
Geometry of Synthesis IV
Compiling Affine Recursion into Static Hardware

Dan R. Ghica
University of Birmingham
d.r.ghica@cs.bham.ac.uk

Alex Smith
University of Birmingham

ais523@cs.bham.ac.uk

Satnam Singh
Microsoft Research

satnams@microsoft.com

Abstract
Abramsky’s Geometry of Interaction interpretation (GoI) is a
logical-directed way to reconcile the process and functional views
of computation, and can lead to a dataflow-style semantics of pro-
gramming languages that is both operational (i.e. effective) and
denotational (i.e. inductive on the language syntax). The key idea
of Ghica’s Geometry of Synthesis (GoS) approach is that for cer-
tain programming languages (namely Reynolds’s affine Syntactic
Control of Interference–SCI) the GoI processes-like interpretation
of the language can be given a finitary representation, for both
internal state and tokens. A physical realisation of this representa-
tion becomes a semantics-directed compiler for SCI into hardware.
In this paper we examine the issue of compiling affine recursive
programs into hardware using the GoS method. We give syntax
and compilation techniques for unfolding recursive computation in
space or in time and we illustrate it with simple benchmark-style
examples. We examine the performance of the benchmarks against
conventional CPU-based execution models.

Categories and Subject Descriptors B.5.2 [Hardware]: Design
Aids—Automatic Synthesis

General Terms Languages, Theory, Design

1. Introduction
Why compile recursive functions into FPGA hardware? A few
years ago the case for compiling recursive functions into FPGA
circuits was less compelling because these chips had limited com-
putational resources and no specialized on-chip memory, so a stack
would have to be made using precious flip-flops. Modern FPGAs
can implement million-gate circuits and can contain thousands of
independent dual-port memory blocks (e.g. block-RAMs on Xilinx
FPGAs which are around 36 Kbits in size) which are ideal for im-
plementing stacks and other local computational state. Since there
are many independent memories it is possible to have many cir-
cuit sub-components executing in parallel without one single stack
acting as a memory bottle-neck.

So now that we have effective elements for implementing recur-
sive computations on FPGAs are there any applications that actu-
ally need recursive descriptions? Certainly. As FPGAs have grown
in capacity there has been an increasing desire to map computa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11 September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

tions that were previously implemented in software for execution
on a regular processor onto FPGAs instead, in order to improve
performance or reduce energy consumption. Recently FPGAs have
gained the capability to access large amounts of external memory
using multiple memory controllers and this allows us to manipulate
dynamic data-structures like trees with FPGA gates and exploit the
thousands of on-chip independent memories as caches. With dy-
namic data-structures one naturally has the desire to express com-
putations with recursive algorithms (e.g. balancing trees and insert-
ing and removing nodes). Example applications include line-speed
network packet processing which may require building up auxiliary
dynamic data structures (e.g. trees) which are used to help classify
and route packets, such as Netezza’s data warehousing project1 or
IBM’s DataPower accelerated XML parser2.

Recursive procedures, functions and methods have been used
to describe the behaviour of digital circuits in a variety of pro-
gramming languages ranging from mainstream hardware descrip-
tion languages like VHDL to experimental embedded domain spe-
cific languages like Lava [BCSS98] for many years. Most systems
typically implement recursion by inlining it at compile time to pro-
duce descriptions that are unfolded in space. These descriptions as-
sume the depth of the recursion to be determinable at compile time.
A specific example of such a recursive function is one that adds
the elements of an array by using a recursive divide and conquer
strategy yielding an adder-tree implementation. At compile time
the size of the array has to be known but not the value of the array
elements.

Our goal is to allow recursive descriptions of circuits which un-
fold in time and space where the depth of recursion is not known at
compile time. This in turn allows us to describe recursive functions
that can operate over dynamic data structures. We aim to research
and develop techniques for translating a sub-set of recursive func-
tions into circuits where the depth of recursion is dependent on the
dynamic values.

Domain specific hardware description langauges sometimes of-
fer limited support for recursion. For example, Contessa [TL07]
is used for finance applications but only supports tail recursion.
There has also been considerable interest in describing hardware
using embedded domain specific langauges i.e. by designing a li-
brary that captures important aspects of circuit design. For exam-
ple, the JHDL system [BH98] provided a system coded in Java for
performing structural hardware design. The Lava system provides a
combinator library that makes it easier to descibe circuit layout and
behaviour [HD08]. All of these systems allow recursive descrip-
tions but they all require the descriptions to be in-lined. Even Blue-
spec [Nik04] which is a modern hardware description language
based on functional programming concepts allows the specification

1 http://www.netezza.com/data-warehouse-appliance-products/
2 http://www-01.ibm.com/software/integration/datapower/

of recursive functions but does not support the synthesis of dynamic
recursion.

Sklyarov describes a mechanism for compiling recursive C++
descriptions into FPGA circuits [Skl04] using hierarchical finite
state machines which have been applied to the design of Huffman
encoder circuits and sorting networks. Sklyarov’s technique has the
advantage of dealing with general recursion but it has the drawback
of requring centralized control and it produces rather slow circuits
running at only 25 MHz. Our approach is more modular, does
not require centralized control and produces faster circuits. The
knapsack and Kinght’s Tour problems were described as recursive
hardware algorithms by Maruyama, Takagi and Hoshino [MTH99]
although this technique is limited to loop unrolling and pipeling
and the use of a stack to hold state information.

Ferizis and Gindy show how recursive functions can be imple-
mented by using dynamic reconfiguration [FG06] to unroll recur-
sive function calls at run-time which avoids the need for a stack.
However, this approach is very limited because it replicates the
body of the recursive function, which is likely to quickly exhuast
the available FPGA resources, and it also relies on immature dy-
namic reconfiguration technology.

Contribution. This paper gives the most general method to date
for compiling recursive programs into static hardware. The main
language-level restriction we impose, the use of an affine type
system, is unavoidable because of computational reasons—non-
affine functions do not have a finite state model. We describe a
compiler to sequential circuits and we illustrate it with a typical
benchmark for recursive programs, computing Fibonacci numbers.

2. Geometry of Synthesis
2.1 Objectives, methodology, motivation
Higher-level synthesis (HLS) is the production of gate-level de-
scription of circuits from behavioural descriptions given in higher-
level programming languages.

Current HLS tools and techniques have significant limitations.
One specific limitation is the weak treatment of function calls,
which are typically implemented by inlining. This restriction is
limiting the more general application of high level synthesis tech-
nology to a wider class of algorithms than benefit from dynamic
procedure calls and recursion.

By inlining function calls at source-code level, which in hard-
ware corresponds to replication of circuitry, current tools generate
code which is often inefficient. Also, ordinary programming lan-
guages interface via function calls with libraries and with run-time
services. Lack of support for proper function calls makes such in-
teroperability impossible, which means that the entire system must
be developed in one single programming language. Separate com-
pilation, foreign function interfaces and application binary inter-
faces, standard facilities in modern compilers, cannot be supported
without a proper function mechanism.

The Geometry of Synthesis (GoS) approach [Ghi07, GS10,
GS11] enables full and proper implementation of ordinary pro-
gramming languages, with an emphasis on correct and effective
handling of function calls. Through static analysis the compiler
can decide whether the circuit for a particular function must be re-
instantiated or can be reused, depending on the desired trade-offs
between area/power and latency/throughput. More importantly,
code can be compiled without requiring all definitions of all func-
tions to be available at compile time. Appropriate hardware inter-
faces are generated for the missing functions so that a complete
functional circuit can be synthesised later, in a linking stage. This
means that pre-compiled libraries can be created, distributed and
commercialised with better protection for intellectual property. Fi-
nally, code written in one language can interact with code written in

other languages so long as certain interface protocols are respected
by the components. Moreover, these protocols can be enforced via
the type system at the level of the programming language. Designs
developed directly in conventional hardware description languages,
subject to respecting the interface protocols, can also be used from
the programming language via function calls. This allows the reuse
of a vast existing portfolio of specialised, high-performance de-
signs. Run-time services: certain circuits, which manage physical
resources such as memory, network interface, video or audio inter-
face, etc., cannot be meaningfully replicated as the resource itself
cannot be replicated. Such services can also be used from ordinary
programming languages via function calls.

Note the technology fully supports so-called higher-order func-
tions, i.e. functions which operate on functions as argument or re-
sult. Such functions play an important role in the design of highly
efficient parallel algorithms, such as Map-Reduce. These method-
ological considerations are discussed at length elsewhere [Ghi11].

2.2 Theoretical background
Abramsky’s Geometry of Interaction (GoI) interpretation is a
logical-directed way to reconcile the process and and functional
views of computation, and can lead to a dataflow-style semantics of
programming languages that is both operational (i.e. effective) and
denotational (i.e. inductive on the language syntax) [AJ92]. These
ideas have already been exploited in devising optimal compilation
strategies for the lambda calculus, a technique called Geometry of
Implementation [Mac94, Mac95].

The key idea of the Geometry of Synthesis (GoS) approach is
that for certain programming languages, of which Reynolds’s affine
version of Idealized Algol (called Syntactic Control of Interfer-
ence [Rey78, Rey89]) is a typical representative, the process-like
interpretation given by the GoI can be represented in a finite way.
This finitary representation applies both to the internal state of the
token machine and the tokens themselves.

Subsequent developments in game semantics (see [Ghi09] for a
survey) made it possible to give interpretations of a large variety of
computational features (state, control, names, etc.) in an interactive
way which is compatible with the GoI framework. Such computa-
tional features often have themselves a finite-state representation,
as noted in [GM00].

A physical realisation of the finite-state representation of a GoI-
style semantics then becomes a semantics-directed compiler for
suitable languages, such as SCI, directly into hardware [Ghi07].
The hardware itself can be synchronous or asynchronous [GS10].
Subsequent work also showed how programs of more expressive
type systems, such as full Idealized Algol, can be systematically
represented into SCI as an intermediary language via type inference
and serialization [GS11].

As a final observation, the somewhat surprising way in which
higher order abstraction and application are compiled into circuits
is best understood via the connection between GoI and monoidal
categories, especially compact-closed categories [KL80], since
such categories are an ideal formal setting for diagrammatic repre-
sentation [Sel09].

3. Syntactic Control of Interference
Reynolds’s Idealized Algol (IA) is a compact language which com-
bines the fundamental features of imperative languages with a
full higher-order procedural mechanism [Rey81]. This combination
makes the language very expressive, for example allowing the en-
coding of classes and objects. Because of its expressiveness and
elegance, IA has attracted a great deal of attention from theoreti-
cians [OT81].

The typing system (Basic) Syntactic Control of Interference
(SCI) is an affine version of IA in which contraction is disal-

lowed over function application and parallel execution. SCI was
initially proposed by Reynolds as a programming language which
would facilitate Hoare-style correctness reasoning because covert
interference between terms is disallowed [Rey78, Rey89]. SCI
turned out to be semantically interesting and it was studied exten-
sively [Red96, OPTT99, McC07, McC10]. The restriction on con-
traction in SCI makes it particularly well suited for hardware com-
pilation because any term in the language has a finite-state model
and can therefore be compiled as a static circuit [Ghi07, GS10].

The primitive types of the language are commands, memory
cells, and bounded-integer expressions σ ::= com | var | exp. The
type constructors are product and function: θ ::= θ × θ | θ →
θ | σ. Terms are described by typing judgements of the form
x1 : θ1, . . . , xk : θk ` M : θ, where we denote the list of
identifier type assignments on the left by Γ. By convention, if we
write Γ,Γ′ it assumes that the two type assignments have disjoint
sets of identifiers.

The term formation rules of the language are those of the affine
lambda calculus:

Identity
x : θ ` x : θ

Γ `M : θ′ Weakening
x : θ,Γ `M : θ′

Γ, x : θ, x′ : θ′,Γ′ `M : θ′′
Commutativity

Γ, x′ : θ′, x : θ,Γ′ `M : θ′′

Γ, x : θ′ `M : θ
Abstraction

Γ ` λx.M : θ′ → θ

Γ `M : θ → θ′ ∆ ` N : θ Application
Γ,∆ `MN : θ′

Γ `Mi : θi Product
Γ ` 〈M1,M2〉 : θ1 × θ2

Importantly, contraction (identifier reuse) is allowed in product
formation but not in function application.

The constants of the language are described below:

n : exp are the integer constants;

skip : com is the only command constant (“no-op”);

asg : var × exp→ com is assignment to memory cell, denoted by
“:=” when used in infix notation;

der : var→ exp is dereferencing of memory cell, also denoted by
“!”;

seq : com× σ → σ is command sequencing, denoted by “;” when
used in infix notation – if σ 6= com then the resulting expression
is said to have side-effects;

op : exp× exp→ exp stands for arithmetic and logic operators;

if : exp× com× com→ com is branching;

while : exp× com→ com is iteration;

newvar : (var→ σ)→ σ is local variable declaration in block
command or block expression.

Local variable binding is presented with a quantifier-style type in
order to avoid introducing new variable binders in the language.
Local variable declaration can be sugared into a more familiar
syntax as newvar(λx.M) ≡ newvar x in M .

We can reuse identifiers in products, so conventional imper-
ative program terms such as x:=!x+1 or c;c can be written as
asg〈x, add〈der(x), 1〉〉 and seq〈c, c〉 respectively. One immediate
consequence of the affine-type restriction is that nested applica-
tion is no longer possible, i.e. terms such as f : com→ com `

f(f(skip)) are illegal, so the usual operational unfolding of recur-
sion no longer preserves typing. Therefore, the recθ operator in its
most general formulation must be also eliminated. An appropriately
adapted recursion operator will be presented in the next section.

Despite its restrictions SCI is still expressive enough to allow
many interesting programs. Its finite state model makes it perfectly
suited for hardware compilation [Ghi07, GS10]. The operational
semantics of SCI is essentially the same as that of IA, which is
standard. In this paper we are interested in compiling SCI to se-
quential hardware; the GoS method relies essentially on the exis-
tence of a game-semantic model for the programming language.
The existing game [Wal04] and game-like [McC10] models of SCI
are asynchronous, and using them to create synchronous hardware
raises some technical challenges, which are addressed in previous
work on round abstraction [GM10, GM11].

The compiler is defined inductively on the syntax of the lan-
guage. Each type corresponds to a circuit interface, defined as a list
of ports, each defined by data bit-width and a polarity. Every port
has a default one-bit control component. For example we write an
interface with n-bit input and n-bit output as I = (+n,−n). More
complex interfaces can be defined from simpler ones using concate-
nation I1@I2 and polarity reversal I− = map (λx.−x)I . If a port
has only control and no data we write it as +0 or−0, depending of
polarity. Note that obviously +0 6= −0 in this notation!

An interface for type θ is written as JθK, defined as follows:

JcomK = (+0,−0) JexpK = (+0,−n)

JvarK = (+n,−0,+0,−n)

Jθ × θ′K = JθK@Jθ′K Jθ → θ′K = JθK−@Jθ′K.
The interface for com has two control ports, an input for starting
execution and an output for reporting termination. The interface
for exp has an input control for starting evaluation and data output
for reporting the value. Variables var have data input for a write
request and control output for acknowledgment, and control input
for a read request along with data output for the value.

Tensor and arrow types are given interpretations which should
be quite intuitive to the reader familiar with compact-closed cat-
egories [KL80]. The tensor is a disjoint sum of the ports on the
two interfaces while the arrow is the tensor along with a polarity-
reversal of the ports in the contravariant position. Reversal of po-
larities gives the dual object in the compact closed category.

Diagrammatically, a list will correspond to ports read from left-
to-right and from top-to-bottom. We indicate ports of zero width
(only the control bit) by a thin line and ports of width n by an
additional thicker line (the data part). For example a circuit of
interface Jcom → comK = (−0,+0,+0,−0) can be written in
any of these two ways:

The unit-width ports are used to transmit events, represented as
the value of the port being held high for one clock cycle. The n-
width ports correspond to data lines. The data on the line is only
considered to be meaningful while there is an event on the control
line.

Below, for each language constant we will give the asyn-
chronous game-semantic interpretation and its low-latency syn-
chronous representation [GM11] and the (obvious) circuit imple-
mentation. For the purpose of giving the game-semantics and its
representation, the circuit interface will correspond to the set of
moves; the semantics is a set of traces over the possible moves. We
denote a move/event on port k of interface I = (p1, . . . , pm) by

nk, where n is the data value; if the data-width is 0 we write ∗k.
We use 〈m,m〉 to indicate the simultaneity of move/event m and
m′. We use m · m′ to indicate concatenation, i.e. move/event m′

happens after m, but not necessarily in the very next clock cycle.
We define m •m′ = {〈m,m′〉,m ·m′}. We define the game se-
mantic interpretation by J−Kg and the synchronous representation
by J−Ks. The notation pc− applied to a set means closure under
prefix-taking.

Skip

skip : com, JcomK = (+0,−0)

JskipKg = pc{∗1 · ∗2}
JskipKs = pc{〈∗1, ∗2〉}.

The circuit representation is:

SKIP

Intuitively the input port of a command is a request to run
the command and the output port is the acknowledgment of
successful completion. In the case of skip the acknowledgment
is immediate.

Integer constant

k : exp, JexpK = (+1,−n)

JkKg = pc{∗1 · k2}
JkKs = pc{〈∗1, k2〉}.

The circuit representation is:

N

Intuitively the input port of an expression is a request to evaluate
the expression and the output port is the data result and a control
signal indicating successful evaluation. In the case of a constant
n the acknowledgment is immediate and the data is connected
to a fixed bit pattern.

Sequential composition

seq : com× exp→ exp

Jcom× exp→ expK = (−0,+0,−0,+n,+0,−n)

JseqKg = pc{∗5 · ∗1 · ∗2 · ∗3 · k4 · k6 | k ∈ Z}
JseqKs = pc{〈∗5, ∗1〉 • ∗2 · ∗3 • 〈k4 · k6〉 | k ∈ Z}.

The circuit representation is:

D

 SEQ

Above, D denotes a one-clock delay (D-flip-flop). A sequencer
SEQ propagates the request to evaluate a command in sequence
with an expression by first sending an execute request to the

command, then to the expression upon receiving the acknowl-
edgment from the command. The result of the expression is
propagated to the calling context. Note the unit delay placed
between the command acknowledgment and the expression re-
quest. Its presence is a necessary artifact of correctly represent-
ing asynchronous processes synchronously and cannot be opti-
mised away [GM11].

Assignment and dereferencing

asg : var × exp→ com

Jvar × exp→ comK = (−n,+0,−0,+n,−0,+n,+0,−n)

JasgKg = pc{∗7 · ∗5 · k6 · k1 · ∗2 · ∗8 | k ∈ Z}
JasgKs = pc{〈∗7, ∗5〉 • k6 · k1 • 〈∗2, ∗8〉 | k ∈ Z}.

der : var→ exp, Jvar→ exp = (−n,+0,−0,+n,+0,−n)K
JderKg = pc{∗5 · ∗3 · k4 · k6 | k ∈ Z}
JderKs = pc{〈∗5, ∗3〉 • 〈k4, k6〉 | k ∈ Z}
The circuit representations are, respectively:

D

ASG

DER

D

The variable type has four ports: writing data (n bits), acknowl-
edging a write (0 bits), requesting a read (0 bits) and providing
data (n bits). Assignment is a sequencing of an evaluation of
the integer argument with a write request to the variable; the
unused variable ports are grounded. Dereferencing is simply a
projection of a variable interface onto an expression interface
by propagating the read-part of the interface and blocking the
write part.

Operators

op : exp× exp→ exp

Jexp× exp→ expK = (−0,+n,−0,+n,+0,−n)

JopKg = pc{∗5 · ∗1 · k2 · ∗3 · k′4 · k′′6 | op(k, k′) = k′′ ∈ Z}
JopKs = pc{〈∗5, ∗1〉 • k2 · ∗3 • 〈k′4 · k6〉 | k′′ ∈ Z}.

The circuit representation is:

R

OP

OP

D

R above is a register. The input control of port 2 is connected
to the load pin of the register. The (combinatorial) circuit OP
implements the operation. Note that the value of the first opera-
tor is saved in the register because expressions can change their
value in time due to side-effects.

Branching

if : exp× exp× exp→ exp

Jexp× exp× exp→ expK = (−0,+n,−0,+n,−0,+n,+0,−n)

JifKg = pc{∗7 · ∗1 · 02 · ∗5 · k6 · k8, ∗7 · ∗1 · k′2 · ∗3 · k4 · k8
| k′ 6= 0, k ∈ Z}

JifKs = pc{〈∗7, ∗1〉 • 02 · ∗5 • 〈k6, k8〉, 〈∗7, ∗1〉 • k′2 · ∗3 • 〈k4, k8〉
| k′ 6= 0, k ∈ Z}

The corresponding circuit is:

IF

T

Mux

 X

DD

Above, Mux is a (combinatorial) n-bit multiplexer which selects
one data path or the other depending on the control signal. X is
a merge of two control signals (or or exclusive-or) and T is a de-
multiplexer which propagates the input control signal to the first
or second output, depending on whether the data value is zero
or nonzero. As before, the delay D is necessary for correctness
considerations.

Iteration

Jwhile : exp× com→ comK
Jexp× com→ comK = (−0,+n,−0,+0,+0,−0)

JwhileKg = pc{∗5 · (∗1 · 02 · ∗3 · ∗4)∗ · ∗1 · k2 · ∗6
| k ∈ Z \ {0}}

JwhileKs = pc{〈∗5, ∗1〉 • 02 · ∗3 • ∗4 · (∗1 • 02 · ∗3 • ∗4)∗

· ∗1 • k2 · ∗6, 〈∗5, ∗1〉 • k2 · ∗6 | k ∈ Z \ {0}}

The circuit is:

X

T

D

WHILE

DD

The iterator will keep executing the second argument as long as
the first argument is zero.

State The local variable binder is a higher-order constant.

newvar : (var→ com)→ com

J(var→ com)→ comK = (+n,−0,+0,−n,−0,+0,+0,−0)

JnewvarKg = pc{∗7 · ∗5 · v · ∗6 · ∗8
| v ∈

(∑
k∈Z

k1 · ∗2 · (∗3 · k4)∗
)∗}

JnewvarKs = pc{〈∗7, ∗5〉 • v • 〈∗6, ∗8〉
| v ∈

(∑
k∈Z
〈k1, ∗2〉 • 〈∗3, k4〉∗

)∗}
The circuit with this behaviour is basically just a register:

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ` M : θ
will be interpreted as a circuit of interface Jθ1 × · · · × θk → θK.

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ` λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ `M : θ′

are isomorphic.

Application To apply a function of type Γ ` F : θ → θ′ to an
argument ∆ ` M : θ we simply connect the ports in JθK from
the two circuits:

M

F
Γ

Δ θ

θ
θ'

Product formation Unlike application, in product formation we
allow the sharing of identifiers. This is realised through special
circuitry implementing the diagonal function λx.〈x, x〉 for any
type θ. Diagrammatically, the product of terms Γ `Mi : θi is:

M1

M2

δΓ
Γ

Γ

Γ

θ1

θ2

The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for δcom the circuit looks like this:

T

X

SR

D 1

2

Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:

M M

Γ

Γ'

θ

θ' θ''

θ

Γ

θ' θ

Commutativity is rearranging ports in the interface, weakening
is the addition of dummy ports and identities are typed buses.

Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
λf : exp→ exp.init; while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.

comSEQ
WHILE

SEQ
ASG

DELTA

exp
exp

exp

com

var

com

DER

D

D

X

T

D

D
init

curr

more

next

f

D

D
D

Figure 1. In-place map schematic and implementation

First, it is convenient to add linear product (tensor) explicitly to
the type system:

Γ `M : θ Γ′ `M ′ : θ′

Γ,Γ′ `M ⊗M ′ : θ ⊗ θ′

We also add a very simple form of dependent types, θ{N} which
is defined as

θ{0} = 1, θ{N} = θ ⊗ θ{N − 1},
where 1 is the unit type (the empty interface).

The language of indicesN consists of natural number constants,
subtraction and division (over natural numbers). This will guaran-
tee that recursive definitions have finite unfoldings. Note that since
⊗ is adjoint to→ in the type system, the following three types are
isomorphic:

θ ⊗ · · · ⊗ θ → θ′ ' θ → · · · → θ → θ′ ' θ{N} → θ′.

For example, an N -ary parallel execution operator can be recur-
sively defined, for example, as:

par{1} = λx : com.x : com→ com

par{N} = λx : com.(x || par{N − 1})
: com→ com{N − 1} → com ' com{N}→com.

Recursive definitions in this dependent-type metalanguage are
elaborated first into SCI by unfolding the definitions until all in-

dices {N} are reduced, after which the normal compilation process
applies.

Although this approach is technically very simple it is surpris-
ingly effective. For example, it allows the definition of sorting net-
works using programming language syntax so that the elaborated
SCI programs synthesise precisely into the desired sorting network.

4.1 Batcher’s Bitonic Sort
Bitonic Sort [Bat68] is a well known algorithm for generating op-
timal sorting networks. The definition of the algorithm is struc-
tural, i.e. it describes how the network is constructed from sub-
components, rather than behavioural, i.e. indicating the way input
data is processed into output data, as is the case with most “soft-
ware” algorithms. As a consequence, mapping Batcher’s descrip-
tion of a sorting network into a parallelisable program usually needs
to change the point of view from the network to the individual ele-
ment. This is quite subtle and it renders the algorithm unrecognis-
able3.

The computational element of a sorting network is a compare-
and-swap circuit

CS(m,n) =

{
(m,n) if m ≤ n
(n,m) if m > n.

A sorting network is a circuit formed exclusively fromCS circuits.
A simple, but inefficient, sorting network is the odd-even transpo-
sition network, which for 4 elements is:

CS

CS
CS

CS

CS

In SCI the CS box can be implemented as

CS
def
= λm:exp.λn:exp.if m < n thenm⊗ n elsen⊗m

With CS : exp→ exp→ exp⊗ exp ' exp⊗ exp→ exp⊗ exp.
Let SC be the converse circuit:

SC
def
= λm:exp.λn:exp.if m > n thenm⊗ n elsen⊗m.

Note that the type system allows the < operator to be given a
parallel implementation; we can also use the special CS circuit,
packaged like this so that it conforms to the type signature:

CS

The standard definition of Batcher’s algorithm as a recursively
specified sorting network is this:

3 See http://www.tools-of-computing.com/tc/CS/Sorts/
bitonic_sort.htm and the CUDA implementation at http:
//developer.download.nvidia.com/compute/cuda/sdk/
website/samples.html.

u{N}

d{N}

u{2N}

u{N}

d{N}

d{2N}

mu{N}

md{N}

mu{N}

md{N}

⇑{2N}

mu{N}

mu{N}

⇓{2N}

md{N}

md{N}

The circuit ⇑{2N} compares-and-swaps the k-th element in the
array against theN+k-th element, merging two bitonic sequences;
for N = 4 is:

CS

CS

CS

CS

⇓{2N} is the “upside-down” ⇑{N} circuit. The other circuits
involved in the recursive definition are: u (up-sort), d (down-sort),
mu (merge-up) and md (merge-down).

First let us introduce syntactic sugar for function composition,
f ◦ g = λx : θ.f(g(x)). In SCI the Batcher’s bitonic sorting
network is defined by the following program:

u{1} = d{1} = λx:exp.x

mu{1} = md{1} = λx:exp.x

u{N} = mu{N} ◦ (u{N/2} ⊗ d{N/2})
d{N} = md{N} ◦ (u{N/2} ⊗ d{N/2})

mu{N} = (mu{N/2} ⊗mu{N/2}) ◦ up{N}
md{N} = (md{N/2} ⊗md{N/2}) ◦ down{N}
up{N} = (λx:exp{N/2−1}.λz:exp{N/2−1}.λy:exp.λu:exp.

x⊗ y ⊗ z ⊗ u)

◦ (CS ⊗ up{N/2− 2})
◦ (λx:exp.λy:exp{N/2−1}.λz:exp.λu:exp{N/2−1}.

x⊗ z ⊗ y ⊗ u)

down{N} = (λx:exp{N/2−1}.λz:exp{N/2−1}.λy:exp.λu:exp.

x⊗ y ⊗ z ⊗ u)

◦ (SC ⊗ up{N/2− 2})
◦ (λx:exp.λy:exp{N/2−1}.λz:exp.λu:exp{N/2−1}.

x⊗ z ⊗ y ⊗ u)

Note that above the ◦ operator needs to be elaborated with the
proper type, which is a trivial exercise in type inference. A bitonic
sorter is u{N} for N a power of 2.

This program elaborates to a SCI program which then synthe-
sises to the standard bitonic sorting network. Note that this ap-
proach is very similar to the approach that structural functional

hardware description languages such as Lava4. However, because
our syntax is based on compact-closed combinators they match
conventional programming language syntax based on abstraction
and application. In the case of Lava, the underlying syntax is set (al-
beit not explicitly) in a traced-monoidal framework which is some-
what more rigid [JSV96].

5. Unfolding affine recursion in time
Sometimes a recursive unfolding of a circuit is not desired or
not possible and we may wish to have genuine run-time recursive
behaviour.

First note that unrestricted recursion in SCI is not possible as
the unfolding of the recursive calls can violate the typing rule
requiring disjointness of free identifiers between a function and its
argument, as in fix(F) −→ F (fix(F)). Therefore fix-point can
only be applied to closed terms:

` F : θ → θ fix-point` fix(F) : θ

The recursive unfolding of the fix-point combinator suggests that
the circuit representation of the fix-point circuit should be equiva-
lent to the following infinite circuit:

F

F

F
...

θ

The solid/hollow arrows indicate the change of polarity of the bus
JθK. Obviously, what we would like is something like this:

F FIX
θ

A tempting idea is to fold the circuit for JF K onto itself by using
a FIX circuit very similar to the diagonal. However, this is not
possible: some of the constituent circuits of JF K are stateful and
their states can be different in different instances of F . The relevant
stateful circuits are:

R used in the implementation of operators and local variables.

SR used in the implementation of the diagonal.

The other stateful circuit isD, but while the FIX block is executing,
its state is the same for all instances of JF K.

As a first step towards implementing recursion we replace all
occurrences of registers R and SR with indexed versions Ri and
SRi:

R SR
i i

4 See http://raintown.org/lava/ for a Bitonic sort implementation.

Ri is implemented as follows:

R R R

MUXi

DEMUX

...

and SRi analogously. The registers must be replaced with small
addressable memory elements.

Now we can rewrite our infinite unfolding of the fix-point like
this:

F

F

F

...

0

1

2

θ

Every instance of JF K now uses a different index, but is otherwise
identical. This means that we can replace the fixed indices with a
counter and fold all the instances into one single instance, indexed
by the counter. The value of the counter will indicate what “virtual”
instance of JF K is active and will be used as an index into the
registers.

The fix-point circuit will increase this global counter whenever
a recursive call is made and decrease it when a recursive return
is made. When the counter is 0 the recursive return will be to the
environment.

F FIX

C

θ

Circuit C is an up-down counter.
For example, for exp→ exp the fix-point combinator which can

be applied to function λf : exp→ exp.λn : exp.M is (data lines
not shown):

D

D

T

top

n

f

updown

X

T

X

C

X

D

X

D

In the general case, for an arbitrary θ, the FIXθ combinator is a
replication of the circuit below

D

D

T

updown

X

C

X

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

FIX

C

Circuit C is an up-down counter.
For example, for exp → exp the fixpoint combinator is (data

lines not shown):
!θ"

D

D

T

top

n

f

updown

X

T

X

C

X

D

X

D

4. Case studies
References

[Ghi07] Dan R. Ghica. Geometry of Synthesis: a structured approach to
VLSI design. In POPL, pages 363–375, 2007.

[GM00] Dan R. Ghica and Guy McCusker. Reasoning about Idealized
Algol using regular languages. In ICALP, pages 103–115, 2000.

[GM10] Dan R. Ghica and Mohamed N. Menaa. On the compositionality
of round abstraction. In CONCUR, pages 417–431, 2010.

[GS10] Dan R. Ghica and Alex Smith. Geometry of Synthesis II:
From games to delay-insensitive circuits. Electr. Notes Theor.
Comput. Sci., 265:301–324, 2010.

[McC07] Guy McCusker. Categorical models of syntactic control of
interference revisited, revisited. LMS Journal of Computation
and Mathematics, 10:176–216, 2007.

[McC10] Guy McCusker. A graph model for imperative computation.
Logical Methods in Computer Science, 6(1), 2010.

[OPTT99] Peter W. O’Hearn, John Power, Makoto Takeyama, and
Robert D. Tennent. Syntactic control of interference revisited.
Theor. Comput. Sci., 228(1-2):211–252, 1999.

[Red96] Uday S. Reddy. Global state considered unnecessary: An intro-
duction to object-based semantics. Lisp and Symbolic Compu-
tation, 9(1):7–76, 1996.

[Rey78] John C. Reynolds. Syntactic control of interference. In POPL,
pages 39–46, 1978.

[Rey89] John C. Reynolds. Syntactic control of inference, part 2. In
ICALP, pages 704–722, 1989.

[Wal04] Matthew Wall. Games for Syntactic Control of Interference.
PhD thesis, University of Sussex, 2004.

6 2011/3/2

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

FIX

C

Circuit C is an up-down counter.
For example, for exp → exp the fixpoint combinator is (data

lines not shown):
!θ"

D

D

T

top

n

f

updown

X

T

X

C

X

D

X

D

4. Case studies
References

[Ghi07] Dan R. Ghica. Geometry of Synthesis: a structured approach to
VLSI design. In POPL, pages 363–375, 2007.

[GM00] Dan R. Ghica and Guy McCusker. Reasoning about Idealized
Algol using regular languages. In ICALP, pages 103–115, 2000.

[GM10] Dan R. Ghica and Mohamed N. Menaa. On the compositionality
of round abstraction. In CONCUR, pages 417–431, 2010.

[GS10] Dan R. Ghica and Alex Smith. Geometry of Synthesis II:
From games to delay-insensitive circuits. Electr. Notes Theor.
Comput. Sci., 265:301–324, 2010.

[McC07] Guy McCusker. Categorical models of syntactic control of
interference revisited, revisited. LMS Journal of Computation
and Mathematics, 10:176–216, 2007.

[McC10] Guy McCusker. A graph model for imperative computation.
Logical Methods in Computer Science, 6(1), 2010.

[OPTT99] Peter W. O’Hearn, John Power, Makoto Takeyama, and
Robert D. Tennent. Syntactic control of interference revisited.
Theor. Comput. Sci., 228(1-2):211–252, 1999.

[Red96] Uday S. Reddy. Global state considered unnecessary: An intro-
duction to object-based semantics. Lisp and Symbolic Compu-
tation, 9(1):7–76, 1996.

[Rey78] John C. Reynolds. Syntactic control of interference. In POPL,
pages 39–46, 1978.

[Rey89] John C. Reynolds. Syntactic control of inference, part 2. In
ICALP, pages 704–722, 1989.

[Wal04] Matthew Wall. Games for Syntactic Control of Interference.
PhD thesis, University of Sussex, 2004.

6 2011/3/2

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

FIX

C

Circuit C is an up-down counter.
For example, for exp → exp the fixpoint combinator is (data

lines not shown):
!θ"

D

D

T

top

n

f

updown

X

T

X

C

X

D

X

D

4. Case studies
References

[Ghi07] Dan R. Ghica. Geometry of Synthesis: a structured approach to
VLSI design. In POPL, pages 363–375, 2007.

[GM00] Dan R. Ghica and Guy McCusker. Reasoning about Idealized
Algol using regular languages. In ICALP, pages 103–115, 2000.

[GM10] Dan R. Ghica and Mohamed N. Menaa. On the compositionality
of round abstraction. In CONCUR, pages 417–431, 2010.

[GS10] Dan R. Ghica and Alex Smith. Geometry of Synthesis II:
From games to delay-insensitive circuits. Electr. Notes Theor.
Comput. Sci., 265:301–324, 2010.

[McC07] Guy McCusker. Categorical models of syntactic control of
interference revisited, revisited. LMS Journal of Computation
and Mathematics, 10:176–216, 2007.

[McC10] Guy McCusker. A graph model for imperative computation.
Logical Methods in Computer Science, 6(1), 2010.

[OPTT99] Peter W. O’Hearn, John Power, Makoto Takeyama, and
Robert D. Tennent. Syntactic control of interference revisited.
Theor. Comput. Sci., 228(1-2):211–252, 1999.

[Red96] Uday S. Reddy. Global state considered unnecessary: An intro-
duction to object-based semantics. Lisp and Symbolic Compu-
tation, 9(1):7–76, 1996.

[Rey78] John C. Reynolds. Syntactic control of interference. In POPL,
pages 39–46, 1978.

[Rey89] John C. Reynolds. Syntactic control of inference, part 2. In
ICALP, pages 704–722, 1989.

[Wal04] Matthew Wall. Games for Syntactic Control of Interference.
PhD thesis, University of Sussex, 2004.

6 2011/3/2

for each input and output port in θ. If the port is pure control then
the data line can be omitted.

Correctness and limitations. Except for recursion, the imple-
mentation of the compiler is a hardware instantiation of the syn-
chronous representation of the game semantics and is correct by
construction as explained in a series of papers [McC02, GM10,
GM11]. The detailed proof of correctness of the fix-point construc-
tor is beyond the scope of this paper, but the step-by-step construc-
tion given in this section mirrors the structure of the proof of cor-
rectness. There are two limitations which play an important role in
the correct implementation of fix-point:

Concurrency. The SCI type system allows concurrency in general,
but concurrency inside the term to which the fix-point construc-
tor is applied must be disallowed. It is crucial for the correctness
of the implementation that only one “virtual” instance of the re-
cursive function, as indicated by the recursion depth counter, is
active at any one moment in time. If the recursive call is used in
a concurrent context this can no longer be guaranteed. Note that
recursively implemented functions can run in a parallel environ-
ment, only internally parallelism is disallowed. For simplicity
we disallow all parallelism, but a more careful analysis which

only bans the use of the recursive call in a parallel context is
possible.

Nested recursion. For simplicity we assume that recursive defini-
tions do not contain other recursive definitions. This is tech-
nically possible, by applying the same methodology and trans-
forming the recursion counter into an indexed array of recursion
counters.

5.1 Overflow detection
Recursive calls assume an idealized machine model with no bound
on resources. In physical machines that cannot be the case so re-
cursion calls that run too deep can overflow resources. On a con-
ventional CPU-based architecture this leads to an abnormal termi-
nation of the program, triggered either by the run-time environ-
ment (memory management modules or the operating system). A
synthesised program, in contrast, runs in isolation and runtime er-
rors cannot be detected or processed. In our implementation, over-
flow would manifest simply by the counter rolling over, which
would lead to active instances of the recursive functions being mis-
identified. This is problematic because it will not give an error but
will produce the wrong result (similar to integer overflow in C).

It is important therefore to build into the language an error de-
tection and handling mechanisms by providing the fix-point opera-
tor with an overflow handler. The syntax is

` F : θ → θ Γ `M : com
Γ ` fixF withM : θ

The implementation:

F FIX

C

M

θ

Γ

The fix-point operator is, by design, aware of the maximum size
of the counter. When a recursive call is about to increase beyond
the maximum size, instead of propagating the signal back to JF K it
will issue a special error signal to command JMK which is the error
handler. The control output of JMK is either ignored (grounded) or
connected to a special global error port.

5.2 Tail recursion
Iteration (while) is included in the recursion-free fragment of SCI
and it can be readily generalised to a higher-order tail-recursion
operator. Because tail-recursive calls do not need to percolate
back through each instance of the function the counter C and the
instance-management apparatus are no longer necessary. The tail-
recursive operator TAILθ becomes simply:

X

X

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

FIX

C

Circuit C is an up-down counter.
For example, for exp → exp the fixpoint combinator is (data

lines not shown):
!θ"

D

D

T

top

n

f

updown

X

T

X

C

X

D

X

D

4. Case studies
References

[Ghi07] Dan R. Ghica. Geometry of Synthesis: a structured approach to
VLSI design. In POPL, pages 363–375, 2007.

[GM00] Dan R. Ghica and Guy McCusker. Reasoning about Idealized
Algol using regular languages. In ICALP, pages 103–115, 2000.

[GM10] Dan R. Ghica and Mohamed N. Menaa. On the compositionality
of round abstraction. In CONCUR, pages 417–431, 2010.

[GS10] Dan R. Ghica and Alex Smith. Geometry of Synthesis II:
From games to delay-insensitive circuits. Electr. Notes Theor.
Comput. Sci., 265:301–324, 2010.

[McC07] Guy McCusker. Categorical models of syntactic control of
interference revisited, revisited. LMS Journal of Computation
and Mathematics, 10:176–216, 2007.

[McC10] Guy McCusker. A graph model for imperative computation.
Logical Methods in Computer Science, 6(1), 2010.

[OPTT99] Peter W. O’Hearn, John Power, Makoto Takeyama, and
Robert D. Tennent. Syntactic control of interference revisited.
Theor. Comput. Sci., 228(1-2):211–252, 1999.

[Red96] Uday S. Reddy. Global state considered unnecessary: An intro-
duction to object-based semantics. Lisp and Symbolic Compu-
tation, 9(1):7–76, 1996.

[Rey78] John C. Reynolds. Syntactic control of interference. In POPL,
pages 39–46, 1978.

[Rey89] John C. Reynolds. Syntactic control of inference, part 2. In
ICALP, pages 704–722, 1989.

[Wal04] Matthew Wall. Games for Syntactic Control of Interference.
PhD thesis, University of Sussex, 2004.

6 2011/3/2

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

FIX

C

Circuit C is an up-down counter.
For example, for exp → exp the fixpoint combinator is (data

lines not shown):
!θ"

D

D

T

top

n

f

updown

X

T

X

C

X

D

X

D

4. Case studies
References

[Ghi07] Dan R. Ghica. Geometry of Synthesis: a structured approach to
VLSI design. In POPL, pages 363–375, 2007.

[GM00] Dan R. Ghica and Guy McCusker. Reasoning about Idealized
Algol using regular languages. In ICALP, pages 103–115, 2000.

[GM10] Dan R. Ghica and Mohamed N. Menaa. On the compositionality
of round abstraction. In CONCUR, pages 417–431, 2010.

[GS10] Dan R. Ghica and Alex Smith. Geometry of Synthesis II:
From games to delay-insensitive circuits. Electr. Notes Theor.
Comput. Sci., 265:301–324, 2010.

[McC07] Guy McCusker. Categorical models of syntactic control of
interference revisited, revisited. LMS Journal of Computation
and Mathematics, 10:176–216, 2007.

[McC10] Guy McCusker. A graph model for imperative computation.
Logical Methods in Computer Science, 6(1), 2010.

[OPTT99] Peter W. O’Hearn, John Power, Makoto Takeyama, and
Robert D. Tennent. Syntactic control of interference revisited.
Theor. Comput. Sci., 228(1-2):211–252, 1999.

[Red96] Uday S. Reddy. Global state considered unnecessary: An intro-
duction to object-based semantics. Lisp and Symbolic Compu-
tation, 9(1):7–76, 1996.

[Rey78] John C. Reynolds. Syntactic control of interference. In POPL,
pages 39–46, 1978.

[Rey89] John C. Reynolds. Syntactic control of inference, part 2. In
ICALP, pages 704–722, 1989.

[Wal04] Matthew Wall. Games for Syntactic Control of Interference.
PhD thesis, University of Sussex, 2004.

6 2011/3/2

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

R

NEWVAR

In addition to the constants of the language we also interpret struc-
tural rules (abstraction, application, product formation) as construc-
tions on circuits. In diagrams we represent bunches of wires (buses)
as thick lines. When we connect two interfaces by a bus we assume
that the two interfaces match in number and kind of port perfectly.

In general a term of signature x1 : θ1, . . . , xk : θk ! M : θ
will be interpreted as a circuit of interface !θ1 × · · · × θk → θ".

Abstraction Semantically, in both the original game semantics and
the synchronous representation the abstraction Γ ! λx : θ.M :
θ′ is interpreted by the currying isomorphism. Similarly, in
circuits the two interfaces for this circuit and Γ, x : θ ! M : θ′

are isomorphic.

Application To apply a function of type Γ ! F : θ → θ′ to an
argument ∆ ! M : θ we simply connect the ports in !θ" from
the two circuits:

!F " !M" !θ" !θ′"

3. Recursion in SCI
4. Case studies

4 2011/3/1

FIX

C

Circuit C is an up-down counter.
For example, for exp → exp the fixpoint combinator is (data

lines not shown):
!θ"

D

D

T

top

n

f

updown

X

T

X

C

X

D

X

D

4. Case studies
References

[Ghi07] Dan R. Ghica. Geometry of Synthesis: a structured approach to
VLSI design. In POPL, pages 363–375, 2007.

[GM00] Dan R. Ghica and Guy McCusker. Reasoning about Idealized
Algol using regular languages. In ICALP, pages 103–115, 2000.

[GM10] Dan R. Ghica and Mohamed N. Menaa. On the compositionality
of round abstraction. In CONCUR, pages 417–431, 2010.

[GS10] Dan R. Ghica and Alex Smith. Geometry of Synthesis II:
From games to delay-insensitive circuits. Electr. Notes Theor.
Comput. Sci., 265:301–324, 2010.

[McC07] Guy McCusker. Categorical models of syntactic control of
interference revisited, revisited. LMS Journal of Computation
and Mathematics, 10:176–216, 2007.

[McC10] Guy McCusker. A graph model for imperative computation.
Logical Methods in Computer Science, 6(1), 2010.

[OPTT99] Peter W. O’Hearn, John Power, Makoto Takeyama, and
Robert D. Tennent. Syntactic control of interference revisited.
Theor. Comput. Sci., 228(1-2):211–252, 1999.

[Red96] Uday S. Reddy. Global state considered unnecessary: An intro-
duction to object-based semantics. Lisp and Symbolic Compu-
tation, 9(1):7–76, 1996.

[Rey78] John C. Reynolds. Syntactic control of interference. In POPL,
pages 39–46, 1978.

[Rey89] John C. Reynolds. Syntactic control of inference, part 2. In
ICALP, pages 704–722, 1989.

[Wal04] Matthew Wall. Games for Syntactic Control of Interference.
PhD thesis, University of Sussex, 2004.

6 2011/3/2

D

D

Note that the return from the recursive call is immediately propa-
gated to the calling environment.

Also, there is no need for the tail recursion operation to be
applied to closed terms, as the tail unfolding is sequential rather
than nested application:

Γ ` F : θ → θ
Γ ` tailθF : θ

6. Performance and benchmarks
At this early stage our research is mainly qualitative, demonstrating
the possibility of compiling recursive functions in static hardware.

We will give two benchmark-style examples to show that even
in the absence of any compiler optimisations the performance is
promising. We choose a naive Fibonacci number calculation as a
farily common benchmark of recursion performance and we exam-
ine the call-by-name and the call-by-value versions. This is not a
realistic efficient implementation but is an excellent contrived ex-
ample for creating a large number of recursive calls in an arbitrarily
nested pattern.

As this is the first, to our knowledge, attempt to give a general
method for synthesising recursion in time (recursion in space has
been explored thoroughly by Lava) we are forced to compare
against execution on a conventional CPU-based architecture. It is
difficult to abstract away from the fact that we use not only different
devices (CPU versus FPGA) but also different compilers and run-
time environments.

CPU We use an Intel Core 2 Duo processor running at 2.4 GHz
on a machine with the Mac OS X 10.5 operating system, the
Marst5 Algol 60 compiler and the gcc 4.0.1 C compiler.

FPGA We use a Altera Stratix III EPSL150 device, pro-
grammed using Quartus 10.0, set on a Terasic DE3 board, op-
erating at a default 50 MHz. We compute the maximum safe clock
frequency using the TimeQuest timing constraint tool, part of the
Quartus tool-set, and we scale execution time accordingly.

In order to normalise the performance comparison we will con-
sider two main metrics:

Relative throughput We measure the relative throughput between
the two devices computing from exactly the same source code.
We take into account execution time and resource utilisation,
which indicate the amount of parallelism that the device can
support. Note that on the FPGA parallel execution has no addi-
tional overhead or contention over resources, even in the case
of recursive functions, as no global stack is used in the imple-
mentation.

Relative throughput per transistor We further normalise the rel-
ative throughput of the two computations relative to the transis-
tor count, in order to obtain a fairer measure of performance.

On both these measures the circuits we synthesise perform better
than CPU-based execution.

5 http://www.gnu.org/software/marst/

6.1 Fibonacci, call-by-name
We use the simple-minded implementation of Fibonacci numbers
in order to generate a very large number of recursive calls from
small and simple code. This is appropriate as we do want to focus
our benchmarking on the effectiveness of the implementation of
recursion.

In traditional Algol60 syntax the program is:

integer procedure fib(n);
integer n;
begin

if n-1 = 0 then fib := 1
else if n-2 = 0 then fib := 1
else fib := fib(n-1) + fib(n-2)

end fib;

The benchmark results are as follows:
CPU FPGA

Time 35.5 s 50 s
Clock 2.4 GHz 137 MHz
Cycles 85.2 B 6.85 B

Transistors ' 300 M ' 400 M
Utilisation 50% 2%
Tx (rel.) 5.62% 1,774.9%

Tx/trans (rel) 7.49% 1,331.1%

Note that the execution time on the FPGA is larger than on the
CPU. This is to be expected, as the code is purely sequential and
uses very little memory. This is precisely the code that CPUs are
highly optimised to execute fast, and this is on top of the CPU
working with a much faster clock.

However, one core of this dual-core CPU is fully occupied
by this computation, leading to a 50% utilisation of resources.
We could compute two instances of fib in parallel with no extra
overhead. On the FPGA, the area occupied by the synthesised
circuit is only 2%, which means we can run up to 50 instances
of this circuit in parallel, with no overhead. Note that the utilisation
bound (2%) is on total ALUTs rather than on memory (1%), which
means that the overhead needed to handle recursion is manageable.
Using spatial unfolding we can only run fib to a depth of recursion
of about 5-6 (the expansion is exponential) whereas our temporal
unfolding has a depth of 256 (and reduced use of resources).

A relative comparison of execution time versus utilisation gives
the FPGA 1,774.9% (almost 18×) total throughput compared to the
CPU (conversely, the CPU has 5.62% of the FPGA throughput).

Images of block diagram and resource utilisation density for the
synthesised circuit are in Fig. 2. Note the row of RAM blocks, three
of which are used to implement the stateful elements of recursion–
they are the only memory overhead needed for implementing re-
cursion.

It is fair to take into account the fact that this particular FPGA
has a larger transistor count than the corresponding CPU. Normal-
ising throughput by this factor still gives the FPGA over 13× total
computational throughput per transistor.

6.2 Fibonacci, call-by-value
The CBN evaluation makes the purely functional Fibonacci func-
tion staggeringly inefficient. An improvement on the naive algo-
rithm forces the evaluation of the argument inside the function:

integer procedure fib(n);
integer n;
begin

integer n0, n1, n2;
n0 := n;
if n0-1 = 0 then fib := 1
else if n0-2 = 0 then fib := 1

basic_t_exp:t_a:zero_c~0

inputclkctrl

inputnow
reset~input

basic_d_exp:d_a:cached_d[0..31]

Figure 2. Synthesised FPGA layout for fib: block diagram and resource utilisation density (zoom-in)

else begin
n1 := fib(n0-1);
n2 := fib(n0-2);
fib := n1 + n2 end

end fib;

The results are now better in absolute terms both on the CPU and
the FPGA. The maximum clock frequency for the CBV fib is
smaller, but a similar relative throughput advantage for the FPGA
version still occurs.

CPU FPGA
Time 2.8 s 4.0 s
Clock 2.4 GHz 119 MHz
Cycles 6.78 B .48 B

Transistors ' 300 M ' 400 M
Utilisation 50% 2%
Tx (rel.) 5.7% 1,735.9%

Tx/trans (rel) 7.6% 1,301.9%

As a sanity check, we can compare this implementation with a call-
by-value implementation as used by more wide-spread compilers;
Ocaml v3.10 computes fib(36) on the same CPU in 0.6 seconds,
substantially better than Algol60 and Marst. However, the overall
throughput of the FPGA remains higher.

In Fig. 3 we can see run-time snapshots taken with the Signal-
Tap tool of the two circuits, indicating current calculated value,
current value of the internal recursion counter and next value being
calculated. We can notice in the CBN version the recursion counter
cycling all the way back to 0 each time an argument needs to be

(re)evaluated, whereas in the CBV version the argument is picked
up from the local variable.

6.3 Expressiveness
The fact that the recursion operator can only be applied to syntac-
tically closed functions is not a major restriction in terms of ex-
pressiveness. Affine recursion has been studied in the context of
closed recursion in the lambda calculus [AFFM07] and is in fact the
style of recursion used in Goedel’s System T [AFFM10], where it is
called iteration. We prefer “affine recursion” as iteration may incor-
rectly suggest repeated serial application rather than true, nested,
recursion.

As a test of the expressiveness of the compiler we programmed
Escardo’s implementation of the Bailey-Borwein-Plouffe spigot al-
gorithm for the computation of the n-th digit of π [BBP97]. The
implementation is written in Haskell and it uses higher-order func-
tionals to give precise representations to real numbers as streams of
digits [Esc09]. The program was successfully compiled to VHDL
and synthesised on the same Altera-based FPGA-board. Note that
our language does not offer direct support for lists and streams,
which needed to be coded up in the standard way into the underly-
ing lambda calculus.

This test was done only to evaluate the expressiveness of the
compiler, as without direct semantic support for lists or streams
the run-time performance cannot be realistically assessed. Even so,
the fact that ALUT utilisation stood at only 12% and the BRAM
utilisation at only 8% indicates that the overall footprint is small
and the overhead imposed by recursion manageable.

!"# $%&' ()*+, -+.' /01 /02 /03 /04 /5 /1 /2 /3 4 3 2 1 5 04 03 02

0 66 lastoutput[0..31] 21715

3 !! !"#$%&'$()*+(,-./01()*+234456 02 07 03 00 04 8 5 9 1 : 2

7 !! nextinput[0..31] 3:

!"# $%&' ()*+, -+.' /01 /02 /03 /04 /5 /1 /2 /3 4 3 2 1 5 04 03 02

0 66 lastoutput[0..31] 7843558

3 !! !"#$%&'$()*+(,-./01()*+234456 32 32 37 37 31

9 !! nextinput[0..31] 97

Figure 3. Run-time snapshots of CBN and CBV fib

7. Summary
We have shown a systematic approach for compiling programs us-
ing affine recursion into correct circuits implemented on FPGAs
which operate between the 110 MHz to 140 MHz range (so the
critical path is respectable) and these circuits can use far fewer cy-
cles to compute a result than the corresponding software imple-
mentation. However, unlike the software version we can systemat-
ically explore space and time trade-offs by unrolling function calls
through effectively inlining which in turn can increase through-
put at the cost of area. Our initial preliminary results are encour-
aging and we are developing the system further by allowing the
processing of off-chip dynamic data-structures and streams. By un-
derstanding how to effectively synthesize recursive descriptions we
get one step closer to the ability to transform programs into circuits
for implementations that have superior computational throughput
or reduced energy consumption.

References
[AFFM07] Sandra Alves, Maribel Fernández, Mário Florido, and Ian

Mackie. The power of closed reduction strategies. Electr. Notes
Theor. Comput. Sci., 174(10):57–74, 2007.

[AFFM10] Sandra Alves, Maribel Fernández, Mário Florido, and Ian
Mackie. Gödel’s system tau revisited. Theor. Comput. Sci.,
411(11-13):1484–1500, 2010.

[AJ92] Samson Abramsky and Radha Jagadeesan. New foundations
for the Geometry of Interaction. In IEEE Symposium on Logic
in Computer Science (LICS), pages 211–222, 1992.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications.
In AFIPS Spring Joint Computing Conference, pages 307–314,
1968.

[BBP97] D. Bailey, P. Borwein, and S. Plouffe. On the rapid computation
of various polylogarithmic constants. Mathematics of Compu-
tation, 66(218):903–914, 1997.

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware design in Haskell. In The International Con-
ference on Functional Programming (ICFP), New York, NY,
USA, 1998. ACM.

[BH98] P. Bellows and B. Hutchings. JHDL: an HDL for reconfigurable
systems. In IEEE Symposium on FPGAs for Custom Computing
Machines, Apr 1998.

[Esc09] Martin H. Escardo. Computing with real numbers represented
as infinite sequences of digits in haskell. In Computability and
complexity analysis, Ljubljana, Slovenia, 2009. (code available
at the author’s web page).

[FG06] George Ferizis and Hossam El Gindy. Mapping recursive func-
tions to reconfigurable hardware. In Field Programmable Logic
and Applications, 2006. FPL ’06. International Conference on,
pages 1–6, 2006.

[Ghi07] Dan R. Ghica. Geometry of Synthesis: a structured approach to
VLSI design. In ACM Symposium on Principles of Program-
ming Languages (POPL), pages 363–375, 2007.

[Ghi09] Dan R. Ghica. Applications of game semantics: From software
analysis to hardware synthesis. In IEEE Symposium on Logic
in Computer Science (LICS), pages 17–26, 2009.

[Ghi11] Dan R. Ghica. Functions interface models for hardware com-
pilation. In ACM/IEEE Ninth International Conference on For-
mal Methods and Models for Codesign (MEMOCODE), 2011.
(forthcoming)

[GM00] Dan R. Ghica and Guy McCusker. Reasoning about Ideal-
ized Algol using regular languages. In The International Col-
loquium on Automata, Languages and Programming (ICALP),
pages 103–115, 2000.

[GM10] Dan R. Ghica and Mohamed N. Menaa. On the composition-
ality of round abstraction. In The International Conference on
Concurrency Theory (CONCUR), pages 417–431, 2010.

[GM11] Dan R. Ghica and Mohamed N. Menaa. Synchronous game se-
mantics via round abstraction. In The International Conference
on Foundations of Software Science and Computation Struc-
tures (FoSSaCS), pages 350–364, 2011.

[GS10] Dan R. Ghica and Alex Smith. Geometry of Synthesis II:
From games to delay-insensitive circuits. Electr. Notes Theor.
Comput. Sci., 265:301–324, 2010.

[GS11] Dan R. Ghica and Alex Smith. Geometry of Synthesis III: Re-
source management through type inference. In ACM Sympo-
sium on Principles of Programming Languages (POPL), pages
345–356, 2011.

[HD08] Scott Hauck and André DeHon, editors. Reconfigurable Com-
puting, chapter Specifying Circuit Layout in FPGAs. Systems
on Silicon. Morgan Kaufmann Publishers, 2008.

[JSV96] André Joyal, Ross Street, and Dominic Verity. Traced monoidal
categories. Mathematical Proceedings of Cambridge Philo-
sophical Society, 119:447–468, 1996.

[KL80] G. M. Kelly and M. L. Laplaza. Coherence for compact closed
categories. Journal of Pure and Applied Algebra, 19:193–213,
1980.

[Mac94] Ian Mackie. The Geometry of Implementation. PhD thesis,
Imperial College, University of London, 1994.

[Mac95] Ian Mackie. The geometry of Interaction machine. In ACM
Symposium on Principles of Programming Languages (POPL),
pages 198–208, 1995.

[McC02] Guy McCusker. A fully abstract relational model of Syntac-
tic Control of Interference. In The Conference on Computer
Science Logic (CSL), pages 247–261, 2002.

[McC07] Guy McCusker. Categorical models of syntactic control of
interference revisited, revisited. LMS Journal of Computation
and Mathematics, 10:176–216, 2007.

[McC10] Guy McCusker. A graph model for imperative computation.
Logical Methods in Computer Science, 6(1), 2010.

[MTH99] Tsutomu Maruyama, Masaaki Takagi, and Tsutomu Hoshino.
Hardware implementation techniques for recursive calls and
loops. In The International Conference on Field Programmable
Logic and Applications (FPL), pages 450–455, 1999.

[Nik04] Rishiyur Nikhil. Bluespec SystemVerilog: Efficient, correct
RTL from high-level specifications. Formal Methods and Mod-
els for Co-Design (MEMOCODE), 2004.

[OPTT99] Peter W. O’Hearn, John Power, Makoto Takeyama, and
Robert D. Tennent. Syntactic control of interference revisited.
Theor. Comput. Sci., 228(1-2):211–252, 1999.

[OT81] Peter O’Hearn and Robert D. Tennent. Algol-like languages.
Birkhauser, Boston, 1981.

[Red96] Uday S. Reddy. Global state considered unnecessary: An intro-
duction to object-based semantics. Lisp and Symbolic Compu-
tation, 9(1):7–76, 1996.

[Rey78] John C. Reynolds. Syntactic control of interference. In ACM
Symposium on Principles of Programming Languages (POPL),
pages 39–46, 1978.

[Rey81] John C. Reynolds. The essence of Algol. In Proceedings of
the 1981 International Symposium on Algorithmic Languages,
pages 345–372. North-Holland, 1981.

[Rey89] John C. Reynolds. Syntactic control of inference, part 2. In
The International Colloquium on Automata, Languages and
Programming (ICALP), pages 704–722, 1989.

[Sel09] Peter Selinger. New Structures for Physiscs, chapter A survey of
graphical languages for monoidal categories. Springer Lecture
Notes in Physics, 2009.

[Skl04] Valery Sklyarov. FPGA-based implementation of recursive
algorithms. Microprocessors and Microsystems, 28(5-6):197 –
211, 2004. Special Issue on FPGAs: Applications and Designs.

[TL07] D.B. Thomas and W. Luk. A domain specific language for
reconfigurable path-based monte carlo simulations. In In-
ternational Conference on Field-Programmable Technology
(ICFPT), pages 97 –104, 2007.

[Wal04] Matthew Wall. Games for Syntactic Control of Interference.
PhD thesis, University of Sussex, 2004.

