
An Inexpensive Bounding Representation for Offsets of Quadratic Curves
Erik Ruf∗

Microsoft Research

Abstract

We describe a simple mechanism for bounding the portion of the
plane lying between a quadratic Beizer curve segment and its off-
set curve at distance d. Instead of comprising one or more par-
tial bounding polygons, our representation consists of only a sin-
gle approximate offset curve segment, also in quadratic Bezier
form. Evaluated on a corpus of real-world curves, this technique
avoids 68-99% of antialias-distance queries and 41-96% of brush-
parameter queries. A proof of correctness is provided.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations;

Keywords: offset curve, bounding technique, acceleration

1 Introduction

The distance from a point to a planar curve is useful in a number
of applications, including computer graphics (antialiasing, brush ef-
fects), manufacturing (tool planning), and road navigation. In many
cases, computing the distance value (more generally, the closest
point on a curve segment) involves executing an expensive itera-
tive refinement algorithm on each sample point within a suitable
bounding region. This bounding region must be conservative, in
that, for a chosen maximum distance d, all points within d of the
curve must lie within the bounding region. Since only points within
the bounding region need be examined, solution costs are reduced
as the bounding region becomes more precise. At the same time,
increased precision typically comes at the cost of a more complex
bounding region representation, which may require more storage
space and more time to construct and/or evaluate. This paper de-
scribes a new point in the design space that yields better precision
than the standard rectangular approximation, but requires little ad-
ditional storage, construction, or evaluation time.

Given that we are interested only in solutions for query points
within distance d of the curve, an ideal bounding representation
would consist of either the original curve and a precise exterior off-
set curve at distance +d from the curve (e.g., for antialiasing of a
glyph outline) or a pair of precise interior and exterior offset curves
at distances +d and −d (e.g., a brush of radius d whose center
moves along the curve). A query point would then be relevant if
and only if it lies between the two curves. This test is easily per-
formed by evaluating the implicit equations describing the curves
and examining the signs of the resulting values. Unfortunately, the
precise offset curve for even a low-order polynomial can be difficult
to obtain and expensive to evaluate.1 Our approach stems from two
observations:

∗e-mail: erikruf@microsoft.com

1Anton et al. [2005] find that a parabola’s offset curve is of degree 6.

1. The offset curve isn’t an end product; it’s only an accelerator
for an underlying precise distance computation. Thus, even
an imprecise offset curve can be useful, provided that it is
conservative and its cost per avoided query is kept sufficiently
low and,

2. For small d, we can obtain a useful approximate offset curve
from the original control triangle in constant space and time.
We accomplish this by extending the curve segment into an
axis-symmetric form, then offsetting the endpoints of the re-
sulting control triangle.

This paper explores these observations in the context of a single
curve type: the quadratic Bezier curve [Farin 2002]. We begin
by motivating the use of curve segments, rather than polygons, as
bounding regions. We then describe our algorithm for construct-
ing approximate offset curves, and demonstrate the utility of such
curves in two scenarios involving real-world curves. We conclude
with discussions of related and future work. In the Appendix, we
argue that our approach is sound.

2 Algorithm

2.1 Basics

In this paper, we treat only quadratic Bezier curves, which are spec-
ified via a control triangle p0p1p2. This triangle describes both an
infinite planar curve and a segment of that curve that begins at p0
and ends at p2. We can construct an implicit equationC(p) = 0 for
the infinite curve, as well as a singly-parameterized formula F (t)
such that F (0) = p0, F (1) = p1, and ∀t, C(F (t)) = 0.

2.2 Bounding regions for acceleration

The simplest polygonal acceleration structure for d-bounded dis-
tance queries on a Bezier curve segment is the control triangle itself
(extended to include all points within d of any control point). Simi-
larly, we can obtain the optimum axis-aligned rectangular bounding
region by finding the x- and y- extremes of the segment, construct-
ing the minimal rectangle that encloses these points, then extending
its corner points outward by d.

Various higher-precision techniques exist, and are treated in the Re-
lated Work section of this paper on page 4. Here, we consider the
tradeoffs inherent in choosing an acceleration structure. The pre-
cision of the bounding-polygon approach can be improved by in-
creasing the number of vertices, at the cost of additional storage
usage and the increasing number of half-plane tests required to dis-
card a query point as irrelevant.

The usual alternative to a single, complex polygonal bounding re-
gion is a collection of small, simple polygonal bounding regions
(usually rectangles). By repetitively subdividing the query space,
we can obtain ever-smaller bounding polygons. This scheme can
achieve an arbitrary level of precision, but at an additional costs,
including

1. space. Somehow, we must map query points to subregions,
and this requires a data structure, usually a grid or tree.

erikruf
Typewritten Text
(c) ACM, 2011. This is the author’s version of the work.
It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was
published in the proceedings of High Performance Graphics
(HPG'11), August 2011.

erikruf
Typewritten Text

erikruf
Typewritten Text

erikruf
Typewritten Text

erikruf
Typewritten Text

erikruf
Typewritten Text

erikruf
Typewritten Text

erikruf
Typewritten Text

erikruf
Typewritten Text

(a) (b) (c)

Figure 1: Representations for offset regions. We show (a) a piecewise-linear normal offset, (b) a quadtree decomposition, and (c) a
quadratic offset curve. In all cases, the initial quadratic curve is black and the precise offset curve being approximated is in green. Beige
sections lying outside the precise curve represent imprecision in the approximate representation. Improving precision in (a) or (b) is accom-
plished by adding edges or rectangles, while improving (c) requires improving the fit of the approximate curve by altering its parameters
and/or increasing its degree.

2. query time. Each time we perform a query, we must traverse
the data structure, performing tests to direct our path toward a
leaf note (usually a boolean truth value or a polygon inclusion
test). Depending on the data structure used, we may have to
perform tests against multiple bounding polygons.

3. setup time. For some curve segments , such as those de-
scribing glyph contours, it may make sense to statically con-
struct an efficient acceleration data structure, as this cost can
be amortized over many queries. However, dynamic applica-
tions (e.g., authoring tools) that construct curves “on the fly”
may not be able to repay the cost of accelerator data structure
construction for short-lived curve segments.

Rather than increasing the complexity or number of polygons in
the acceleration structure, we instead seek to improve the fidelity
of the segments comprising the bounding region. Using one or
more curve segments rather than numerous line segments allows
greater precision at a small cost in representation space and evalu-
ation time. Figure 1 graphically depicts instances of the polygonal,
multi-polygonal, and curve-based approaches.

2.3 Motivation: offset curves as bounding regions

The query points relevant to a particular d-bounded distance query
on an infinite curve C can be succinctly described as those lying
between the curve and an approximate offset curve, all of whose
points lie at least d from the original curveC. Provided that both the
original and offset curves have implicit representations, testing the
relevance of a query reduces to evaluating both implicit formulas
on the query point and comparing the signs of the resulting values.

A query on a finite curve segment S adds the additional constraint
that only query points whose closest curve point lies on S need
be considered. Thus, for efficiency’s sake, it is useful (though not
necessary) to exclude queries whose results cannot lie on S. This
is easily accomplished via any of the simple polygonal tests de-
scribed above (our implementation uses the d-extended rectangle);
other means, such as explicitly checking distances from the query
points to the endpoints, or executing line-side tests with respect to
the normal vectors at the endpoints, are also possible.

Thus, deciding whether a given query point need be sent to the it-
erative distance analysis requires, at most, two implicit curve eval-
uations and a rectangle inclusion test. The rectangle test can some-
times be elided, as any enclosing rectangle (e.g., a glyph bounding
box or a tile in a grid decomposition of a graphical object) can be

Figure 2: Constructing the axis-aligned control triangle. The
black lines show the initial control triangle, the “midline” connect-
ing p1 and the center of p0p2, and the curve segment. The red
line parallel to the midline is the curve axis; reflecting p0 across it
yields p′2; extending the tangents yields the new (red) control trian-
gle. Note that the old (black) and new (red) curve segments overlap,
as they describe the same curve.

used to limit the infinite region delineated by the offset curves to a
small portion of the plane.

2.4 Approximating quadratic offset curves with
quadratics

We choose to implement the desired approximate offset curve as
a quadratic curve. Our algorithm begins by re-parameterizing the
original curve. We construct a new control triangle that describes
the initial curve, but for a segment which is symmetric with respect
to the curve’s axis. The resulting control triangle is then modified
to achieve the desired conservative offset property.

2.4.1 Constructing the symmetric curve segment

To construct an axis-symmetric control triangle, we must first find
the axis of the curve. Since our Bezier triangle describes a segment
of a parabola, it has the property that the line l connecting the mid-
point of the line p0p2 to the middle point p1 is parallel to the axis a
of the underlying parabola [Heath 1897]. Perpendicular to this line,
we construct a chord that intersects the curve twice. Averaging the

Figure 3: Constructing offset curves. The black lines describe the
initial control triangle and the quadratic curve segment it describes.
The green lines show the normals used to displace the endpoints in
the exterior direction by d = 0.2, yielding the red control trian-
gle and correspoinding approximate exterior offset curve. The blue
lines describe the same construction for an interior displacement of
0.2.

intersection points yields a point on the axis, and thus the axis line
and its intersection with the curve.

While an infinite number of symmetric control triangles can be con-
structed in this manner, all such triangles describe the same (orig-
inal) curve. However, the choice of endpoints will be reflected in
the offset curve/triangle constructed by our procedure. In order to
preserve the initial tangent behavior for at least one endpoint of the
original curve segment, we choose a chord that passes through ei-
ther p0 or p2, preferring the endpoint that is more distant from p1.
This choice helps reduce numerical problems for asymmetric curve
segments having one endpoint very close to p1. Figure 2 shows a
curve segment and its corresponding axis-aligned segment.

2.4.2 Constructing the offset curve

Given the extended, symmetric control triangle (with points q0, q1,
and q2), we wish to find a new triangle describing a conservative
offset curve. Our procedure is similar to the initial step of Farin’s
offset algorithm [1989]. We choose a new control triangle such that

1. the original endpoints q0 and q2 are displaced outwards (for
positive d) or inwards (for negative d), by a distance |d| along
the curve normal at the corresponding endpoint, yielding new
endpoints q̂0 and q̂2, and

2. the original tangent vectors q0q1 and q1q2 are added to the
corresponding new endpoints q̂0 and q̂2, yielding two lines
which intersect at the new middle point q̂1.

All points on the resulting Bezier curve segment q̂0q̂2 lie at a dis-
tance d′ ≥ d from their closest counterparts on the extended seg-
ment q0q2, and the same property holds for the original segment
p0p2.

Figure 3 shows a symmetric control triangle, a pair of derived trian-
gles describing approximate exterior and interior offset curves, and
the curves themselves.

2.4.3 Motivating the symmetric construction

The initial step in our algorithm, namely the extension of the orig-
inal control triangle to an axis-symmetric triangle describing the

same curve, may appear unnecessary, suggesting that we could ap-
ply the displacement portion of the algorithm directly to the original
triangle. Indeed, doing so would provide improved fidelity to the
true offset curve at the initial endpoint not maintained by the sym-
metric construction (since the scaled-normal displacement would
be applied there, rather than at a new point more distant from p1).2

The problem is that applying the displacement operation to an
asymmetric control triangle yields an offset curve whose axis dif-
fers from that of the original curve. As the offset is increased or de-
creased, the middle point (and thus the extreme curve point F (0.5))
moves outward (inward) along the line l connecting the midpoint to
the center of the segment p0p2, which is parallel but not coincident
to the axis. Since the inner and outer offset curves are thus skewed
in opposite directions w.r.t. the axis, various anomalies, such as the
outer offset curve failing to contain the inner offset curve, or the
inner curve intersecting the curve segment, can occur.

These are not artificially-generated pathological cases; they appear
even with small offsets to some curves in TrueTypeTM glyphs, typi-
cally when the control triangle is very narrow. While the symmetric
form will typically generate less precise offset curves (because it
fails to incorporate the tangent from one of the initial endpoints), it
does not exhibit these anomalies.

2.4.4 Correctness

For a positive displacement d, we are able to show that, for any
symmetric control triangle, this approach yields a conservative off-
set curve. Negative displacements are slightly more complex, as the
true offset curve exhibits a singularity whenever the displacement
exceeds the curve’s radius of curvature. Once the normal displace-
ment vectors from the endpoints (i.e., q̂0 − q0 or q̂2 − q2) reach
the axis, there exists no point interior to the curve having distance
δ ≥ |d| to the portion of the curve segment lying on the same side
of the axis, and the approximate offset curve degenerates to a single
point.3

Given d sufficiently small that this does not occur, we can show that
interior offset curves generated by our procedure are conservative.
A detailed analysis can be found in the Appendix.

3 Experimental Results

We extracted 1,000 unique, non-degenerate quadratic curve seg-
ments from the Times New Roman TrueType font (beginning with
the first ASCII character), and another 1,000 from the MS Mincho
TrueType font (beginning with the first Japanese kana character).
For each segment, we saved the bounds of the enclosing glyph’s
coordinate system, the three control points, described in terms of
that coordinate system, and a flag indicating which side of the seg-
ment faces outward from the glyph contour to which it belongs.
This information was used to drive our experiments. Where needed,
precise distance values were computed by an iterative solver config-
ured to return when the iteration-to-iteration difference in the dis-
tance value, measured in the curve’s coordinate system, becomes
less than 10−9.

2The initial step of Farin’s offset construction does precisely this. This
initial imprecision is permissible because the algorithm recursively refines
the problem until an arbitrary level of precision is achieved, whereas our
algorithm is intended to return a single, conservative, solution.

3Extending the normals beyond the axis results in an inverted control
triangle that does not have useful properties w.r.t. the original curve.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 64 128 256 512 1024 2048

fr
ac

tio
n

of
 b

bo
x

pi
xe

ls
 f

ou
nd

 re
le

va
nt

glyph height in pixels

bbox

curve

offset

solver

Figure 4: Antialiasing example. The horizontal axis denotes
glyph heights. The vertical axis shows the fraction of all sampled
pixels found to be relevant (possibly within 1 pixel of the curve) via
one of four tests: (1) lying inside the rectangular bounding box,
(2) lying outside the curve, (3) lying inside the approximate offset
curve, and (4) precise solver returning a distance of one pixel or
less.

3.1 Antialiasing scenario

For outline-based fonts, antialiasing is performed on the outside of
each curve segment. A distance-based transparency value is com-
puted for all pixel positions lying within a single pixel width of
the segment, on the appropriate side. The number of positions at
which the precise distance computation is invoked can be limited
as follows. We construct an approximate offset curve whose mini-
mum distance value d corresponds to a 1-pixel displacement from
the segment. Any point not lying between the segment and the off-
set curve is irrelevant to the antialiasing computation, and thus no
precise distance computation need be performed for such points.

We analyze each curve segment in our corpus over a variety of
glyph height values, expressed in screen pixels, ranging from 16
to 2048 pixels in height. Each height value defines a coordinate
transformation between pixel and glyph coordinates. We map each
segment’s bounding rectangle to screen space, pad it by one pixel in
each direction, and traverse it, querying the corresponding position
in glyph space. All query points falling outside of the offset curve
were found to have a point-curve distance greater than d; thus, the
algorithm was shown to be (empirically) conservative.

Our acceleration technique was able to discharge 68–99% of
queries. Figure 4 shows the fraction of in-bounding-box pixel
queries found to be relevant by (a) the curve-side test, (b) contain-
ment between the approximate offset curve and the segment, and
(c) our iterative solver. As the glyph height is increased, the one-
pixel offset value in the screen coordinate system maps to succes-
sively smaller offset values in the glyph coordinate system, result-
ing in a more precise approximate offset curve. Unlike polygonal
or hierarchical structures, which must grow as improved precision
is required, our representation achieves improved precision while
maintaining a constant representation size and query time.

3.2 Brush scenario

For a brushed path of width 2d, sample points within d of a curve
segment require a precise distance computation to determine the
transverse parameter value. If antialiasing is to be performed, the
relevant area increases by one pixel width on either side of the
curve segment. We attempt to rule out irrelevant sample points by

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32

fr
ac

tio
n

of
 b

bo
x

pi
xe

ls
 fo

un
d

re
le

va
nt

half-width of brush in pixels

bbox

offset

solver

Figure 5: Brush example. The horizontal axis denotes brush half-
widths d in pixels. The vertical axis shows the fraction of all sam-
pled pixels found to be within d pixels of the curve, as determined by
one of three tests: (1) lying inside the rectangular bounding box, (2)
lying between the exterior and interior approximate offset curves,
and e, and (3) precise solver returning a distance ≤ d.

constructing two approximate offset curves with minimum distance
values corresponding to the desired half-width, one on either side
of the curve segment. Only points lying between the offset curves
need be considered for further computation.

The data in Figure 5 describes the results of an experiment in which
we scaled each curve segment in our corpus to a height or width of
128 pixels, depending on the segment’s aspect ratio. For brush half-
widths d varying from 1 to 32 pixels, we computed a tight bound-
ing rectangle for the brush stroke, and evaluated the approximate
and precise relevance conditions for each pixel position. We con-
firmed that all sampled points lying beyond either offset curve had
point-curve distances greater than d. For d ≤ 8, our acceleration
technique discharges over 95% of irrelevant queries. As the brush
width grows, the approximate offset curve becomes less precise,
but remains useful, eliminating at least two thirds of the irrelevant
queries in all cases.

4 Related Work

4.1 Bounding Regions

The idea of using bounding regions as an acceleration technique has
a long history. As we mentioned in Section 2.2, most techniques
either improve the precision of the lowest-level bounding represen-
tation elements, or build data structures to accelerate spatial queries
returning sets of such elements. In an instance of the former ap-
proach, Kay and Kajiya [1986] bound objects with parallelopipeds
instead of rectangular prisms.

The latter approach is more common: examples include general
spatial data structures such as k-d trees [Bentley 1975] and r-
trees [Guttman 1984], as well as graphics-rendering-specific in-
stances [Rubin and Whitted 1980; Glassner 1988]. Recent works
on representation of vector graphics [Nehab and Hoppe 2008;
Qin et al. 2008] have used a single-level representation, the uniform
grid.

Arvo and Kirk [1987] construct bounding descriptions not only of
query targets (e.g., graphical objects) but also of groups of queries,
allowing fast discharge of multiple queries at once. This idea ap-
plies to our offset scenario as well. For example, we can quickly
show that a large number of query points are irrelevant for an-

tialiasing if all corner points of a rectangle enclosing these query
points fall outside of a single-pixel-offset exterior approximate off-
set curve.

4.2 Offset Curves

The construction of precise planar offset curves has been the
subject of much research [Elber et al. 1997; Anton et al. 2005;
Tiller and Hanson 1984; Farin 1989]. Typically, the curve is repet-
itively subdivided until each resulting segment’s offset curve can
be represented with sufficient accuracy by a simpler construct such
as a line segment or arc segment. Such recursive techniques can
achieve an arbitrary level of precision, but share the disadvantages
of the multi-polygonal bounding techniques described above.

Farin [1989] describes a subdivision-based procedure that repre-
sents offsets to segments of conic curves as conic curves. Our
technique for extending the control triangle endpoints by the scaled
curve normal is similar to his, but differs in that, since we are using
only quadratics, we lose a degree of freedom (the w parameter) vs.
that of conics.

4.3 Distance Computations

Loop and Blinn [Loop 2005] make use of the tesselation hardware
in a GPU to efficiently evaluate the implicit definition of quadratic,
conic, and cubic curve segments, thus obtaining an inclusion pred-
icate, but not a distance function. Several iterative algorithms ex-
ist for computing the minimum distance vector from a point to a
planar curve segment. Wang et al. [2002] specifically treats cu-
bic curves, while Qin et al. [2008] partitions arbitrary curves into
segments over which a binary subdivision-based search will find a
single solution. When operating on quadratic curves, both of these
algorithms could benefit from our acceleration technique. For the
specific case of quadratic curves, Nehab and Hoppe [2008] present
a closed-form approximation to the point-curve distance, which has
been found to be accurate for points sufficiently near the curve.

5 Future Work

We plan to extend our technique to rational quadratic (conic)
curves, exploiting their additional degree of freedom in fitting ap-
proximate offset curves. Additional avenues of potential explo-
ration include trading endpoint precision for near-axis precision
and the use of multiple approximate offset curves to model a single
curve segment.

6 Conclusion

We have investigated the use of approximate offset curves as com-
ponents of bounding mechanisms for regions of interest surround-
ing curve segments. In particular, we have shown that the space
of coordinates relevant to bounded distance queries on quadratic
Beizer curve segments can be usefully limited by in/out tests on
other quadratic Bezier curves used as conservative, approximate
offset curves. We have described a new technique for constructing
such curves, presented an argument for its correctness, and demon-
strated its utility on a corpus of real-world curves.

References

ANTON, F., EMIRIS, I., MOURRAIN, B., AND TEILLAUD, M.
2005. The offset to an algebraic curve and an application to
conics. ICCSA 2005 (LNCS 3480), 683–696.

ARVO, J., AND KIRK, D. 1987. Fast ray tracing by ray classifica-
tion. ACM SIGGGRAPH Computer Graphics 21, 4, 55–64.

BENTLEY, J. L. 1975. Multidimensional binary search trees used
for associative searcing. Communications of the ACM 18, 9,
509–517.

ELBER, G., LEE, I.-K., AND KIM, M.-S. 1997. Comparing offset
curve approximation methods. IEEE Computer Graphics and
Applications 17, 3, 62–71.

FARIN, G. 1989. Curvature continuity and offsets for piecewise
conics. ACM Transactions on Graphics 2, 1, 89–99.

FARIN, G. 2002. Curves and Surfaces for CAGD. Morgan Kauf-
mann.

GLASSNER, A. S. 1988. Spacetime ray tracing for animation.
IEEE Computer Graphics and Applications 8, 2, 60–70.

GUTTMAN, A. 1984. R-trees: a dynamic index structure for spatial
searching. In ACM SIGMOD, 47–57.

HEATH, T. L. 1897. Archimedes: Works. Cambridge University
Press. 234–252.

KAY, T. L., AND KAJIYA, J. T. 1986. Ray tracing complex scenes.
ACM SIGGRAPH Computer Graphics 20, 4, 269–278.

LOOP. 2005. Resolution independent curve rendering using pro-
grammable graphics hardware. ACM Transactions on Graphics,
1000–1009.

NEHAB, D., AND HOPPE, H. 2008. Random-access rendering of
general vector graphics. ACM Transactions on Graphics 27, 5.

QIN, Z., MCCOOL, M. D., AND KAPLAN, C. 2008. Precise
vector textures for real-time 3d graphics. ACM Transactions on
Graphics 27, 5.

RUBIN, S. M., AND WHITTED, T. 1980. A 3-dimensional rep-
resentation for fast rendering of complex scenes. In ACM SIG-
GRAPH, 110–116.

TILLER, W., AND HANSON, E. G. 1984. Offsets of two-
dimensional profiles. IEEE Computer Graphics and Applica-
tions 4, 9, 36–46.

WANG, H., KEARNEY, J., AND ATKINSON, K. 2002. Robust
and efficient computation of the closest point on a spline curve.
Curve and Surface Design, 397–405.

Acknowledgements

The author would like to thank Jim Kajiya and Turner Whitted for
discussions on bounding techniques and AndrewGlassner for draw-
ing the examples in Figure 1.

Appendix

We wish to show that the approximate offset curves generated by
our strategy are conservative. Without loss of generality, we ex-
amine the case of a curve segment described by a symmetric con-
trol triangle with control points p0 = (−1, 0), p1 = (0, h), and
p2 = (1, 0), where h ≥ 0.4 This triangle describes a quadratic
curve segment with parameterized form

p(t) = t2(0,−2h) + t(2, 2h) + (−1, 0)

4Any control triangle can be reduced to this form via a sequence of affine
translation, rotation, and scaling operations.

Figure 6: B in h and t.

where 0 ≤ t ≤ 1 and implicit form5

c(p) = b1(p)
2 − 4b0(p)b2(p)

where the bi(p) are the barycentric coordinates of point p with re-
spect to the control triangle points pi. The term c(p)will be positive
for points p outside the curve, zero for points on the curve, and neg-
ative for points inside the curve.

We can construct a precise offset curve in parameterized form by
adding an appropriately scaled normal vector at each point. Given
an offset distance o ≥ 0, the the exterior and interior offset curve
functions are

q(t) = p(t) + n(t)

and

r(t) = p(t)− n(t)

.

where

n(t) = (
−(p′(t)y
‖ p′(t) ‖ ,

p′(t)x
‖ p′(t) ‖) o

is the scaled normal vector field along the curve.

Our procedure for constructing an approximate offset curve builds
a control triangle whose endpoints are precise; i.e., for the exterior
case q0 = q(0) and q2 = q(1). The middle point q1 lies at the
intersection of the tangent line q(0) + q′(0) and the y axis. The
internal case is similar. By substituting the new control points into
the implicit formula c(p), we obtain functions cq(t) and cr(t) that
compute whether or not the approximate offset curve encloses the
point lying on the true offset curve at parameter value t.

We begin by analyzing the exterior offset case. Recall that we have
assumed

5This is the implicit form for conics given in [Farin 2002, p. 216], spe-
cialized for the parabolic case.

Figure 7: C in h and t.

• h > 0 (definition of canonical triangle),

• o ≥ 0 (we’re handling external and internal offsets explicitly),

• 0 ≤ t ≤ 1 (we only care about distances to the curve segment,
not the entire curve)

The function cq(t) represents the inclusion of the true exterior offset
curve within the approximate exterior offset curve, and thus should
never be positive. We can factor it as

cq(t) = A(t)(oB(t) + C(t))

where

A(t) =
2 o

h
(√

1 + h2 + oh
)2

(1 + h2(2t− 1)2)

B(t) =

(
−h3 + h

√
1 + 4 t2h2 − 4 th2 + h2

√
1 + h2

−2h3t2 + 2h3t− h

)

C(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2h2
√
1 + 4 t2h2 − 4 th2 + h2

+h4
√
1 + 4 t2h2 − 4 th2 + h2

+
√
1 + 4 t2h2 − 4 th2 + h2

+4 t2h2
√
1 + 4 t2h2 − 4 th2 + h2

−4 th2
√
1 + 4 t2h2 − 4 th2 + h2

−2h2
√
1 + h2 − 14h4

√
1 + h2t2

+6h4
√
1 + h2t− 6

√
1 + h2t2h2

+6
√
1 + h2th2 + 16

√
1 + h2t3h4

+4 t2h4
√
1 + 4 t2h2 − 4 th2 + h2

−4 th4
√
1 + 4 t2h2 − 4 th2 + h2

−8
√
1 + h2t4h4 −√

1 + h2 − h4
√
1 + h2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The term A(t) is clearly zero or positive, so we can ignore it for
the remainder of our analysis. B(t), and thus oB(t), can be shown
analytically to be zero or negative for all relevant h. A plot of B
in h and t (see Figure 6) shows that the imprecision of the approxi-
mate offset curve, as a function of the offset o, behaves as we might

Figure 8: D̂ in h and t.

expect. At the endpoints, the approximate curve is perfect by con-
struction, so the offset value o has no effect (B(t) = 0), while the
offset-induced imprecision is worst at the axis crossing (t = .5) and
increases in magnitude as h is increased.

While most of the terms comprising C(t) can be grouped into
pairs having a negative sum, the remaining unpaired terms,
h
√
1 + h2(16t3 − 14t2 + 6t), always sum to a zero or positive

value. Thus, we must consider C(t) as a whole. In Figure 7, we
plot C for 0 ≤ t ≤ 1 and 0 ≤ h ≤ 10.

For this range of h, the value of C(t) is always zero or negative.
We can be assured that the plot is not missing any high-frequency
components in t because the derivative with respect to t has five
zeros, all of which lie between 0 and 1, and we can see three zeros
and two inflection points in the plot, so nothing’s gone missing.
What we don’t know is whether increasing the value of h might
somehow cause the value to exceed 0. By plotting the first and
second derivatives of C with respect to h for 0 ≤ t ≤ 1 and 1 ≤
h ≤ 106 and observing all values to be zero or negative, we can
feel confident that C(t) will always have a non-positive value.

Finally, given that both B(t) and C(t) are known to be non-
positive, and are only scaled by positive quantities, we can conclude
that cq(t) is zero or negative for all relevant values of h, o, and t, in-
dicating that any point on the precise exterior offset curve segment
will be contained by our exterior approximate offset curve.

We now turn our attention to case of interior offsets, and examine
the evaluation function cr(t). Before we begin, we need to restrict
the range of the offset value o in our analysis. As we noted ear-
lier, the true offset curve exhibits a singularity whenever the dis-
placement exceeds the curve’s radius of curvature; making the off-
set any larger would cause the the offset vectors to cross the axis
(and one another), yielding a downward-facing control triangle and
a meaningless approximate inner offset curve. In such situations,
our implementation returns a constant-valued characteristic func-
tion that always returns a positive value, indicating that no points
are enclosed by the inner approximate offset curve. For purposes of
analysis, we model this by requiring r(0)x ≤ 0.

Like its counterpart, the external evaluation function cq(t), the in-
ternal evaluation function cr(t) can be factored into a scaled sum

cr(t) = A(t)D(t)

where

D(t) = oB(t)− C(t)

and A(t), B(t), and C(t) are as before. From above, we know
that C(t) is non-positive, so its contribution to cr(t) must be non-
negative. AsB(t) is non-positive, we are unable to reason about the
sign of D(t) merely from the signs of its components. A straight-
forward graphical analysis would require a four-dimensional plot,
as all of h, o, and t are in play at the same time. We can elimi-
nate the parameter o by noting that the largest o (and thus the most
negative product oB(t)) permitted by the restriction r(0)x ≤ 0 is
obtained when r(0)x = 0. Solving for o in this formula (yielding

o =

√
1+h2

h
) and substituting into D(t) gives us a two-parameter

formula forD(t) minimized over all o, namely

D̂(t) =

⎛
⎜⎝

(8h4 t4 − 16h4 t3 + 4h2 t2 + 14h4 t2

−4h2 t− 6h4 t+ h2 + h4)
√
1 + h2

+(−4 t2 h2 − 4 t2 h4 + 4h2 t+ 4h4 t− h2 − h4)√
1 + 4h2 t2 − h2 t+ h2

⎞
⎟⎠

which is plotted in Figure 8. As we did withC(t) above, we can ex-
amine D̂(t)’s derivatives with respect to t and h and conclude that
the plotted region accurately represents the function’s sign (in this
case, non-negative) over its entire domain. Since D̂(t) represents
the worst-case behavior forD(t), we have shown that, for appropri-
ately restricted parameter values, cr(t) is non-negative. Thus, we
are able to claim that any point on the precise interior offset curve
segment will lie outside of our approximate interior offset curve.

