
Personalizing Model M for Voice-search

Geoffrey Zweig1, Shuangyu Chang2

1Microsoft Research, Redmond, WA
2Speech at Microsoft, Mountain View, CA

{gzweig, shchang}@microsoft.com

Abstract

Model M is a recently proposed class based exponential n-gram
language model. In this paper, we extend it with personalization
features, address the scalability issues present with large data
sets, and test its effectiveness on the Bing Mobile voice-search
task. We find that Model M by itself reduces both perplexity
and word error rate compared with a conventional model, and
that the personalization features produce a further significant
improvement. The personalization features provide a very large
improvement when the history contains a relevant query; thus
the overall effect is gated by the number of times a user re-
queries a past request.
Index Terms: voice search, language modeling, speech recog-
nition, personalization

1. Introduction
Model M is a recently proposed class based exponential n-gram
language model [1, 2] which has shown improvements across a
variety of LVCSR tasks [2, 3, 4]. The key ideas present are the
modeling of word n-gram probabilities with a log-linear model,
and the use of word-class information in the definition of the
features. Assuming an n-gram model on words w, the form of
the basic exponential language model is

P (wi|wi−n+1 . . . wi−1) =

exp(λwi−n+1...wi−1wi
+ · · ·+ λwi−1wi

+ λwi
)P

w′
exp(λwi−n+1...wi−1w′ + · · ·+ λwi−1w′ + λw′)

(1)

In other words, it is a log-linear model in which the features
are 0/1 and each suffix in the n-gram activates a feature. The
model is trained to maximize the data probability, subject to
L1 and L2 regularization. While this model supports arbitrary
length n-grams, for simplicity of notation, for the remainder of
this paper we will assume trigram models, with the extension to
higher order n-grams being immediate.

In [1], it was observed that the weighted sum of the training-
set perplexity and the L1 norm of the λs is a good predictor
of test set perplexity. This was used to motivate a class-based
exponential language model in which each word w is assigned
deterministically to a single class c, and n-gram probabilities
are estimated as the product of a class part and a word part

P (wi|wi−2wi−1) =

P (ci|ci−2ci−1, wi−2wi−1)P (wi|wi−2wi−1, ci).

Both components are themselves exponential n-gram models:

P (wi|wi−2wi−1, ci) = (2)
exp(λwi−2wi−1wi

+ λwi−1wi
+ λwi

)P
w′∈ci

exp(λwi−2wi−1w′ + λwi−1w′ + λw′)

P (ci|ci−2ci−1, wi−2wi−1) = (3)

exp(
λci−2ci−1ci

+ λci−1ci
+ λci

+ λwi−2wi−1ci
+ λwi−1ci

)

P
c′

exp(
λci−2ci−1c′ + λci−1c′ + λc′

+ λwi−2wi−1c′ + λwi−1c′
)

Here we have used ci to represent the class of word wi and
w′ ∈ ci to range over the members of class ci. A λ parameter
may be defined for each n-gram pattern in the training data, or
restricted to commonly occurring patterns. The word classing
may be done with a variety of methods; in this work, we use
the original IBM classing mechanism [5]. In [2], empirical evi-
dence is presented which indicates that the L1 norm of a model
of this form is generally smaller than that of a purely word-
based exponential model providing equal perplexity; better test
set performance is observed as well.

Note that Model M is factored into separate class and word
models. In an alternative formulation, a similar model could be
formed simply by adding class features to an unfactored model
of the form of Eq’n. 1. In fact, while this approach is more
general, the Model M approach makes an efficient implementa-
tion much more straightforward. In a basic n-gram model, the
normalization must be computed over all the words in the vo-
cabulary, often 105 or more. In Model M, however, there are
two much smaller normalizations: first the normalization over
classes (typically on the order of 102) and then the normaliza-
tion over the words in a specific class. Assuming the words are
equally divided across classes, this results in around two orders
of magnitude speedup relative to a naive implementation of an
unfactored model.

To date, Model M has shown improvements on a number
of standard speech recognition tasks: Wall Street Journal [2, 6],
GALE Arabic data [4, 3], Voicemail and Broadcast News [3].
These tasks all fit well the standard paradigm of building a sin-
gle language model, and then using it unchanged for the entire
data-set. In this paper, we turn to a task in which we would
like a highly dynamic model that is adjusted on an utterance-by-
utterance basis. Specifically, we examine the problem of speech
recognition for Bing Mobile voice-search [7]. In this task, we
have an extremely large number of individual users, each with
their own unique history of interaction with the system, which
we would like to leverage to improve performance.

In principle, personalization might be viewed as an extreme
form of domain adaptation subject to the MDI and MAP adapta-
tion described in [8, 9, 10, 2, 3]. In these approaches, a general

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

609

language model is taken as a prior on a domain specific model,
and the domain specific model is trained in that context. In the
context of voice-search, however, this is undesirable because
it is infeasible to train a separate, complex model for millions
of users. Instead, we propose a very fast method that can be
applied “on-the-fly,” by adding a handful of feature weights,
which are determined once only, by minimizing error rate on a
development set.

In the context of voice-search, a second challenge relates
simply to reducing the computational complexity to the point
where it is feasible to train on billion-plus word data-sets.
Model M itself takes the first step by allowing for a decomposi-
tion of the computations into two parts - one where the normal-
ization is proportional to the number of classes, and one where
it is proportional to the average number of members in a class.
We further adapt ideas from [11] to reduce the computation in-
volved in the second part to the average number of bigram suc-
cessors of a word, where those successors are further restricted
to belong to a specific class.

The remainder of this paper is organized as follows. In sec-
tion 2, we describe our implementation of Model M compu-
tations. In section 3, we describe the personalization features
we use. Section 4 describes the Bing Mobile data-set and our
experimental results. Discussion and concluding remarks are
offered in Section 5.

2. Computational Efficiency
2.1. Training Data Organization

Depending on the data-source and amount of data, a factor of
20 to 70 speedup can obtained by careful data organization.
First, we apply the standard pre-processing step in which ev-
ery ngram occurrence is explicitly written to a file, and then the
occurrences of a specific ngram are made contiguous by sorting.
Each ngram is then represented once with a count. All gradient
computations involving the ngram are simply weighted by this
count, which results in a factor of 6 to 15 reduction in compu-
tation. Explicitly replacing unknown words by <unk> at this
step results in a further reduction. Another speedup results from
realizing that the normalization factors need only be computed
for the class part of the model when the n − 1 gram word pre-
fix changes, and for the word part of the model when either the
n − 1 gram word prefix changes, or the class of the predicted
word changes. To exploit this fact, the data is sorted by n − 1
gram word history, with ties broken on the basis of the class
of the last word. Then normalizers are only computed as nec-
essary. This typically results in about a factor of 3 speedup in
training 1.

2.2. Bigram Restrictions

In our experiments, the number of classes is typically 200,
and the vocabulary 150k words. Thus, the word normalization
on average involves summing over about 750 words, which is
more than the typical number of bigram successors that a word
has. We may take advantage of the fact that most word pairs
are never seen in order to reduce this to a computation pro-
portional to the number of bigram successors of the second to
last word. Recall that λwi−2wi−1w′ and λwi−1w′ only exist
for n-grams that occur in the training data. Thus, if we define

1After submission, Sethy et al. presented a paper “Distributed Train-
ing of Large Scale Exponential Language Models” (ICASSP 2011) de-
scribing further data organization methods.

succs(ci, wi−1) to be the words in class ci that have been seen
following wi−1, we may write:

X

w′∈ci

exp(λwi−2wi−1w′ + λwi−1w′ + λw′) =

X

w′∈ci

exp(λw′) (4)

+
X

w′∈succs(ci,wi−1)

exp(λwi−2wi−1w′ + λwi−1w′ + λw′) (5)

−
X

w′∈succs(ci,wi−1)

exp(λw′) (6)

In this, line (4) is computed once per class, after each round
of parameter re-estimation. Lines (5) and (6) are computed on-
demand, and only require looking at bigram successors of the
second-to-last word. This results in a 30% to 40% speedup.

2.3. R-prop Initialization

We implement L1 and L2 regularization along the lines of [1],
and have found the R-prop [12] gradient descent method more
efficient in this context than generalized iterative scaling (GIS)
[13]. R-prop maintains a step size for each dimension, and dy-
namically adjusts this – when the gradient maintains sign on
successive iterations, the step size is increased; when it changes
sign, the step size is reduced. While effective, we have found
that it is sensitive to the initial step sizes, and as a efficiency
measure, we initialize the step size by running GIS for two iter-
ations, and using the absolute value of the change in the second
step. This results in slightly better solutions in a fixed number
of iterations.

2.4. Caching

During training, parameter values change, so new normalizers
must be computed at each iteration. A significant speedup re-
sults at test time, however, by caching the normalizers used dur-
ing training so that they do not need to be recomputed. Table
1 gives a rough idea of our estimates of the speedups from the
various methods, for two data sets: a 244M word set used in
the rest of our experiments, and a 2G word mobile text query
set. Some absolute training times are presented in Sec. 4; at test
time, with caching, we achieve 50 to 100k ngram computations
per second for typical models.

3. Personalization Features
In previous work, we have explored the use of personalization
by rescoring n-best lists at the sentence level [14], and modeling
repetition with a cache-based language model [15, 16]. Here,
we explore the possibility of dynamically creating a personal-
ized version of Model M which operates n-gram by n-gram and
could potentially be used in first pass decoding.

In principle, this personalization can be done by adapting
a general domain model using minimum discrimination infor-
mation (MDI) [8, 2] or MAP techniques [9, 10]. However,
these methods require re-training for each user and are thus pro-
hibitive. Instead, we take the approach of adding a new binary
feature for every feature in the original model, and tying to-
gether the feature weights so that a small number of parameter
values can be estimated once, with reference to held out data.
The feature meaning and tying is as follows:

• For every original feature, there is a personalization fea-
ture whose value is 1 when the feature occurs for some

610

Speedup 244M words 2G words
Factored Normalization ˜160x ˜160x
Count & <unk> Compression 7.4 20
Sorting by Class 2.8 3.4
Bigram Restrictions 1.4 1.3
Caching Normalizer 31 42

Table 1: Approximate effect of different speedups for two train-
ing set sizes. Times faster than without method.

average words per utterance 3.3
fraction having a history 96%
utterances with an exact match in history 11%
fraction of utterances with at least one matched word 55%
average word matches per utterance 1.4
fraction of words seen in history 41%

Table 2: Bing Mobile data characteristics.

n-gram in the user’s history.

• The weight of a feature is determined by the feature’s
length - there is one weight for unigram features, one for
bigrams, and so on.

• The same weights are used with the class-prediction and
word-prediction parts of the model. (Note that the class-
prediction part has features that involve both words and
classes.)

This use of feature augmentation for adaptation is also found
in [17]; however that work still requires training a complete
new model for each condition. Through the parameter tying
described, we effectively introduce just a handful of actual fea-
tures (despite the notionally large number), thus enabling once-
only optimization on the development data. We compare this
type of model with an interpolation model in which the likeli-
hoods of Model M and a unigram cache-based model are lin-
early interpolated.

4. Experimental Results
4.1. Bing Mobile Data

To test Model M and our personalization approaches, we use
data from the Bing Mobile voice-search application [7], col-
lected in October 2010. The Bing Mobile application provides
users with a voice interface to the Bing search engine, and sup-
ports all types of queries. While it is sometimes difficult to
categorize a query, approximately 40% are what have been tra-
ditionally called local business queries, e.g. “Merchandise Mart
Chicago,” somewhat over 50% are web queries, e.g. “Show me
pictures of galaxies,” perhaps 5% are street addresses, and a
small number are non-intentional, e.g. “This is John Doe can
you hear me?”. From the October data, we randomly selected
3000 development set utterances and 6000 test utterances.
The language model training data consists of 50M queries com-
prising 244M words, taken from the logs of users, exclusive
of all users in the dev and test sets. These logs include both
text queries and high-confidence recognition results from voice
queries. The baseline sentence error rates are produced by us-
ing the deployed acoustic model in association with a language
model built with the 244M word training data set. An unpruned
language model was built, followed by Stolcke pruning [18] to a

Figure 1: Word and utterance matches by history size.

Class 1 Class 2 Class 3
walmart on art
craigslist with williams
coffee from jones
starbucks by brothers
target about hunter

mcdonald’s without energy
costco between twins
gamestop into castle
walgreens around bush
lowes during parker

Table 3: Most frequent members of three classes.

manageable size. N-best lists were generated for rescoring, us-
ing a confidence measure based cutoff which makes N variable;
the average depth is 3.8. Table 2 illustrates some of the char-
acteristics of the development set. Figure 1 shows how much
the utterances overlap with the user histories, both at the whole-
utterance and word levels.

4.2. Results

4.2.1. Model M: Classes and Perplexity

Table 3 illustrates examples of three different classes. Some,
such as the first two, appear relatively meaningful; the first is
dominated by frequently requested businesses, and the second
a nice list of English prepositions. Other classes, such as the
third, have members without an obvious relationship.

Table 4 shows the relationship between the number of
classes, perplexity and training time. With few classes, the com-
putation is dominated by the normalization of the word part of
the model; with many classes, by the normalization of the class
part of the model. In these and other experiments, we have
found 200 classes to be a good compromise.

In Table 5, we present perplexity results for both standard,
and Model M based LMs. The standard language models were
built with the CMU toolkit, using Good Turing smoothing (GT).
For Model M, we created features for all word unigrams and bi-
grams seen in the data; trigram features were only created when
seen two or more times, and fourgram features when seen three
or more times. The same cutoffs were used with the conven-
tional language model. We see that Model M typically provides
a 10% improvement in perplexity, and that it is better able to
use a higher-order model.

611

Number of Classes Perplexity # Features Runtime
50 162 28.8M 20.6 hrs
100 160 30.3 17.4
200 160 32.5 17.6
400 158 35 23.1

Table 4: Perplexity as a function of number of classes. 150k
vocabulary. Runtime is training time for 20 iterations on a
3.33GHz Xeon, no parallelization. 244M words training data.

Training Sents 3gm GT 4gm GT 3gm M 4gm M
5M 224 222 199 190
10M 204 202 180 170
20M 191 188 169 159
50M 179 176 157 146

Table 5: Development set perplexity - effect of amount of train-
ing data and n-gram level.

4.2.2. Personalization and Error Rates

We now turn to the use of personalization features. Recall from
section 3 that with a trigram model there are six weights to es-
timate. These weights were optimized by hand on the devel-
opment data, and Table 6 shows the effect of Model M and
personalization on the test set sentence error rate. The base-
line decoding was done with a Stolcke-pruned model that has
fewer n-grams than Model M. To provide a better comparison,
we built a conventional unpruned model with the same cutoffs
(Unpruned ARPA). Model M itself produces about a 0.3% ab-
solute gain over the larger LM, and interpolation with the orig-
inal scores increases this further. With personalization features,
Model M improves the error rate by 1% and 1.2% absolute for
the 3-gram and 4-gram models respectively. Finally, when we
augment the histories with the correct word sequence and re-
optimize the personalization feature weights, there is a dramatic
improvement, essentially to the error-rate floor that is imposed
by the use of n-best lists.

The approach of personalization by adding features is gen-
eral and can be extended in other ways, e.g. with localization
features. However, it has the disadvantage that the fast normal-
ization of Sec. 2.2 cannot be used. Therefore, we experimented
with an alternative form of personalization, where we used the
user histories to create a unigram cache language model for
each user. The history based probability was then interpolated
with the standard Model M probability, resulting in similar error
rates as with feature addition.

5. Conclusion
The Voice-search task is significantly different from other lan-
guage modeling tasks: the utterances tend to be very short, yet
unconstrained and open-domain, and we have a user’s specific
history to exploit. We have seen that Model M, which has pre-
viously been applied in more standard LVCSR tasks, is also
quite effective in this domain, and can be extended with user-
personalization in a simple, efficient way to improve perfor-
mance.

Model 3gm 4gm
Baseline 44.2% 44.1%
Unpruned ARPA 44.0 43.8
Model M 43.7 43.5
+ Interpolation 43.5 42.9
+ Histories 43.0 42.6
+ Correct Histories 35.8 35.8
N-best Oracle 34.8 34.6

Table 6: Sentence Error Rates under various conditions.

Acknowledgments
The authors thank Stanley Chen for his helpful comments.

6. References
[1] S. Chen, “Performance prediction for exponential language mod-

els,” in NAACL-HLT, 2009.
[2] ——, “Shrinking exponential language models,” in NAACL-HLT,

2009.
[3] S. Chen, L. Mangu, B. Ramabhadran, R. Sarikaya, and A. Sethy,

“Scaling shrinkage-based language models,” in ASRU, 2009.
[4] A. Emami, S. Chen, A. Ittycheriah, H. Soltau, and B. Zhao, “De-

coding with shrinkage-based language models,” in Interspeech,
2010.

[5] P. Brown, V. D. Pietra, P. deSouza, J. Lai, and R. Mercer, “Class-
based n-gram models of natural language,” Computational Lin-
guistics, vol. 18, no. 4, 1992.

[6] S. Chen and S. Chu, “Enhanced word classing for model m,” in
Interspeech, 2010.

[7] A. Acero, N. Bernstein, R. Chambers, Y. Ju, X. Li, J. Odell,
P. Nguyen, O. Scholz, and G. Zweig, “Live Search for Mobile:
Web Services by Voice on the Cellphone,” in Proc. of ICASSP,
2007.

[8] S. D. Pietra, V. D. Pietra, and J. Lafferty, “Inducing features of
random fields,” IEEE Tansactions Pattern Analysis and Machine
Intelligence, vol. 19, no. 4, 1997.

[9] C. Chelba and A. Acero, “Adaptation of maximum entropy capi-
talizer: Little data can help a lot,” in EMNLP, 2004.

[10] Y.-H. Sung, C. Boulis, and D. Jurafsky, “Maximum conditional
likelihood linear regression and maximum a posteriori for hidden
conditional random fields speaker adaptation,” in ICASSP, 2008.

[11] J. Wu and S. Khudanpur, “Efficient training methods for maxi-
mum entropy language modeling,” in Interspeech, 2000.

[12] M. Reidmiller, “Rprop - Description and Implementation Details,”
University of Karlsruhe, Tech. Rep., January 1994.

[13] J. Darroch and D. Ratcliff, “Generalized iterative scaling for log-
linear models,” Ann. Math. Statist., vol. 43, no. 5, 1972.

[14] D. Bolanos and G. Zweig, “Multi-scale personalization for voice-
search applications,” in HLT-NAACL, 2009.

[15] G. Zweig, D. Bohus, X. Li, and P. Nguyen, “Structured Models
for Joint Decoding of Repeated Utterances,” in Proc. Interspeech,
2008.

[16] G. Zweig, “New Methods for the Analysis of Repeated Utter-
ances,” in Proc. Interspeech, 2009.

[17] H. Daume, “Frustratingly easy domain adaptation,” in ACL, 2007.
[18] A. Stolcke, “Entropy-based pruning of backoff language mod-

els,” inDARPA Broadcast News Transcription and Understanding
Workshop, 1998.

612

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
