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Abstract— Differential privacy describes a promise, made
by a data curator to a data subject: you will not be affected,
adversely or otherwise, by allowing your data to be used in any
study, no matter what other studies, data sets, or information
from other sources is available. At their best, differentially private
database mechanisms can make confidential data widely available
for accurate data analysis, without resorting to data clean rooms,
institutional review boards, data usage agreements, restricted views,
or data protection plans. To enjoy the fruits of the research
described in this tutorial, the data analyst must accept that raw
data can never be accessed directly and that eventually data utility
is consumed: overly accurate answers to too many questions will
destroy privacy. The goal of algorithmic research on differential
privacy is to postpone this inevitability as long as possible.

Privacy is a charged term meaning different things to dif-
ferent people, and even different things to the same person,
according to the context. In the digital information realm,
loss of privacy is usually associated with failure to control
access to information, to control the flow of information, or
to control the purposes for which information is employed.
Differential privacy arose in a context in which ensuring
privacy is a challenge even if all these control problems are
solved: privacy-preserving statistical analysis of data.

Privacy in data analysis is treated in the scholarly litera-
ture of many fields – statistics, databases, philosophy, law,
cryptography, and theoretical computer science (see [4] and
the references therein). The popularly known privacy breaks,
such as the identification of the medical records of the then
governor of Massachussetts in public “anonymized” medical
encounter data [12], the identification of the search history
of Thelma Arnold in public “anonymized” AOL query
records [1], the identification of a homophobic individual in
the public “anonymized” Netflix prize training data set [11],
and the theorectical test for membership of the DNA of a
given individual in a forensic mix or a genome-wide asso-
ciation study [10], were not breaks of the implementation
of a privacy definition. Rather, the stated privacy goals were
themselves inadequate: syntactic, ad hoc, and unable to cope
with information from sources other than the database.

Differential privacy was inspired by the profound defini-
tional work in modern cryptography [8], [9]. These cited
works, and the tradition to which they gave rise, trans-
formed the cycle of propose-break-propose-again to a path
of progress in cryptography.
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Since the data analyst and the adversary are the same
party, formulating a privacy goal in analogy to semantic
security [8] cannot work [2], [7]. In the context of data
analysis the goal is to protect the participants from harm. As
the following parable shows, the challenge is to distentangle
harm from utility.

Analysis of a given data set teaches us that smok-
ing causes cancer. Mary, a smoker, is harmed by
this analysis: her insurance premiums rise. Mary’s
premiums rise whether or not her data are in the
data set. In other words, Mary is harmed by the
finding “smoking causes cancer,” and not by her
participation in the data set. Of course, Mary is
also helped: having learned that smoking causes
cancer, Mary enters a smoking cessation program.

Differential privacy aims to ensure that the only harms
encounterd by Mary are the harms suffered from the
conclusions of the analyses. These conclusions can also be
helpful to her, which is the whole point of a medical study.

A database is modeled as a collection of rows, with each
row containing the data of a different individual. Differential
privacy will ensure that the ability of an adversary to inflict
harm (or good, for that matter) – of any sort, to any set
of people – should be essentially the same, independent
of whether any individual opts in to, or opts out of, the
dataset. This is done indirectly, simultaneously addressing
all possible forms of harm and good, by focusing on the
probability of any given output of a privacy mechanism and
how this probability can change with the addition or deletion
of any row. Thus, we concentrate on pairs of databases
(D,D′) differing only in one row, meaning one is a subset of
the other and the larger database contains just one additional
row. Finally, to handle worst case pairs of databases, the
probabilities will be over the random choices made by the
privacy mechanism.

Definition 0.1. [2], [6] A randomized function K gives ε-
differential privacy if for all data sets D and D′ differing
on at most one row, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S],

where the probability space in each case is over the coin
flips of K.

The multiplicative nature of the guarantee implies that an
output whose probability is zero on a given database must



also have probability zero on any neighboring database, and
hence, by repeated application of the definition, on any other
database. This rules out direct viewing of raw data.

Any data access mechanism satisfying this definition
addresses all concerns one might have about the leakage
of her personal information, regardless of any auxiliary
information – other databases, newspapers, websites, and so
on – known to an adversary: even if the participant removed
her data from the data set, no outputs (and thus consequences
of outputs) would become significantly more or less likely.
For example, if the database were to be consulted by an
insurance provider before deciding whether or not to insure
a given individual, then the presence or absence of any
individual’s data in the database will not significantly affect
her chance of receiving coverage.

In all differentially private analyses there is a tension be-
tween minimizing privacy loss and maximizing utility. The
former is measured via the parameter ε; the latter may be
measured in various ways, including, for example, L1 loss,
L2 loss, predictive accuracy, and sample complexity. The
choice of ε is a social question complicated by the ways in
which privacy loss accumulates over a lifetime of exposure
to multiple analyses, as well as membership in multiple
databases. That is, the choice of ε also depends on the behav-
ior of differentially private algorithms under composition.

A differential privacy overview appears in [4]. See [3],
[5] for video presentations providing additional motivation
for the definition of differential privacy. The current
tutorial focuses on algorithmic techniques for achieving
differential privacy and the behavior of differential privacy
under composition. The tutorial closes with a discussion
of directions for future research. Slides for the covered
material are available at research.microsoft.com/en-us/
projects/DatabasePrivacy/, which also contains several
surveys, research papers, and links to relevant pages.
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