
Relevance Feedback Exploiting Query-Specific Document
Manifolds

Chang Wang∗, Emine Yilmaz†,‡, Martin Szummer‡

wangchan@us.ibm.com, eminey@microsoft.com ,szummer@microsoft.comeyilmaz@ku.edu.tr
∗ IBM T. J. Watson Research Lab, New York, USA

† Koc University, Istanbul, Turkey
‡ Microsoft Research, Cambridge, UK

ABSTRACT
We incorporate relevance feedback into a learning to rank
framework by exploiting query-specific document similari-
ties. Given a few judged feedback documents and many re-
trieved but unjudged documents for a query, we learn a func-
tion that adjusts the initial ranking score of each document.
Scores are fit so that documents with similar term content
get similar scores, and scores of judged documents are close
to their labels. By such smoothing along the manifold of
retrieved documents, we avoid overfitting, and can therefore
learn a detailed query-specific scoring function with several
dozen term weights.
Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval
General Terms: Algorithms
Keywords: Relevance Feedback, Manifold Learning

1. INTRODUCTION
Relevance feedback has been shown to be an effective way

of improving accuracy in interactive information retrieval.
Hence, many different algorithms that can use explicit or
implicit feedback have been proposed in the literature.

Relevance feedback for probabilistic retrieval models works
by changing the estimation of model parameters using the
information provided by the relevant documents [10]. In the
case of language modeling, on the other hand, feedback doc-
uments are used to alter the estimate of the query language
model [7] or the relevance model [8]. Rocchio’s algorithm
incorporates relevance feedback information into the vector
space model [11]. It is based on constructing a centroid vec-
tor from the feedback documents and moving the original
query vector towards this centroid vector.

Recently, several machine learning techniques have been
proposed to solve relevance feedback problems. Among them,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

global ranking using continuous conditional random fields
(C-CRF) [9] is the closest to our work. C-CRF [9] exploits
a ranking model defined as a function on all the judged doc-
uments with respect to the query. To infer the parameters
of the ranking models, C-CRF also considers similarity be-
tween documents based on the contents. There are two main
differences between C-CRF and our work. First, C-CRF
does not make use of unjudged documents in learning. This
could lead to overfitting problems, since the number of the
judged documents in the case of relevance feedback is typ-
ically small. Second, C-CRF uses raw document contents
to compute similarity between documents, while we are us-
ing query-specific content from each document for similarity
computation.

During the past few years, there has been significant change
in retrieval systems. Most modern search engines are now
based on the learning to rank approach, which involves cal-
culating a rich and diverse set of features that capture some
aspect of relevance of the submitted query and a document.
They then learn a combination of these features based on
training data [3, 4]. Most relevance feedback algorithms are
based on expanding the query by adding weighted terms
from the feedback documents [11]. Even though learning to
rank approaches are now popular for ranking, few relevance
feedback algorithms follow that paradigm [6].

The challenge in applying the learning to rank paradigm
stems from the fact that the number of given (judged) rel-
evance feedback documents is very small, typically ten or
less. At the same time the number of possible expansion
terms is very large, on the order of vocabulary size, yielding
a very large space of potential expansions to be considered.
This unfavorable proportion of a small number of judged
relevance feedback documents to the huge expansion space
makes the problem difficult. An attempt at applying learn-
ing to rank methods involves taking an initial base ranker
and adapting it by training it with the relevance feedback
documents for the query; however, when this is done naively,
it leads to overfitting (to the labelled documents).

In this paper, we incorporate relevance feedback into a
learning to rank framework by exploiting query-specific doc-
ument similarities. Given a few judged feedback documents
and many retrieved but unjudged documents for a query, we
learn a function that adjusts the initial ranking score of each
document. Scores are regularized so that documents with
similar term contents get similar scores, and scores of judged

documents are close to their labels. By such smoothing
along the manifold of retrieved documents, we avoid overfit-
ting, and can therefore learn a detailed query-specific scor-
ing function. Using data from TREC and OHSUMED col-
lections, we show that our algorithm produces significantly
better results than relevance feedback methods trained only
on judged feedback documents.

2. THE ALGORITHM
For each query: A = {a1, · · · , am} represents the set of

retrieved documents, where ai is the original representation
(using features like BM25, tf-idf, etc) of document i. B =
{b1, · · · , bl}, represents the judgement, where bi is ai’s label
(l << m). For example, we can use ‘+1’ to represent “rele-
vant”, ‘-1’ to represent “non-relevant”. B is a 1 × l matrix.
The initial ranking model F0 provides a ranking score for
each document. X = {x1, · · · , xm} is a t×m matrix, where
xi is the new representation of document i. The desired ad-
justment Y = {y1, · · · , yl} = {b1 − F0(a1), · · · , bl − F0(al)},
Y is a 1 × l matrix.

The problem is formalized as follows: given a document
set X = {x1, · · · , xm} represented over words, and the de-
sired adjustment Y = {y1, · · · , yl} for the judged documents
{x1, · · · , xl}, where l << m, we want to construct a map-
ping function f to project any document xi to a new space,
where fT xi matches xi’s desired adjustment yi. In addition,
we also want f to preserve the document manifold topology,
such that similar documents get similar adjustments.

2.1 Notation
Notations used in the algorithm are as follows: W is a

weight matrix, where Wi,j = e−‖xi−xj‖2
models the similar-

ity of xi and xj . ‖xi −xj‖ stands for the Euclidean distance
between xi and xj in the vector space. D is a diagonal ma-
trix: Di,i =

∑
j Wi,j . L = D−0.5(D − W)D−0.5 is the nor-

malized graph Laplacian matrix corresponding to W . I is

an l× l identity matrix. U =

(
I 0
0 0

)
is an m×m matrix.

µ is a weight scalar. “Gap” vector V = [y1, · · · yl, 0, · · · , 0] is
a 1 × m matrix. ()+ represents pseudo inverse.

2.2 The Cost Function
Solution to the problem in Section 2.1 is given by the

mapping function f to minimize the following cost function:

C(f)

=
∑
i≤l

(fT xi − (bi − F0(ai)))
2 + µ

∑
i,j

(fT xi − fT xj)
2Wi,j .

=
∑
i≤l

(fT xi − yi)
2 + µ

∑
i,j

(fT xi − fT xj)
2Wi,j .

The first term of C(f) is based on judged documents, and
penalizes the difference between the mapped result of xi and
its desired adjustment yi. The second term does not take
label information into account. It guarantees that the neigh-
borhood relationship (defined by document contents) within
X will be preserved in the mapping. When xi and xj are
similar, the corresponding Wi,j is big. If f maps xi and xj to
different positions, f will be penalized. The second term is
useful to bound the mapping function f and prevents over-
fitting from happening. Here µ is the weight of the second
term. When µ = 0, the model disregards the unlabelled
data, and data manifold topology is not respected.

This formulation is similar to score regularization [6], ex-
cept that (i) we learn a parametric function of x rather than
a nonparametric set of regularized scores, and (ii) the func-
tion represents an adjustment (an error) between the judge-
ments and the initial ranking model F0, instead of a function
that directly approximates the judgements. The latter ap-
pears to be more difficult, and did not work as well in initial
testing.

2.3 Dictionary Construction
Our algorithm makes use of query specific document sim-

ilarities. The similarities are computed using a separate dic-
tionary that depends on the contents of the feedback docu-
ments for each query. When we construct query specific dic-
tionaries, we follow an idea that is commonly used in query
expansion. In the first step, we retrieve all non-stop words
from relevant judged documents. For each word, we sum up
its term frequencies in all relevant judged documents result-
ing in score+ and its term frequencies in all non-relevant
judged documents resulting in score−. We sort the terms
using score+ − score− following descending order. The top
t words will be used in our query specific dictionary. We
also add the query words to the dictionary if they are not
already there.

2.4 The Main Algorithm and its Explanation
The main algorithm to re-rank documents for each query

is given in Figure 1. For each judged document, our query-
level re-ranker provides an adjustment for the initial ranking
model to close the gap between the true label and the initial
ranking score. The adjustment has to be learned from the
judged documents. However, given the fact that the num-
ber of the judged documents is always small, the adjustment
could overfit to the judged documents. To solve this prob-
lem, we add a regularizer that guarantees that documents
(including both labeled and unlabeled documents) with sim-
ilar contents get similar adjustments.

A question that naturally arises is how to define the query-
specific similarity of documents. We know that the docu-
ments are represented by features like BM25, tf-idf in the
initial ranking model. Such features only describe the rela-
tionship between query and document. They are not good
to compute similarity between documents. A more reason-
able way to compute document similarity is to use document
contents. In this scenario, similarity between documents also
depends on the given query as the similarities are computed
only using the words in the query specific dictionaries. For
different queries, the contributions of the same word could
be quite different. Our query-level re-ranker uses the con-
tents of the judged documents to create a dictionary that
only has useful words for that query. When we compute
similarity using document contents, we only consider the
words in that dictionary.

2.5 Advantages
Our algorithm offers the following advantages:
(1) The algorithm exploits unlabeled data in the form of

document contents. This allows it to learn a more complex
retrieval function that weights individual terms. Overfitting
is controlled by using the unlabeled data for manifold regu-
larization.

(2) The algorithm relies on manifold learning, a rich model
that does not rely on any strong distributional assumptions

1. Represent each document using query-specific docu-
ment contents: X = {x1, · · · , xm}, where xi is defined

by t features, where the jth component is the term
frequency of the jth word in the query specific dic-
tionary in document i.

2. Construct graph Laplacian matrix L modeling the
document manifold.

3. Construct the difference vector V =
[y1, · · · yl, 0, · · · , 0]: For i ∈ {1, · · · l}, compute the
difference yi between the base ranking score F0(ai)
and label bi.

4. New ranking model f = (X(U + µL)XT)+XUV T .

5. Ranking score for document i is F0(ai) +fT xi.

Figure 1: Relevance feedback ranker algorithm.

about the data. In contrast, other algorithms make more
limiting assumptions about the data, such as Gaussianity.

(3) Only two parameters need to be manually set: µ con-
trols how much we like to focus on manifold topology preser-
vation. For simplicity, we use the same value for µ in all
experiments. t is the maximum size of the query specific
dictionary. We set it to 200 in all the tests.

(4) Closed form solution: unlike most approaches in this
area, our algorithm (like [6]) provides a closed form solution
of the result. The solution is global optimal regarding the
cost function C(f).

3. JUSTIFICATION
Our main algorithm is based on manifold regularization

framework [2], which goes beyond regular regression mod-
els in that it applies constraints to those coefficients, such
that the topology of the given data manifold will also be re-
spected. A manifold is a mathematical space that on a small
enough scale resembles the Euclidean space, but the global
structure of a manifold may be more complicated. Manifold
topology represents how instances (including both labeled
and unlabeld instances) in the space is connected. Preserv-
ing manifold topology can be understood as a constraint
that neighbors in the manifold space will be modulated in
a similar way. Computing the optimal weights in a regres-
sion model and preserving manifold topology are conflicting
objectives, manifold regularization provides a way to ideally
balance the two goals.

Theorem 1: f = (X(U + µL)XT)+XUV T minimizes the
cost function C(f).
Proof:
Given the input X, we want to find the optimal mapping
function f such that C(f) is minimized:

f = arg min
f

C(f).

It is easy to verify that∑
i≤l

(fT xi − yi)
2 = fT XUXT f − 2fT XUV T + V UV T .

We can also verify that

µ
∑
i,j

(fT xi − fT xj)
2Wi,j = µfT XLXT f.

C(f) = (fT XUXT f −2fT XUV T +V UV T)+µfT XLXT f.

Using the Lagrange multiplier trick, we have

XUXT f + µXLXT f = XUV T .

This implies that

X(U + µL)XT f = XUV T .

So f = (X(U + µL)XT)+XUV T .

Interestingly, the solution to f includes L, the normal-
ized graph Laplacian matrix [5], which models data man-
ifold topology. Recently, spectral graph theory combined
with classical differential geometry and global analysis on
manifolds forms the theoretical basis for “Laplacian” tech-
niques for function approximation and learning on graphs
and manifolds, using the eigenfunctions of a Laplace opera-
tor naturally defined on the data manifold to reveal hidden
structure.

4. EXPERIMENTAL RESULTS
In our experiments, we use data from two different collec-

tions: OHSUMED and TREC 6–8 ad-hoc. The OHSUMED
collection contains 106 queries in total, and each query con-
tains about 150 judged documents on average, with an av-
erage 20% of them being relevant. The TREC collection
employs a subset of Letor 3 features, as in [1]. This dataset
contains 150 queries, roughly 1,500 documents are retrieved
for each query, and roughly 7% of them are relevant. Both
datasets are split into 5 folds, where each fold contains train-
ing, validation and testing sets. In all the experiments through
this paper, we set µ = 100.

In a standard relevance feedback task, there is an initial
base ranking, which is shown to a user and the user gives
feedback on some documents in this initial ranking. Our
base ranker is a linear regression model. One way of using
relevance feedback information is to use the labels of the
feedback documents for a query to train a separate ranking
model for that query that fits the difference from the base
ranker. We call this approach the Query-level Greedy feed-
back Ranker (QGR). Another way is Positive-Negative feed-
back Ranker (PNR), which is an active relevance feedback
approach [12]. The PNR model was shown to outperform
standard relevance feedback algorithms such as Rocchio and
language modelling based relevance feedback. Hence, we
mainly compare our algorithm only with the PNR model.

For each of the 5 folds in the datasets, we run our base
ranking algorithm on the queries on these sets. We then
assume that the feedback documents are the top k docu-
ments retrieved by the base ranker (we tried k = 5 and
10 in this paper). We employ average precision (AP) to
compare the quality of the manifold model with the base
ranking model, the QGR model, and the PNR model. Our
approach consistently outperforms the other methods, and
the differences are statistically significant using a sign-rank
test (Figure 2). For the TREC dataset, the results of the
query greedy ranker are not included in the plot as the per-
formance of the algorithm is much worse than the other three
algorithms. Compared to PNR, which is implemented in the
same algorithmic framework except using non-query-specific
document contents to compute document similarity, mani-
fold model achieves better results in all experiment settings.
This is a strong indicator to show that the query-specific

1 1.5 2 2.5 3 3.5 4 4.5 5
24

26

28

30

32

34

36

38

Fold

A
P

TREC, Top 5 Docs and Top 10 Docs

Manifold (10 docs)
Positive Negative (10 docs)
Initial ranker (10 docs)
Manifold (5 docs)
Positive Negative (5 docs)
Initial ranker (5 docs)

1 1.5 2 2.5 3 3.5 4 4.5 5
38

40

42

44

46

48

50

52

Fold

A
P

OHSUMED, Top 5 Docs and Top 10 Docs

Manifold (10 docs)
Query Greedy (10 docs)
Positive Negative (10 docs)
Initial ranker (10 docs)
Manifold (5 docs)
Query Greedy (5 docs)
Positive Negative (5 docs)
Initial ranker (5 docs)

Figure 2: Improvements over the 5 folds for (left) TREC and (right) OHSUMED datasets when the feedback docu-

ments are the top 5 and 10 documents in the base ranking. Performances of two initial rankers (k = 5, 10) are different,

because we throw away queries with no relevant (positive) feedback documents.

Table 1: An example to illustrate the behaviors of manifold model and query-level greedy model
Doc ID 1 2 3 4 5 6 7 8 9 10

Label 1 1 1 -1 1 -1 -1 -1 -1 1
Judged? 1:Yes 0:No 1 1 1 1 1 0 0 0 0 0
Initial Ranking Score -0.6338 -0.2916 0.2835 -0.2635 0.1482 -1.0036 -1.0369 -0.9072 -0.7359 -0.3886

Greedy Re-ranking Score 1 1 1 -1 1 -9.6383 -1.5661 164.2987 -0.2086 -0.9875
Manifold Re-ranking Score 0.993 0.223 0.8615 0.2423 0.6801 -0.5156 -0.5491 -0.4094 -0.2456 0.1498

document contents can provide extra valuable information
to query-level feedback rankers. The QGR model can be
thought as a special case of a manifold model, where man-
ifold topology is not respected. In these experiments, the
greedy feedback ranker does not return satisfying results.
The reason for this is that the greedy model can easily over-
fit for the feedback data.

In Table 1, we compare greedy model and manifold model
in a real example. When initial ranking scores, judgements
of 5 documents and a large amount of unjudged documents
(only 5 are shown) are given, both models make adjustment
to the original ranking scores. The greedy approach does
not respect the manifold topology, so it assigns perfect re-
ranking scores to the judged documents. But the ranking
scores of the unjudged documents (documents with label -1)
could be dramatically changed (see the big changes in the
table). We carried out another experiment (not included in
the figure) of query-level feedback ranker without using the
base ranker; this yielded poor results. The reason is that
the number of judged documents for each query is too small
to construct a good feedback ranker (without a base ranker)
even when manifold topology is respected. Base rankers
are valuable, since they provide prior knowledge to help the
feedback rankers when the feedback is limited.

5. CONCLUSIONS
We present a novel algorithm to incorporate relevance

feedback into a learning to rank framework by exploiting
query-specific document contents. Given a few judged feed-
back documents and many retrieved but unjudged docu-
ments for a query, our algorithm provides an optimal so-
lution to adjust the base ranking score of each document,
such that scores of judged documents are close to their la-
bels and documents with similar term contents get similar
adjustments.

6. REFERENCES
[1] J. A. Aslam, E. Kanoulas, V. Pavlu, S. Savev, and

E. Yilmaz. Document selection methodologies for efficient
and effective learning-to-rank. In SIGIR, 2009.

[2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold
regularization: a geometric framework for learning from
labeled and unlabeled examples. 2006.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pages 89–96, New York,
NY, USA, 2005. ACM.

[4] C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank
with nonsmooth cost functions. In NIPS, pages 193–200,
2006.

[5] F. Chung. Spectral graph theory. 1997.
[6] F. D. Diaz. Improving relevance feedback in language

modeling with score regularization. In SIGIR, 2008.
[7] J. Lafferty and C. Zhai. Document language models, query

models, and risk minimization for information retrieval. In
Proceedings of the 24th ACM SIGIR conference on
Research and development in information retrieval, pages
111–119, New York, NY, USA, 2001. ACM.

[8] V. Lavrenko and W. B. Croft. Relevance based language
models. In Proceedings of the 24th ACM SIGIR conference
on Research and development in information retrieval,
pages 120–127, New York, NY, USA, 2001. ACM.

[9] T. Qin, T. Liu, X. Zhang, D. Wang, and H. Li. Global
ranking using continuous conditional random fields. In
NIPS, 2008.

[10] S. E. Robertson and K. Sparck Jones. Relevance weighting
of search terms. pages 143–160, 1988.

[11] J. Rocchio. Relevance Feedback in Information Retrieval,
pages 313–323. 1971.

[12] Z. Xu and R. Akella. A bayesian logistic regression model
for active relevance feedback. In SIGIR, 2008.

