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Abstract

Large vocabulary continuous speech recognition is always a
difficult task, and it is particularly so for low-resource
languages. The scenario we focus on here is having only 1
hour of acoustic training data in the “target” language. This
paper presents work on a data borrowing strategy combined
with the recently proposed Subspace Gaussian Mixture Model
(SGMM). We developed data borrowing strategies based on
two approaches: one based on minimizing K-L Divergence,
and one that also takes into account state occupation counts.
We demonstrate improvements versus the baseline SGMM
setup, which itself is better than a conventional HMM-GMM
system. The SGMMs are more robustly estimated by
borrowing data from the non-target language at the acoustic-
state level. Although we tested the approach for SGMMs, we
expect the general idea of borrowing data from a non-target
language to be applicable for conventional GMMs as well.
Index Terms: speech recognition, low-resource language,
subspace gaussian mixture model

1. Introduction

Speech is the most convenient medium for human-to-human
communication and should in principle also be convenient for
human-to-machine interaction. The performance of speech
processing systems has improved dramatically, but state-of-
the-art systems require for their training a large amount of
language-specific transcribed speech data. However, demand
exists for speech recognition systems in languages that have
only limited available training data; quickly developing ASR
systems for resource-insufficient domains or languages is a
research topic that has recently attracted interest [1][2].
Several strategies have been previously proposed.
Developing a multilingual speech recognition system is a

popular approach to deal with the low-resource problem [3][4].

In these systems a universal phone set is obtained based on the
principle that the speech units with similar sounds across
different languages are grouped together and represented by a
single phonetic symbol. The International Phonetic Alphabet
(IPA) or data-driven based phone clustering methods have
been used to obtain universal phoneme units. After collecting
a large set of speech data covering all speech units, a
“universal” set of acoustic models can be trained, so an ASR
system can be built even for languages with little or no
training data. However the universal phone set is not as
accurate as the language-specific one, and phone clustering
induces more confusion among models, so the performance of
these systems is not very promising.

Another way to deal with this problem is so-called
automatic speech attribute transcription (ASAT), which has
been proposed for developing multilingual or low-resourced
ASR systems [5][6]. This tries to deal with the problem that it
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is hard with a limited set of training languages to get complete
coverage of a universal phone set such as the IPA. Articulatory
features are a solution to this problem, because all the phones
can be modeled by a small number of articulatory attributes
and most of the attributes, such as voicing, nasality, and
friction, can be identified in any particular language. Most of
the research in this area has up till now been focused on
phone-level rather than word-level transcription.

The Subspace Gaussian mixture model (SGMM) is a
recently proposed acoustic model that is especially suited for
low-resource applications [7][8]. The majority of the trainable
parameters of an SGMM are, in typical configurations,
globally shared and not specific to any individual acoustic
state; the only parameters specific to acoustic states are some
relatively low-dimensional (e.g. 40-dimensional) vectors that
represent fewer parameters than a typical GMM-based system.
Therefore, when training SGMMs we can borrow other
languages’ data for model training without sharing the
acoustic states, and obtain more robust estimates of the
globally shared parameters [9].

This paper reports experiments with SGMMs, but addresses
the question of whether it is helpful, in addition to sharing the
global parameters, to merge some of the acoustic states across
languages. This is an idea that would be equally applicable to
conventional models such as GMMs. Our experimental setup
is similar to [7]: we have limited amounts of training data in
English, Spanish and German to imitate the low-resource
situation. We were able to show statistically significant
improvements versus the previously described SGMM system,
which is substantially better than a GMM-based system.

The remainder of this paper is organized as follows: In
Section 2, we describe the SGMM and then describe our new
data borrowing strategy in detail. In Section 3, we describe our
experimental setup and present experimental results. We
summarize and give conclusions in Section 4.

2. Data borrowing strategy

2.1. Subspace Gaussian Mixture Model

The most basic form of the Subspace Gaussian Mixture Model
(SGMM) can be expressed in the following three equations:
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where p(x | j) is the distribution of features in HMM state
J . The model is a mixture of Gaussians, but unlike the
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conventional GMM, the number of mixture components / is
the same for all states and is typically quite large, e.g. several

hundred. The covariance Zi for each Gaussian in the mixture

is globally shared across states (we use full covariances). The
most important difference is that the mean e and mixture

weights @, are not direct parameters of the model, and
instead they are expanded from a state-specific vector v, via

globally shared parameters M, and w, , as illustrated in

Equations (2) and (3).

This model has a more complicated structure than a GMM;
however a well-tuned SGMM typically has fewer parameters
than the well-tuned GMM system [7]. Moreover, the majority
of the parameter count in a SGMM system consists of shared

parameters M. , Zi and w, , which for well-tuned systems

trained on small amounts of data can be 8~10 times larger than
the state-specific parameters v, - This leads to a natural

method of training SGMMSs in a multilingual way: the state-
specific SGMM parameters are trained as separate language-
specific states, and the common SGMM parameters are,
however, shared across languages. This can be thought of as a
single system covering multiple languages, in which the
phones from distinct languages are given distinct names.

We mention at this point that the SGMMs we use are a
slight extension of the simplified version described above: we
introduce sub-states, where each state ] has M ; sub-states

each with its own mixture weight Cim and vector Vi The

extended equations with sub-states are given in [7].

It was previously shown [9] that training the globally shared
parameters across languages can lead to substantial
improvements if the amount of training data in the target
language is limited. Our work here builds on that previous
work, and attempts to address the question of whether in
addition to sharing the global parameters, it might be
advantageous to also share some of the speech states. This is a
similar idea to sharing phones across languages (which we
also explore in our experiments), but is more fine-grained. We
emphasize that although we do the experiments in the SGMM
framework, the idea of sharing states across languages is
equally applicable for normal GMM models, although the
details would be different.

In the multilingual SGMM framework introduced in [9], the
target-language and non-target language models are trained at
the same time (the statistics for updating the shared parameters
are shared across languages). At a point towards the start of
training, we decide for each target-language HMM-state
whether or not it should be shared, and if so select some non-
target-language HMM-state to share it with. We explore two
techniques: one based on an approximated K-L divergence
(Section 2.2), and one that uses K-L divergence but also takes
into account occupation counts (Section 2.3).

2.2. Minimum K-L divergence principle

The first of our two methods uses an approximated K-L
divergence between SGMM states. The basic method is: for
each state in the target language, find the “closest” state in
some non-target language, and if this falls below some
threshold, share with that state; otherwise leave the state in
question unshared. The distributions in SGMM states are just a
special case of Gaussian Mixture Models (GMMs), and
exactly computing the K-L divergence between GMMs is
quite hard (e.g. see [10]). However, because there is a

correspondence between the states of the models (i.e. the index
i is shared), by making the assumption that the Gaussians are
“far apart” and there is insignificant overlap in distribution
between differently numbered Gaussians, we can obtain a
convenient closed-form expression for the K-L divergence.
We additionally make the approximation that the Gaussian
priors are the same across states, i.e. we use a global rather
than state-specific Gaussian prior. This is quite crude, but our
main aim was to obtain a distance measure that makes sense;
we do not believe that the algorithm should be particularly
sensitive to the exact distance measure used as long as it is
reasonable.

The distance measure between SGMM states j and £ is

defined as follows:

Dis(j,k) =3 p@)v, =v) M} X' M(v, v, “)

i=1
where p (i) is the prior on the Gaussian index i , M and
> , are the shared projection matrix and Gaussian covariance,
v, and v, are the state-specific parameters of state j and

k . The prior of Gaussian I can be defined as:

pi)=Y, > ¥ ®

where ]/ij (Z ) is the occupation probabilities per-Gaussian and
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per-state as defined in the standard forward-backward or
Viterbi algorithm [7]. Note that it is possible to simplify (4)
into an inner product of the difference between the two vectors,
with a particular matrix, so this distance measure is the same
as the Euclidean distance in an appropriately pre-scaled space.
The threshold e controls the amount of shared states, i.e.
borrowed data. We evaluate this criterion and tie states before
introducing sub-states, in order to avoid complications arising
from sub-states.

The following algorithm summarizes the state-tying
procedure; the threshold e controls the amount of state tying
that takes place. The overall training schedule is as described
in [9]; we applied this algorithm on the second “epoch” of
training as defined in [9] (an epoch corresponds to eight passes
over the data).

Algorithm 2.1 Data Borrowing with Minimum K-L
Divergence Principle on SGMM

Follow the SGMM multilingual training schedule, and
finish the second epoch of the normal SGMM training
for each state j in the target language do
for each state k in the non-target languages do
calculate the KL divergence Dis( j, k)

end for
select the relative minimum KL divergence
if the minimum KL divergence is smaller than threshold e
then share the target state j with the non-target state k
else leave the state j unchanged
end if

end for
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2.3. State occupation principle

We also tried a second approach that makes use of the state
occupation counts. The basic intuition is that if there is a large
amount of data available to train a particular target-language
state, there is no need to share it with a non-target language
because the only point of this procedure is to overcome data



sparsity. The way we apply this intuition is to select a count

cutoff &, and to treat target-language states with counts above
and below this value differently, in that we apply two different
distance thresholds: a large threshold e2 for states with “small”
counts and a smaller threshold el for states with “large

counts”. Let the state occupation counts be -

The modified algorithm is as follows:

Algorithm 2.2 Refined Data Borrowing with State
Occupation Principle on SGMM

Follow the SGMM multilingual training schedule, and
finish the second epoch of the normal SGMM training
for cach state j in the target language do
for cach state k in the non-target languages do
calculate the KL divergence Dis( j, k)

end for
select the relative minimum KL divergence
if the minimum KL divergence is smaller than KL
threshold el
then
share the target state j with the non-target state k
else if the minimum KL divergence is smaller than KL
threshold e2 (e2 > el), and the state occupation of state j is
lower than occupation threshold &
then
share the target state j with the non-target state k
else
leave the state j unchanged
end if
end for

3. Experiments and Results

3.1. Experimental data and Baseline system

Our experiments are on the Callhome English, German and
Spanish databases [11], and are based on those in [9]. The
conversational nature of speech in Callhome database along
with high out-of-vocabulary rates, use of foreign words and
telephone channel distortions make the task of speech
recognition on this database challenging.

The database contains 80 spontaneous telephone
conversations in each of English, German and Spanish, with
about 15 hours of speech per language to be used as training
data. To imitate the low-resource application, we select the
English as the target language and use 1 hour of randomly
chosen speech from the English corpus as the target-language
training data. Besides this, we use the entire 15 hours of
German and 16 hours of Spanish training data. The 20
conversations of the English evaluation set, roughly containing
1.8 hours of speech, form our test set.

The features are 39-dimensional and based on PLP features
with energy, first and second order deltas, plus per-speaker
mean and variance normalization. We use a 42-phone set for
English, 46 for German and 28 for Spanish. We use the 1 hour
English data to train a baseline HMM-GMM system with only
550 states and 4 Gaussians per state, and we pool all the three
languages’ data to train a multilingual HMM-SGMM system
which has 1500, 1771 and 1623 tied states for English,
German and Spanish respectively. The number of tied states
was tuned separately for the GMM baseline and the
multilingual setup. The number of Gaussian components I is
400, and dimension of the state-specific vector v, is 40. We

used the SRILM tools [12] to build a language model which is

a trigram with a word-list of 62K words obtained by
interpolating individual models trained from English Callhome
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corpus, the Switchboard corpus [13] and the Gigaword corpus
[14]. We use the HDecode and Kaldi decoders to decode the
GMM or SGMM model respectively, and score the results
with the NIST scoring scripts.

The first two lines of Table 1 summarize the HMM-GMM
baseline and HMM-SGMM baseline results for our
experiments. It is clear that the multilingual SGMM approach
gives substantial improvement (more than 10% absolute). This
is the approach previously reported in [9].

3.2. Data borrowing at the SGMM state-level

We first construct the initial multilingual SGMM model, and
finish the first two epochs of the normal SGMM training. Then
we apply the Minimum KL Divergence Principle of Algorithm
2.1 to calculate the distances between the states of target
language and the states of borrowed languages, German and
Spanish. We vary the threshold to control the quantity of
ultimately shared states. The number of states coming from
German versus Spanish as we vary the threshold e is
illustrated in Fig. 1; German contributes more states than
Spanish, as one would expect from its closer linguistic
relationship to English. The difference between German and
Spanish in this regard suggests that for this technique to work
it may be important to select non-target languages that are
linguistically close to the target language.
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Figure 1: Distribution by language of borrowed states
using Minimum KL Divergence Principle.
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Figure 2: WER as number of borrowed states is increased,
using Minimum KL Divergence Principle.

When we decide the final shared states between the target
and non-target languages, we edit the HMM-state level
training transcription obtained by Finite State Acceptors [15]
and pool the real target data and borrowed data to train these
shared states. Then we finish the later epochs of SGMM
training including updating individual parameters and splitting



sub-states as normal. We varied the number of shared states to
investigate the performance of the SGMM system using
Minimum KL Divergence Principle.

Fig.2 shows how the WER changes as we vary the threshold
e (we plot WER against the number of borrowed states). The
WER initially decreases, but then increases again if we
combine states too aggressively. We get the best performance
when about 20% of target-language states are shared.

Lines 3 and 4 of Table 1 compare two different methods of
sharing states: the Minimum KL Divergence Principle
(Algorithm 2.1) and the State Occupation Principle (Algorithm
2.2). We get about 1.2% absolute WER improvement from the
Minimum KL Divergence principle, and 1.7% with the State
Occupation Principle, which validates our intuition that it
makes more sense to share target-language states with small
data counts. In each case we tuned the number of shared states
to minimize WER, which resulted in about 250 and 200 states
shared respectively. We applied the matched-pairs significance
test described in [16], and in either case the improvement
versus the SGMM baseline was statistically significant' at the
chosen confidence level of 99.5%.

Table 1. Performance comparison of different systems
using only 1 hour of target language data

System description WER
1. Conventional HMM-GMM 72.57%
2. SGMM 61.74%
3. SGMM + data borrowing Algorithm 2.1 60.55%
4. SGMM + data borrowing Algorithm 2.2 60.02%
5.SGMM + sharing states within target language | 61.88%
6.SGMM + data borrowing on the phone level | 62.59%
from non-target languages

In order to verify that the effect we were seeing was a
genuinely “cross-language” effect and not simply a gain from
post-clustering the states obtained by HTK’s state clustering
procedure, we did the experiment in line 5 where we applied
Algorithm 2.1 to share states, but only within the target
language and not across languages. This degraded
performance, which confirms that the improvements we were
seeing were not explainable in this way.

We also attempted to use a more conventional method based
on tying phones across languages; this experiment is in line 6.
We used the State Time Alignment (STA) algorithm described
in [17], but replacing the Bhattacharya distance with the K-L
divergence for consistency with the current experiments; we
tuned it to share 20% of the target-language phones in order to
be comparable to our state-tying experiments. This results in a
degradation. The conclusion we draw from this is that data
sharing across languages can be helpful, but phones are a too-
coarse level at which to tie, and it is better to tie the context-
dependent states.

4. Conclusions

In this paper, we present our work on a data borrowing
strategy for low-resource speech application. We performed
experiments based on the recently proposed Subspace
Gaussian Mixture Model (SGMM). The SGMM has an
inherent mechanism of tying data across languages because it
has a large number of globally shared (not language-specific)

" This significance test is not completely valid since we tuned the number of
states borrowed on the test set, but it at least shows that the improvements are of
a magnitude that is potentially significant
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parameters, but we wanted to investigate whether, in addition
to this mechanism, we could apply a method based on cross-
language state tying to further improve results. We looked at
the scenario where we have 1 hour of in-language data
together with a larger amount of out-of-language data. We
were able to get improvements from state tying of about 1.7%
absolute. While this is smaller than the original improvements
of the SGMM over the HMM-GMM baseline, it is still
substantial. We showed that it is possible to improve results by
tying states across languages, and our results seem to indicate
that it is important to select linguistically close languages to do
this tying, and that it is important to tie parameters at the
context-dependent state level rather than at the phone level.
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