
Semi-supervised Learning to Rank
with Preference Regularization

Martin Szummer
Microsoft Research

Cambridge, UK
szummer@microsoft.com

Emine Yilmaz
Microsoft

Cambridge, UK
eminey@microsoft.com

ABSTRACT
We propose a semi-supervised learning to rank algorithm.
It learns from both labeled data (pairwise preferences or
absolute labels) and unlabeled data. The data can consist
of multiple groups of items (such as queries), some of which
may contain only unlabeled items. We introduce a prefer-
ence regularizer favoring that similar items are similar in
preference to each other. The regularizer captures manifold
structure in the data, and we also propose a rank-sensitive
version designed for top-heavy retrieval metrics including
NDCG and mean average precision.

The regularizer is employed in SSLambdaRank, a semi-
supervised version of LambdaRank. This algorithm directly
optimizes popular retrieval metrics and improves retrieval
accuracy over LambdaRank, a state-of-the-art ranker that
was used as part of the winner of the Yahoo! Learning to
Rank challenge 2010. The algorithm runs in linear time in
the number of queries, and can work with huge datasets.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; I.2.6 [Learning]: Parameter learning

General Terms
Algorithms

Keywords
Learning to rank, semi-supervised, partially labeled data,
regularization, LambdaRank

1. INTRODUCTION
A ranking function, or ranker, is a function that orders

items in a set based on their features. For example, a search
engine orders the documents in a corpus based on features of
document content and the search query, such as how many
query words the document contains. The ranking function

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

prefer

Figure 1: A semi-supervised ranking instance: la-
beled items, in the form of a preference pair (rhomb
and square), and unlabeled items (dots).

strives to maximize some ranking objective, e.g. to order
documents by descending relevance to the query. Modern
ranking systems can combine many features to build complex
ranking functions. Learning to rank algorithms aim to learn
ranking functions that achieve good ranking objectives on
test data. Such learning methods require labeled data for
training. In the case of search engines, the training data
consist of queries, documents and the labels are human
relevance judgments of documents with respect to queries.
To learn a complex ranking function, a significant amount of
labeled data may be required.

In many cases, it is difficult to acquire labeled data, but
easy to collect unlabeled training data. For example, unla-
beled queries and documents can be obtained mechanically
from query logs and web crawls, but the labeling requires
paid human assessors. When building systems for small mar-
kets, such as for minority languages, specialized domains, or
narrow query segments, it can be cost-ineffective to acquire
sufficient label data. It can also be impractical to keep large
label sets up to date; by the time judges have completed their
assessments, some label information may no longer be fresh.
As another example, when building personalized rankers for
individuals or enterprises, we can only expect individuals to
provide relatively few labeled examples.

A well-established retrieval scenario is relevance feedback,
in which a user issues a query, and labels a few of the resulting
documents from a (typically) hand-tailored ranker (BM25 or
language modeling), but leaves most documents unlabeled.

The ranker then incorporates the partially labeled results to
produce refined results.

In this paper, we propose semi-supervised learning to rank
methods. Such methods learn both from labeled as well as
unlabeled data, so called partially labeled data. Commonly,
there is a small amount of labeled data and a large amount
of unlabeled data. By leveraging both types of data, the
need for labeled examples can be reduced. In web search,
the labeled data consists of labeled (judged) query-document
features (or preference relationships between items), whereas
the unlabeled data are simply query-document feature vectors
without any labels (or preference information).

There is a wealth of work in semi-supervised classifica-
tion [27, 28] and regression. These tasks involve predicting
class labels or function values of individual items. The labels
are assigned to individual items and are absolute. In contrast,
there is comparatively little prior work in semi-supervised
ranking. Ranking has the different goal of learning a function
that orders multiple items correctly. In this setting, labeled
data can be provided as relative preferences among items.
Absolute labels are not required, but can still be used by
inducing pairwise preferences.

The key to semi-supervised learning is a principle connect-
ing the structure of the unlabeled data with the function to
be learned. In classification, a commonly used principle is
the cluster assumption [24], which states that data points
in each high-density region (cluster) should have the same
labels. Essentially, the unlabeled data define the extent of
the clusters, whereas the labeled data determine the class
of the clusters. In this paper, we formulate such a principle
for ranking: we favor that similar documents are similar in
preference to each other with respect to a query. We em-
body this principle in a preference regularizer that exploits
unlabeled data. The regularizer tries to capture manifold
structure in the data. The regularizer is general and can be
applied to any paired comparison ranking model.

For many problems, we desire ranking functions that cor-
rectly order the top of the ranking in particular. For this
purpose, we develop a rank-sensitive preference regularizer
that emphasizes the influence of unlabeled data at the top
of the ranking.

We apply this rank-sensitive regularizer to obtain a semi-
supervised version of LambdaRank [7], a state-of-the-art
learning to rank algorithm. LambdaRank can optimize
NDCG, mean average precision, and many other popular
ranking metrics. It has proven to be one of the most effective
and practical algorithms and the winner of the Yahoo! Learn-
ing to Rank challenge 2010 [9] used an used an ensemble of
Lambda-Gradient models.

Data and resources for this paper are available at http:

//purl.org/net/semisupervised-ranking-cikm11.html.

2. BACKGROUND
The semi-supervised ranking problem consists of a set of

ranking instances. Each ranking instance is a set X = {xi ∈
Rn} of items with feature vectors, to which we would like to
assign a ranking r, a permutation of the numbers 1, . . . , |X|.
Here ri refers to the rank of item i and the top (preferred)
rank is 1.

Figure 1 illustrates the semi-supervised ranking task. It
depicts two labeled items, which by themselves offer very
limited information for learning a ranking function. The dis-
tribution of unlabeled items suggests that there is additional

structure in the data; for example, it would make sense for
the ranking function to be smooth along the spiral shape.

In ranking, label information can take several forms, such
as absolute labels (e.g. relevance grades), preference relations,
complete orderings or partial orderings. We convert these
by inducing pairwise preference relations of form “item i is
preferred to j”, and denoted by i � j. Then, let L be a set of
pairs with given preferences, and U a set of items that will
be used in an unsupervised way (and whose preferences may
be unknown). We will typically include all available items in
U and induce all possible pairs within a rank instance.

Our task is to learn a function f(x;w) with parameters
w that ranks the items of a ranking instance X. We will
consider rankers that assign a score si = f(xi;w) to each
item, where high scores indicate preference. A ranking can
be produced simply by sorting the scores1. We will consider
probabilistic models that assign a probability of preference
P (i � j), based on score differences. Such models are referred
to as “paired comparison” models.

We will mostly employ the Bradley-Terry model [22], a
long-standing model that has been successfully applied in
learning to rank [6]. It associates a parameter si with each
item, which can be thought of as a score. Then it defines
the probability P (i � j) that item i is preferred to j to be
the logistic function of their score difference

P (i � j) = 1/(1 + e−(si−sj)). (1)

For example, if si > sj , then P (i � j) > 0.5. By construction,
pairwise preferences from the model are transitive, so that
P (i � j) > 0.5 and P (j � k) > 0.5 implies P (i � k) > 0.5; in
fact, P (i � j) and P (j � k) uniquely determine P (i � k) [6].

Let L be a set of observed preferences, L = {i1 � j1, j1 ≺
i1, i2 � j2, . . .} (where pairs (i,j) are included both ways (i,j)
and (j,i)). We can estimate item scores s (or parameters w)
by maximizing the likelihood

C =
∑

(i,j)∈L

Ii�j logP (i � j). (2)

Here the indicator Ii�j denotes the observed pairwise prefer-
ences, and Ii�j = 1 when i � j, and 0 otherwise.

For notational convenience, we have displayed just a single
ranking instance (consisting of a single set of items, and a
single rank ordering); in practice, we will have training data
consisting of multiple item sets (queries) with associated

orderings, {X(q), r(q)}, from which we learn a single ranking
function f . We note that some of the ranking instances may
be completely unsupervised. For example, in information
retrieval, the training set consists of multiple queries each
with an associated partial ranking of documents (where the
partial ranking may be empty). For a new test query, the
goal is to rank all the documents in the collection.

2.1 Related Work
Related semi-supervised work falls in three broad classes:

self-training, feature extraction approaches, and graph-based
regularization.

The self-training approach, termed pseudo relevance feed-
back, is very popular in retrieval. It assumes that the top
k retrieved results from the ranker are relevant, and uses
them to retrain the ranker. A variation of this is to take
the results below rank k to be negative (non-relevant); this

1We resolve ties randomly.

is a fairly safe assumption, as the vast majority of items
are non-relevant, and including such items improves ranker
training in practice.

Other self-training approaches [2, 33] and co-training [21]
first train a standard supervised ranker (RankBoost and
RankNet&BM25 respectively) on the labeled items. They
then apply a nearest neighbor classifier to assign labels to
k unlabeled items that are the most similar to the labeled
ones. Finally they retrain the supervised ranker including the
newly labeled points, and repeat the process. It is important
to control k to reduce the propagation of errors as noisily
classified points accumulate in the training set.

The feature extraction approach [14] also employs an ex-
isting supervised ranker (RankBoost), but apply it not to
the given features, but instead to the output of an unsuper-
vised feature extractor (kernel PCA) trained separately on
unlabeled data. The method thus involves two stages, and
the structure extracted from unlabeled data is not guided by
labeled data.

Graph-based regularization is another way to combine
labeled and unlabeled data, via a manifold regularizer (the
second term below) [5, 34, 12]. This is usually done in the
context of regression, where we have

min
f

∑
i∈L

‖f(xi)− yi‖2 + β
∑
i,j∈U

Wij‖f(xi)− f(xj)‖2. (3)

This formulation fits the function f to target labels yi while
also making sure that function values of similar items xi
and xj are close, according to a similarity measure Wij ,
commonly defined in terms of graph Laplacians.

This is typically formulated as a transductive approach,
meaning that unlabeled test data can (and must) be included
at learning time, something difficult to do when the goal is
to learn a model for ranking novel (unseen) queries. The ap-
proach can be extended to transductive ranking by handling
input given as pairwise preference relations [26], and the
function f can be a Gaussian process [11]. These approaches
are currently defined only for a single ranking instance, cor-
responding to a single graph, and have high computational
cost O(|U |3).

Rank-aggregation [10, 25] involves combining multiple
ranked lists to produce a better overall ranking, and has
been performed in a semi-supervised way by combining large-
margin preference constraints with a manifold regularizer.

A preliminary version of the present work was presented
in [30]. See also [29] for a broad overview that positions semi-
supervised ranking in the context of cost-sensitive machine
learning for information retrieval.

2.2 Motivations for Our Work
Our work is related to the graph-based regularization ap-

proaches, but formulates the regularizer specifically for paired
comparison ranking models, rather than for regression mod-
els. It is also the first algorithm to satisfy all of the following
properties:

Preference learning: labeled data is given as (or interpreted
as) pairwise item preferences; it neither requires [ordi-
nal] labels, nor assigns any [ordinal] labels. The output
is simply a ranked list.

End-to-end optimization of ranking metrics: it directly op-
timizes most established ranking metrics (e.g. mean

average precision, NDCG), including their emphasis of
top rank positions.

Single-stage learning: The learning is done jointly on labeled
and unlabeled data in a single stage. Information in
the labeled data can guide the extraction of structure
extracted from unlabeled data.

Multiple and completely unlabeled rank instances: in infor-
mation retrieval, the training data usually comes grouped
into queries, some of which have labeled and unlabeled
documents, but some of which have exclusively unla-
beled ones. Our method can utilize information from
queries for which no labeled items are available.

Scalability: linear time in the number of queries, and approx-
imately linear in the number of unlabeled items (sec-
tion 5.1).

Performance: it extends one of the most effective learning to
rank algorithms, LambdaRank, to the semi-supervised
setting.

Generality: the regularization principle can be applied to
many learning to rank algorithms and settings, be-
yond semi-supervised learning, such as cases with fully-
labeled data in order to reduce overfitting, adaptation,
etc.

In the following sections, we first introduce a preference
regularizer for learning to rank. This main idea is gener-
ally applicable to most paired learning to rank algorithms.
As LambdaRank is one of the strongest learning to rank
algorithms, we illustrate how to apply the regularizer to it.

3. PREFERENCE REGULARIZATION
The key to semi-supervised learning is a principle connect-

ing the structure of the unlabeled data with the function to
be learned. In classification, a commonly used principle is
the cluster assumption [24], which states that data points in
each high-density region (cluster) should have the same la-
bels. In regression, a principle is to assume that the function
value changes slowly in high-density regions (as formalized
by Eq. 3). In retrieval, it has been observed that closely
related documents tend to be relevant to the same query [16,
32], which is termed the “cluster hypothesis”.

We adapt the cluster hypothesis to a ranking context, and
require that similar documents be similar in preference to
each other, with respect to a query. Specifically, neither
document should be much preferred to the other; ideally,
they should tie in preference — an indifference of preference.

This preference similarity assumption is weaker than the
classification one, as it only constrains relative item order,
and not absolute score or class. For a pair of similar docu-
ments, it does not assume which document is preferred.

The two spaces we need to connect are: i) the feature space
of the unlabeled data, and ii) the preference space of the
ranking function. In the feature space, the type of structure
we hope to exploit is manifold structure of the unlabeled data.
To do this, we quantify the similarity between documents
i and j as the probability of transitioning between them
under a noise model. We base the transition probability on
the exponentiated distance d2ij = ‖xi − xj‖2/σ2

i between

the (suitably normalized) document feature vectors, where
σi is a length scale. However, we only allow transitions to
K-nearest neighbors NK(i), as we want to follow the local
manifold relying only on local distances. The probability of
an i to j transition is

q̂j|i =

{
e−d

2
ij/σ

2
i /

∑
k∈NK(i) e−d

2
ik/σ

2
i if j ∈ NK(i),

0 otherwise.
(4)

The probability of going there and back is then q̂ij = q̂i|j q̂j|i/
Z, where Z normalizes q̂ij to sum to one over all pairs.

In the preference space, we hope to constrain the preference
structure of the ranking function. To do so, we quantify the
probability that neither document is preferred to the other.
This is given by P (i � j)P (j � i), where P (i � j) =
1− P (i � j) = P (j � i). The lowest possible preference is
a tie, when P (i � j) = P (j � i) = 0.5. These probabilities
can be produced by the Bradley-Terry model, or any paired
comparison ranking model. Via this model, the probabilities
will depend on the ranking function with parameters w.

To form the regularizer, we must link the feature space
similarity to the preference similarity. Recall the manifold
regularizer for regression (Eq. 3) that penalized the output
difference between a pair of items (i, j) according to their
input similarity. In the ranking case, for every pair (i, j) we
have a probabilistic preference similarity, and a probabilistic
input similarity. We shall penalize the difference between
these two distributions according to their KL divergence.
This penalty is the same as the stochastic neighbor embed-
ding (SNE) objective [31], which ensures that probabilistic
neighborhood relations in a high-dimensional space are pre-
served when the points are embedded in a low-dimensional
space. One can think of this regularizer as penalizing bad
embeddings from the input space to the low-dimensional
preference space.

Definition. The preference regularizer is∑
(i,j)∈U

q̂ij logP (i � j)P (j � i). (5)

It strongly penalizes models for which similar documents
(high q̂ij) have dissimilar preference (probabilities close to 0
and 1, yielding a low product P (i � j)P (j � i)). However,
it only weakly penalizes the converse: dissimilar documents
can be similar in preference. This behavior springs from the
asymmetry of the KL-divergence. It is desirable, as we can
assume more about preferences between similar documents
than about dissimilar ones.

4. SEMI-SUPERVISED BRADLEY-TERRY
MODEL

To obtain a semi-supervised ranking model, we add the
preference regularizer to a paired comparison likelihood, ob-
taining

C =
∑

(i,j)∈L

Ii�j logP (i � j) + β
∑
i,j∈U

q̂ij logP (i � j)P (j � i).
(6)

The parameter β weights the preference regularizer against
the likelihood. The combination of these two terms mirrors
manifold regularization (Eq. 3).

The above is general and applies to any probabilistic rank-
ing model that can be expressed in terms of paired com-
parison probabilities. For example, we can apply it to the

−8 −4 0 4 8
0

4

8

score difference

p
e
n
a
lt
y

manifold
 reg

preference
 reg (BT)

Figure 2: Comparison between the preference regu-
larizer applied to the Bradley-Terry model and the
manifold regularizer. We have subtracted a constant
from the preference regularizer to align it with the
manifold regularizer at the origin (constant offsets
have no effect on training).

Bradley-Terry model by substituting Eq. 1 to get

C =
∑

(i,j)∈L

Ii�j log
1

1 + e−(si−sj)
(7)

+ β
∑
i,j∈U

q̂ij log
0.5

1 + cosh(si − sj)
. (8)

In the context of the Bradley Terry model, we see that the
regularizer operates on score differences (si − sj), which it
tries to reduce proportionally to q̂ij . We can directly compare
it with the manifold regularizer, since that also operates
on score differences. The manifold regularizer imposes a
quadratic penalty, whereas the preference regularizer grows
linearly for large score differences (Figure 2). The latter
is milder. Importantly, our regularizer is matched to the
ranking task and the chosen Bradley-Terry model, so it should
nicely balance the likelihood; a score-difference for labeled
data will be treated consistently with a score-difference in
unlabeled data, which would not be the case if one added a
manifold regularizer to a ranking likelihood.

Learning to Rank Algorithm. At this point, we can al-
ready design a simple semi-supervised learning to rank al-
gorithm. Given scores, the Bradley-Terry model defines
pairwise preference probabilities, but our task is to go from
item features to a ranking. So, we could for example choose
a neural network to assign the scores si for the Bradley-Terry
model. To obtain a semi-supervised ranker, we then simply
include the preference regularizer during training. We learn
it by maximizing regularized likelihood (Eq. 7 and 8) via
gradient descent with respect to w.

Experiment on Spiral Data. Here we train a ranker on
the spiral dataset from Figure 1. We choose the ranking
function to be a 1-hidden layer neural network, with x and
y coordinates as inputs, and 8 hidden units. First, we train
the ranker using only labeled data. As shown in the contour
plot in Figure 3 (left), we obtain a ranking function f(·)
that decreases uniformly from left to right. This function
correctly ranks the given labeled preference, but it ignores
the structure in the unlabeled points.

Next, we add the preference regularizer, employing K = 6
nearest neighbors, and with length scale σi = 0.2 for all i
(the input data ranges from -1 to 1 along both axes). Semi-
supervised training then yields a ranking function that de-

−3

−2

−1

0

1

2

3

4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3: Left: Ranking function trained in a supervised way on a single preference pair (the rhomb is
preferred to the square), ignoring unlabeled data. Right: ranking function trained in a semi-supervised way
on a single preference pair plus unlabeled data.

creases smoothly along the spiral shape, while still satisfying
the labeled preference (Figure 3, right).

This approach is adequate for generic ranking scenarios.
However, we now move on to a more sophisticated approach,
suitable to retrieval problems.

5. SEMI-SUPERVISED RANK-SENSITIVE
BRADLEY-TERRY MODEL

In this section we extend the semi-supervised ranking
framework to fit rank-sensitive objectives used in information
retrieval, such as normalized discounted cumulative gain
(NDCG) [17]. These objectives are rank-sensitive in that
they take rank position of the documents into account. We
focus on NDCG here, but note that it is straightforward to
derive semi-supervised objectives for other popular objectives,
such as mean average precision (MAP) and reciprocal rank
(RR) metrics, using results from [13]. Ranking objectives give
superior performance compared to classification or regression
objectives in retrieval applications [23].

NDCG. The NDCG ranking metric captures two common
requirements. Firstly, it focuses on the top of the ranking by
weighting rank positions according to a decreasing discount
function R(ri). Secondly, it caters for multi-grade relevance
information given in terms of ordinal labels li for items
i, by assigning a utility value L(li) for each label. The
relevance label li of a document can be 0, 1, 2, etc. depending
on whether the document is nonrelevant, relevant, highly
relevant, etc. for a query, respectively. Then, the NDCG
objective is defined as

NDCG =
1

DCGmax

∑
i

L(li)R(ri), (9)

where DCGmax is the maximum value of the sum achieved
by an ideal ranking. L(li) is usually referred to as a gain
function which measures the utility (“gain”) a user obtains
by observing a document that has label (relevance) li. We
use L(li) = 2li − 1 as it is the most commonly used gain
function in the literature [7].

A useful quantity is the change in the metric value if items
i and j were to be swapped in the ranking. We denote this
swap cost by |∆ij |, and it is given by

|∆ij | = |L(li)R(ri) + L(lj)R(rj)− L(li)R(rj)− L(lj)R(ri)|.
(10)

For notational convenience we will also absorb the DCGmax

normalization into |∆ij |. For unlabeled data, we introduce
an unlabeled swap cost that depends only on the discount
difference between items in the ranking (as there are no
labels):

|∆U
ij | = |R(ri)−R(rj)|. (11)

Rank-sensitive Bradley-Terry. We incorporate the rank-
sensitivity of retrieval metrics into the Bradley-Terry model
by weighting item pairs in the likelihood by swap cost |∆ij |,
to produce the objective

C =
∑

(i,j)∈L

|∆ij | Ii�j logP (i � j). (12)

The gradients of this objective coincide with the gradients
that were manually crafted for the LambdaRank algorithm [7].
We note that LambdaRank successfully reaches optima of
NDCG and MAP [13] using those gradients. This fact sup-
ports the design of the proposed rank-sensitive Bradley-Terry
objective.

Rank-sensitive Preference Regularization. We would like
the preference regularizer to be rank-sensitive in a similar
way to the ranking objective above. Hence, we analogously
weight item pairs in the preference regularizer by their unla-
beled swap cost:
Definition. The rank-sensitive preference regularizer is
given by ∑

i,j∈U

|∆U
ij | q̂ij logP (i � j)P (j � i). (13)

dCL x L dCU dCL+dCL
dsi dsi dsi

Figure 4: Example gradients during a run of SS-
LambdaRank. dCL/dsi and dCU/dsi refer to the gra-
dients computed using labels and document similar-
ities (unlabeled), respectively.

Semi-supervised Rank-sensitive Bradley-Terry Model.
To obtain a semi-supervised ranking model, we add the
rank-sensitive Bradley-Terry objective to the rank-sensitive
regularizer:

C =
∑

(i,j)∈L

|∆ij | Ii�j logP (i � j) (14)

+ β
∑
i,j∈U

|∆U
ij | q̂ij logP (i � j)P (j � i), (15)

with gradients

dC/dsi =
∑

{j|(i,j)∈L}

|∆ij | (Ii�j − P (i � j)) (16)

+ β
∑
j∈U

|∆U
ij | q̂ij (0.5− P (i � j)), ∀i. (17)

Comparing the labeled and unlabeled terms (Eq. 14 and 15),
one sees that the document similarity probability q̂ij serves
a role similar to preferences Ii�j in the labeled data. One
difference between the labeled and unlabeled gradients, is
that the unlabeled gradient (Eq. 17) always tries to reduce
the difference in ranks between i and j; the gradient sign
is controlled by 0.5− P (i � j) which is positive if i ≺ j, or
0 if equal, or negative otherwise. In contrast, the labeled
gradients (Eq. 16) can either increase or decrease the rank
difference depending on the labels, as Ii�j − P (i � j) is
positive when i � j or negative when j � i (or 0).

The gradients can be intuitively visualized as “forces” act-
ing on each pair of documents (Figure 4), pushing the more
relevant document up in the ranking, and the other one down.
The resultant force on document i is a sum over forces from
other documents j (as shown in Eq. 16 and 17). The forces
depend on the current ranks and scores, as well as the labels
of the documents. In the figure, the column marked x shows
items in the training data, where items with similar shapes
are assumed similar to each other (squares and stars). The
L column shows the labels of the items in the training data
(positive and negative), and dCL/dsi shows the magnitude
and direction of the labeled gradients. For each pair of items,
positive items are pushed up and negative items are pulled
down in the ranking. The force magnitude is dictated by the
difference in rank between the two items. Similarly, dCU/dsi
shows the unlabeled gradients for the data. Similar items

are pulled towards each other. The last column in the figure
shows the total semi-supervised gradient.

Learning to Rank Algorithm: SSLambdaRank.
We now proceed to implement the semi-supervised rank-

sensitive model above in a learning algorithm, which we will
call SSLambdaRank. We choose the ranking function si =
f(xi;w) to be a 1-hidden layer neural network, although any
differentiable function will do. We aim to calculate dC/dw =∑
i(dC/dsi)(dsi/dw) for gradient descent training.
The challenge in learning the ranking function f(x;w) is

that the ranks are discontinuous in the parameters w; in
particular, the ranking is determined by sorting the scores
{si}. The swap costs |∆ij | and |∆U

ij | both depend on ranks,
which implies that the gradients are discontinuous in the
parameters w.

LambdaRank [7] is an algorithm that successfully applies
stochastic gradient descent in this discontinuous setting.
Given a parameter state w, it calculates item scores, sorts
the scores to determine item ranks, calculates swap costs
|∆ij |, computes stochastic gradients, and takes a gradient
step to update the parameters. The updated parameters
may yield a discontinuous change in |∆ij |, but the algorithm
works well empirically. In fact, LambdaRank is state of the
art in ranking: the winning entry in the Yahoo! Learning to
Rank Challenge [9] used an ensemble of Lambda-Gradient
models, including LambdaRank. SSLambdaRank is applied
in the same way, but to the semi-supervised gradients.

5.1 A (Near) Linear Time Algorithm
In semi-supervised learning, we often want to use very

large unlabeled datasets, thus computational efficiency is
required. The proposed learning algorithms scale linearly
in the number of queries. In our settings, the scalability is
dominated by the number of queries, as the number of items
per query is bounded by 1000 (the max number of documents
the search engine returns per query), so overall we observe
linear scaling behavior.

However, in other settings, scalability may be dominated by
the number of items per query (both labeled and unlabeled).
A naive implementation that considered all item pairs would
scale quadratically in the number of items. Fortunately, our
formulation regularizes only with respect to the K nearest
neighbors of each item in the feature space, which reduces to
linear scaling behavior. This also has the benefit of trusting
the feature space dissimilarity dX only in local neighborhoods,
giving it a local manifold behavior.

We also require a preprocessing step to find the K nearest
neighbors of every item. Here we can apply approxima-
tion techniques such as locality sensitive hashing, which can
bucket items in near linear time, or use fast exact K-nearest
neighbor techniques [4].

Finally, the learning algorithm requires sorting item scores
to form the ranked list for each query. This step can be done
in linear time via radix sort, given that the scores have finite
precision.

6. EXPERIMENTAL RESULTS

6.1 Datasets
In order to demonstrate the quality of the SSLambdaRank

algorithm, we use two different datasets: TREC 6, 7, 8 adhoc

Features
1. BM25
2. LogBM25
3. LM ABS
4. LM DIR
5. LM JM
6. LogNormalizedTF
7. SumLogTF
8. TF
9. TF IDF
10. LogTF IDF V2
11. NormalizedTF

Table 1: Feature Set

tracks, and the semi-supervised Million Query 2008 (MQ
2008) dataset [1] from LETOR 4.0 [23].

6.1.1 The TREC Ad-hoc Dataset
The first dataset we use consists of queries and documents

from the TREC 6, 7 and 8 adhoc tracks, as set up by Aslam
et al. [3]. The dataset has depth-100 pools from the TREC
tracks, along with the associated relevance judgments. In
total, there are 150 queries in the dataset, and approximately
1000 labeled documents per query.

The features used are those of LETOR 3.0, excluding web
features that require link information, which is not available
for this corpus. The features (Table 1) are computed over
the document text with and without the title, resulting in 22
features in total. Detailed feature descriptions can be found
in [23].

In order to avoid judging the entire document collection,
the most commonly used technique is depth-m pooling, where
in the case of depth-100 pooling, for example, only the top 100
documents retrieved by the systems are judged and the rest
of the documents are assumed nonrelevant. We will simulate
the effect of varying the number of labeled documents per
query, in a similar spirit to depth pooling. For this, we include
judgments for m of the labeled documents with the highest
BM25 [20] score for each query, varying m ∈ {2, 3, 5, 10, 15}
and treating the rest of the documents as unlabeled. In this
way, we include labels for likely relevant documents that
appear towards the top of the ranking, as commonly done in
the literature [23].

The distance between documents, dX() was computed us-
ing two different approaches: one content-based, the other
feature-based. In the content-based approach, we first identi-
fied the top 50 words in the labeled documents with highest
tf-idf score, and represented each document only using these
terms, to compute Euclidean distance between such tf-idf
document vectors. In the feature-based approach, we used
the Euclidean distance between the ranking features (BM25,
LogBM25, LM ABS, etc.) for the documents. The goal
of this was to examine whether semi-supervised learning
could help even when exactly the same features were used
for regularization as for ranking.

6.1.2 The Million Query 2008 Dataset
The second dataset we use is the semi-supervised Million

Query 2008 (MQ 2008) query set [1] from LETOR 4.0 [23].
The MQ 2008 dataset uses the Gov2 web page collection

(containing approximately 25M pages). It consists of 800
queries, with approximately 15000 labeled documents and

88000 unlabeled documents in total. The LETOR 4.0 data
also provides cosine-similarities between tf-idf document vec-
tors, which we directly used as our distances dX().

6.2 Experimental Setup
Both datasets were split in five parts: three for training,

one for validation, and one for testing. The splits were done
five ways for 5-fold cross validation. The documents in the
training and validation sets are samples of the complete
collection, as described above. The test set consists of the
complete set of documents. We report averages across the 5
folds.

The neural network architecture was tuned for the super-
vised case where we only use the labeled documents (L only)
by varying the number of hidden units; 3 hidden units per-
formed best on the validation set. Even though the optimal
number of hidden units for our semi-supervised algorithm
may be larger, we used the same model size as the supervised
LambdaRank algorithm to ensure the same learning capacity
in both cases.

We also validated other important model parameters: β,
the weight of labeled and unlabeled data, was varied between
0.1 and 5 in 0.1 increments, and the best value on the valida-
tion set was chosen. Likewise, the epoch for early stopping
was validated. Other parameters were fixed to reasonable de-
faults: the learning parameters K=5, σi=∞ for all i, yielding
q̂ij=0.2 for K neighbors or 0 otherwise. The effect of number
of number of neighbors, K, will be analyzed in section 6.3.3.

RankBoost [15] and Ranking SVM [19] are two commonly
used learning to rank algorithms. Semi-supervised Rank-
Boost [2] and Transductive SVM (TSVM) [18] are semi-
supervised variations of these algorithms. TSVM is really
a classification algorithm, but is applicable since the collec-
tions have absolute judgments. We use these algorithms as
baselines. For semi-supervised RankBoost, the weight of
unlabeled documents needs to be specified (similar to our β
parameter). To set this value for RankBoost, we used the
same validation approach as we used for specifying the β
parameter for our algorithm.

6.3 Results
We use two different retrieval tasks to compare the perfor-

mance of different learning to rank algorithms: ranking novel
queries, and a relevance feedback task. When ranking novel
queries, training and test sets are separate. In the relevance
feedback task, a user issues a query and labels a few of the
resulting documents from a traditional ranker (e.g. BM25).
Then the system trains a query-specific ranker incorporating
the user feedback, and re-ranks the collection.

6.3.1 Ranking Novel Queries Task
The left plot in Figure 5 shows the quality of our algo-

rithm on the TREC test set (averaged across all five folds).
All LambdaRank variants are trained to optimize NDCG
and the accuracy is measured using the NDCG metric at
rank cutoff 10. Our semi-supervised algorithm is trained on
varying numbers of labeled preference pairs from 90 training
queries, and all documents associated with those queries
(nearly 90,000) are used as unlabeled data. All LambdaRank
methods work on preference pairs; a very large number of
pairs are induced from the labels: about 3500 labeled pairs
and over 40 million unlabeled pairs. This experiment thereby
demonstrates the scalability of our algorithms.

10
2

10
3

0.1

0.2

0.3

0.4

0.5
Novel Queries Task (TREC 6−8)

Number of labeled preference pairs

N
D

C
G

(1
0
)

LambdaRank L

SSLambdaRank L&U

SSLambdaRank L&U Cont

Upper Bound

10
2

10
3

10
4

10
5

0.48

0.49

0.5

0.51

0.52

0.53
Novel Queries Task (LETOR MQ 2008)

Number of induced labeled pairs

N
D

C
G

(1
0

)

LambdaRank L

SSLambdaRank L&U

Figure 5: NDCG accuracy at rank cutoff 10 for the test set averaged over 5 folds for the (left) TREC
and (right) Million Query 2008 datasets. We show supervised methods (dashed lines, suffix L) and semi-
supervised methods (solid lines, suffix L & U). Feature-based SSLambdaRank has suffix (L & U), content-
based SSLambdaRank has suffix (L & U Cont).

The Upper bound, is attained by taking all ∼150,000 docs
and using them in supervised LambdaRank providing labels,
which is “cheating” compared to semi-supervised methods
which treat most of these documents as unlabeled. This
corresponds to an ideal case in which the true labels of the
unlabeled data became available.

The figures show that SSLambdaRank using either dis-
tance metric outperforms LambdaRank (LambdaRank L).
Since the LambdaRank algorithms use preference pairs in
training, the x axis in this plot displays the number of pref-
erence pairs (on a log scale) as opposed to the number of
labeled documents per query. Except for the last data point
(with the most labeled pairs), the differences between SS-
LambdaRank and LambdaRank are statistically significant in
all cases according to the Wilcoxon sign-rank test at p = 0.05
significance level. We note that the semi-supervised ranker
still benefits from unlabeled data despite the large number
of labeled preferences.

The right plot of Figure 5 shows the quality of our algo-
rithm on the LETOR MQ2008 dataset. In this experiment,
we only use the document similarity values that were provided
by the LETOR collection. To analyze the effect of varying
the number of labeled examples, we form different train-
ing sets by sampling l% of the documents from each query
(l ∈ 5, 10, 20, 50, 100), assuming the sampled documents are
labeled and the rest of the documents are unlabeled. The x
axis in the plot shows the number of induced pairs (on a log
scale) when l% of documents are used from the complete set.
SSLambdaRank beats LambdaRank consistently. All the
improvements are statistically significant according to the
Wilcoxon sign-rank test at p = 0.05 significance level. Since
the LETOR MQ2008 dataset does not contain the labels for
all documents (the collection itself is partially judged), no
Upper bound information is available for this dataset.

The two semi-supervised baselines, semi-supervised Rank-
Boost and Transductive SVM could not be used in this
setting. The semi-supervised RankBoost code [2] does not

2 3 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6
Relevance Feedback Task

Number of labeled documents

N
D

C
G

(1
0
)

RankingSVM L

TSVM L&U

RankBoost L

RankBoost L&U

LambdaRank L

SSLambdaRank L&U

SSLambdaRank L&U Cont

Figure 6: NDCG accuracy at rank 10 for the rele-
vance feedback task. We show supervised methods
(dashed lines, suffix L) and semi-supervised methods
(solid lines, suffix L & U).

apply to the problem of ranking unseen queries as it only
works for a single rank instance (i.e., train on a single query,
test on the same query). For both datasets, Transductive
SVM was trained for more than two days without terminat-
ing. Our proposed algorithm can be trained in an hour even
for a large dataset as the MQ 2008 collection.

6.3.2 Relevance Feedback Task
Next, we focus on the relevance feedback task as this task is

approachable by the other semi-supervised algorithms. Here,
we can compare the quality of our semi-supervised algorithm
with that of our two baselines (semi-supervised RankBoost

10
0

10
1

10
2

0.32

0.34

0.36

0.38

0.4

Number of nearest neighbors

N
D

C
G

(1
0
)

Effect of the number of nearest neigbors

Figure 7: Effect of K, the number of nearest neigh-
bors, on SSLambdaRank (L & U cont), for the novel
queries task.

and Transductive SVM). In the relevance feedback task, a
user issues a query and labels a few of the resulting documents
from a traditional ranker (BM25). The system then trains a
query-specific ranker incorporating the user feedback, and
re-ranks the collection (test on the query the algorithm is
trained on, similar to the assumption the semi-supervised
RankBoost algorithm is based on). This is a transductive
setting, as both labeled and unlabeled documents for the
test query are available at training time. Since the training
is done per query, the training data is much smaller. Hence,
Transductive SVM can be run in a reasonable amount of
time. For this task, we only report results from the TREC
dataset.

Figure 6 shows retrieval accuracy for varying numbers of
labeled training documents for the relevance feedback task.
Since the relevance feedback experiment involves training
on a single query and testing on the same query (excluding
the training documents), we plot the mean NDCG across
all queries. The figure shows that the SSLambdaRank us-
ing either distance metric outperforms LambdaRank. The
differences between SSLambdaRank and LambdaRank are
statistically significant in all cases according to the Wilcoxon
sign-rank test at p = 0.05 significance level. Furthermore, our
proposed algorithm consistently and significantly (p = 0.05)
outperforms the other two semi-supervised algorithms.

6.3.3 Effect of the Number of Nearest Neighbors (K)
One important parameter in SSLambdaRank algorithm

is the number of nearest neighbors K. Figure 7 explores
the effect of K for the novel queries task using 300 labeled
preference pairs per query for the TREC collection. K = 10
nearest neighbors results in the best performance.

Note that in all experiments we used K = 5 number of
nearest neighbors. The performance of SSLambdaRank could
be further improved had we used K = 10 neighbors.

7. DISCUSSION AND CONCLUSIONS
We proposed a preference regularizer for semi-supervised

ranking; and showed how it could be used to extend Lamb-

daRank to a semi-supervised setup. Experiments show that
the proposed algorithm outperforms both the supervised
version of itself as well as other available semi-supervised
baselines.

Even though our semi-supervised algorithm can work with
absolute labels, our guiding principle in this paper has been
to design an algorithm for relative as well as absolute labels.
We learn from neighborhood relations in the feature space,
and preference relations in the preference space. Preferences
are the essence of ranking, distinguishing it from classifica-
tion and ordinal regression. Importantly, studies show that
humans produce more consistent rankings and do so quicker
when giving preferences rather than absolute labels [8]. Pref-
erence relations arise naturally as user choices from lists (e.g.
clicks on search results). Thus, there are strong justifications
for algorithms in this category.

We could have been more purist by optimizing a prefer-
ence metric (e.g. ppref) rather than NDCG that employs
absolute labels. The algorithm is designed for this setting,
but preference metrics are not well-established yet.

The regularizer exploits structure in the unlabeled data.
We have chosen to focus on manifold structure. However,
the question remains what part of the manifold should be
included; equivalently, what pairs of data points should be
used in the regularizer? We included unlabeled data retrieved
at the top of the ranking; since common ranking objectives
emphasize top ranks, unlabeled data in that region regularizes
the ranking function where it matters the most. Random
items would generally be non-relevant and spread out thinly
in the space, having little in common with each other. With
the rank-sensitive regularizer, one could include all unlabeled
data, as data at the bottom would be discounted anyway.

Future work could explore the effectiveness of different
label information: depth (many preferences for few rank
instances (queries)) vs. breadth (few preferences for many
rank instances (queries)), as well as preferences within top
vs. across top-bottom for a ranking instance. It may also
be interesting to apply the regularizer with differentiable
hypothesis classes other than neural networks, in particular
random forests.

Acknowledgements
We thank Massih Reza Amini for making the semi-supervised
RankBoost [2] implementation available, and Tom Minka
and Vishwa Vinay for helpful discussions.

8. REFERENCES
[1] J. Allan, B. Carterette, J. A. Aslam, V. Pavlu, and

E. Kanoulas. Million query track 2008 overview. In The
Sixteenth Text REtrieval Conference Proceedings
(TREC 2008). National Institute of Standards and
Technology, 2009.

[2] M. R. Amini, T. V. Truong, and C. Goutte. A boosting
algorithm for learning bipartite ranking functions with
partially labeled data. In SIGIR Conf. Research and
Development in Information Retrieval, 2008.

[3] J. A. Aslam, E. Kanoulas, V. Pavlu, and E. Yilmaz.
Document selection methodologies for efficient and
effective learning-to-rank. In SIGIR Conf. Research and
Development in Information Retrieval, 2009.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In Proc. Intl. conf. World Wide
Web (WWW), pages 131–140, 2007.

[5] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold
regularization: a geometric framework for learning from
labeled and unlabeled examples. Journal of Machine
Learning Research, 2006.

[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Intl. Conf. on Machine
Learning (ICML), 2005.

[7] C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank
with nonsmooth cost functions. In Advances in Neural
Information Processing Systems (NIPS), 2006.

[8] B. Carterette, P. Bennett, D. Chickering, and
S. Dumais. Here or there: Preference judgments for
relevance. In European Conf. Information Retrieval
(ECIR), 2008.

[9] O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. In Proc. Yahoo! Learning to Rank
Challenge 2010, 2011.

[10] S. Chen, F. Wang, Y. Song, and C. Zhang.
Semi-supervised ranking aggregation. Information
Processing & Management, 47:415–425, May 2011.

[11] W. Chu and Z. Ghahramani. Extensions of gaussian
processes for ranking: Semi-supervised and active
learning. In NIPS workshop on Learning to Rank, 2005.

[12] F. Diaz. Regularizing query-based retrieval scores.
Information Retrieval, 10(6):531–562, 2007.

[13] P. Donmez, K. M. Svore, and C. J. Burges. On the local
optimality of Lambdarank. In SIGIR Conf. Research
and Development in Information Retrieval, 2009.

[14] K. Duh and K. Kirchhoff. Learning to rank with
partially-labeled data. In SIGIR Conf. Research and
Development in Information Retrieval, 2008.

[15] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969,
2003.

[16] N. Jardine and C. J. van Rijsbergen. The use of
hierarchic clustering in information retrieval.
Information Storage and Retrieval, 7:217–240, 1971.

[17] K. Järvelin and J. Kekäläinen. IR evaluation methods
for retrieving highly relevant documents. In SIGIR
Conf. Research and Development in Information
Retrieval, 2000.

[18] T. Joachims. Transductive inference for text
classification using support vector machines. In Intl.
Conf. on Machine Learning (ICML), pages 200–209,
1999.

[19] T. Joachims. Optimizing search engines using
clickthrough data. In Intl. conf. Knowledge discovery
and data mining (KDD), pages 133–142, 2002.

[20] K. S. Jones, S. Walker, and S. E. Robertson. A

probabilistic model of information retrieval:
development and comparative experiments. In
Information Processing & Management, pages 779–840,
2000.

[21] M. Li, H. Li, and Z.-H. Zhou. Semi-supervised
document retrieval. Information Processing &
Management, 45(3):341–355, 2009.

[22] J. Marden. Analyzing and Modeling Rank Data.
Chapman & Hall, 1995.

[23] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A

benchmark collection for research on learning to rank
for information retrieval. Information Retrieval Journal,
2010.

[24] M. Seeger. Learning with labeled and unlabeled data.
Technical Report, Dec. 2002.

[25] D. Sheldon, M. Shokouhi, M. Szummer, and
N. Craswell. LambdaMerge: Merging the results of
query reformulations. In Conf. Web search and data
mining (WSDM), pages 795–804, 2011.

[26] A. Shivani. Ranking on graph data. In Intl. Conf. on
Machine Learning (ICML), 2006.

[27] M. Szummer and T. Jaakkola. Kernel expansions with
unlabeled examples. In Advances in Neural Information
Processing Systems (NIPS), volume 13, pages 626–632.
MIT Press, 2001.

[28] M. Szummer and T. Jaakkola. Partially labeled
classification with markov random walks. In Advances
in Neural Information Processing Systems (NIPS),
volume 14, pages 945–952. MIT Press, 2002.

[29] M. Szummer and F. Radlinski. Cost-sensitive machine
learning for information retrieval. In Krishnapuram, Yu,
and Rao, editors, Cost-sensitive Machine Learning.
Chapman and Hall/CRC, 2011.

[30] M. Szummer and E. Yilmaz. Semi-supervised ranking
via ranking regularization. In Advances in Ranking,
workshop at NIPS, 2009.

[31] L. van der Maaten and G. Hinton. Visualizing data
using t-SNE. Journal of Machine Learning Research,
9:2579–2605, 2008.

[32] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, 2nd ed edition, 1979.

[33] J.-N. Vittaut and P. Gallinari. Supervised and
semi-supervised machine learning ranking. In
Comparative Evaluation of XML Information Retrieval
Systems, volume 4518 of Lecture Notes in Computer
Science, pages 213–222. Springer, 2007.

[34] C. Wang, E. Yilmaz, and M. Szummer. Relevance
feedback exploiting query-specific document manifolds.
In Conf. Information and Knowledge Management
(CIKM), 2011.

