed independently and in parallel.

Next we present various methods for performing lower-
triangular solve on large matrices using DryadLINQ.

8.1 Method LtsByAorderBcols

One method to compute lower-triangular solve is to par-
tition the product matrix B by columns, store each part
in a solution vertex, and then stream row-by-row the en-
tire lower-triangular matrix A into each solution vertex.
Each solution vertex solves row-by-row for the entries in
its columns of matrix X and, at the end, outputs its solved
columns. The storage requirement is feasible since at any
time each solution vertex has to store a part of the columns
of matrix B, a part of the columns of matrix X, and a row
of matrix A.

Actually, we observe that as soon as each entry in ma-
trix X is computed, the corresponding entry in matrix B
is no longer needed. So we can use the same storage for
matrix X as is used for matrix B. With this refinement, the
solution vertex only needs to hold storage for one matrix
part for X and B combined, rather than two matrix parts.
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The solution vertex uses an Apply with a LeftDistribu-
tiveOverConcat subroutine to coordinate one part of ma-
trix B with the entire streamed matrix A. The next ques-
tion is how to organize the row-by-row streaming of ma-
trix A.

Our first idea was to group matrix A by row and then
sort the groups. Unfortunately, this does not work with
our configuration parameters, because DryadLINQ will
construct an execution plan in which the groups have to
be sent from one vertex to another as part of sorting and
then streaming into the solution vertex. Since the last row
in matrix A spans all the columns, it will need a record
size larger than 2 GB, which exceeds the capacity of the
current Dryad.

Our second idea was to sort the matrix A tiles by row
and then have the solution vertex parse the stream into
rows in an online fashion in order to compute the solution
row-by-row. We call this method “LtsByAorderBcols0”.
Figure 22 shows a listing.

To manage the parsing, we use a RowScanInOrder
class, listed in Appendix E. The static method RowScanI-
nOrder.Do takes an IEnumerable of Tile sorted by row,
parses it, and enumerates the rows. The method antici-
pates sorting methods that sort only into buckets of rows,
where each bucket contains stride rows. At this point, we
just say stride = 1.

The main part of the lower-triangular solve method just
partitions B by columns, sorts A by rows, and then coor-
dinates each part of B with the entire sorted A.

Figure 23 shows the resulting execution plan.
Unfortunately, this method does not work. The prob-

lem occurs when DryadLINQ merges the multi-part
sorted matrix A into one file in preparation for stream-
ing it through the solution vertex. In spite of the fact that
the collection is sorted, the current version of DryadLINQ
picks a random order in which to merge the partitions.
This, of course, makes the computation totally wrong.
When we discovered this problem, we added the excep-
tion checks to RowScanInOrder.Do. These exceptions
cause the solution vertex to fail which eventually causes
the job to fail.

After some consultation with the DryadLINQ team, we
determined that the only way to access a sorted collection
as a query and keep it in order is to use one of the so-called
“Partitioning Operators” Take, Skip, TakeWhile, or Skip-
While. None of the other operators guarantee to preserve

public static IQueryable<Tile> LtsByAorderBcols0 (
IQueryable<Tile> A, long Arows,
IQueryable<Tile> B)

{
A = A.OrderBy(a => a.row);
B = B.HashPartition(b => b.col,numParts);
return B.Apply(A,
(Bxj,SA) => LtsStream(Arows,SA,Bxj));

}

[LeftDistributiveOverConcat]
public static IEnumerable<Tile> LtsStream (
long Arows,
IEnumerable<Tile> SA,
IEnumerable<Tile> Bxj)

{
var DB = new LazyTiles(tileSize).Acc(Bxj);
var cols = DB.En()
.Select(b => b.col).Distinct().ToArray();

var RSIO = RowScanInOrder.Do(Arows, 1, SA);
foreach (var R in RSIO)
{
var i = R.row;
var DA = R.DA;

foreach (var j in cols)
{
// subtract [i,j] of A∗X from B
foreach (var a in DA.EnRow(i))
if (a.col < i)
foreach (var x in DB.EnCoord(a.col, j))
DB.AccNeg(a ∗ x);

// solve for X[i,j]
DB[i, j] = Tile.Lts(DA[i, i], DB[i, j]);

}
}
return DB.En();

}

Figure 22: Matrix lower-triangular solve method Lts-
ByAorderBcols0.
This method does not work.
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Figure 23: Execution plan for matrix lower-triangular
solve method LtsByAorderBcols0.

order. So we added a Skip(0) to transform our multi-part
sorted collection into a single part sorted collection. We
call this method “LtsByAorderBcols”. Figure 24 shows a
listing and Figure 25 the resulting execution plan.

Next we describe the performance of this matrix lower-
triangular solve method given our configuration parame-
ters.

To sort a collection, DryadLINQ takes the approach of
sampling the sorting key, repartitioning the collection into
roughly equal piles based ranges computed from the sam-
ple, and then sorting within each range. The sampling
is done first within each part, and then the samples com-
bined to give an overall sample.

Inspecting the execution plan, sampling within each
part of matrix A requires reading all the tiles in the part
and then writing essentially a trivial amount of data. Since
A is a lower-triangular matrix with the upper-triange zero
tiles omitted, each part contains about 17 tiles. If the sam-
pling vertex is lucky and can read its part from the local
disk, it takes about 15 seconds. If the sampling vertex is
unlucky and must read its part remotely, it takes about 2
minutes. The average run time is about 1 minute.

One vertex combines the samples and computes the
range keys for repartitioning the collection. It takes less
than a second to run.

The range keys are distributed to range partition ver-
tices that repartition the matrix. Each range partition ver-
tex reads and writes about 17 tiles. The average run time
is about 1 minute, but again it depends greatly on whether
the vertex is lucky or unlucky.

Next come merge vertices that read the outputs of the
range partition vertices, sort their tiles by row, and then
write out their part. Each vertex reads and writes about
17 tiles, with almost all of the reading being remote. The
average run time is about 2 minutes.

In the final stage of preparing matrix A, a single skip
vertex reads all of the sorted parts and writes a single file.
It reads and writes 136 tiles. Almost all of the reads are
remote and the run time is about 17 minutes.

The preparation for matrix B consists in repartitioning
it by columns. The first stage consists of hash partition
vertices that read and write about 32 tiles each. The aver-
age run time is about 2 minutes.

Next come merge vertices that read the output of the
hash partition vertices. Each vertex reads and writes 32
tiles, with allmost all of the reading being remote. The
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public static IQueryable<Tile> LtsByAorderBcols (
IQueryable<Tile> A, long Arows,
IQueryable<Tile> B)

{
A = A.OrderBy(a => a.row)

.Skip(0);
B = B.HashPartition(b => b.col,numParts);
return B.Apply(A,
(Bxj,SA) => LtsStream(Arows,SA,Bxj));

}

[LeftDistributiveOverConcat]
public static IEnumerable<Tile> LtsStream (
long Arows,
IEnumerable<Tile> SA,
IEnumerable<Tile> Bxj)

{
var DB = new LazyTiles(tileSize).Acc(Bxj);
var cols = DB.En()
.Select(b => b.col).Distinct().ToArray();

var RSIO = RowScanInOrder.Do(Arows, 1, SA);
foreach (var R in RSIO)
{
var i = R.row;
var DA = R.DA;

foreach (var j in cols)
{
// subtract [i,j] of A∗X from B
foreach (var a in DA.EnRow(i))
if (a.col < i)
foreach (var x in DB.EnCoord(a.col, j))
DB.AccNeg(a ∗ x);

// solve for X[i,j]
DB[i, j] = Tile.Lts(DA[i, i], DB[i, j]);

}
}
return DB.En();

}

Figure 24: Matrix lower-triangular solve method Lts-
ByAorderBcols.

Figure 25: Execution plan for matrix lower-triangular
solve method LtsByAorderBcols.
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n m n ∗m what
8 2 16 sample A by parts
1 0 0 combine samples
8 1 8 range partition A
8 2 16 merge A
8 2 16 hash partition B
8 4 32 merge B
8 45 360 compute solution

448 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 14: Breakdown of work in matrix lower-triangular
solve method LtsByAorderBcols.

average run time is about 4 minutes.

Finally, an apply stage combines the columns of ma-
trix B with the sorted matrix A. Each vertex reads 32 tiles
from matrix B and 136 tiles from the sorted matrix A; per-
forms 32 tile ltsolve operations, 240 tile multiplications,
and 240 tile subtractions; and writes 32 tiles of matrix X.
In almost all cases reading from the sorted matrix A is re-
mote and with contention. The average run time is about
45 minutes.

Table 14 summarizes the breakdown of work in this
matrix lower-triangular solve method. Recall that theo-
retically only 154 vertex*minutes of work is needed to
perform the actual computation. Everything else is over-
head.

If all vertices ran at the average speed, with 8 compute
nodes the job should be complete in about 56 minutes.
Measured completion time is about 77 minutes. The ex-
tra time is due to variance in vertex completion time and
the fact that in this execution plan, most stages depend on
all vertices in the previous stage completing before any
vertex can start. Hence, the job run time tends to be dom-
inated by the worst case vertex time.

8.2 Method LtsByArangeBcols

One variation of method LtsByAorderBcols replaces the
sorting step with an explict range partition. Whereas the
sorting step samples the number of tiles in each row in
order to get a partition with approximately the same num-
ber of tiles in each part, we can simply create partition
separators to put approximately the same number of rows
in each part. We call this method “LtsByArangeBcols”.
Figure 26 shows a listing and Figure 27 the resulting exe-
cution plan.

There is a little unfortunate complexity in setting up the
range partition separators. The RangePartition operator
specifies that it is “not possible to predict” whether keys
that match a partition separator are sent to the lower bin or
to the upper bin. Since we want to be able to direct where
all the tiles go, we scale and offset the separators and keys
so that there will be no ties.

As in method LtsByAorderBcols, to avoid the random
partition order merge problem, we use a Skip(0) to reduce
the partitioned collection to a single file.

The execution plan is simpler than for method Lts-
ByAorderBcols, since the sampling stages are omitted. At
first glance, this should save about two minutes of job run
time, but it does not. With eight compute nodes, method
LtsByAorderBcols and method LtsByArangeBcols com-
plete in the same amount of time.

It turns out that in method LtsByArangeBcols, the ver-
tices in the merge stage that follows the range partition
are unbalanced. Because the range partition divides the
lower-triangular matrix A evenly by rows, the number of
tiles in each part are far from equal. The merge vertex
with the least work has almost no work and the vertex
with the most work has almost twice as much as average,
or about two extra minutes of work. The skip vertex can-
not start until all of the merge vertices are finished. The
extra two minutes delay completely eats up the two min-
utes that were saved by omitting the sampling stages.

8.3 Method LtsByAmwhBcolsmwh

Streaming the entire matrix A through solution vertices
causes these vertices to run for a long time. It might be
better to break the computation up more so that more im-
plicit checkpoints can be taken.
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public static IQueryable<Tile> LtsByArangeBcols (
IQueryable<Tile> A, long Arows,
IQueryable<Tile> B)

{
var stride = (Arows + numParts − 1) / numParts;
var keys = Enumerable.Range(1, numParts − 1)
.Select(i => i ∗ stride ∗ 2)
.ToArray();

A = A.RangePartition(a => a.row ∗ 2 + 1, keys)
.Skip(0);

B = B.HashPartition(b => b.col,numParts);
return B.Apply(A,
(Bxj,SA) => LtsStream(Arows,stride,SA,Bxj));

}

[LeftDistributiveOverConcat]
public static IEnumerable<Tile> LtsStream (
long Arows,
long stride,
IEnumerable<Tile> SA,
IEnumerable<Tile> Bxj)

{
var DB = new LazyTiles(tileSize).Acc(Bxj);
var cols = DB.En()
.Select(b => b.col).Distinct().ToArray();

var RSIO = RowScanInOrder.Do(Arows, stride, SA);
foreach (var R in RSIO)
{
var i = R.row;
var DA = R.DA;

foreach (var j in cols)
{
// subtract [i,j] of A∗X from B
foreach (var a in DA.EnRow(i))
if (a.col < i)
foreach (var x in DB.EnCoord(a.col, j))
DB.AccNeg(a ∗ x);

// solve for X[i,j]
DB[i, j] = Tile.Lts(DA[i, i], DB[i, j]);

}
}
return DB.En();

}

Figure 26: Matrix lower-triangular solve method LtsB-
yArangeBcols.

Figure 27: Execution plan for matrix lower-triangular
solve method LtsByArangeBcols.

One way to do that is to compute rows of X step-by-
step in stages. We start out with an empty solution matrix
X. In each iteration, we feed the next few rows of the ma-
trix X, the next few rows of the product B, and the current
solution matrix X in to a stage and get as output the solu-
tion matrix X with the next few rows added. In each stage,
the columns of B and X are partitioned across a number
of vertexes.

We use Where operators to extract the next few rows of
B and of A. The rows of B remain partitioned by columns.
We use a side-channel to broadcast the rows of A to all
vertices in the stage. We call this method “LtsByAmwh-
Bcolsmwh”. Figure 28 shows a listing and Figure 29 the
resulting execution plan.

One tricky part is how the DistributiveOverConcat lo-
cal lower-triangular solve subroutine determines which
columns in B and X it is responsible for. One the first
iteration, nothing is yet solved for matrix X, and if ma-
trix B happened to have omitted zero tiles in the first few
rows, there would be no way for the subroutine to know
which columns to solve for. This is not a problem in the
streaming methods because in those cases the subroutine
has entire columns of B, and if the entire column omitted
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then there is not need to solve for that column of X, since
it is zero.

The way we solve this problem is to initialize X to have
explicit zero tiles in row 0 for every non-empty column in
B. The subroutine can then determine which columns it is
responsible for by looking at row 0 in X.

Examining the execution plan for this method, the main
feature is a central stem of apply stages, with rows of B
being extracted and input on one side and rows of A being
extracted and input on the other side. Each successive ap-
ply stage takes longer to execute than the previous, since
it has to read and write all of the rows currently solved
for X, which gets longer each time. In addition, the rows
for A get longer and computing the next rows in X takes
longer.

In spite of the greatly increased complexity in the exe-
cution plan, however, this method completes in about the
same time as the streaming methods. Compared to the
streaming methods, this method does not have to spend
time sorting the lower-triangular matrix and writing it all
into one file. However, that savings is lost in the time it
takes to read and write the currently solved rows of X in
each apply stage.

Table 3 shows the run time of this method for various
numbers of compute nodes. The run times are all about
the same. The critical path in this method is the cen-
tral stem of apply stages, and these stages cannot use any
more than 8 compute nodes.

8.4 Method LtsByAmwhmwhBcolsmwh

In computing lower-triangular solve, before solving
for xi,k, you first have to subtract the inner product∑i−1

j=0 ai,j∗xj,k from bi,. Method LtsByAmwhBcolsmwh
computes this inner product in the vertex that solves for
xi,k. However, the needed values of xj,k are available
earlier, some much earlier, and more parallelism can be
exhibited by accumulating the inner product step-by-step
in separate vertices.

Organizing the computation is somewhat tricky. As in
method LtsByAmwhBcolsmwh, we iterate through rows
of B and A, using Where operators to extract a batch of
the next few rows. We adjust the row batch of B by sub-
tracting the inner products. We use a Where operator to
extract the diagonal batch of A, taking the same columns

public static IQueryable<Tile> LtsByAmwhBcolsmwh (
IQueryable<Tile> A, long Arows,
IQueryable<Tile> B)

{
long stride = (Arows + numParts − 1) / numParts;
A = A.HashPartition(a => a.col,numParts);
B = B.HashPartition(b => b.col,numParts);
X = B
.GroupBy(b => b.col)
.Select(g => new Tile(tileSize,0,g.Key));

for (long p = 0; p < numParts; p++)
{
var fi = Math.Max((p + 0) ∗ stride, 0);
var ai = Math.Min((p + 1) ∗ stride, Arows);
var Aix = A.Where(a => fi <= a.row && a.row < ai);
var Bix = B.Where(b => fi <= b.row && b.row < ai);
X = X.Apply(Bix,
(Xxj,Bij) => LtsChain(fi,ai,Aix,Xxj,Bij));

}
return X;

}

[DistributiveOverConcat]
public static IEnumerable<Tile> LtsChain (
long fi, long ai,
IEnumerable<Tile> Aix,
IEnumerable<Tile> Xxj,
IEnumerable<Tile> Bij)

{
var DA = new LazyTiles(tileSize).Acc(Aix);
var DX = new LazyTiles(tileSize).Acc(Xxj);
var DB = new LazyTiles(tileSize).Acc(Bij);
var cols = DX.EnRow(0).Select(x => x.col).ToArray();
foreach (var j in cols)
{
for (var i = fi; i < ai; i++)
{
// subtract [i,j] of A∗X from B
foreach (var a in DA.EnRow(i))
foreach (var x in DX.EnCoord(a.col,j))
DB.AccNeg(a ∗ x);

// solve for X[i,j]
DX[i, j] = Tile.Lts(DL[i, i], DB[i, j]);

}
}
return DX.En();

}

Figure 28: Matrix lower-triangular solve method Lts-
ByAmwhBcolsmwh.
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Figure 29: Execution plan for matrix lower-triangular solve method LtsByAmwhBcolsmwh.
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as appear in the row batch. An apply stage, partitioned
by columns in B, takes the adjusted row batch of B and
a side-channel broadcast of the diagonal batch of A, and
computes the solution X for this row batch.

Instead of combining the solution X into a single data
set, we leave each row batch as a separate data set.

To adjust the row batch of B by subtracting the inner
products, we iterate through columns of A within the cur-
rent row batch. We use a Where operator to extract the
next few columns, corresponding to a row batch already
solved in X. An apply stage, partitioned by columns in B,
takes the current adjusted row batch of B, the row batch
of X, and a side-channel broadcast of the corresponding
row-and-column batch of A, and updates the adjusted row
batch of B.

At the end, we consolidate all of the row batches of X
to make the final result.

We call this method “LtsByAmwhmwhBcolsmwh”.
Figures 30 and 31 show a listing and Figure 32 the re-
sulting execution plan.

Examining the execution plan for this method reveals
that it is too complicated to see what is going on. Fig-
ure 33 shows the logical structure of the method.

For our configuration parameters, detailed investigation
of performance logs shows that the job spends about the
first half hour repartitioning A and B and then extracting
row and column batches of A.

There are 8 where stages that extract row batches of A.
On average, each vertex in these stages takes about half a
minute, reading 16 tiles and writing 2 tiles, but it varies
greatly, since the higher-numbered rows have more tiles.

There are 36 where stages that extract column batches
from the row batches of A. On average each vertex in
these stages has very little to do and takes almost no time
to run, since each of the column batches contains only 4
tiles for the entire stage.

There are 36 merge stages that merge the column
batches into one file for broadcast. The vertex in these
stages takes about half a minute to run, reading and writ-
ing 4 tiles.

After extracting row and column batches of A, the job
starts running solution and adjustment stages, the solution
stages working down the diagonal of A and the adjustment
stages computing the inner product adjustment to B.

Each solution stage vertex takes about 1 minute to run,
reading 3 tiles of A and 4 tiles of adjusted B, performing

public static
IQueryable<Tile> LtsByAmwhmwhBcolsmwh (
IQueryable<Tile> A, long Arows,
IQueryable<Tile> B)

{
long stride = (Arows + numParts − 1) / numParts;
A = A.HashPartition(a => a.col,numParts);
B = B.HashPartition(b => b.col,numParts);

var XX = new IQueryable<Tile>[numParts];

// loop through each row batch
for (long lpi = 0; lpi < numParts; lpi++)
{
var pi = lpi;
var fi = Math.Max((pi + 0) ∗ stride, 0);
var ai = Math.Min((pi + 1) ∗ stride, Arows);

var Aix = A.Where(a => fi <= a.row && a.row < ai);
var Bix = B.Where(b => fi <= b.row && b.row < ai);

// loop through each col batch
for (long lpj = 0; lpj < pi; lpj++)
{
var pj = lpj;
var fj = Math.Max((pj + 0) ∗ stride, 0);
var aj = Math.Min((pj + 1) ∗ stride, Arows);
// Arows == Acols

var Aij = Aix
.Where(a => fj <= a.col && a.col < aj);

var Xjx = XX[pj];

Bix = Bix.Apply(Xjx,
(Bik, Xjk) => SumT(Bik, Aij, Xjk));

}

var Aii = Aix
.Where(a => fi <= a.col && a.col < ai);

XX[pi] = Bix.Apply(Bik => LtsT(fi, ai, Aii, Bik));
}

var XQ = new Queue<IQueryable<Tile>>(XX);
var X = XQ.Dequeue();
if (XQ.Count > 0)
X = X.Apply(XQ.ToArray(), xxa => Mcat(xxa));

return X;
}

Figure 30: Matrix lower-triangular solve method Lts-
ByAmwhmwhBcolsmwh (part 1).
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[DistributiveOverConcat]
public static IEnumerable<Tile> SumT(
IEnumerable<Tile> Bik,
IEnumerable<Tile> Aij,
IEnumerable<Tile> Xjk)

{
var DB = new LazyTiles(tileSize).Acc(Bik);
var DX = new LazyTiles(tileSize).Acc(Xjk);
foreach (var a in Aij)
foreach (var x in DX.EnRow(a.col))
DB.AccNeg(a ∗ x);

return DB.En();
}

[DistributiveOverConcat]
public static IEnumerable<Tile> LtsT(
long fi,
long ai,
IEnumerable<Tile> Aii,
IEnumerable<Tile> Bik)

{
var DX = new LazyTiles(tileSize);
var DA = new LazyTiles(tileSize).Acc(Aii);
var DB = new LazyTiles(tileSize).Acc(Bik);

var kk = DB.En()
.Select(b => b.col).Distinct().ToArray();

foreach (var k in kk)
{
for (var i = fi; i < ai; i++)
{
// subtract [i,k] of A∗X from B
foreach (var a in DA.EnRow(i))
foreach (var x in DX.EnCoord(a.col, k))
DB.AccNeg(a ∗ x);

// solve for X[i,k]
DX[i, k] = Tile.Lts(DA[i, i], DB[i, k]);

}
}
return DX.En();

}

[DistributiveOverConcat]
public static IEnumerable<Tile> Mcat (
IEnumerable<Tile>[] xxa)

{
var DX = new LazyTiles(tileSize);
foreach (var xx in xxa) DX.Acc(xx);
return DX.En();

}

Figure 31: Matrix lower-triangular solve method Lts-
ByAmwhmwhBcolsmwh (part 2).

Figure 32: Execution plan for matrix lower-triangular
solve method LtsByAmwhmwhBcolsmwh.
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Figure 33: Logical structure of matrix lower-triangular
solve method LtsByAmwhmwhBcolsmwh.

four tile lower-triangular solve operations, two tile multi-
plications, and two tile subtractions, and writing 4 tiles of
X.

Each adjustment stage vertex takes about 1 minute to
run, reading 4 tiles of A, 4 tiles of X, and 4 tiles of ad-
justed B, performing eight tile multiplications and 8 tile
subtractions, and writing 4 tiles of adjusted B.

However, there is a difference in the first solution stage
on the diagonal and in the first adjustment stage in each
row. In these first stages, DryadLINQ optimizes the com-
putation by combining the solution or adjustment compu-
tation with a where that exracts the relevant row of B. So,
in each first stage vertex, instead of reading 4 tiles of ad-
justed B it instead reads 32 tiles of B. This makes each
first stage vertex take 3 minutes instead of 1 minute.

As it turns out, this DryadLINQ optimization increases
the run time of the job, because the first adjustment stage
vertices cannot start until the solution of the first row
batch of X has been computed by the first solution stage.
If the where had not been combined with the first adjust-
ment stage, it could have been started earlier.

There is one first solution stage, seven subsequent so-

n m n ∗m what
16 2 32 hash matrix A, B
16 4 64 merge matrix A, B
64 0.5 32 where A row

288 0.1 3 where A column in row
36 0.5 18 merge A column in row
8 3 24 where B row, first solution

56 3 168 where B row, first adjustment
56 1 56 subsequent solution

168 1 168 subsequent adjustment
8 4 32 consolidation

597 total

n = number of vertices.
m = average run time of each vertex in minutes.

Tile size 4096 by 4096 doubles (134 MB) running on a quad-core AMD
OpteronTM processor 2373 EE at 2.10 GHz with 2 processors and 16
GB memory. Matrix size 16 x 16 tiles (34 GB) partitioned into 8 parts.
HPC Dryad Beta 3702 with custom serialization. Running on 8 compute
nodes. Number of nodes does not count the job manager.

Table 15: Breakdown of work in matrix lower-triangular
solve method LtsByAmwhmwhBcolsmwh.

lution stages, seven first inner product stages, and 21 sub-
sequent inner product stages. Finally, the job performs
a consolidation stage to consolidate the final result. A
consolidation stage vertex takes about 4 minutes to run,
reading and writing 32 tiles of X.

Table 15 summarizes the breakdown of work in this
matrix lower-triangular solve method. Recall that theo-
retically only 154 vertex*minutes of work is needed to
perform the actual computation. Everything else is over-
head.

Table 3 shows the run time of this method for var-
ious number of compute nodes. Although with eight
compute nodes the run time is significantly longer than
for method LtsByAmwhBcolsmwh, with more compute
nodes it improves and runs faster than method Lts-
ByAmwhBcolsmwh, thus showing that it exhibits more
parallelism. This would be especially important in situ-
ations where matrix B had few columns, and thus little
parallelism would be available to methods that only ex-
ploited column independence.
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A Coord class

[Serializable]
struct Coord : IEquatable<Coord>
{
public long row;
public long col;

public Coord(long row,long col)
{
this.row = row;
this.col = col;

}

public override int GetHashCode() ...
// a good hash code combining row and col

public bool Equals(Coord b)
{

return row == b.row && col == b.col;
}

}

B Tile class
This is a naive example implementation of the Tile class.
We actually used BLAS routines from the Intel R© Math
Kernel Libary [3], via the C# wrappers provided by Co-
conut [2], which required using the appropriate Coconut
data structure to store the matrix. We also wrote custom
Dryad serialization code to improve the performance of
reading and writing tiles. None of these performance im-
provements are shown here.
[Serializable]
class Tile
{
public int size;
public Coord coord;
public double[,] data;

public long row { get { return coord.row; } }
public long col { get { return coord.col; } }

public Tile(int size,Coord coord)
{
this.size = size;
this.coord = coord;
this.data = new double[size,size];

}

public Tile(int size,long row,long col)
: this(size,new Coord(row,col))

{
}

public Tile(Tile b) : this(b.size,b.coord)
{
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
this[i,j] = b[i,j];

}

public double this[int i,int j]
{
get { return data[i,j]; }
set { data[i,j] = value; }

}

public static Tile operator +(Tile a,Tile b)
{
// add two tiles
int size = a.size;
var c = new Tile(size,a.coord);
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
c[i,j] = a[i,j] + b[i,j];
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return c;
}

public static Tile operator −(Tile a,Tile b)
{
// subtract two tiles
int size = a.size;
var c = new Tile(size,a.coord);
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
c[i,j] = a[i,j] − b[i,j];

return c;
}

public static Tile operator ∗(Tile a,double s)
{
// scale tile
int size = a.size;
var c = new Tile(size,a.coord);
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
c[i,j] = a[i,j] ∗ s;

return c;
}

public static Tile operator ∗(Tile a,Tile b)
{
// multiply two tiles
int size = a.size;
var c = new Tile(size,a.row,b.col);
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
for (int k = 0; k < size; k++)
c[i,j] += a[i,k] ∗ b[k,j];

return c;
}

public static Tile Lts(Tile a,Tile b)
{
// lower−triangular solve
// find tile x such that a∗x = b
// where a is lower triangular
int size = a.size;
var x = new Tile(b);
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++) {
for (int k = 0; k < i; k++) {
x[i,j] −= a[i,k] ∗ x[k,j]

}
x[i,j] /= a[i,i]

}
return x;

}
}

C LazyTiles class

class LazyTiles

{
// A lazy array of tiles
private int size;
private Dictionary<Coord,Tile> dict;

public LazyTiles(int size)
{
this.size = size;
this.dict = new Dictionary<Coord,Tile>();

}

public Tile this[Coord c]
{
// access tile at given coordinate
get
{
if (!dict.ContainsKey(c))
dict[c] = new Tile(size,c);

return dict[c];
}
set { dict[c] = value; }

}

public Tile this[long i,long j]
{
// access tile at given coordinate
get { return this[new Coord(i,j)]; }
set { this[new Coord(i,j)] = value; }

}

public LazyTiles Acc(Tile a)
{
// accumulate tile into the array
if (!dict.ContainsKey(a.coord))
this[a.coord] = a;

else
this[a.coord] += a;

return this;
}

public LazyTiles Acc(IEnumerable<Tile> aa)
{
// accumulate sequence of tiles
foreach (var a in aa) Acc(a);
return this;

}

public LazyTiles AccNeg(Tile a)
{
// accumulate negative of tile into the array
this[a.coord] −= a;
return this;

}

public LazyTiles AccNeg(IEnumerable<Tile> aa)
{
// accumulate negative of sequence of tiles
foreach (var a in aa) AccNeg(a);
return this;

}
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public IEnumerable<Tile> En()
{
// enumerate all tiles in the array
return dict.Values;

}

public IEnumerable<Tile> EnRow(long i)
{
// enumerate all tiles in a given row
return En().Where(a => a.row == i);

}

public IEnumerable<Tile> EnCol(long j)
{
// enumerate all tiles in a given column
return En().Where(a => a.col == j);

}

public IEnumerable<Tile> EnCoord(Coord c)
{
// enumerate any tile at given coordinate
if (dict.ContainsKey(c))
yield return dict[c];

}

public IEnumerable<Tile> EnCoord(long i,long j)
{
// enumerate any tile at given coordinate
return EnCoord(new Coord(i,j));

}
}

D TileEnv class

[Serializable]
public class TileEnv
{
// a tile inside an envelope; the envelope
// is addressed to a particular part index
public int part;
public Tile tile;

public TileEnv (int part, Tile tile)
{
this.part = part;
this.tile = tile;

}

public static int MkPart(long r, long c)
{
// part index for a given row and column
int rp = (int)(r % numParts);
int cp = (int)(c % numParts);
return rp + (cp ∗ numParts);

}

public static IEnumerable<TileEnv>
SpreadOverCols(Tile a)
{

// copy a tile into envelopes addressed to
// part indexes for any column combined with
// the tile’s row
for (int p = 0; p < numParts; p++)
yield return new TileEnv(MkPart(a.row, p), a);

}

public static IEnumerable<TileEnv>
SpreadOverRows(Tile b)
{
// copy a tile into envelopes addressed to
// part indexes for any row combined with
// the tile’s column
for (int p = 0; p < numParts; p++)
yield return new TileEnv(MkPart(p, b.col), b);

}
}

E RowScanInOrder class

public class RowScanInOrder
{
// A LazyTiles that has valid tiles in the given row.
public class Row
{
public long row;
public LazyTiles DA;

public Row(long row, LazyTiles DA)
{
this.row = row;
this.DA = DA;

}
}

// Assuming SA is sorted by parts, that is, first
// come all tiles in rows [0..stride), then all tiles
// in rows [stride..2∗stride), and so on, enumerate
// it by consecutive rows [0..rows).
//
// At any time, never store more than one part of
// tiles plus a small constant number of tiles.
//
public static IEnumerable<Row> Do(
long rows,
long stride,
IEnumerable<Tile> SA)

{
IEnumerator<Tile> Le = SA.GetEnumerator();
bool notend = Le.MoveNext();
long firstrow = 0;
while (firstrow < rows)
{
long afterrow = Math.Min(firstrow + stride, rows);

var DA = new LazyTiles(tileSize);
while (notend && Le.Current.row < afterrow)
{
if (Le.Current.row < firstrow)
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throw new Exception("SA not sorted by parts");

DA.Acc(Le.Current);
notend = Le.MoveNext();

}

for (long row = firstrow; row < afterrow; row++)
yield return new Row(row, DA);

firstrow = afterrow;
}
if (notend)
throw new Exception("SA row out of range");

}
}
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