Secure Distributed Programming with Value-Dependent Types

Nikhil Swamy' Juan Chen' Cédric Fournet' Pierre-Yves Strub? Karthikeyan Bhargavan

3 Jean Yang*

Microsoft Research! MSR-INRIA2 INRIA3 MIT*

Abstract

Distributed applications are difficult to program reliably and se-
curely. Dependently typed functional languages promise to prevent
broad classes of errors and vulnerabilities, and to enable program
verification to proceed side-by-side with development. However, as
recursion, effects, and rich libraries are added, using types to reason
about programs, specifications, and proofs becomes challenging.

We present F*, a full-fledged design and implementation of a
new dependently typed language for secure distributed program-
ming. Unlike prior languages, F* provides arbitrary recursion while
maintaining a logically consistent core; it enables modular reason-
ing about state and other effects using affine types; and it supports
proofs of refinement properties using a mixture of cryptographic
evidence and logical proof terms. The key mechanism is a new
kind system that tracks several sub-languages within F* and con-
trols their interaction. F* subsumes two previous languages, F7 and
Fine. We prove type soundness (with proofs mechanized in Coq)
and logical consistency for F*.

We have implemented a compiler that translates F* to .NET
bytecode, based on a prototype for Fine. F* provides access to
libraries for concurrency, networking, cryptography, and interop-
erability with C#, F#, and the other .NET languages. The compiler
produces verifiable binaries with 60% code size overhead for proofs
and types, as much as a 45x improvement over the Fine compiler,
while still enabling efficient bytecode verification.

To date, we have programmed and verified more than 20,000
lines of F* including (1) new schemes for multi-party sessions;
(2) a zero-knowledge privacy-preserving payment protocol; (3) a
provenance-aware curated database; (4) a suite of 17 web-browser
extensions verified for authorization properties; and (5) a cloud-
hosted multi-tier web application with a verified reference monitor.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Syntax and Semantics

General Terms Security, Verification, Languages, Theory

Keywords Security type systems, refinement types

1. Introduction

Distributed applications are difficult to program reliably and se-
curely. To address this problem, researchers have designed new
languages with security verification in mind. Early work in this
space developed ad hoc type systems targeting verification of spe-
cific security idioms, including systems for information flow con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’11, September 19-21, 2011, Tokyo, Japan.

Copyright © 2011 ACM 978-1-4503-0865-6/11/09. .. $10.00

trols, starting with Volpano et al. (1996); for proving authentication
properties in cryptographic protocols (Gordon and Jeffrey 2003);
and, more recently, for protocols that use zero-knowledge proofs
(Backes et al. 2008). More general type systems for security veri-
fication have also been proposed, e.g., Fable (Swamy et al. 2008),
F7 (Bengtson et al. 2008; Bhargavan et al. 2010), Aura (Jia and
Zdancewic 2009; Jia et al. 2008; Vaughan et al. 2008), Fine (Chen
et al. 2010; Swamy et al. 2010), and PCMLS (Avijit et al. 2010).
All these languages use various forms of dependent types to rea-
son about security, following a long tradition of dependent typing
for general-purpose theorem proving and program verification, e.g.,
Coq (Bertot and Castéran 2004) and Agda (Norell 2007).

Although these languages are successful in many aspects, for
large-scale distributed programming, we desire languages that
(1) feature general programming constructs like effects and re-
cursion, which, while invaluable for building real systems, make it
hard to formally reason about programs, specifications, and proofs;
(2) support various styles of proofs and evidence, ranging from
cryptographic signatures to logical proof terms; (3) produce proofs
that can be efficiently communicated between agents in the system.

This paper presents F*, a full-fledged design and implementa-
tion of a new dependently-typed programming language that ad-
dresses all these challenges. F* subsumes both F7 and Fine. Unlike
prior languages, F* provides arbitrary recursion while maintain-
ing a logically consistent core, resolving the tension between pro-
grammability and consistency by restricting the use of recursion in
specifications and proofs; it enables modular reasoning about state
and other effects and allows specifying refinement properties on
affine values; it supports proofs of refinement properties using a
mixture of cryptography and logical proof terms; and it allows se-
lective erasure and reconstruction of proofs to reduce the overhead
of communicating proofs.

By compiling to verifiable .NET bytecode, F* provides access
to libraries for concurrency, networking, cryptography, and interop-
erability with C#, F#, and other .NET languages. We have formal-
ized the metatheory of F*, and mechanized a significant part of the
metatheory in Coq. We have developed a prototype compiler for F*
(35,000 lines of F#), and used F* to program and verify more than
20,000 lines of code. We believe F* is the first language of its kind
with such a scale of implementation and evaluation.

Next, we give an overview of F* and our main contributions.

A novel kind system. A central feature of F* is its kind system,
which tracks several sub-languages—for terms, proofs, affine re-
sources, and specifications. This kind system controls the interac-
tion between those, while still providing a single unified language
to specify, program, verify, and deploy secure distributed systems.

We use kinds « for program terms and P for proofs. Program
terms that may be effectful and divergent reside in the universe of
* types. Within x, P identifies a universe of pure, total functions;
P terms are used (mainly) in the construction of proof terms. Addi-
tionally, we use A, the kind of affine (used-at-most-once), stateful
resources, to model and reason about effects in a modular style. Fi-
nally, the kind E is for types that may have no inhabitants at all. We

use E to control the selective erasure of proof terms, when these
proofs are either impossible to construct in a distributed setting
(e.g., due to cryptography or due to the design of legacy libraries);
when the presence of a proof term would curtail expressiveness
(e.g., when speaking of properties of affine values); or when proof
terms would be too voluminous to construct. As such, E identifies
a sub-language that plays a purely specificational role. To improve
code reuse, we provide a sub-kinding relation, P <: x <: E, with A
unrelated to the others.

Two flavors of refinements. Refinement types are commonly used
to specify program properties. In contrast with prior languages,
F* features both concrete and ghost refinements; §2 illustrates
the need for both for secure distributed programming. To reason
about the security of distributed applications, with minimal trust
between components, explicit proofs of security sometimes need to
be communicated and checked at runtime.

Concrete refinements are pairs representing a value and a proof
term serving as a logical evidence of the refinement property, sim-
ilar to those in Coq and Fine. One novelty of F* is that it assigns a
special kind P for proof terms, and restricts types and proof terms
in the P universe to guarantee logical consistency.

Ghost refinements are used to state specifications for which
proof terms are not maintained at run time. Ghost refinements
have the form x:t{¢} where x is a value variable, t is a type,
and ¢ is a logical formula, itself represented as a type that must
have kind £ and may depend on x and other in-scope variables.
Ghost refinements are similar to those of F7; they are smoothly
integrated in F* using the E kind. Ghost refinements provide the
following benefits: (1) they enable precise symbolic models for
many cryptographic patterns and primitives, and evidence for ghost
refinement properties can be constructed and communicated using
cryptographic constructions, such as digital signatures; (2) they
benefit from a powerful subtyping relation: x:t{¢ } is a subtype
of t; this structural subtyping is convenient to write and verify
higher-order programs; (3) they provide precise specification to
legacy code without requiring any modifications; and (4) when used
in conjunction with concrete refinements, they support selective
erasure and dynamic reconstruction of evidence, enabling a variety
of new applications and greatly reducing the performance penalty
for runtime proofs.

Refinements on affine state. Prior work has shown the useful-
ness of affine types in reasoning about programs that use mutable
state (Borgstrom et al. 2011; Lahiri et al. 2011). Relying on its kind
system, F* freely allows the use of affine values within its specifica-
tions fragment, while still guaranteeing that affine values are used
at most once elsewhere in the code. In §4, we exploit this feature ex-
tensively in implementing a new, flexible approach (Deniélou and
Yoshida 2011) to enforce protocols on multi-party session types.
Prior systems that integrate substructural and dependent types (e.g.,
Fine and Linear LF by Cervesato and Pfenning 2002) disallow re-
finements to speak directly about affine values, and have to rely
instead on various encodings to work around this limitation, which
is unsuitable for source programming.

Automation and logic parametricity. Proof automation is critical
for developing large-scale programs. F* is carefully designed to
be parametric in the logic used to describe programming proper-
ties and their proofs. §2.5 shows examples with a simple modal
authorization logic and an ad hoc logic for database provenance.
Logic parametricity enables working with custom authorization
logics and, importantly, makes it easy to integrate F* with SMT
solvers for logics extended with specific theories. Thus, program
verification in F* benefits from significant automation—our imple-
mentation uses the Z3 SMT solver (de Moura and Bjgrner 2008)
and scales up to large programs and specifications. Languages like

Aura, PCMLS, Coq, and Agda commit to a specific logic, limiting
their flexibility. This limitation is significant since diverse logics
are used and even designed when reasoning about security policies
and properties—see Chapin et al. (2008) for a recent survey.

Metatheory. We establish several properties of F*. First, we prove
the soundness of F* in terms of progress and preservation. From
this, we derive a safety property for ghost refinements called global
deducibility. Next, we show that the P-fragment of F* is consistent
by giving a typed embedding of this fragment into CiC and proving
that the translation is a simulation. We also give a typed embedding
of a core subset of RCF (the core calculus of F7) into F*. The
subject reduction result (modulo the admission of a few standard
lemma) has been mechanized in Coqg—we plan to continue to
develop our Coq formalization to include the other results.

Since our P-fragment is strongly normalizing, one might imag-
ine extending F* to permit arbitrary P-terms to index types. How-
ever, term reduction in types, particularly with dynamic assump-
tions and affinity, poses a significant challenge for the metathe-
ory. We remain with value dependency in F*, while acknowledging
that it is less expressive than having expressions in types. However,
value dependency is a practical design choice that has not hindered
the construction and verification of the programs we have built.

Compiler implementation. We have implemented a compiler for
F* based on our prior work on a compiler for Fine. The F* com-
piler accepts both Fine and F7 programs as input. To validate this
feature, we typecheck and compile a large F7 library implementing
symbolic cryptography (Bhargavan et al. 2010).

Our compiler translates F* to RDCIL, a dependently typed di-
alect of .NET bytecode. This translation is considerably more effi-
cient than the one we used for Fine. Due to the use of ghost refine-
ments and the availability of polymorphic kinds, bytecode emitted
by the F* compiler is an order of magnitude (in some cases 45x)
smaller than the bytecode emitted by the Fine compiler.

Experimental evaluation on a large suite of examples. We have
implemented several libraries and applications in F*, verifying
a large corpus of code for various properties. Prominent among
our examples are (1) secure implementations of multi-party ses-
sions protocols; (2) a prototype of a new zero-knowledge privacy
scheme; (3) a provenance-aware curated database; (4) a suite of 17
web-browser extensions verified for authorization properties; and
(5) an Azure-hosted multi-tier web application with a reference
monitor verified for stateful authorization properties.

Due to space constraints, we leave the complete semantics
of F*, manual proofs of the metatheory, and additional examples to
a technical report, which, along with the compiler source code, the
Coq development, and all our example programs, can be found at
http://research.microsoft.com/fstar.

2. F* by example

This section introduces F* informally. The syntax of F* is based
loosely on OCaml, F# and related languages in the ML family—
notations specific to F* are primarily in support of its more expres-
sive type and kind language. The dynamic semantics is also in the
spirit of ML, in call by value, but the static semantics is signifi-
cantly more complex. The examples in this section, together with
those in §4, are intended to motivate and exercise its main features.

We organize our presentation around the new kind system of F*.
We start with simple programs that use P-kind and F*’s sub-
language of total functions to construct proof terms for concrete
refinements. Next, we discuss E-kind and its use in two different
scenarios with ghost refinements—first, when giving specifications
to legacy libraries where the construction of explicit proof terms
is impractical; and, second, when verifying implementations of
cryptographic protocols, where the construction of proof terms is

simply impossible. We then turn to A-kind, which, in conjunction
with E-kind, can specify and verify properties of stateful compu-
tations. We conclude the section with an example that exploits the
interaction between P-kind and E-kind, via the sub-kinding rela-
tion P <: x <: E, to construct a model of a high-integrity database
with precise data-provenance properties.

2.1 Concrete refinement types and total proof terms

Consider a partial specification for a very simple program, tail, that
returns the tail of a list:

val tail: Vo k. [1:list @ — {12:list a| Vx. Mem x 12 = Mem x |1}

This type is polymorphic, of the form Va::k. t where k is the kind
of the abstracted type variable—kinds are ascribed to types using
double colons. Here, o has kind *, the kind given to types that
admit arbitrary recursion and effects, i.e., the standard kind of fully-
applied types in an ML-like system. Following ML, by default we
omit explicit quantifiers for prenex-quantified type variables, and
omit type applications when they can be determined by the context.

The rest of the type of tail shows a dependent function, of the
form x:t —t” where the formal parameter x of type t is named, and
is in scope in t’. When the function is not dependent, we simply
write t —t’. The range type of tail shows our syntax for concrete
refinements, {x:t | ¢ }, where ¢ is itself a type representing a logical
formula, in which the name x is bound. Here, the formula states that
the tail 12 contains at most the elements of 1.

Concrete refinements and constructive proofs. Also called subset
types or X-types (Sozeau 2007), concrete refinements in F* are
desugared into dependent pairs (as is usual in, say, Coq). The
type below shows this desugaring, where the type x:t *x t’ denotes
a dependent pair, where x names the t-typed first component and is
bound in t’, the type of the second component.

val tail: [1:list a — (12:list a* (x:¢ — Mem x 12 — Mem x I1))

When desugaring formulas, quantifiers are desugared to dependent
functions, and implications to non-dependent functions. The predi-
cate Mem x 12 is itself a type, which we show below. As such, con-
crete refinements are represented as pairs of the underlying value,
and a proof term witnessing the validity of the refinement formula.

A total sub-language for proof terms. We must be careful when
representing quantifiers and implication with function arrows. For
logical consistency, we require the function arrows that represent
the type of proof terms to be total, whereas arrows used in the rest
of the program (where we certainly want to use arbitrary recursion)
can be partial. Thus, we need to ensure that potential divergence
in the program never leaks into fragments of a program used for
building proof terms. We achieve this by introducing a kind P, a
subkind of x, where types residing in P are guaranteed to be total.

Using P-kind, we define Mem, an inductive type that axioma-
tizes list membership in constructive style. Its kind is of the form
a:k = k’, where o binds a k-kinded formal type parameter in the
kind k’ of the constructed type. Type constructors can also be ap-
plied to values; such constructors have kinds of the form x:t = k
where x names the formal argument, a value of type t, and is in
scope in k. Below, the kind of Mem says that it is a dependent type
constructor that constructs a type of kind P from a type «, a value x
of type «, and a value | of type list . (When x:a, we write Mem x |
instead of Mem ax|.)

type Mem :: a::x = a=lista= P =
| Mem_hd : x:a — tl:list @ — Mem x (Cons x tl)
| Mem_tl : x:a —y:a —tl:list a— Mem y tl —Mem y (Cons x tl)

Inductive types defined in P-kind are required to be strictly
positive, and we place other restrictions (§3.2) on the elimination
rules for P-kinded types to ensure totality. A function type x:it —t’

inherits the kind of its range type—it has P kind and is a total
function when t’::P. Theorem 2 (Logical consistency of P) provides
a well-typed embedding of terms residing in the P-fragment into
CiC, ensuring that terms in the P-fragment are valid proof terms.

Non-constructive proofs, automation, and logic parametricity.
Programming explicitly with proof terms for non-trivial program
properties quickly becomes impractical. The F* implementation
provides automation by calling Z3, an SMT solver, to try to decide
refinement properties, and then constructing proof terms from the
deduction traces reported by Z3. However, since Z3 (and many
other automated provers) use classical logics, the proof terms pro-
duced in this manner are not constructive.

To support non-constructive proof terms (and more generally,
to permit custom logics), F* allows to define custom proof kernels.
A specific proof kernel (the type pf below), is defined in the stan-
dard library of F* and axiomatizes a classical logic, extended with
axioms for commonly used data types such as list.

type pf :: P= P =
| Exc_middle: pf (Or a(Not a))
| Not_elim: pf (Not o) — pf a— pf
| Not_in_nil: x:a — pf (Not (Mem x Nil))
| ... (x many constructors omitted *)
| Unit_pf: a— pf o
| Bind_pf: pf a—(a —pf B) —pf B

Each constructor in this kernel is an axiom in the logic, such as the
excluded middle; introduction and elimination forms for the stan-
dard logical connectives (where Or, Not etc. are also type construc-
tors); and axioms like Not_in_nil, which are necessary for reason-
ing in a non-constructive setting, where exhaustiveness arguments
for inductive types are inapplicable. The pf kernel also includes
constructors Unit_pf and Bind_pf that allow proofs to be composed
monadically. This is particularly useful since F* is a call-by-value
language—Bind_pf lets us compose proofs simply by constructor
application, without triggering evaluation.

Using this approach, F* translates the type of tail to the type be-
low. Relying on automated proof extraction from Z3, programmers
write the code shown below, and the F* compiler inlines the proof
term and compiles (while carrying proofs) to RDCIL (§5), our de-
pendently typed .NET bytecode. Concrete refinements in this form
are based on a similar construct in Fine. Through the use of P-kind
(which Fine lacks), F* proof terms are logically consistent evidence
of refinement properties.

val tail: [1:list & — (12:list o * pf (x:oc — pf (Mem x 12) — pf (Mem x I1)))
let tail = function [] —[] | hd::tl —tl

2.2 Ghost refinements for lightweight specifications

Concrete refinements have a long tradition and a well-understood
theory. However, as discussed below, we find them inappropriate
for use in some scenarios. As an alternative, F* also provides ghost
refinements, based on a construct of F7, and integrates them with
the other features of the system, notably higher kinding, quantifica-
tion over predicates, and refinements for substructural state.

We illustrate the use of ghost refinements for the problem of
verifying clients of libraries, where the libraries are authored sep-
arately and are unmodifiable. In recent work, Guha et al. (2011)
consider programming secure web browser extensions using F*.
For this scenario, we use ghost refinement types to specify pre- and
post-conditions on the interface provided by the browser, and use
the specifications to verify access control properties of extensions.
The listing below illustrates this approach on a tiny program—~&§5
reports new results for compiling a suite of 17 such extensions in a
type-preserving style to .NET bytecode.

We aim to enforce a policy that untrusted extensions (line 10)
only read data from the header of a web page and not the body.

This policy is specified using an assumption at line 8, which states,
informally, that extensions hold the CanRead e privilege on DOM
nodes e, for which the property EltTagName e "head" is derivable.
Unlike the Mem predicate in §2.1 (which has P kind), EltTagName
and CanRead construct erasable, or E -kinded, types. Erasable types
are generally uninhabited and have no constructors. Instead, we use
them for specifications, as in the types of innerText and tagName.

1 (x Fragment of DOM API %)

2 type elt

3 type EltTagName :: elt = string = E

4 type CanRead ::elt = FE

5 val innerText: e:elt{CanRead e} —string

6 val tagName: e:elt —t:string{EltTagName e t}

7 (* Extension policy *)

8 assume Ve. EltTagName e "head" = CanRead e

9 (x Extension code (untrusted) *)

0 let read e = if tagName e = "head" then innerText e else ""

—_

The type of innerText has the form x:t{¢ } —t’, where the for-
mula ¢ is a ghost refinement applied to the formal parameter x:t,
and x is in scope in both ¢ and t’. The refinement CanRead e is a
pre-condition indicating that clients must hold the CanRead e privi-
lege before calling the function. Analogously, the post-condition of
tagName relates the returned string t to the argument e, and clients
may derive facts using this property and any other assumption
(e.g., the policy assumption at line 8). For example, at the call to
innerText in the then-branch at line 10, the F* checker (and Z3) uses
the property that, for the value t returned by tagName e, we have
EltTagName e t from the post-condition; t="head" from the equal-
ity test; and using the policy assumption, we can derive CanRead e,
the pre-condition of innerText and authorize the call. Using this ap-
proach, once type checked, untrusted extension code need not be
examined—only the policy (and the annotations on the DOM API)
are trusted.

Two key properties of ghost refinements make them well-suited
for use in our scenario. We discuss these below.

Ghost refinements and erasure. The type x:t{¢ } is a subtype of t
and the values of these two types have the same representation. This
makes specifications using ghost refinements lightweight, since
they do not require modifications to underlying code and data.
For example, we did not need to modify or even wrap the DOM
implementation in order to verify code in this style. Furthermore,
the subtyping relation lifts naturally into the structure of function
types, promoting reuse in higher order libraries.

Semantics of ghost refinement derivability. For every value v:t that
inhabits x:t{¢ } our type system ensures that the formula ¢ [v/x] is
derivable. The definition of derivability is subtle and is made pre-
cise in §3. However, intuitively, derivability is a logical entailment
relation defined relative to a context of dynamic assumptions 7.
We think of <7 as a monotonically increasing log of events and for-
mulas that are assumed during evaluation of the program. Formally,
a call to tagName e reduces to t and has the effect of adding the for-
mula EltTagName e t to the log. For values given ghost refinement
types, there may be no concrete proof at run time to witness the
derivability of the refinement formula. Indeed, when working with
libraries like the DOM, explicit proof terms witnessing DOM in-
variants seem both infeasible and undesirable (as they may be very
voluminous); ghost refinements fit the bill nicely.

Proof-irrelevance and P vs. E-kind. The distinction between P
and E-kinds in F* may, at first, seem reminiscent of the distinc-
tion between Type and Prop in a system like Coq. The proof terms
for concrete refinements in Coq are often from the Prop universe,
indicating that they are computationally irrelevant (and so can be
erased during code extraction). In contrast, concrete refinements
in F* are accompanied by P-kinded proof terms, which are compu-
tationally relevant. We view proofs as useful runtime entities that

carry important information. We choose to make proofs explicit
and useful—§2.5 demonstrates a novel way of using concrete proof
terms to construct precise provenance trails in a curated database.
As such P-kind is closer to Coq’s Type. Indeed, our embedding
of F*’s P fragment in CiC translates P-kinded types to types that
reside in Coq’s Type universe.

E-kind in F* plays a role more similar to proof irrelevance in
Coq. However, the semantics of E-kinded types and ghost refine-
ments is considerably different. Not only are proofs for ghost re-
finements irrelevant, these proofs may not be constructible at all
and E-kinded types may be uninhabited. Instead, the log-based se-
mantics of ghost refinements makes trust assumptions in external
code formal and explicit, and allows the definition of security prop-
erties for code that are robust even when code is composed with
arbitrary attacker code. For example, Guha et al. (2011) used the
log-based semantics to prove a robust safety property that ensures
that verified extensions are authorization-safe even when composed
with arbitrary untrusted JavaScript on a web page.

2.3 Ghost refinements and indexed types for cryptography

Refinement types (in the style of ghost refinements) have been
used in F7 to verify implementations of cryptographic protocols.
This section presents a small fragment of a library for public key
cryptography implemented in a new style (see our website for a
more complete library together with several client programs that
use cryptography). This style is enabled by features of F* not
available in F7, specifically, the integration of refinements with
higher-kinded and indexed types. This example also illustrates the
need for ghost refinements. As we will see, it is infeasible to
construct concrete proof terms (whether constructive or not) to
justify the soundness of cryptographic evidence.

The listing below shows the signature of a module Crypto that
provides an interface to work with public key signatures. Infor-
mally, signatures provide a means for a party in a protocol to com-
municate a value and a property of its local environment to a re-
mote party. For example, Alice can sign a message m and send it to
Bob, and, if Bob trusts Alice, Bob can conclude that the message
originated with Alice. Additionally, given a prior agreement on the
usage of keys, Alice can convince Bob of some additional property
Pred of the message m, e.g., that the message originated in Alice’s
file system. The property Pred need not be an intrinsic property of
the contents of m—a constructive proof of Pred m in this setting
may be nonsensical.

module Crypto
type dsig = bytes (x type of digital signatures *)
type prin (x name of a principal *)
type sk :: prin = a:ix = (@ = E) = *
val rsa_sign : Va %, o= E. p:prin —sk p af—x:a{f x} —dsig
type pk ;i prin = a:x = (0 = E) = %
type Says :: prin = E=E
val rsa_verify : Va::x,B::a= E.
p:prin — pk p af —x:a —dsig — r:bool{r=true = Says p (8 x)}

Crypto provides a type dsig for digital signatures, here just an
alias for bytes. It also exposes an abstract type prin for principal
identifiers, and the type constructors sk and pk are for secret keys
and public keys respectively.

A private key of type sk Alice aPred belongs to the principal
Alice:prin, who can use it to sign values m of type a that satisfy
Pred m. The function rsa_sign allows clients to construct a dsig value
by signing a message x:a, where the ghost refinement guarantees
that the formula Bx is derivable when rsa_sign is called. Public keys
are complementary: rsa_verify verifies a signature using the public
key pk p a8 and, if it succeeds, the caller knows that Says p (B x) is
derivable. The predicate Says p ¢ is the usual lifting of a proposition
¢ into a modality Says, similar to forms used in a variety of modal

authorization logics (Chapin et al. 2008). Intuitively, Saysp ¢ is
weaker than ¢, and the two coincide when principal p is trusted.

Asin F7, an abstract implementation of the Crypto library can be
verified against the specification shown above, and can be proved
correct with respect to a Dolev-Yao adversary. However, in F7,
types cannot be parametrized by predicates, so predicate parame-
ters are instead simulated through a level of indirection. Instead
of the F* type sk p aPred, private keys in F7 are given a type
of the form sk p ausage, and the predicate Pred is replaced by
a global predicate SignSays, indexed by p and usage. Verification
relies on a programming convention that each key usage must be
unambiguously defined by recording an assumption of the form
Vp,usage,v, SignSays p usage v <= Pred v. This convention is not
enforced automatically in F7, and hence this style can lead to logi-
cal inconsistencies. In contrast, F* types are more concise, and re-
quire fewer dynamic assumptions and no programming discipline
beyond typing.

2.4 Ghost refinements and affine-indexed types for state

F* is designed to enable reasoning about effectful programs,
whether the effects be in the form of non-termination, state, or I/O.
‘We have seen how P-kind serves to control non-termination and we
consider I/O in §4. This section looks at how F* uses affine types,
in combination with E-kinded types, to reason about state.

One innovation of F* is that it permits indexing types with affine
values, allowing properties to be stated about affine values without
having them be consumed immediately. We illustrate this feature
by showing how to program with linear maps, a data type pro-
posed by Labhiri et al. (2011) to verify heap-manipulating programs.
For space reasons, we do not show a client program using linear
maps—a complete example is available in the F* distribution.

Linear maps are a data structure that equips a Floyd-Hoare logic
(using a classical assertion logic) with a form of local reasoning
in the style of separation logic. Instead of modeling the heap of
a program as a single monolithic map H:map af from a-typed
locations to 8 -typed values, the linear maps methodology advocates
partitioning the heap H into several fragments Hy, ..., H, where
the H; have disjoint domains. Each H; is a linear map of type lin a8,
and the disjoint domain condition ensures that modifications to H;
leave all the other H; unmodified. This allows to formulate a kind
of frame rule for programs that use linear maps. Since the assertion
logic remains classical, linear map programs can be automatically
verified using classical provers and SMT solvers.

type lin i1 x=x= A

type Select :: a:ik = Bk = linaf= a= p=E

type Update :: a:iix = Bix = linaf= a= = linaf=F
type InDomain :: a:ix = Bk = a=linaf=E

The listing above defines an abstract type of linear maps
and several predicates to model their properties. The kind of
lin:: x=> x= A introduces the fourth base kind in F*: the kind A
of affine types. To enforce the disjoint domains invariant on linear
maps, Lahiri et al. require that linear maps be neither copied nor
aliased. This corresponds directly to the use of affinity in F*: values
of affine type can be used at most once.

The types Select and Update correspond to standard predicates
implemented by SMT solvers like Z3: Select | x y states that the
map | at the location x contains the value y; Update | xy m states
that m is like the map I, except at the location x where it contains the
value y. We omit the standard axiomatization of these predicates.
Linear maps are partial maps and include a domain. The predicate
InDomain x | has the obvious meaning.

Two operations to read and write locations in maps are shown
below. (Other operations are omitted). The read function reads a
location x out of a map m1 (when InDomain x m1), and returns the
value y:B stored at x. Since m1 is affine, read threads m1 back to

the caller as m2, where the refinement on m2 shows that it is un-
changed. The write function is similar, and in both cases the Select
and Update predicates specify the appropriate post-conditions.

val read: x:a —m1:lin a B {InDomain x m1}
—(y:B * (m2:lin a B {ml=m2 && Select m1 x y}))

val write: x:a —y:f —ml:lin B {InDomain x m1}
—(m2:lin a B {Update m1 xy m2})

Predicates on affine values. While seemingly unremarkable, by
refining affine values, the types shown above are a significant ad-
vance over prior languages that have included substructural and
dependent types. For example, in systems like Fine and Linear
LF (Cervesato and Pfenning 2002), types are required to be free
of affine (or linear) indices, i.e., type constructors of kind t = k,
where t::A are forbidden. There are several reasons for this restric-
tion in prior systems. Most prominently, expressing properties of
affine values using concrete refinements requires constructing proof
terms where, simply by using an affine resource in a proof term, the
resource is consumed. While there are ways to work around this re-
striction (Borgstrom et al. 2011), they involve relatively complex
whole-program transformations.

A key innovation of F* is to use the E-kind to allow stating
properties on affine values directly. Specifically, since E-kinded
predicates have no runtime significance, indexing these predicates
with affine values does not consume them—in F*, kinds of the
form t = E are permitted, even when t::A. In our example, we use
affine indexes on E-kinded types to state pre- and post-conditions
using ghost refinements. However, when modeling linear maps
programs, the dynamic log of assumptions (unlike when modeling
DOM programs and cryptography) is constant, so F*’s metatheory
guarantees that refinement formulas in pre- and post-conditions are
derivable from the axiomatization of linear maps alone.

We defer further discussion of affine indexed types until §4,
where we use affine indexes with higher-rank E-kinded types to
model concurrent, message passing programs.

2.5 Selective erasure using concrete and ghost refinements

The preceding discussion of ghost refinements may lead the reader
to believe that they are always to be preferred to refinements with
concrete proof terms. This section illustrates that concrete proof
terms are useful too, particularly when one is allowed to compute
over these terms, to store them, and to communicate them over the
network. The example discussed here is an excerpt from a larger
program that models a database of scientific experiments, where
each record contains a proof term indicating the provenance of the
experiment and its “validity”, according to some custom notion of
validity. The full example brings together several elements, includ-
ing the use of cryptography with a simple modal logic to authen-
ticate experimental observations. For brevity, we focus just on one
aspect: selective erasure and reconstruction of proofs, which may
be implemented for both efficiency and confidentiality reasons.

Each experiment record in our database is given the type exp b
(for some boolean parameter b, explained shortly). The record con-
tains an optional primary key field xid; a field r:expsetup that defines
what ingredients were used in the experiment; and, importantly, a
proof term of type proof b (Valid r), where the proof term contains
evidence recording the relationship of this experiment to other ex-
periments in the database, i.e., the proof term reflects the prove-
nance of the experiment.

type expsetup = list {reagent:string; quantity:int}
type Valid :: expsetup = E
type exp (b:bool) = (xid:option int * riexpsetup * proof b (Valid r))

The type proof b t represents a value from a proof kernel defin-
ing a custom logic tailored to this specific application—another ex-

ample of F*’s logic parametricity. We show a selection of the con-
structors from this kernel below.

let full, partial = true, false
type proof :: bool = E= P=
| AndIntro: ... | AndElim1: ... | ...
| ChemicalVolcano: proof full (Valid[{reagent="(NH4)2Cr207"; ...}])
| Combine: rl:expsetup — r2:expsetup — r3:expsetup — b:bool
— proof b (And (Union rl r2 r3) (And (Valid r1) (Valid r2)))
— proof b (Valid r3)
| Prune: r:expsetup{Valid r} —xid:int — proof partial (Valid r)

The interplay between ghost and concrete proof terms is central
in this example—it enables proof terms to be selectively erased
and later reconstructed. This allows us to maintain compact, yet
detailed and reliable provenance trails. The type proof full (Valid r)
represents a fully explicated proof of Valid r, with no selective
erasure applied. In contrast, values of type proof partial (Valid r)
may have been partially erased—these values are not guaranteed
to carry a complete provenance for the experiment setup r.

The constructors in the kernel include axioms for basic connec-
tives and axioms like ChemicalVolcano which state validity of some
well-known experiments. Axioms like Combine allow new valid ex-
periments to be constructed from other valid ones. The most inter-
esting constructor is Prune, which allows a ghost refinement of the
validity of an experiment (r:expsetup{Valid r}) to be traded for a
concrete proof term for the validity. To allow proofs to be recon-
structed, Prune takes an extra argument, xid:int, the primary key of
arecord in the database that holds the complete provenance for r.

Now we can give a typed interface to our database (below).
The database db is simply a list of experiments with full proofs.
It supports operations to insert new experiments (returning an auto-
generated private key); to lookup using the primary keys; and to
look up just the provenance trail of a particular experiment setup,
using a primary key for the experiment.

type db = list (exp full)

val insert: exp full —int

val lookup: xid — option (exp full)

val lookupProof: r:expsetup — xid:int — option (proof full (Valid r))

We implement a client-facing interface to the database that
wraps the basic lookup and insert operations. On outbound request,
we lookup an experiment by its primary key. But, rather than com-
municate a (potentially large) proof term with explicit provenance
to the requestor, we erase the proof (using Prune) and send only a
partial proof to the caller, recording the primary key xid in the proof
term for later reconstruction. In our full implementation, rather than
simply sending a Prune node, we send an authenticated proof term,
signed under a key for the database, so that the requestor can con-
clude that the returned experiment is indeed valid.

(* Erasing outbound proofs *)
assume V(b:bool) (r:expsetup) (pf:proof b (Valid r)). b=full = Valid r
let readExp xid : option (exp partial) =
match lookup xid with
| Some (xid, r, pf) —Some (xid, r, Prune r xid)
| None — None

To use the Prune constructor, we have to prove that r has the type
riexpsetup{Valid r}. Although pf is full proof of Valid r, we cannot
use pf directly to derive ghost refinement formulas. To connect con-
crete and ghost refinements, we introduce the assumption above.
Given the soundness of the proof kernel, this assumption is admis-
sible, and the type of Prune ensures that the database program never
introduces partial proofs for experiments that do not have a valid
provenance trail. Despite the fact that the Valid r type has no inhab-
itants, the introduction of this assumption does not lead to logical
inconsistency. Formally, assumptions are simply recorded as effects

in the log, and do not produce values that can be destructed, say, via
pattern matching.

Finally, on requests to insert new records in the database, we
can reconstruct proofs. The function expand below traverses the
structure of a proof tree, and expands Prune nodes by looking them
up in the database. The database maintains an invariant that each
record in the database has a full proof and thus a fully explicated
provenance trail, ensured via type soundness.

(* Reconstructing proof terms on inbound requests)
let rec expand (c:bool) (pf:proof c @) : option (proof full &) =
if c=full then Some pf
else match pf with
| Prune r xid — lookupProof r xid
| AndElim1 c1 pf — (match expand c1 pf with
| Some pf’ — Some (AndElim1 full pf’)
| -—None)

(* Inserting a new record in the DB)
let insertExp (r:expsetup) (c:bool) (pf: proof ¢ (Valid r)) =
match (expand c pf) with
| Some pf’ — Some (insert (None, r, pf’))
| -—None

The function expand is, in effect, a partial, effectful proof-search
procedure. Despite the use of non-termination and effects, the
type system guarantees that if this function terminates and returns
Some pf, then pf is indeed a valid full proof in the P-fragment, F*’s
logically consistent fragment of total functions.

3. Formalizing F*

This section presents the syntax and the semantics of F*. We focus
on five main themes: (1) the stratification into expressions, types
and kinds with the ability to describe functional dependences at
each level; (2) the use of kinds to isolate sub-languages for proofs,
specifications, and affinity; (3) relating logical effects described us-
ing ghost refinements to propositions witnessed by proof terms;
(4) logic parametricity, allowing us to plug-in proof kernels and au-
tomated decision procedures for the logics they define; and (5) the
consistency of a core universe of propositions, via strong normal-
ization, and the ability to program over its values, to support appli-
cations with mobile proofs and selective erasure.

3.1 Syntax

The syntax of F* is shown below. Values include variables, lambda
abstractions over values and types, and fully applied n-ary data con-
structors. The value v is a technical device used to prove the sound-
ness of affine typing—~ is an identifier drawn from a class of names
distinct from term and type names. We use the notation a to stand
for a finite sequence of elements ay,...,a,, for arbitrary n; (@) is
asequence ay,...,a;_1. We adopt a (partially) let-normalized view
of the expression language e, in particular requiring function argu-
ments to always be values—this is convenient when using value-
dependent types, since it ensures that expressions never escape into
the level of types. The only other non-standard expression form is
assume ¢, which has the effect of adding a formula to the log and
is explained in §3.3.

Types are ranged over by meta-variables ¢+ and ¢—we use
¢ for types that stand for logical formulas. Types include vari-
ables «, constants 7, dependent functions ranging over values
whose domain may be values (x:t — t’) or types (Va::Kk.t, writ-
ten ’a::k -> t in the concrete syntax), types applied to values
(¢ v) and to types (¢ t'), type-level functions from values to types
(Ax:t.t', concretely written fun (x:t) -> t’), ghost refinements
x:t{¢}, and finally coercions to affine types iz. This modal oper-
ator serves to qualify the type of a closure that captures an affine
assumption; we include iz in the formalism to avoid duplicating

Syntax: expressions, types, kinds, signatures, environments
I

v u= x| Axte|Aazke|Div |V values

e == v|ev|et|assume ¢ |letx=ein ¢’ terms
| match x with D & X — e else ¢/

ot = a|T|xt—1t |Vaukt|tv|tl types
| Axitt | xt{o} it

¢ u= x|P|A concrete kinds

b == c|E base kinds

kK = blxt=x|oik=« kinds

S = .| Tux{D:t}|S,S signature

L = -|xt|azx|vi=wn|y=n|LT type env.

o u= oL\l dynamic log

the rules for function arrows, but concretely we write affine func-
tions as x:t >> t’ and ’a::k >> t instead of j(x:t — ¢) and
i(Vak.t).

Kinds x include the four base kinds %, P, A, and E—we distin-
guish the first three of these as concrete kinds, since they classify
inhabitable types. As at the type level, we have kinds for dependent
function spaces whose range are types and whose domain may be
either values (x:t = k) or types (a::k = k’). Stratifying the lan-
guage into terms, types, and kinds allows us to place key restric-
tions (discussed below) that facilitate automated verification, and
to compile efficiently to .NET. However, stratification does come at
a cost—several pieces of technical machinery are replicated across
the levels.

Signatures S are finite lists of inductively defined types. Each
inductive definition T::x{D:t} introduces a type constructor T of
kind x and all its constructors Dj:ty, ..., Dy:t,. For simplicity, we
do not include mutually inductive types, although these are sup-
ported by our implementation and their addition to the formalism
poses no significant difficulties. We do not need a fixpoint form
in the expression language since inductive types allow us to en-
code recursive functions. To show that terms given P-kinded types
are strongly normalizing, a well-formedness condition on signa-
tures imposes a positivity constraint on inductive definitions for P-
kinded types. An additional constraint on signatures is that they
must contain a declaration unit:: % {():unit} for the unit type and its
one value (). Finally, typing environments I track in-scope value
variables (x with type t), type variables (« with kind «), and equiv-
alences between values (vi = ;) and types (f; = fp) introduced
when checking match expressions. We discuss the log 27 in con-
junction with the dynamic semantics in §3.3. Briefly, ./ maintains
a set of facts introduced by the dynamic assumption of ghost re-
finements, and also a set of names ¢ used to track affine values.

3.2 The F* type system

Figure 1 shows key rules from each judgment in the type system.

Well-formedness of kinds. The judgment S;I" - k ok(b) states that
K is well-formed and produces types of base kind b (when Kk = b)
or type constructors for b-kinded types. The rule (OK-TK) shows
a key enhancement of F* over prior languages, e.g., Fine or Linear
LF. Types can be constructed from affine values (b; = A), so long
as the type constructed is purely specificational (b, = E). As illus-
trated in §2.4 and §4, this improves the expressiveness of affine typ-
ing significantly, enabling refinements on affine state. (OK-KK) is
also an enhancement over Fine to allow dependences and to ensure
that types parameterized by affine types are themselves affine. Al-
though our formalism allows higher-kinds like (x = *) = x, such
kinds cannot be compiled to the type system of the .NET bytecode
language and are currently rejected by our compiler. However, re-
targeting F* to a platform with a more flexible typing discipline
would lift this restriction.

Kinding for value-indexed and affine types. The judgment S;I" -
t 11 K states that type ¢ has kind k. The rules shown here reveal a

few subtle aspects of the type system, starting with affine typing
and affine-value indexing. The rule (K-A) shows how the modal
operator coerces the kind of a type. (K-Tv) allows a type function ¢
to be applied to a value v; these type functions are introduced
either using (K-Fun) or as type constructors 7" in the signature.
Next, recall that we wish to allow affine values to be freely used
at the type level, since specifications should not consume affine
resources. For this reason, unlike prior languages, the values passed
to type functions may use affine assumptions in the context I'—
the restrictions imposed by (OK-TK) ensure that such uses of
affine assumptions at the type level cannot influence term-level
reduction. The second premise of (K-TVv) uses the expression typing
judgment, discussed shortly. This judgment has two modes (m ::=
- | €) indicated on the turnstile. When the mode is € (indicating
that the term being typed occurs at the type-level, effectively as
an index of an E-kinded type), affine assumptions in the context
can be freely duplicated without resulting in their consumption. We
discuss how this works shortly, in the context of the (T-X) rule.

Ghost refinements, total functions, and sub-kinding. (K-¢) re-
quires that formulas in ghost refinements be erasable (E-kinded).
Formulas in ghost refinements are erased at runtime and refine-
ments apply only to types given concrete kinds c¢ (the first premise
of (K-¢)), i.e., inhabitable types. (K-Arr) handles dependent func-
tion arrows, which (as seen in §2.1) can be used to represent
both quantified formulas in the logic as well as term-level func-
tion abstractions. A function arrow is P-kinded if its range type
is P-kinded. Finally, (K-Sub) uses a sub-kinding judgment in its
premise. Sub-kinding in F* is defined by the judgment S;T"F x; <:
K>. Sub-kinding is based on the relation P <: % <: E, among base
kinds, with A <: A only. These base relations are lifted into the
structure of arrow kinds, with co- and contravariance as usual. (K-
Sub) includes premises to ensure that sub-kinding preserves well-
formedness of kinds. We conjecture that these premises can be
eliminated in favor of lemmas establishing that sub-kinding never
introduces ill-formed kinds. We have yet to prove it, so we include
these premises to facilitate our formal proof of well-formedness of
kinds produced by derivations.

Expression typing. The judgment S;"; X " ¢ : ¢ states that expres-
sion e has type ¢, under signature S, environment I', and an affine
environment X ::=- | £| x| X,X’, where X, X’ denotes disjoint union
of sets of names. A well-formedness condition on contexts requires
all variables x € X to also be bound in I'. The context X represents
a set of available affine assumptions, and usual context splitting
rules apply to X when typing the sub-terms of an expression. (As
in Fine, we choose not to split I" itself, since this complicates well-
formedness of contexts in the presence of dependent types.) Finally,
as mentioned above, expression typing comes in two modes, indi-
cated on the turnstile.

Affine typing in two modes. (T-XA) is typical of affine typing sys-
tems. To use an affine assumption x, we require x to be present in
the affine environment X. In addition, (T-X) provides two excep-
tions to (T-XA): first, as is standard, we can use non-affine assump-
tions without requiring them to be present in X. Second, when the
mode is €, we are typing a term at the level of types; since this does
not consume the affine resource, we are free to use it even when
X is empty. (T-WknX) provides weakening for the affine context.
Finally, (T-Abs) is a standard rule with one subtlety that the in-
troduced function type is tagged with the affine modality (using
Q(X,x:t — t')) if the function closure captures an affine assump-
tion. ((T-¢) is also related to affine typing, but, values v’ are used
solely to state our type soundness result—we discuss this rule in
conjunction with the dynamic semantics.)

Ghost refinements and subtyping. The rules (T-As), (T-V), and the
subtyping judgments introduce ghost refinement types. (T-As) in-

by =Eifb; =A by € {AE}ifb =A
S;CHrtb S;T,x:t + x ok(b S;I'F xy ok(b ST a::x -« ok(b
S:Tk x ok(b)| OK-b—————— OK-TK ! ribkok(ba) oy gk 1 ok(by) 1 Kz ok(ba)
S;TF b ok(b) ;T x:t = K ok(ba) S;T'F a:k; = Kk ok(ba)
. - S;THt: (it =« ST vt Tkt Toxt bt
S;THir:A S;THtv:kv/x] S;THAxitt wxit =k
S;Thtice S;Txtbt d S Thrx STk <«
K- Ss'kte Sxtb¢uE KA b=Pif =P an/d * O.W. K-Sub S;TFxok(b) STk« ok(b)
S;TExt{¢} ¢ S;Thxt—1t b S;Thrax
S;TFrk=«
ST : SK-Refl —————— SK-PStar————————— SK-StatE ——————
ST k<K YTSTEP < SR <E
THE < Dot F <tk SThK <k ST ok - <K : . . i
SK-Prod ST <t STxt : K</K SK-ProdK 1 1 1~ K 2 SK-Trans SThEr<:ki S;THk <K
S TE (xt = k) <: (vt = K) S;TE (k) = ko) <: (ov:k| = Kb) STHrx <K
Thi=t¢ ToxtFk=x ST =k S;T,a:k - Kk =K
STFx=+x| KERefl——— KEProd—L =0 STIEK=SK bk =0 L2 h
S;THFk=«k S;TFxt=k=xt =« S;THa:k = K = ok| = K
S;TFI(x)::b ST krze ,
S;THEI(x) A —eifb= ;X H"e: Lot X, xH"e:
T-XA (x) Tx_m=eifb=A_ pygx SDXETeir g g SUoxtXxe:t
S;Tyxtx:T(x) S0 F" x:T(x) S X, X' Fet S; ;X " Axite: Q(X,xit — 1)
S;CX "yt S;'kr:c S;X HFey ity S;Toxi; Xo,xH"ep ity
TAs SSTE¢E t=xunit{¢} - SSCxtx=vE¢ STxtk¢E TLet Vi.S;T 1 K K :{Di Kl =P
S;I;- - assume ¢ : ¢ SSOXHF"v:xt{¢} ST X, Xo F" letx=ejine; : 1y
S;X vty STkt K, I’ =T, acK,xit S T'wf S;Iix-"Dax: 1, FV(ty,tp) = B,5
T-Match 0 =1,0 0=1[i/B,v/5] ST B=ty=v,v=DaxXy,ir"e :t S;Xot"er:t STktx, K=P=>K=P
-vate S;; X1, X, H" match v with D & ¥ — e else e; : ¢
m#e=X=0 SXF"v:t STXbe:t! STH{ <t STH{ ¢ SThHrtc (1) =t
T-¢ T-Sub———2 . : . h) .
SiTX, X ol ! SDiX ket o) =
; = S;The<:t ST xt ! STt <ty STxt) bt <:th
S;Thr<:t STt <:xit'{¢'} S THxt{¢} <:t SThxt — 1 < xit] — 1}
STHt=¢ 1=t el vi=wmnel S:THv=V
? EQ-T EQ-V EQ- EQ-VAppl —————
S;Thv=y Q S;THt =0 Q S;Thvi=wn Q-p S;TH (Axitt)v=1'[v/x] Q-VApp S;Thtv=tV
S;-Fx ok(c) Vi.S, Tux{}; (k)& ok(b;) Vj.S, Tux{};orx, (xr)jtt;c; (=A=c=A)

S, Tok{}; ok, xt-TTF V¢

Vj.apos(c,T,tj::cj)

c=P=V1<i<nT¢FTC(t;)

WES-D

St Tux{DNokxi — T 7V} ok

apos(c,T,((x:t] — ... = t,)uc))

Figure 1. Selected static semantics of F*

troduces a unit refined with the assumed formula ¢—no logical
evidence is produced for ¢. To justify this rule, the dynamic seman-
tics of this expression adds a formula to the dynamic log <. (T-V)
allows value v to be refined with the formula ¢ when ¢ is deriv-
able: S;I” |= ¢. The context I includes bindings x:t,x = v which
allow the derivability relation to use information about v; however,
for kind-correctness, we require the kinding of the introduced for-
mula to not rely on the introduced equality. Ghost refinements have
no impact on the representation of values, so they admit structural
subtyping. The subtyping rules include (S-¢I), like (T-V), an in-
troduction form for ghost refinements and (S-¢E), an elimination
form. (S-Arr) lifts the relation into the structure of function types—
omitted rules do the same for other constructions. In contrast, con-
crete refinements (i.e., the dependent pairs of Coq, Fine etc.) do not
enjoy this structural subtyping relation. Instead, via a systematic
translation to insert coercions (called derefinement) inherited from
Fine, F* provides programmers with a weaker, non-structural sub-
typing relation on concrete refinements. Subtyping also includes

type conversion, an equivalence relation according to the judgment
S;T" - t; = t,. This relation, discussed briefly in conjunction with
(T-Match), converts types using equations that appear in the con-
text, and is available everywhere within the structure of types.

Logic parametricity is embodied by (T-V) and (S-¢I): various def-
initions of the derivability relation (S;T" = @) can be “plugged in”
to the type system, as long as the relation meets a few important
admissibility constraints. Admissible relations must at least be the
identity on refined assumptions (S;x: (x:t{¢}) = ¢); be closed un-
der substitution of free variables in I'; be allowed to use structural
rules such as weakening, duplication and permutation; and be in-
sensitive to the presence of derivable equality assumptions in the
context (S;[,v=v |E ¢ <= S;T" |= ¢). Pragmatically, we often
plug in a decision procedure for first order logic with additional
theories, as implemented by the Z3 theorem prover—the ability to
use structural rules (e.g., weakening) in the logic, enabled by our re-
strictions on the use of affine indices in types, makes it easy to sup-

port automation. Formally, we also exploit logic parametricity to
provide an embedding of F7’s formal core, RCF, into F*, plugging
into (T-V) RCF’s entailment relation (which, unlike F*, includes
the basic first-order connectives and equality, each satisfying their
usual introduction and elimination forms).

Consistency of the P-universe requires placing restrictions in var-
ious parts of the type system. For an expression e to reside in P,
e must be free of non-P expressions, since those may diverge—
the last premise of (T-Let) enforces this property. We disallow
discriminating on values that reside in x or A when construct-
ing propositions in the branches of a match—the last premise
of (T-Match) shows this. We also have constraints on the well-
formedness of inductive type T (recall that we use (0(::K); to mean
oKy, ..., 0_1:K;—1). In (WFS-D), the first premise ensures that
the kind k of T is well-formed; the second and third premises en-
sure that the arguments of D are well-formed; the fourth premise
ensures that the constructed type matches the kind expected for T';
and the final premise imposes two key restrictions: (1) construc-
tors with affine arguments must construct affine results—this is
unrelated to totality of P-functions; (2) a positivity constraint on
inductive P-kinded types. We use a relatively simple version of
positivity, excluding the constructed type T in negative position in
any argument of D.

These constraints are similar to those imposed by Aura on its
Prop universe—to our knowledge, Aura is the only other language
that embeds a strongly normalizing core within a language with ar-
bitrary recursion. However, there are several important differences.
First, Aura (like Coq) insists on Prop terms being computationally
irrelevant, so its match rule forbids cross-universe elimination—
Prop terms cannot be eliminated to construct values in Type. We
explicitly wish to program over proofs, so F* permits P-to-x elimi-
nation. Next, Aura does not allow the branches of a match expres-
sion to use equality assumptions between the pattern and the scru-
tinized term. This makes it impossible to program on proof terms,
as shown in §2.5, which make essential use of GADT-style pro-
gramming patterns. In contrast, (T-Match) checks the then-branch
e in a context that includes equality assumptions induced by uni-
fying the type of the pattern with the type of the scrutinee (the first
three premises on the second line). These equality assumptions are
used in S;T" -t =+’ to allow typing derivations to freely refine both
type and value indices within types. This feature complicates the
consistency proof of F*’s P-fragment. We discuss this aspect when
presenting the metatheory of F*.

3.3 Dynamic semantics: logical effects and affine names

The dynamic semantics of F* is a small-step reduction relation for
a call-by-value language. It has the form (&7;e) —g (o/;€') where
the signature S is unvarying. The interesting part of this relation is
the log <7, a non-decreasing set of logical facts ¢ and names ¢ for
affine values. As mentioned in §2.2, the set of facts in 7 is used
in the definition of ghost refinement derivability. Facts are added to
the log using the assume ¢ form, which reduces as below.

E-Log

(o ;assume @) —g (A, 9;())

Foreshadowing our safety condition for ghost refinements
(Corollary 1), we show that, when a well-typed program e : x:t{¢}
reduces to a value, that is (-;e) —F (27;v), its refinement formula ¢
is derivable from the signature and all the accumulated logical ef-
fects: S;Facts(«?) = ¢[v/x]. This is in contrast to our soundness
result for proof terms, expressions that reside in the P-fragment, for
which we obtain a more traditional logical consistency property. In
a distributed program, the log is an idealized global view of the
logical state of all participants. Ghost refinements accompanied by
cryptographic evidence (in the form of digital signatures) enable
speaking about this distributed state.

The log also tracks affine values. We aim to show that well-
typed programs destruct affine values at most once. For this pur-
pose, we instrument the dynamic semantics to tag an affine value v
with a fresh name when it is introduced, recording the name in the
log (E-New/). Names held in the log come in two variants: names ¢
are “live”, while names are “dead”. When v appears in a destruct
position (the context E in (E-Kill¢), which includes the function
position of a 8 redex, and the scrutinee position of a match), we
require the name ¢ to be “live” in the log for reduction to not get
stuck, kill the name in .27, and then proceed. This instrumentation
serves as our specification of the use-at-most-once property.

S;Facts(&/) 1A fresh ¢
S;Facts(#/); LiveNames(&/) F vt

(v) —g (o, 0V0)

E-New/

E-Kill¢

(1,0, 3 EV]) = (a0, 53 E[])
3.4 Metatheory of F*

Our first theorem is a type soundness result, stated in terms of
standard progress and preservation lemmas. In addition to well-
typed programs not getting stuck, this result ensures that affinely
typed values are destructed at most once, and can thus be soundly
implemented using destructive reads and mutation. (The theorem
relies on an auxiliary judgment S - ./ = I';X which obtains a
context I'; X from the dynamic log, where I" includes the logical
assumptions accumulated in <7, and live names in o/ recorded
in X.)

THEOREM 1 (Type soundness). For all S, </, T, X, X', e, and t
such that

(1) St o — T:X,
2) F8;I'; X wf, and
B) S;IX' Fe:t where X' CX,

either e is a value, or there exist &/, ¢, T, and X" such that

(1) Sk o' —T':X",

(2) X" = (X' \ DeadNames(=’)) U LiveNames(&/’\),
3) .Y =I,1", and

@ S;TX"Eeé 1.

From type soundness, we obtain our main safety property for
ghost refinements: their formulas are derivable from the logical
effects accumulated in the log.

COROLLARY 1 (Safety for ghost refinements). For all S, <7, T, e,
o, t, ', T, and v such that - S ok, St o = T;X, ;X Fe:
xt{¢}, and (o/;e) =% (o/";v), there exists " such that S&t o' —>
';_and S;T" = ¢[v/x].

Theorem 2 (Logical consistency of P) shows logical consistency
of the P-fragment, by translating P-terms into CiC (The Coq De-
velopment Team 2010), which is widely believed to be strongly
normalizing. Intuitively, the theorem states that the translation of
F*’s P-fragment into CiC is a (weak) simulation, with regard to F*
and CiC’s reduction relations. Since in CiC, all reduction sequences
are presumed to be finite, this guarantees the absence of infinite re-
duction sequences for F*’s P-terms. A direct proof of strong nor-
malization of F*’s P-fragment is likely to be challenging since it
involves inductive types like CiC. Our proof strategy borrows ideas
from a proof of a related property in Aura. However, unlike Aura,
F* supports implicit type conversions using equalities introduced
by pattern matching—we find this essential for programming over
proof terms. We translate this to CiC through the use of explicit,
equality-witnessing conversions in CiC.

In the statement of the theorem below, (S;I;- -, e 1t — 1) is
the translation that marks non-P-lambdas in F* term e and trans-
lates them to a CiC term 7. (~) is the reduction of P-terms; and
(—p,1,5) is term conversion in CiC.

THEOREM 2 (Logical consistency of P). Forall S, T, p, e, ¢, t, ©
suchthattS;I" okg and S;T'\-t:: P, if ;s -Fpe:t— tande ~ e,
then there exists T’ such that T —>2§.1.6 v and S;T';- Fp eit—1.

Theorem 3 (Well-typed translation of RCF) is an embedding
into F* of a core fragment of RCF without Public/Tainted kinds,
without concurrency, and with restrictions on the use of RCF’s
isorecursive types. In the statement below, A is an RCF configu-
ration; E is an RCF context; and A — A’ is a single step of re-
duction in RCF. The notation [[-]] means translation. The judgment
E I o means that E is well-formed. The translation is over the struc-
ture of RCF typing derivations. The theorem states, roughly, that
well-typed RCF terms translate to well-typed F* terms, and that the
translation is a simulation, i.e., reduction steps in RCF correspond
to reductions in F*.

THEOREM 3 (Well-typed translation of RCF). Given E + [A] =
(ose), b [E] = S;T, and E & o, we have S;T;. b e : t where
E + [T] =t. Additionally A — A’ if and only if (o ;e) —g (;€)
and E+ [A'] = (o';€').

3.5 Coq formalization

The proofs of the metatheory of F* were initially done by hand. As
we reached completion of the hand proofs, we started a formaliza-
tion of the meta-theory of F* in the Coq proof assistant, using the
SSREFLECT extension (Gonthier et al. 2011). At the time of writ-
ing, we had formalized the whole calculus definition, along with a
major part of its metatheory, including all the key technical lemmas
up to substitutivity, and a partial proof of the type soundness result.
We found a few oversights in our pencil and paper proofs, which
we have since corrected. We expect to have a fully mechanized type
soundness proof in the near future. A more challenging, next step
is a formalization of the embedding of the propositional part of F*
to CiC. We plan to use the Barras’s formalization of CiC! as a basis.
Our formalization in Coq is noteworthy in several ways. First,
this is the first time the SSREFLECT package has been used to carry
out a large development in programming language metatheory. We
started out attempting to use the Coq code generator Ott (Sewell
et al. 2010) to help reduce the gap between the formal and informal
descriptions of our type system. Although this did help in the
maintenance of the two versions of the type system, we found that
with the many different kinds of variables in F*, the code produced
by Ott resulted in a very large, incomplete set of lemmas.
Following this experience, we have developed a new framework
for metatheory using SSREFLECT, and use it on F*—a particularly
challenging test case, since it involves many kinds of names and
binders, with subtle differences across the levels of terms, types
and kinds. Furthermore, most central judgments in the type system
are mutually recursive. Despite these complications, we are happy
to note that our framework has allowed us to develop short, largely
automated proofs. Our experience is encouraging initial progress
towards an eventual goal: a general framework, based on the reflec-
tion pattern and the theory of the pure lambda calculus, dedicated
to the study of type systems. We think that the development of the
F* formal meta-theory will serve as a basis of such a framework.

4. Secure multi-party sessions in F*

This section shows how to use the libraries and programming id-
ioms in §2 to write and verify realistic distributed security appli-

"http://www.lix.polytechnique.fr/~barras/proofs/sets/

cations. The combination of cryptographic evidence, ghost refine-
ments, and affine types proves crucial for this case study and en-
ables more precise specifications and stronger proofs than earlier
results obtained using F7 (Bhargavan et al. 2009).

4.1 Multi-party sessions

Multi-party sessions (Bhargavan et al. 2009; Deniélou and Yoshida
2011; Honda et al. 2008) offer a powerful method to structure and
build distributed message-based applications when their message
flow is fixed beforehand. Consider a 3-party session between a
customer (c), a website (w), and a credit-card verifier (v), with the
message flow below:

Rejec c
Checkout /¢
c —{ w)

Approve ",) Complete,
cart, cc, a \,,,\ c Auth ‘/ oY -/
Verify))
p, e a N\
mi\ W/}&) e

The customer initiates a Checkout session for buying some
items (cart), billed to her credit card cc for the total amount a.
The web site then either rejects the transaction outright, or asks for
credit card verification. The customer is redirected to a verification
server and provides a password (p) to authorize payment of @ on her
credit card cc. The verifier then either confirms or declines payment
to the web site, who completes or aborts the session accordingly.

Such a session specifies a contract between component pro-
grams in a distributed application. Every program promises to play
one role of the session, and in return, it expects the others to cor-
rectly play their roles. For instance, w promises not to charge more
than a, and not to abort the transaction if the payment is approved:
c can rest assured that if she receives an Abort message, her credit
card has not been charged.

A variety of type systems have been proposed to verify that
a program complies with a session role, and each type system is
tailored to a specific set of session primitives and programming
language features. Instead, we encode multi-party sessions as F*
types. By standard F* typing, we can verify that a program cor-
rectly plays a session role. Even if some programs deviate from
their role at run-time (because they have been taken over by an at-
tacker, for example), we show how the rest of the application can
protect itself by using a custom cryptographic protocol.

4.2 A session API in F*

We define a generic session API for distributed applications to
enforce a multi-party session discipline. We start with a simplified
version of our API, then build up to showing our model of more
complex features.

To begin with, we ignore the values (cart, cc, a, p) passed in
the session and aim to control the sequence of messages a session
participant can send and receive. Using affine types, we can define
a type for a role process, type role0::E = A, where the parameter
of the role is a type describing an automaton. The types used to
define these automata are purely specificational—they are given
E-kind. A value of a role process type is a handle that gives a
program the capability to enact the automaton. We show two simple
automata types provided by our API, and a function that consumes
and returns a role handle.

type Send0 :: 'm:x = ’ki:(m=E)=E
type Done 1 E
val send: m:’m — role0 (Send0 m ’k) —role0 "k m)

The Send0 automaton is indexed by two types—the first, a type
'm of the message to be sent by the process; the second, a type "k
representing a continuation process, where the process is dependent
on the value of type 'm sent in the first state. Done represents
a finished automaton. Using these automata, we can define the

following role process type that represents a program that first
sends an integer x, then an integer y greater than x, and then
concludes. (In concrete syntax, we write fun (x:t) =t for a type-
level function Ax:.t’; fun _ = t’ ignores its type argument.)

role0 (Send0 int (fun (x:int) = SendO (y:int{y > x}) (fun _ = Done)))

Our full API generalizes the automata types above with the no-
tion of a global distributed store for session values; each participant
maintains a local view of the store and we ensure, by typing, that
these views are consistent. We show below the extended analogs
of role0, Send0, and also automata types for receiving a message
and for choice-points in the session graph. The type of a role pro-
cess (role) is parametrized by a store value (of type ’st); automata
types (Send, Recv) are indexed by binary predicates § on ’st values
that define the allowed changes to the store during the next step.
The function send allows a client to send a message m and update
the store from s0 to s1 given that the current role process is a Send
and that the stores satisfy the predicate § attached to Send—client
programs calling send have to prove §s0 s1 for some specific instan-
tiation of §, and our type checker uses Z3 to assist with the proof
of such ghost refinement properties.

type role:: 'stiix = E="st = A
type Send:: 'm:x= ’stiix= 'm= (st= 'st= E)="k:("m= E)=E
type Recv:: 'miix = ’stix= 'm= (st= 'st= E)="ku(m=E)=E
type Choice:: ’I::E = 'ri:E = E
val send: m:’m —s0:’st —s1:’st{5 sOsl}

—role (Send 'm ’st m § k) sO —role Ck m) sl

The code below shows how we can use this session API to
model the website role (w) in the example session of §4.1. The
type msg defines the set of messages and the type store is the type
of the distributed store (including, for this example, the names of
each participant in the session, their view of the contents of the
shopping cart, etc.) The process automaton involves an alternation
of message send and receive, and this type uses two store update
predicates (of kind store = store = E'): Update_id_c_v_cart_cc_a al-
lows initial assignments from the customer to id, c, v, cart, cc, and
a; then Unchanged disallows any changes.

type msg = Checkout | Reject | Verify | Auth | Approve | (...)
type store = {id:nat; c:prin; w:prin; v:prin; cart:string; (...) }
type proc_w =
Recv Checkout Update_id_c_v_cart_cc_a (fun - = Choice
(Send Reject Unchanged (fun _ = Done)
(Send Verify Unchanged (fun _ = Choice
(Recv Approve Unchanged (fun _ =
Send Complete Unchanged (fun _ = Done)))
(Recv Decline Unchanged (fun _ =
Send Abort Unchanged (fun _ = Done))))))

Type soundness ensures that a well-typed program is guaran-
teed to comply with its declared role process. For example, a pro-
gram that joins a session in role w obtains a role handle of type
role proc_w init_store_w. It may then call the receive function (the
counterpart of send, not shown here) to receive a Checkout message
but cannot call send; subsequently, it may call send with either a
Reject or a Verify message, but not both.

In earlier work, Bhargavan et al. (2009) showed how to encode
multi-party sessions as refinement types in F7. However, since the
F7 type system does not support generic predicate-indexed types,
such as Send above, they encode the session using large session-
specific logical formulas rather than types. Our use of F* higher-
order kinds here yields session specifications that are, in general,
one-third the size of the corresponding F7 specifications. Moreover,
F7 lacks affine types, and they have to prove by hand, with the
help of an awkward continuation-passing style encoding, that their
applications use role handles linearly.

4.3 Custom cryptographic protocols for session consistency

Distributed applications typically run in an untrusted environment,
where the network and one or more of the session participants may
be under the control of malicious adversaries. In this scenario, cryp-
tographic mechanisms, such as digital signatures, can be used en-
sure that all honest session participants have consistent states. For
example, when the client ¢ receives an Abort message from the
website w, it may demand that this message include a valid signa-
ture proving that card verifier v Declined, to prevent a malicious w
from double-crossing c.

Bhargavan et al. (2009) show how to systematically use cryp-
tographic evidence as proof of session compliance. They compile
multi-party sessions to efficient custom cryptographic protocols
that exchange and check a minimal number of digital signatures
to ensure global session consistency. Their compiled protocols use
session types and cryptography in the style of F7: without higher-
order kinds, affinity, or predicate-indexed types.

We implement secure multi-party sessions in F* using protocol
libraries adapted from those of Bhargavan et al., but instead using
the crypto library of §2.3 and the sessions API shown above. In
our example session, the Abort message from w to ¢ carries two
digital signatures, one from w and one from v, each signature
authenticating the last message sent by the corresponding principal
and the values in its store at that time. On receiving the Abort
message, ¢ verifies these signatures and checks that they conform
to the session type: in particular, that the signature from v says that
v sent a Decline message and not an Approve. The resulting type
for the recv_Abort function (a specialization of the generic receive
function in our API) is as follows:

type Aborted:: w:prin = st_w:store = E
type Declined:: v:prin = st_v:store = E
val recv_Abort:
st_c:store — role (RecvCompleteOrAbort) st_c —
(st-c’:store * role Done st_c’){
Unchanged st_cst_.c’ A
Says st_c.w (3 st_w. Aborted st_c.w st_w A Unchanged st_w st_c’) A
Says st_c.v (3 st_v. Declined st_c.v st_v A Unchanged st_v st_c’)}

The function takes the current store st_c at ¢ and a role handle for
¢ that must be in the state after ¢ has sent Auth. The function returns
an (unchanged) store st_c’ and a new (completed) role handle. The
E-kinded predicates Aborted and Declined represent the session
states at the other roles. For example, Declined p st means that the
principal p, playing role v previously sent a Decline when it had
a store st. Hence, the post-condition says that the principals st_c.w
and st_c.v (playing w, v) claim to be in the states Aborted st_c.w st_w
and Declined st_c.v st_v where the stores st_w and st_v are the same
as c¢’s store st_c’. So if v is honest, then even if w is malicious, it
cannot cause ¢ to accept an Abort unless v sent a Decline. Note that
the post-condition is a ghost refinement that is proved here using a
combination of cryptographic evidence and F* typechecking.

4.4 Encoding advanced session constructs in F*

The four automata types shown above are adequate to represent a
wide variety of static sessions that do not use delegation or par-
allelism. Adding constructors for recursive sessions is straightfor-
ward. We now show how to extend our API to capture a limited
form of parallelism, inspired by the dynamic multi-role session
types of Deniélou and Yoshida (2011).

Distributed applications often run several instances of the same
role in parallel, for scalability. For example, a web site may run
several copies of a web server all connected to the same backend
database. Or, a client may fork several processes that may commu-
nicate with a server in parallel, in an arbitrary order. To verify such
applications we extend our sessions API with three new automata
types: Fork, Join, and Await.

The Fork automaton (given below) enables a role to fork multi-
ple instances of a child role, transfer control to them, and then wait
for them to complete. These child role processes may either exe-
cute sequentially (in any order), or in parallel. Each child process
is given a unique principal name which it can use when communi-
cating with its parent or with other roles. The Join automaton en-
ables the child role to transfer control back to the parent; and Await
represents a parent role process waiting for its children to complete.

We illustrate Fork and its use in an application below, where we
elide the store for simplicity (and so use role0 instead of role).

type Fork :: ps:list prin = *ParentProc::E
= "ChildProc::(role0 (Await ps *ParentProc) = prin = E)
=E
let go ps : role0 Done =
let client = startClient ps in
let client, children = fork ps client in
let children =
map (fun (q, child) —
let child = send0 Request child in
let Response, child = receive0 child in
(q, child)) children in
join ps client children

The function go forks a number of children (indexed by a given
list of principals ps). Each child sends a Request message, then
receives a Response message and then joins its parent (p). Here,
the variable client is a role handle that has an automaton type of
the form Fork ps Done ChildRole, where the automaton ChildRole
sends a Request, receives a Response and then Joins its parent. Since
role handles have an affine type, the code here passes client in and
out of every session operation. The variable children is given an
affine list type, which guarantees that the different child processes
cannot interfere with each other; in other words each Response can
be accurately correlated with its corresponding Request.

5. Implementation and Measurement

This section describes the implementation of our prototype F*
compiler and its performance measured on a variety of programs
(about 20,000 lines of code in total), including cloud applications,
cryptographic protocols, and secure browser extensions.

Compilation. The F* compiler consists of about 35,000 lines of
F# code and is still under active development. It is based on the
type-preserving compiler for Fine (Chen et al. 2010). It takes as
input an F* program and typechecks the program by asking logical
queries of Z3. The compiler also accepts Fine and F7 programs
and translates them into F*. Source programs are then compiled to
RDCIL, a small extension of a functional core of the .NET bytecode
language CIL. Like DCIL, the target language of Fine, RDCIL
extends CIL with type-level functions and value parameters (in
addition to type parameters) in class declarations, to model value-
dependent types in the source language. Unlike DCIL, RDCIL also
supports ghost refinements. RDCIL encodes these additional type
constructs as custom attributes, so RDCIL binaries can run on stock
NET virtual machines, access libraries of other .NET languages
(e.g., C# and F#), and be called from those languages. RDCIL is
fully typed and can be verified (with the help of Z3) for security,
the same way F* is verified.
Checking two forms of refinements in RDCIL. Ghost refinement is
a new feature of F* and RDCIL, not supported by Fine or DCIL.
Ghost refinements in F* are translated to ghost refinements in
RDCIL, and the typechecker for RDCIL verifies them using Z3.
Concrete refinements are handled similarly in F* and Fine.
During source typechecking, the F* compiler extracts proofs of
concrete refinements from the SMT solver and injects them as
terms in the generated RDCIL. Hence, concrete refinements in the

source program are translated to a pair of a value and an explicit
proof in RDCIL, which can be verified by the RDCIL type checker.

Reducing the size of generated bytecode. Explicit proofs can be
costly though. Carrying proofs increases the code size by 50x for a
Fine benchmark. The F* compiler addresses this difficulty by rely-
ing on the RDCIL typechecker to reconstruct proofs by refinement
type checking, rather than just depend on explicit proofs. As a re-
sult, RDCIL programs contain far fewer proofs compared to DCIL,
and the overhead of proofs and types is only 60% for our bench-
marks. The F* compiler also reduces the size of generated bytecode
(ignoring proofs and custom attributes for types), because higher-
order dependent kinds allow more concise translation of polymor-
phic types and higher-order code, which are prevalent in F* pro-
grams. Combining the two factors, the F* compiler produces bina-
ries an order of magnitude smaller than those produced by Fine, as
much as a 45x improvement.

5.1 Benchmarks and Measurements

Code size. We compile the Fine benchmarks in (Chen et al. 2010)
with the F* compiler, treating all refinement types as ghost refine-
ments. This way, no proofs are extracted. The table below shows
the names of the benchmarks (column Bench.), the F* code size (in
bytes) with and without custom attributes for the additional types
(A+ and A- respectively), and Fine size (in bytes) with and with-
out proofs reported in (Chen et al. 2010) (Pf+ and Pf- respectively).
The Fine numbers reflect only proof overhead, not attributes.

F* size Fine size A+/ A-/ A+ | A/
Bench. A+ A- Pf+ Ptf- Pf+ Pf+ A- Pf-
Authac 15k 12k 30k 20k | 0.50 0.4 1.3 0.6
Iflow 27k 18k 840k 30k | 0.03 | 0.02 1.5 0.6

Automaton 28k 15k 40k 20k | 0.70 | 0.38 1.9 0.8
HealthWeb 76k 48k | 2.1M 80k | 0.04 | 0.02 1.6 0.6

Lookout 147k 81k | 1.8M 120k | 0.08 | 0.05 1.8 0.7
ConfRM 72k 51k | 3.3M 110k | 0.02 | 0.02 1.4 0.5
Total 365k | 225k | 8.IM | 380k | 0.05 | 0.03 1.6 0.6
ProofLib ™ SM 5IM S5IM | 0.14 0.1 1.4 0.1

Because of no proofs, the code size overhead is simply the cus-
tom attributes for encoding more expressive types than the CIL
types. Column “A+/A-" shows that RDCIL code with those cus-
tom attributes is about 1.3x-1.9x of the code without the custom
attributes, with an average 60% overhead for the custom attributes.
Our current implementation simply uses compressed strings of
pretty-printing types as custom attributes. A smarter encoding may
further reduce the size overhead.

The RDCIL code is about an order of magnitude smaller than the
DCIL code for the Fine benchmarks. Column “A+/Pf+” shows that
the RDCIL code (with custom attributes) is about 3%-70% of the
DCIL code (with proofs), with an average of 5%—a 20x improve-
ment. Column “A-/Pf+” shows that the RDCIL code (without cus-
tom attributes) is about 2%-38% of the DCIL code (with proofs),
with an average of 3%—indicating a 30x improvement in this con-
figuration, although the accurate breakdown is hard to obtain be-
cause Fine numbers do not include custom attributes. Benchmarks
with less proofs, e.g., Authac and Automaton, show less reduction.
Column “A-/Pf-” shows that the pure code size of RDCIL is about
10% to 80% of that of DCIL, with an average of 60%—a 40%
reduction because of a more expressive type language. Prooflib is
purely refinement-free code. The 10x reduction in code size is en-
tirely due to dependent higher kinds.

Compilation and typechecking times. The table below shows the
time taken to typecheck and compile the Fine benchmarks as well
as several new F* programs we develop ourselves. For each pro-
gram, it shows number of lines of source code (LOC), source pars-
ing and checking time (SC, in seconds), compilation of F* to RD-
CIL time (Trans), target checking time (TC), and the number of
queries made to Z3 by the source checker (SQ) and target checker

(TQ). All measurements were performed on a 2.67 GHz two-core
Intel Core i7 CPU running Windows 7.

[Bench. [LOC] SC] Trans [TC [SQ [TQ |
Authac 37 0.2 0.1 0.2 1 1
Iflow 119 0.8 0.4 0.5 25 18
Automaton 117 0.3 0.2 0.3 5 4
HealthWeb 330 2.3 1.9 1.1 33 10
Lookout 502 2.4 2.4 1.9 29 33
ConfRM 704 2.7 2.5 1.8 63 21
Prooflib 10694 | 20.8 | 258.3 14.7 0 0
HealthwebEnh 766 8.0 8.5 5.8 156 83
HigherOrderlter 150 1.0 3.5 1.6 13 13
HigherOrderFoldr 108 2.3 5.8 0.9 10 6
Permission 251 4.1 43 55 29 29
Iflow_state 204 0.8 0.6 0.8 7 14
Provenance 221 1.6 1.5 0.8 22 17
Browser exts 785 3.1 33 3.8 89 55
DynSessions 211 0.7 0.5 0.2 0 0

HealthwebEnh is a cloud application managing an electronic
medical record database, interacting with code written in ASP.NET,
C#, and F#. It is about twice as big as the Fine HealthWeb
benchmark, and is deployable on Microsoft Windows Azure.
HigherOrderlter and HigherOrderFoldr implement higher-order li-
brary functions that iterate over lists. Permission implements a
stateful API of collections and iterators that guarantee that the col-
lection underlying an iterator is never modified while an iteration
is in progress. Iflow_state provides an information-flow tracking li-
brary for stateful programs. Provenance is a larger version of the
curated database in §2.5. Browser exts is a suite of 17 browser ex-
tensions, verified for authorization and information flow properties.
DynSessions is the example of §4, including fork/join parallelism.

Fine and F* source typechecking times are roughly equivalent.
F* translation is faster than Fine because there are fewer proofs to
translate. Conversely, typechecking RDCIL code with refinement
types is slower than checking DCIL proofs, but in view of the many
advantages of F*, such as smaller bytecode and more expressive
types, we find this tradeoff worthwhile.

Verifying cryptographic applications. Finally, we report source
code verification results for several cryptographic protocol exam-
ples, many of which were previously developed for F7, and are
now verified by F*.
CryptoLib is a large

Example [LOC] SCT SQ

F7 library implement- CryptoLib | 1530 | 505 | 426
ing symbgllc cryptog- KeyManager | 608 | 55.6 | 287
raphy, which is used in AuthRPC 232 | 679 | 335
all subsequent appli- SessionLib 32| 04 0
cations. KeyManager Commit 126 1.5 28
is a key management Forward 131 1.3 22
application. AuthRPC Metering 111 0.6 3

implements an au-

thenticated RPC protocol. SessionLib is the generic API for multi-
party sessions (§4), used to securely implement a two-party session
Commit and a three-party session Forward. Metering is a privacy-
friendly zero-knowledge cryptographic protocol for smart meter-
ing (Rial and Danezis 2010).

6. Related work

We have compared F* to Fine, F7, Aura, Coq, Agda, and discussed
other related work in detail throughout this paper. Here, we briefly
cover a few more topics. Guts et al. (2009) show how to build
cryptographic audit trails that can be verified by independent third
parties; Vaughan et al. (2008) argue that logs of logical evidence
could also build audit trails. Neither consider the combination of
mobile logical and cryptographic proofs, augmented with selective
erasure and reconstruction. Related work on session types focuses
on enforcing session compliance in the absence of malicious ad-

versaries. Honda et al. (2008) develop special-purpose type sys-
tems for multi-party asynchronous sessions. They do not consider
security or source code verification. Kiselyov et al. (2010) add type
functions to Haskell and show how these can be used to program
simple two-party sessions.

References

K. Avijit, A. Datta, and R. Harper. Distributed programming with dis-
tributed authorization. In TLDI, 2010.

M. Backes, C. Hritcu, and M. Maffei. Type-checking zero-knowledge. In
CCS, 2008.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. In CSF, 2008.

Y. Bertot and P. Castéran. Coq’Art: Interactive Theorem Proving and
Program Development. Springer Verlag, 2004.

K. Bhargavan, R. Corin, P.-M. Dénielou, C. Fournet, and J. Leifer. Cryp-
tographic protocol synthesis and verification for multiparty sessions. In
CSF, 2009.

K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of
security protocol code by typing. In POPL, 2010.

J. Borgstrom, J. Chen, and N. Swamy. Verifying stateful programs with
substructural state and hoare types. In PLPV ’11, Jan. 2011.

I. Cervesato and F. Pfenning. A linear logical framework. Inf. Comput., 179
(1), 2002.

P. C. Chapin, C. Skalka, and X. S. Wang. Authorization in trust manage-
ment: Features and foundations. ACM Comput. Surv., 40, 2008.

J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of end-to-
end verification of security enforcement. In PLDI ’10. ACM, 2010.

L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS, 2008.

P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL,
2011.

G. Gonthier, A. Mahboubi, and E. Tassi. Research Report RR-6455, 2011.

A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 11(4):451-520, 2003.

A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security
for browser extensions. In IEEE Symposium on Security and Privacy
(Oakland), 2011.

N. Guts, C. Fournet, and F. Z. Nardelli. Reliable evidence: Auditability by
typing. In ESORICS, 2009.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session
types. In POPL, 2008.

L. Jia and S. Zdancewic. Encoding information flow in aura. In PLAS,
2009.

L. Jia, J. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic. Aura: A programming language for authorization and
audit. In ICFP, 2008.

O. Kiselyov, S. P. Jones, and C. chieh Shan. Fun with type functions, 2010.
Unpub.

S. K. Lahiri, S. Qadeer, and D. Walker. Linear maps. PLPV '11. ACM,
2011.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers Institute of Technology, 2007.

A. Rial and G. Danezis. Privacy-friendly smart metering. Technical report,
Microsoft Research, nov 2010.

P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and
R. Strnisa. Ott: Effective tool support for the working semanticist. JFP,
20(1), 2010.

M. Sozeau. Subset coercions in coq. In TYPES, 2007.

N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for enforcing
user-defined security policies. In S&P, 2008.

N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and
information flow policies in Fine. In ESOP, 2010.

The Coq Development Team. Chapter 4: Calculus of Inductive Construc-
tions. Technical report, 2010. URL http://coq.inria.fr.

J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit.
In CSF, 2008.

D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167-187, 1996.

