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Abstract Trust management systems are vulnerable to so-called probing
attacks, which enable an adversary to gain knowledge about confidential
facts in the system. We present the first method for deciding if an adversary
can gain knowledge about confidential information in a Datalog-based policy.

1 Introduction

In the trust management paradigm [7], authorization rules are specified in a high-
level policy language (e.g. [18,4,11,17]). Access is granted only if the user’s request
complies with the policy in conjunction with the user-submitted credentials. There is
a class of attacks on such systems, called probing attacks, that enables an adversary
to gain knowledge about confidential information in a service’s policy, by submitting
a series of probes, i.e., access requests together with conditional credentials.

Here is an example of a simple probing attack on a policy written
in Binder [11]. The service Hospital publishes the policy rule “Hospital
says canCreateAcc(x) if AgeCert says over21(x)”. This rule stipulates that any
principal x can create a patient account if AgeCert says that x is an adult.
Hospital’s policy also contains confidential facts that are not visible to the ad-
versary Eve, for instance, whether Bob is a patient or not. (Our use of the term
“policy” includes not only rules, but also all authorization-relevant facts.) Sup-
pose Eve collaborates with AgeCert, and hence can get hold of the AgeCert-
issued credential “AgeCert says over21(Eve) if Hospital says patient(Bob)”. She
starts her probing attack by submitting this credential together with a request to
create a patient account. The service evaluates the corresponding query “Hospital
says canCreateAcc(Eve)?” against its policy in union with the credential. Suppose
it responds by granting access. Next, Eve submits a second probe, with the same
access request, but with no supporting credentials. This time, access is denied.

From these two probes, Eve deduces that the submitted credential must have
been crucial in making the access query succeed. But this is only possible if creden-
tial’s condition “Hospital says patient(Bob)” is true in Hospital’s policy. She has
therefore detected a confidential fact through probing.

Probing attacks present a serious problem to trust management systems, as poli-
cies commonly contain confidential information, and it takes little effort to conduct
a probing attack with legitimately collected and self-issued credentials. At the same
time, it is non-trivial to see, in more involved examples, if a piece of information can
be detected through probing or not. It is therefore critical to have an automated
method for verifying non-detectability – or, opacity – of information in credential
systems.

This paper presents several significant contributions to the problem space.
Firstly, on a foundational level, it provides the first formal framework for probing
attacks that makes no assumptions on the structure of policies and of the credential



evaluation mechanism, and that is thus general enough to encompass widely dif-
ferent languages such as XACML [18] and DKAL2 [14]. Based on an abstract notion
of observational equivalence, this framework specifies precisely what it means for a
piece of information to be detectable or opaque (Section 3).

Secondly, we present the first algorithm for checking opacity in policies written
in Datalog, which is the basis of many existing policy languages (Section 5). The
algorithm is not only sound, but also complete and terminating: if it fails to prove
opacity (in which case failure is reported in finite time), then the given fact is
provably detectable. This is a strong result, as the mere existence of a complete
decision procedure for opacity in this context is far from obvious.

A particularly attractive feature of the algorithm is its constructiveness. Intuiti-
vely, a property is opaque in a policy if there exists some policy that behaves in the
same way as the first policy with regards to the adversary’s probes, but in which the
property does not hold. If the property is opaque, the algorithm actually constructs
such a “witness” policy. In fact, it can iteratively construct a finite sequence of
such witnesses that subsumes the generally infinite set of all witnesses. What does
this feature buy us? Without it, the algorithm would be merely possibilistic: the
mere existence of a witness policy, no matter how pathological it may be, would be
sufficient for opacity. But since the algorithm constructs the witnesses, they can be
assigned probabilities, or the security analyst could interactively discard unlikely
witnesses. The final result could therefore be interpreted as a degree of likelihood
of the property being opaque.

Thirdly, we identify several optimization methods for cutting the high computa-
tional cost by pruning the search space, and show empirically that these render the
opacity verification problem feasible in medium-sized cases, whereas the straight-
forward implementation of the algorithm is unusable for other than very small test
cases (Section 6). Full proofs and extended examples are included in a technical
report [5].

2 Related Work

Probing attacks on credential systems were first mentioned in [13]. One of the
primary design goals of their policy language, DKAL, was to provide protection
against probing attacks. However, they do not precisely define what they are pro-
tecting against, and indeed, it has been shown that DKAL2 [14] is susceptible to
probing attacks [3].

Probing attacks were first defined in terms of opacity in [3]. However, in contrast
to our general framework (Section 3), their definitions only apply to simple logic-
based policy languages, but not to more complex languages such as XACML [18] or
Ponder [10], in which policies have some (e.g. hierarchical) structure, or languages
such as DKAL, where incoming credentials are filtered and transformed before being
added to the policy. That paper also presents an inference system for analyzing de-
tectability in Datalog policies, but it is incomplete and non-constructive in the sense
that it does not map to a terminating algorithm, and thus cannot be used to check
opacity. We present the first decision procedure for proving opacity (Section 5).

Research on information flow has mainly focused on stateful, temporal compu-
tations (see [19] for an overview). The current setting is very different as there is no



notion of state, run or trace, and, most importantly, probes may contain credentials
that are temporarily combined with the local policy during query evaluation – this
is precisely what makes the analysis so hard. In contrast, the adversaries conside-
red in computational information flow analysis typically cannot inject code into the
program.

A policy could be seen as a database, and the probes as queries against the
database. Detectability through probing could therefore be seen as related to the
database inference problem, which is concerned with covert channels through which
confidential information from a database can leak to a database user. A wide variety
of such channels have been studied [15,12], mainly for relational databases. Bonatti
et al. have studied the database inference problem in deductive databases [8], which
are similar to the Datalog-based policies considered in the current paper. However,
the problem considered in the current paper is harder, as it corresponds to users
who can temporarily inject new rules and relations into the database (which is not
natural in the typical database context).

There has been some work on formalizing and enforcing safety in Automated
Trust Negotiaton (ATN) protocols [22,21], i.e., the property that no information
about the presence or absence of credentials is prematurely leaked during a creden-
tial exchange [20]. This problem is quite different from the one we are considering
here; e.g., we are interested in the confidentiality of internal properties of the po-
licy rather than that of submitted credentials, and our credentials are not mere
attributes, but may be conditional and may affect policy evaluation results.

3 A Framework for Probing Attacks

3.1 Abstract Framework

This section establishes the fundamental concepts for reasoning about probing at-
tacks in credential systems.

Definition 1 (Policy language, probe). A policy language is a triple (Pol,Prb,
`), where Pol and Prb are sets called policies and probes, respectively, and ` is a
binary infix relation from Pol×Prb, called decision relation.

Let A ∈ Pol, π ∈ Prb. If A ` π we say that π is positive in A; otherwise (i.e.,
A 0 π), π is negative in A.

Although Definition 1 does not prescribe the structure of probes, it helps to
think of a probe as a pair containing a set of credentials that the adversary submits
to the service under attack, and a query corresponding to some access request. A
positive probe is one that leads to an access grant, whereas a negative leads to an
access denial.

To illustrate Definition 1, we briefly sketch how it would be instantiated to the
concrete policy languages SecPAL [4], DKAL2 [14], and XACML [18].

In SecPAL, a policy is a set of SecPAL assertions such as “Alice
says x canRead if x canWrite” or “Bob says Eve cansay x canWrite”. Access re-
quests are mapped to SecPAL queries, which are first-order formulas over atoms
of the form “〈Principal〉 says 〈Fact〉”. An inference system defines which queries



are deducible from a policy. A user’s access request is mapped to a query, and is
granted only if the query is deducible from the union of the local policy and the set
of credentials (which are also just assertions) submitted by the user together with
the request. Therefore, a probe π is naturally defined as a pair 〈A,ϕ〉 containing a
set A of credentials and a query ϕ. Then A0 ` π iff ϕ is deducible from A0∪A. The
definitions can be instantiated in a very similar fashion for other related languages
such as RT [17], Cassandra [6], SD3 [16], and Binder [11].

In DKAL2, a policy is a set of so-called infon terms such as
“Eve said Alice canRead” or “Bob implied Alice said Eve canWrite”. As in
SecPAL, a set of inference rules defines which other infon terms can be dedu-
ced from a policy. However, infon terms sent by the adversary (corresponding
to submitted credentials) are not simply added verbatim to the local policy,
but are converted depending on the term’s shape. For example, the infon term
“A canRead←− B canWrite” submitted by Eve would be imported as the infon term
“B canWrite→ Eve implied A canRead”. Why this is done and what this means is
beyond the scope of this paper; the important point here is that there are creden-
tial systems where the access query is not simply evaluated against the union of the
local policy and the submitted credentials, but where the latter are first modified
according to some rules.

In XACML, a policy (as in Definition 1) would correspond to a PolicySet, which
is a hierarchical structure containing other PolicySets or items called (XACML)
Policy. The latter is a collection of Rules. XACML is thus an example of a system
where a policy is not just a flat collection of assertions. Just as in DKAL2, incoming
credentials (SOAP messages conveying Attributes [1]) may be transformed before
evaluation. For example, the client-supplied Attribute may be written in SAML
and would first be converted by an XACML Context Handler [2]. As in the case
of DKAL2, the instantiation of ` would have to take such transformations into
account.

We now consider the adversary, i.e., the principal who mounts the probing attack
against a service’s policy A0. Informally, the adversary has a passive and an active
capability. A passively acting adversary only reads the visible part of A0 that is
presented to her by the service.

An active adversary can additionally evaluate probes against A0 and observe
whether they are positive or negative in A0. Typically, the adversary does not have
the power to evaluate arbitrary probes, but only the probes available to her. In the
standard case where probes are pairs containing a set of credentials and a query,
the availability of a probe is typically determined, firstly, by which credentials the
adversary possesses or can create, and, secondly, by which queries the service allows
her to run. For instance, SecPAL services define an Authorization Query Table that
map access requests to SecPAL queries, so only these queries can be evaluated by
clients. In DKAL2, incoming infon terms (corresponding to credentials) are filtered
by a filtering policy, so not all credentials possessed by clients are available in probes.
Our definition of available probes abstracts away such language-dependent details.

Definition 2 (Alikeness and available probes). An adversary is defined by an
equivalence relation ' ⊆ Pol×Pol, and a set Avail ⊆ Prb of available probes. If
A1 ' A2 for two policies A1 and A2, we say that A1 and A2 are alike.



The alikeness relation, which specifies the adversary’s passive capability, is also
kept abstract in Definition 2. Typically, a policy can be split into a publicly visible
and a private part (relative to a particular adversary). A useful instantiation in
this case would be that two policies are alike iff their visible parts are syntactically
equal. Alternatively, one could adopt a more semantic instantiation, such that two
policies are alike iff their visible parts are semantically equivalent.

We can now define the adversary’s active capability.

Definition 3 (Observational equivalence). Two policies A1 and A2 are obser-
vationally equivalent (A ≡ A′) iff

1. A1 ' A2, and
2. ∀π ∈ Avail, A1 ` π ⇐⇒ A2 ` π.

Alikeness and observational equivalence induce two different notions of indis-
tinguishability of policies. A passive adversary cannot distinguish policies that are
alike. An active adversary can see the visible parts of a policy and run probes against
it. These two capabilities are represented by conditions 1. and 2. in Definition 3.
Hence an active adversary cannot distinguish policies that are observationally equi-
valent.

We are interested in whether the adversary can infer that some property Φ
holds about policy A, just by looking at the policy’s public parts and by running
the probes available to her. If she can, then we say that Φ is detectable in A,
otherwise Φ is opaque in A. This is formalized in the following definition, which
again is implicitly relative to a given adversary.

Definition 4 (Detectability, opacity). A predicate Φ ⊆ Pol is detectable in
A ∈ Pol iff ∀A′ ∈ Pol : A ≡ A′ ⇒ Φ(A′).

A predicate Φ ⊆ Pol is opaque in A ∈ Pol iff it is not detectable in A, or
equivalently, iff ∃A′ ∈ Pol : A ≡ A′ ∧ ¬Φ(A′).

The definitions established in this section so far provide a general framework
for reasoning about probing attacks in credential systems. For specific trust ma-
nagement frameworks, the definitions of policy language and alikeness need to be
instantiated accordingly. We do this in the remainder of this section for Datalog.
In Section 4, we discuss an example in Datalog, which will also help illustrate the
definitions above.

3.2 Datalog-Based Policies

Datalog is not used as a policy language per se, but is the semantic basis
for many existing policy languages, and many others can be translated into it
(e.g. [4,17,6,16,11]). Reasoning techniques and analysis tools for Datalog therefore
apply to a wide range of policy languages. We only give a very brief overview of
Datalog. (For a more careful introduction, see e.g. [9].)

The central construct in Datalog is a clause. A clause a is of the form

P0 ← P1, ..., Pn,



where n ≥ 0, and the Pi are atoms of the form p(~e) (where p is a predicate symbol,
and ~e a sequence of variables and constants). (We usually omit the arrow if n = 0.)

We write hd(a) to denote a’s head P0 and bd(a) to denote its body ~P = 〈P1, ..., Pn〉.
Given a set of clauses A, we write hds(A) to denote the atom set {hd(a) | a ∈ A}.

A query ϕ is either true, false or a ground (i.e., variable-free) boolean formula
(i.e., involving connectives ¬, ∧ and ∨) over atoms P . We write Qry to denote the
set of all queries. A query ϕ is evaluated with respect to a set A of assertions. For
atomic ϕ = P , we define that A ` P holds iff there exists a ground (i.e., variable-

free) instance P ← ~P of some clause in A and A ` Pi for all Pi ∈ ~P . The non-atomic
cases are defined in the standard way, e.g. A ` ¬ϕ iff A 0 ϕ.

Now we can instantiate the abstract Definitions 1 and 2. For evaluating probes,
we adopt the simple model where the query of a probe is evaluated against the
union of the service’s policy and the credentials (i.e., clauses) of the probe.

Definition 5 (Datalog instantiation). We instantiate Pol to the powerset of
clauses, ℘(Cls). A (Datalog) policy is hence a set A0 ⊆ Cls.

A (Datalog) probe π is a pair 〈A,ϕ〉, where A ⊆ Cls and ϕ ∈ Qry. Hence Prb
is instantiated to the set of all such probes. A probe is ground iff it does not contain
any variables. We write ¬〈A,ϕ〉 to denote the probe 〈A,¬ϕ〉.

The decision relation ` ⊆ Pol×Prb is defined by A0 ` 〈A,ϕ〉 ⇐⇒ A0 ∪A ` ϕ.

Definition 6 (Adversary, Datalog alikeness). An adversary is defined by a
set Avail ⊆ Prb and a unary predicate Visible ⊆ Cls. If Visible(a) for some
a ∈ Cls, we say that a is visible. We extend Visible to policies by defining the
visible part of A, Visible(A), as {a ∈ A | Visible(a)}, for all A ⊆ Cls.

Two policies A1, A2 ⊆ Cls are alike (A1 ' A2) iff Visible(A1) = Visible(A2).

Definitions 5 and 6 induce instantiations for the Datalog definitions of observa-
tional equivalence between policies, and of opacity and detectability. Recall that the
latter two were defined for arbitrary properties of policies. Here, we are interested
in a particular class of policy properties, namely whether a given probe (usually one
that is not in Avail) is positive or negative.

Definition 7 (Probe detectability & opacity). A probe π ∈ Prb is detectable
in A ∈ Pol iff ∀A′ ∈ Pol : A ≡ A′ ⇒ A′ ` π.

A probe π ∈ Prb is opaque in A ∈ Pol iff it is not detectable in A, or equiva-
lently, iff ∃A′ ∈ Pol : A ≡ A′ ∧ A′ 0 π.

Note that this definition is just a specialization of Definition 4, with the predicate
Φ instantiated to {A ⊆ Cls | A ` π}.

4 Example

We illustrate the definitions from the previous section using an example of an autho-
rization policy written in Datalog. The example also serves as the basis for the test
cases in Section 6. Our example is taken from a grid computing scenario. A compute
cluster allows users to run compute jobs. The execution of a job may require read



access to data that is stored in an external data center. The cluster has a policy
that governs who can run compute jobs, and the data center has a policy that go-
verns who can access data. Both policies delegate authority over certain attributes
to trusted third parties. The policies consist of the following seven clauses:

canExe(Clstr, x, j)← mem(Clstr, x), owns(Clstr, x, j), canRd(Data, Clstr, j). (1)

owns(Clstr, x, j)← owns(y, x, j), isTTP(Clstr, y). (2)

mem(Clstr, x, j)← mem(y, x, j), isTTP(Clstr, y). (3)

canRd(Data, x, j)← canRd(y, x, j), owns(Data, y, j). (4)

owns(Data, x, j)← owns(y, x, j), isTTP(Data, y). (5)

isTTP(Clstr, CA). (6)

isTTP(Data, CA). (7)

Here, we adopt the convention that the first parameter of a predicate denotes
the principal “saying” (i.e., vouching for) the predicate, and the second parameter
denotes the subject of the predicate. For instance, canExe(Clstr, x, j) intuitively
means that Clstr says that x can execute job j.

According to Clause (1), anyone who is a member and owns a job (according to
Clstr) can execute that job (according to Clstr), if the data center Data allows
Clstr to read the data associated with that job. Clstr delegates authority over
job ownership and membership to trusted third parties (2)–(3). The next clause
implements a variant of discretionary access control: data center Data stipulates
that owners y of data associated with job j can delegate read access to this data to
other principals x (4). Just like Clstr, Data delegates authority over ownership to
third parties it trusts (5). Finally, both Clstr and Data specify certificate authority
CA as a trusted third party (6)–(7).

Clstr has an interface that allows users to submit a job execution request. When
some user Eve requests to execute a job Job, the corresponding query

ϕEve = canExe(Clstr, Eve, Job) (8)

is evaluated against the policy consisting of the clauses (1)–(7), in union with the
(possibly empty) set of credentials submitted by Eve together with the request.

Eve, who plays the role of the adversary in our scenario, possesses four creden-
tials:

owns(CA, Eve, Job). (9)

mem(CA, Eve). (10)

canRd(Eve, Clstr, Job). (11)

canRd(Eve, Clstr, Job)← mem(Clstr, Bob). (12)

Credentials (9)–(10) are issued by CA, and the other two are self-issued. Eve is
interested in finding out if Bob is a member, according to Clstr’s policy. Of course,
she does not have the authority to query this fact directly, so instead she hopes to
be able to detect this fact using (12) in particular, stating that she is willing to give
Clstr read access, provided that Bob is a member of Clstr.



Let A0 be the policy consisting of clauses (1)–(7), and AEve be the set of clauses
(9)–(12). AEve and ϕEve together give rise to a set of 24 = 16 available probes that
Eve is able to run against A0: Avail = {〈A,ϕEve〉 | A ⊆ AEve}. For simplicity, we
assume that Visible = ∅, i.e., Eve is not able to passively read any of the clauses
in A0. Based on this scenario, we make the following observations.

We have A0 ` 〈AEve, ϕEve〉, in other words, A0∪AEve ` ϕEve. The derivation goes
roughly as follows: Credential (9) proves Eve’s ownership over Job to both Data

and Clstr. Hence Data allows Eve to delegate read access to Clstr using (11).
Furthermore, (10) is sufficient for proving Eve’s membership to Clstr, hence all
body atoms of (1) are satisfied, which implies ϕEve.

We also have A0 ` 〈{(9)–(11)}, ϕEve〉, since the derivation above only makes use
of the clauses (9)–(11). But A0 0 〈A,ϕEve〉, for all A ⊆ {(9),(10),(12)}. In particular,
replacing clause (11) in the probe in item 2) above by clause (12) produces a negative
probe. Note that the two clauses only differ in the body.

All policies A′0 that are observationally equivalent to A0, i.e., that exhibit the
same behaviour as observed above, satisfy the property that A0 0 mem(Clstr, Bob).
For suppose the contrary were the case. We observed that ϕEve holds in A0 ∪
{(9)–(11)}. By assumption, the body of clause (12) is true in A0, which means
that replacing clause (11) by (12) in the probe cannot make a difference. But this
contradicts the observation that ϕEve does not hold in {(9),(10),(12)}.

It follows that the probe 〈∅,¬mem(Clstr, Bob)〉, which is not in Avail, is detec-
table in A0. In other words, Eve can be sure that Bob is not a member of Clstr.

5 Verifying Opacity

This section presents an algorithm for verifying opacity. Given a set of available
probes, the algorithm decides if a given probe is opaque (or detectable) in a given
Datalog policy. The algorithm works with arbitrary input policies, but we restrict
the input probes to ground ones, in order to simplify the problem. This restriction is
reasonable, as attribute and delegation credentials are usually issued for one specific
principal and purpose, and are thus ground anyway.

In the following, we assume as given a policy A0 ⊆ Cls, a ground probe π0 ∈
Prb, and an adversary defined by a set Avail ⊆ Prb of ground probes and the
visibility function Visible. The algorithm should decide if π0 is opaque in A0,
relative to the adversary specified by Avail and Visible.

Overview. The algorithm is succinctly specified as the transition system in Fig. 1,
but it is actually rather involved. We first give a high-level roadmap of the algorithm
before proceeding to the details.

Recall that π0 is opaque in A0 iff there exists a policy A′0 that is observationally
equivalent to A0 (with respect to the probes in Avail), but such that π0 is negative
in A′0. To prove opacity, the algorithm attempts to construct such an opacity witness
A′0. Conversely, to prove detectability, it proves that no such A′0 exists.

A state in the transition system is a triple of the form 〈Π+, Π−, A1〉, and the
(init) rule in Fig. 1 defines the set Init of initial states. Intuitively, an initial state
is populated with sets Π+, Π− of probes that are required to be positive (negative,



(init)

(Π+, Π−) ∈ flattenA0(Avail) π0 = 〈A,ϕ〉 (S+, S−) ∈ dnf(¬ϕ)
∀π ∈ Π− ∪ {〈A,

∨
S−〉} : Visible(A0) 0 π

〈Π+ ∪ {〈A,
∧
S+〉}, Π− ∪ {〈A,

∨
S−〉}, Visible(A0)〉 ∈ Init

(probe)

Ã ⊆ A 〈a1, ..., an〉 ∈ perms(Ã) ∀i ∈ {1, ..., n} : ~Pi = bd(ai) ~Pn+1 = ~P

A′′ =
⋃n+1

k=1

⋃
Pk∈~Pk

{Pk ← hds({a1, ..., ak−1})} ∀π ∈ Π− : A′ ∪A′′ 0 π

〈Π+ ∪ {〈A,
∧ ~P 〉}, Π−, A′〉 〈A,

∧ ~P 〉−−−−−→ 〈Π+, Π−, A′ ∪A′′〉

Figure 1. Transition system for verifying opacity.

respectively) in the opacity witness A′0 to be constructed. At each (probe) transi-
tion, the system considers and discards one positive probe in Π+, and adds a set
of clauses to the witness candidate A1 ⊆ Cls. Theorem 1 states that π0 is opaque
iff the transition system reaches a state of the form 〈∅, Π−, A′0〉, starting from some
initial state. Furthermore, A′0 will be an opacity witness.

Our results also show that opacity checking is decidable. This is nontrivial, as the
definition of opacity is quantified over the infinite set of all policies; and many other
simple-looking quantified properties such as containment are undecidable. (Note
that the set of predicate symbols and constants may be infinite.) The decidability
of opacity checking essentially stems from a sort of topological compactness property
of the set of policies A′0 that are observationally equivalent to A0. More precisely,
even though there may be infinitely many candidates for A′0, we only ever need to
consider a finite number of them.

5.1 Initial States

The initial states Init, defined declaratively by (init) in Fig. 1, are produced by
transforming all available probes into equivalent disjunction- and negation-free ones.
Consider a disjunctive probe π = 〈A,ϕ1 ∨ ϕ2〉 ∈ Avail that is positive in A0. The
algorithm attempts to find a policy A′0 such that A′0 ` π holds, in other words,
A′0 ∪A ` ϕ1 ∨ϕ2. This is equivalent to either finding an A′0 such that A′0 ` 〈A,ϕ1〉,
or finding one such that A′0 ` 〈A,ϕ2〉. A disjunction in the query of a positive probe
in Avail therefore corresponds to a branch in the search for A′0.

What about probes in Avail that are negative in A0? Since A0 0 π is equivalent
to A0 ` ¬π, we can convert all negative probes in Avail into equivalent positive
ones before dealing with the disjunctions in positive probes.

The function flattenA0 (defined below) applied to Avail first performs the men-
tioned conversion of negative probes into equivalent positive ones. It then splits each
probe into disjuncts of atomic and negated atomic queries. Finally, it produces a
cartesian product of all these disjuncts that keeps the atomic and negated queries
apart. The result is a set of pairs of disjunction-free probe sets; each such pair
(Π+, Π−) corresponds to a disjunctive search branch. The problem of finding a
policy A′0 that is observationally equivalent to A0 (cf. Def. 3) can then be reduced
to finding an A′0 and picking a pair (Π+, Π−) ∈ flattenA0

(Avail) such that all
probes in Π+ are positive, and all probes in Π− are negative in A′0.



In the following, we write dnf(ϕ) to denote the disjunctive normal form of a
query ϕ, represented as a set of pairs (S+, S−) of sets of atoms. For instance, if
ϕ = (p ∧ q ∧ ¬s) ∨ (¬p ∧ ¬q ∧ s), then dnf(ϕ) = {({p, q}, {s}), ({s}, {p, q})}.

Definition 8 (Flatten). Let Π ⊆ Prb. Then flattenA0
(Π) is a set of pairs

(Π+, Π−) of sets of probes defined inductively as follows:

flattenA0(∅) = {(∅, ∅)}.

flattenA0(Π ∪ {〈A,ϕ〉}) = {(Π+, Π−) |
∃ (S+, S−) ∈ dnf(ϕ̃), (Π+

0 , Π
−
0 ) ∈ flattenA0

(Π) :
Π+ = Π+

0 ∪ {〈A,
∧
S+〉} and Π− = Π−0 ∪ {〈A,

∨
S−〉},

where ϕ̃ = ϕ if A0 ` 〈A,ϕ〉, and ϕ̃ = ¬ϕ otherwise.

Apart from the observational equivalence A′0 ≡ A0, opacity of π0 in A0 addi-
tionally requires that π0 be negative in A′0. Let π0 = 〈A,ϕ〉. This is equivalent to
finding a pair (S+, S−) ∈ dnf(¬ϕ) such that A′0 ` 〈A,

∧
S+〉 and A′0 0 〈A,

∨
S−〉.

We can then reduce the problem of proving opacity of π0 in A0 to constructing
an A′0 for some (Π+

0 , Π
−
0 ) ∈ flattenA0

(Avail) and (S+, S−) ∈ dnf(¬ϕ) such that
all probes in Π+ = Π+

0 ∪ {〈A,
∧
S+〉} are positive, and all probes in Π− = Π−0 ∪

{〈A,
∨
S−〉} are negative in A′0. If such an A′0 exists, we say that A′0 is a witness

(for the opacity of π0 in A0). We call Π+ a set of positive probe requirements, and
Π− a set of negative probe requirements.

Furthermore, from the alikeness condition A′0 ' A0, any witness must contain
Visible(A0). Hence (init) picks Visible(A0) as the initial witness candidate for
each initial state. The last premise in (init) filters out those witnesses candidates
that fail to make all probes in Π− negative.

These observations are formalized in Lemma 1, stating the correctness of (init).

Lemma 1. π0 is opaque in A0 iff there exist 〈Π+, Π−,Visible(A0)〉 ∈ Init and
A′0 ⊆ Cls such that A′0 ⊇ Visible(A0) and ∀π ∈ Π+ : A′0 ` π and ∀π ∈ Π− : A′0 0
π.

5.2 Finding Minimal Witnesses

Given Init, we now have to find a witness A′0 that satisfies the requirements from
Lemma 1. Consider an initial or intermediate state 〈Π+ ∪ {π}, Π−, A′〉. The
transition rule (probe) from Fig. 1 picks the positive probe requirement π and
adds to the current witness candidate A′ a set A′′ of clauses such that A′ ∪A′′ ` π.
The monotonicity of ` guarantees that adding A′′ does not make any previously
considered positive probe requirement negative. However, adding clauses may make
negative probe requirements in Π− positive, so we need to check ∀π′ ∈ Π− :
A′ ∪ A′′ 0 π′. If this fails, the algorithm backtracks to try out a different A′′.
Otherwise, the transition succeeds and produces the new state 〈Π+, Π−, A′∪A′′〉.
If we reach a finite state, i.e. one where Π+ is empty, then π0 is opaque, by Lemma 1,
and moreover, the witness candidate of the final state is a genuine witness. This
informally shows that the algorithm is sound.



Minimality. To ensure completeness, we have to consider all candidate extensions
A′′ such that A′ ∪ A′′ ` π. It turns out that we can ignore A′ and simply consider
all A′′ such that A′′ ` π (which then implies A ∪ A′′ ` π). However, there may be
infinitely many such A′′. At the same time, we want to ensure that the algorithm
is a decision procedure, in other words, that it is both complete and terminating,
which is necessary for proving that the goal π0 is not opaque (i.e., detectable). We
certainly do not want infinite branching. Fortunately, it turns out that we do not
need to compute all candidate extensions. Instead, we only compute the minimal
ones. This notion of minimality is based on Datalog containment.

Definition 9 (Containment). A policy A is contained in a policy A′ (we write:
A � A′) iff for all ground atoms P and all sets S of ground atoms: A ` 〈S, P 〉 ⇒
A′ ` 〈S, P 〉.

So, to be more precise, the candidate extensions actually considered by the
algorithm form a finite set S such that

– ∀A′′ ∈ S : A′′ ` π, and
– ∀Ã′′ ⊆ Cls : Ã′′ ` π ⇒ ∃A′′ ∈ S : A′′ � Ã′′.

This property has two significant ramifications. Firstly, it ensures termination,
since S is finite for each considered positive probe requirement π; furthermore, each
initial state only has finitely many positive probe requirements, and there are only
finitely many initial states in Init.

Secondly, it ensures that the algorithm is complete: consider any Ã′0 that makes
all positive probe requirements Π+ of some initial state positive. Then there exists
A′0 constructed by iteratively adding a minimal extension for each π ∈ Π+, such
that A′0 also makes all probes in Π+ positive and A′0 � Ã′0. Therefore, if Ã′0 is a
genuine witness (i.e., it also makes all negative probe requirements in Π− negative)
then A′0 is also a genuine witness, by anti-monotonicity of 0. Hence if there is a
genuine witness, the algorithm will find one that is at least as small, in finite time.

It remains to explain how (probe) computes the minimal extensions A′′.

Relevant subprobes. To gain an intuition for this process, it helps to ask the question
“how could π = 〈A,ϕ〉 possibly be positive in some policy A′′?” If A is nonempty,
there are multiple explanations. Perhaps ϕ is true in A′′ anyway, so none of the
clauses in A are necessary, or relevant, for making π positive in union with A′′.
Or perhaps all clauses in A are relevant, in that removing just one clause from A
would result in a negative probe. The most general explanation would be that there
exists some subset Ã ⊆ A that is relevant, i.e., A′′ ` 〈Ã, ϕ〉 but A′′ 0 〈Ã′, ϕ〉 for all
Ã′ ( Ã.

We need to consider all of these 2|A| possible cases, since, as we shall see, each
different choice of Ã results in a different set of minimal witness extensions A′′.
This source of branching is reflected in the condition Ã ⊆ A in the transition rule
(probe) in Fig. 1.

Derivation order. Having chosen Ã ⊆ A to be relevant, there may still be multiple
minimal solutions for A′′ that makes π = 〈A,

∧ ~P 〉 positive. Since Ã is relevant,
every clause P0 ← P1, .., Pn ∈ Ã is actively used at least once in the derivation



A′′∪ Ã `
∧ ~P . But this is only possible if (i) the body atoms are also derivable, and

(ii) the derivation of
∧ ~P depends on all the heads of clauses in Ã, i.e., hds(Ã). We

now attempt to solve this set of constraints for the unknown A′′.
At first sight, a plausible requirement on A′′ seems to be that (i) {P1, ..., Pn} ⊆

A′′, and (ii) {P ← hds(Ã) | P ∈ ~P} ⊆ A′′. However, while this is a correct solution
for A′′, it is not the only one, and not even a minimal one. In general, A′′ may
contain the body atoms of just a subset of Ã’s clauses, and the heads belonging to
these clauses combine with clauses in A′′ to make the body atoms of other clauses
in Ã true; this oscillatory back and forth between A′′ and Ã continues until the
query

∧ ~P is true. The simple solution above corresponds to the special case where
the “oscillation” only has one stage. This process is best illustrated by an example.

Example 1. Suppose ϕ = ~P = z and Ã = {p ← q., r ← s., u ← v.}. We have to
find all minimal A′′ such that A′′ ∪ Ã ` z. In the case where the number of stages
n is just 1, there is only one minimal solution for A′′, containing four clauses:

A′′1 = {q., s., v., z ← p, r, u.}

In the case n = 2, there are six solutions, each containing four clauses; three in
which A′′ contains one of Ã’s body atoms, and three in which it contains two. Here
are two of the six solutions:

A′′2 = {q., s← p., v ← p., z ← p, r, u.}
A′′5 = {q., s., v ← p, r., z ← p, r, u.}

For n = 3, there are again six solutions, one for each permutation of Ã, resulting in
1 + 6 + 6 = 13 solutions. Again, here are two of the 13 solutions:

A′′8 = {q., s← p., v ← p, r., z ← p, r, u.}
A′′13 = {v., s← u., q ← r, u., z ← p, r, u.}

But note that A′′8 is contained in (�) A′′1 , A′′2 , and A′′5 . Indeed, for each solution
from {A′′1 ,...,A′′7}, there exists a solution from {A′′8 , ..., A′′13} such that the latter is
contained in the former. Hence only the solutions for the case n = 3 are minimal.

ut

It turns out that this observation holds in the general case. Given a particular
Ã ⊆ A, we can prove that we only need to consider the case n = |Ã|, which
has n! solutions. Let perms denote the function that maps a set S to the set
of all permutations of S. Each permutation of clauses 〈a1, ..., an〉 ∈ perms(Ã)
gives rise to a unique witness candidate A′′, constructed as in the example above.
Let ~Pi = bd(ai), for i ∈ {1, ..., n}. Then for each P1 ∈ ~P1, A′′ contains P1. For

each P2 ∈ ~P2, it contains the clause P2 ← hd(a1). For each P3 ∈ ~P3, it contains

the clause P3 ← hd(a1),hd(a2). In general, for each Pk ∈ ~Pk, A′′ contains the

clause Pk ← hds({a1, ..., ak−1}). Finally, letting ~Pn+1 = ~P , we have that for each

Pn+1 ∈ ~Pn+1, A′′ contains Pn+1 ← hds({a1, ..., an}).
The transition rule (probe) in Fig. 1 shows that nondeterministic branching is

not only due to picking Ã ⊆ A, but also to picking a permutation from perms(Ã).



The rule constructs A′′ as described, and then tests if the new candidate makes all
probes in Π− negative. If it does, then the state transition 〈Π+ ∪ {π}, Π−, A′〉 π−→
〈Π+, Π−, A′ ∪A′′〉 is valid.

Theorem 1 (Soundness and completeness). π0 is opaque in A0 iff there exist
σ0 ∈ Init, Π− ⊆ Prb and A′0 ⊆ Cls such that σ0 →∗ 〈∅, Π−, A′0〉.

Theorem 2. The number of (
〈A,

∧ ~P 〉−−−−−→) transitions from any state is bounded by∑n
m=0

n!
(n−m)! , where n = |A|.

Theorem 2 also implies that the transition system is finite, and hence the algo-
rithm terminates, since Init is finite, and Π+ in every initial state is finite.

6 Implementation with Optimizations

We implemented a prototype of the state transition system in Fig. 1 in F#. It first
computes Init as a lazy enumeration, and then performs a backtracking depth first
search based on the transition rule (probe). The back end is an implementation
of Datalog’s evaluation relation `. It is not highly optimized, and even though it is
the main bottleneck, we did not spent much effort making it more efficient, as we
are more interested in algorithmic improvements of the search procedure.

The front end includes a parser for problem specifications (A0, Visible(A0),
Avail, and π0) and a GUI that displays the witness, if a final state has been found,
or reports that no final state exists. In the former case, the user can choose to
discard the found witness and continue the search for the next witness. We have
found this to be an extremely useful feature, which helps to overcome some of the
limitations of the strict possibilistic (as opposed to probabilistic) concept of opacity.

For example, we added the atomic clause mem(Clstr, Bob) to the policy in
Section 4, and expected the fact that Bob now is a member to be detectable by
Eve. After all, the probe containing clauses (9), (10) and (12) is positive, whereas
the one containing only (9) and (10) is negative. This suggests that (12) is relevant,
which is only possible if its body atom mem(Clstr, Bob) is derivable.

However, the prototype (correctly) reports that 〈∅,mem(Clstr, Bob)〉 is opaque.
A closer look at the produced witnesses reveals that they all contain the rather
“improbable” clause “mem(Clstr, Bob)← mem(CA, Eve), owns(CA, Eve, Job)”.

Indeed, we can prove this hypothesis with our prototype: the weakened input
probe 〈{(9), (10)},mem(Clstr, Bob)〉 is detectable. Thus, the constructiveness of
the algorithm enabled us to form the informal judgement that the original input
probe was detectable with a high likelihood.

Example 2. Here is another example that shows how the tool can be used interacti-
vely. Let π1 = 〈{b← a., d← c.}, e〉, π2 = 〈∅,¬a〉, and π1 = 〈{d},¬e〉. Suppose that
all three probes are positive in A0, and Visible(A0) = ∅. What does this tell us
about c and a in A0? This example is interesting because the answer is not obvious
on casual inspection and may be somewhat surprising.

We start with the obvious goal probes 〈∅, c〉 and 〈∅, a〉. The tool reports that
〈∅, c〉 is detectable (i.e., c must be true in A0), but that 〈∅, a〉 is opaque. For the latter



analysis, it also reports that only one minimal witness exists, which includes the
clause a← d. And indeed, the goal probe 〈{d}, a〉 is found to be detectable, hence
we can infer that A0 ∪ {d} ` a. (The example is small enough that the interested
reader may manually retrace the steps of the algorithm to verify these results.) ut

As Theorem 2 indicates, traversing the entire transition system would be infea-
sible even for small examples. We devised and implemented a number of optimiza-
tion methods for effectively pruning the search tree. For lack of space, we describe
them only very briefly. Full descriptions and proofs of correctness are found in [5].

Order independence. The order in which the probes in Π+ are processed is irre-
levant, since the constructed witness extension A′′ is independent of the current
witness candidate; it only depends on the currently considered probe. Therefore,
we can fix a particular order for Π+ in an initial state, thereby reducing the search
space by a factor of |Π+|! for the search branch starting from that initial state.

Redundant probes. The sets Π+ and Π− in an initial state often contain many pairs
of probes π1 = 〈A1, ϕ1〉, π2 = 〈A2, ϕ2〉 such that π1 ⊆ π2 (i.e., ϕ1 = ϕ2 ∧A1 ⊆ A2).
For example, we may have π1 = 〈{a.}, z〉 as well as π2 = 〈{a., b.}, z〉 in Π+. By
monotonicity of ` and of the query z, the larger query π2 is redundant, since any
witness candidate that makes π1 positive also makes π2 positive. A similar argument
can be made for the probes in Π−. In general, we can first transform initial states
〈Π+

0 , Π
−
0 , A〉 ∈ Init into potentially much smaller states 〈Π+

1 , Π
−
1 , A〉, where

Π+
1 = {π ∈ Π+

0 | ¬∃π′ ∈ Π
+
0 : π′ ( π}, and Π−1 = {π ∈ Π−0 | ¬∃π′ ∈ Π

−
0 : π ( π′}.

These reduced states are then used as initial states.

Conflicting probes. Any initial state σ0 = 〈Π+, Π−, A〉 in which there exist π1 ∈
Π+, π2 ∈ Π− such that π1 ⊆ π2 can be discarded straight away, as there are no
transitions from σ0.

Experimental results. To gain a better understanding of the scalability of the opa-
city checking algorithm, with and without optimization methods, we performed a
number of performance tests. We only briefly summarize our findings and refer to
the technical report [5] for reproducible details on all test cases and performance
plots.

The performance tests are based on the policy from Section 4. The policy is
arguably small; however, this fact does not weaken our results, as it is easy to see
that the computation time is essentially independent of the size of the policy A0.
The significant parameter with respect to computation time is Avail.

We found that the computation time doubles with each irrelevant, trivially po-
sitive probe 〈{pi}, pi〉 being added to Avail, which is predicted by Theorem 2. Suc-
cessively adding irrelevant, trivially negative probes 〈{pi}, z〉 only caused a linear
increase (+1.3 ms per additional probe). This is also to be expected, as negative
probes do not cause any branching.

We then explored several variations of the basic scenario from Section 4, running
each test case with different combinations of the optimization methods enabled.
(The order independence method was enabled in all runs.)



We found that enabling the optimization methods improved performance in all
cases, apart from those where Avail was manually reduced to only the relevant
probes. Even in the latter cases, enabling optimization did not add any significant
overhead. The automated optimization methods led to dramatic improvements that
were particularly noticeable in the more complex test cases, with speedup factors
between 126 and 280. Furthermore, they also significantly improved scalability; for
example, increasing the size of Avail from 16 to 128 increased the computation
time by a factor of 1130 in the unoptimized case, but only by a factor 8 with the
optimizations enabled.

Not surprisingly, manually picking only the relevant probes was the most ef-
fective strategy for improving performance, with speedup factors between 150 and
19,000. This suggests that significant performance gains can be expected from more
sophisticated pruning methods.

The size of Avail varied between 16 and 128. All test cases completed in less
than one second (with all optimizations enabled, on a standard workstation), apart
from the most complex one, which took 7.2 s (vs. 15 min unoptimized) and 150,000
(vs. 7 million) Datalog query evaluations. In the latter test case, the probe queries
contained negation, which led to more than 16,000 initial states.

Our results suggest that checking opacity using our tool is feasible in many
practical cases, given that the analysis is almost independent of the size of the
policy (which may well have millions of clauses), and that it seems reasonable to
restrict analysis to adversaries that have no more than about a hundred different
probes to their disposal.

7 Discussion

To recapitulate, we first presented a general framework of probing attacks, defining
abstract notions of policy, probe, and adversary characterized by available probes,
and based on these, notions of observational equivalence, opacity and detectability.
We instantiated this framework to Datalog, a language on which many existing
policy languages are based.

It has been an open question whether the problem of opacity in Datalog policies
is decidable [3]. We answered this question in the positive by presenting a com-
plete decision procedure for opacity. It works by attempting to construct opacity
witnesses, i.e., policies that masquerade as the original policy, but falsify the input
probe. We also devised a number of optimization strategies for pruning the search
space. Our experimental results show that these methods are highly effective.

Opacity is a possibilistic information flow property. The mere possibility of the
existence of an opacity witness suffices to deem an input probe opaque, no matter
how unlikely these witnesses may be. But our algorithm for deciding opacity pro-
vides richer information, as it does not merely prove the existence of a witness, but
actually enumerates all minimal witnesses. The set of minimal witnesses is a finite
representation of the infinite set of all witnesses. Our prototype includes an interface
that lets the security analyst browse and inspect the witnesses, thereby enabling
her to informally judge the likelihood of opacity or detectability. We believe that
this is a more useful approach in practice than ascribing numerical probabilities to
the witnesses.
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