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ABSTRACT
Malware writers are constantly looking for new vulnerabili-
ties to exploit in popular software applications. A successful
exploit of a previously unknown vulnerability, that evades
state-of-the art anti-virus and intrusion-detection systems is
called a zero-day vulnerability. JavaScript is a popular vehi-
cle for testing and delivering attacks through drive-by down-
loads on web clients. Failed attack attempts leave traces of
suspicious activity on victim machines. We present ZDVUE,
a tool for automatic prioritization of suspicious JavaScript
traces, which can lead to early detection of potential zero-
day vulnerabilities. Our algorithm uses a combination of
correlation analysis and mixture modeling for fast and ro-
bust prioritization of suspicious JavaScript samples.On data
collected between June and November 2009, ZDVUE identi-
fied a new zero-day vulnerability and its variant in its top
results, as well as revealed many new anti-virus signatures.
ZDVUE is used in our organization on a routine basis to auto-
matically filter, analyze, and prioritize thousands of down-
loaded JavaScript files, for information to update anti-virus
signatures and to find new zero-day vulnerabilities.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Abuse and crime involv-
ing computers; K.6.5 [Security and Protection]: Invasive
software (e.g., viruses, worms, Trojan horses)

General Terms
Security, Algorithms, Experimentation

Keywords
Zero-day Vulnerabilities, Data Mining, Frequent Itemset
Mining, Co-occurrence Statistics, Mixture Modeling, Ma-
licious JavaScript Analysis, Drive-by Download Exploits
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1. INTRODUCTION
JavaScript, a dynamic scripting language for client-side

browser enhancements is increasingly being used to mount
attacks on unpatched software on vulnerable client ma-
chines. Poorly validated JavaScript forms can cause such
clients to download and execute malicious attack payload
(including XSS vulnerabilities) from third-party servers.
Such reflected attacks and drive-by-downloads account for
over 60% of reported attacks [25], and a growing market for
targeted cybercrime places a high premium on unearthing
new (unpatched) vulnerabilities [10, 17, 29].

A new exploit of a previously unknown vulnerability is
referred to as a zero-day attack. The associated vulnerabil-
ity is called a Zero-Day Vulnerability (or ZDV). There are
two main challenges confronting a malware writer crafting a
zero-day attack: (i) The attack must evade state-of-the-art
anti-virus scanners; (ii) For the attack to be effective, it must
take into account the diversity of target configurations. Due
to these factors, a malware writer may have to try several
attack variants before developing a successful attack. Failed
attempts may leave attack traces, in the form of malicious
JavaScript code samples on victim machines.

In this paper, we show how these traces, farmed from
millions of client computers around the world, can provide
valuable information about potentially dangerous zero-day
vulnerabilities, giving us an opportunity to patch the vul-
nerability before it is exploited. We present ZDVUE, a sta-
tistical tool that automatically analyzes such JavaScript at-
tack samples to detect new vulnerabilities (not necessarily
new methods of attack), including ZDVs, in a timely man-
ner. Our goal is to correctly identify statistical indicators of
attacks in the presence of large volumes of benign code sam-
ples, and use this to discover any new vulnerabilities that
are targeted and/or any new anti-virus signatures that are
generated. Our intuition is that it is possible to statistically
characterize the features that distinguish malicious samples
from benign. The difference may be small, but we can devise
methods that magnify this difference, identify attack code
with a high degree of confidence, and prioritize it according
to its relevance.

Our approach identifies patterns that traditional anti-
virus software can miss, and provides new signatures as in-
puts to such tools. Instead of wading through hundreds of
thousands of files by hand to identify new attacks, ZDVUE

helps a security expert in focusing effort on a small (tun-
able) prioritized list of high-ranking candidates. We trained



our model on data collected between July and October 2009.
Using this model, ZDVUE detected two ZDVs from among
26932 unannotated samples collected between August and
November 2009. The ZDVs were found within the top 1%
and 2% of our prioritized reports respectively. Subsequently,
ZDVUE was incorporated in a diagnostic tool which is used on
a day-to-day basis in our organization and regularly surfaces
new vulnerabilities that are deemed important.

Our work is complementary to WEPAWET [6], where authors
identify a suite of static and dynamic features for malicious
JavaScript code and apply anomaly detection models to sep-
arate malicious cases from benign ones. Other related work
includes static analysis techniques [5, 15, 8, 14, 11] that
can identify attack payload in many cases, when the code
is available ahead of time. However, this is not a complete
solution for web applications that include dynamic content,
such as context-sensitive advertisements. Some other ap-
proaches use high interaction honey clients [28, 20, 19, 22,
27, 4] to monitor dynamic system changes and identify mal-
ware. Both static and dynamic analysis techniques can be
expensive to deploy on all test files, and we hope to leverage
their benefits on our top-ranked files in the future to extend
the performance of our tool.

The rest of the paper is organized as follows: Section 2
describes how we select features and presents our motiva-
tion for using co-occurrence statistics. In Section 3 we de-
scribe the training and testing phases of ZDVUE. Details of
the statistical techniques used by our learning algorithm are
presented in Sections 4-5. In Section 6 we describe our data
collection and the results of applying our method to this
data set, along with a sensitivity study. Section 7 presents
related research, followed by conclusions and future work in
Section 8.

2. MOTIVATION
We collect JavaScript samples from client machines, and

look for code that corresponds to failed attack attempts.
This information is embedded in our data, which consists
of a large number of reports collected from client reported
incidents, error reports, and submissions of malicious code.
Note that we are looking at actual code that executed in
a client context. The issue of obfuscated JavaScript code,
which can fool signature scanners or static analyzers, is not
relevant in our discussion. Our samples are code fragments
that are in execution when the data is collected. Within
these code samples, our first step is to identify a set of
symbols, called our alphabet, which can help identify at-
tack attempts and rank them according to their impor-
tance. Our alphabet consists of token symbols in JavaScript
code samples (See Table 6 for example symbols in Ap-
pendix A). These symbols are picked semi-automatically,
using frequency counting in hand-annotated samples. Our
idea is to use frequent patterns (frequently occurring groups
of symbols) as discriminators. In this section we motivate
the use of frequent patterns for prioritization using an illus-
trative example.

Consider an example heap-spray attack that exploits three
vulnerabilities, CVE-2008-4844, CVE-2008-0015, and CVE-
2009-0075 in the Microsoft Internet Explorer browser pro-
gram (See details of these attacks in Appendix B). An
attacker mounting a heap-spray may use one or more
new array calls to allocate memory on the heap (symbol 28
in Table 1), or the unescape function to decode a JavaScript

Id Feature % Count in % Count in %
malicious benign Diff

samples samples

14 u9090 u9090 61 0 61
17 0x0c0c0c0c 58 0 51
18 substr 95 88 7
20 unescape 85 45 40
23 function 97 99 2
26 replace 64 87 23
28 new array 89 48 41

Table 1: Marginal statistics of heapspray symbols

literal (symbol 20), or the substring function (symbol 18).
There may also be traces of shellcode and NOPs (no opera-
tions), given by symbol ids 17 and 14 respectively. NOPs are
frequently used by attackers to construct and deploy NOP
sleds within the heap that end with user-inserted shellcode,
and are used mainly to overcome address layout randomiza-
tion challenges.

The symbols in our alphabet represent (i) keywords and
literals that are indicators of malicious JavaScript (e.g., sym-
bols 14 and 17), (ii) keywords and literals that mainly occur
in benign JavaScript, and (iii) a mix of keywords and lit-
erals that occur in both malicious and benign JavaScript
(symbols 18,20, and 28). The mix of malicious and benign
symbols characterize attacks more robustly. For example, if
an attacker used new shellcode that does not map directly to
symbol 17, the other benign symbols that deliver the shell-
code will be detected by our tool. Using symbols directly as
features, rather than groups of symbols (frequent patterns),
to discriminate between malicious and benign JavaScript
samples, would work well in scenarios where the individual
statistics of these symbols are significantly skewed in the be-
nign or malicious samples. This is not the case, as shown in
Table 1, using data from 13500 attack samples.

Observe that symbols of type (i), i.e., symbol 14 indi-
cating injection of NOP-sled blocks, and symbol 17, indi-
cating shell code injection, each occur in about 60% of the
attacks. Whenever 14 and/or 17 occur(s), the sample should
be given a high score, marking it as suspicious. On the other
hand, symbols like 23 (JavaScript class or function defini-
tion) have comparable frequencies in malicious and benign
samples; hence they do not, by themselves, add much value
in discrimination. Symbol 28 (memory allocation) and sym-
bol 20 (decode string) both occur in > 85% of malicious
samples, and also occur in close to 50% of benign samples.
When used individually to characterize malicious samples,
they can lead to a high false positive rates, i.e., we may iden-
tify benign JavaScript code samples as malicious. Similarly,
symbol 26 (replace), is a useful discriminatory feature for
benign code, but when used alone, can result in a high false
negative rate.

We show how using co-occurrence statistics (frequent pat-
terns) can overcome the issues highlighted above. In Table 2,
we present the co-occurrence statistics of various combina-
tions of a subset of these attack symbols: 20 - unescape,
26 - replace, and 28 - new array. Observe that the combi-
nation of symbols i.e., pattern 20 and 28 is a stronger at-
tack indicator (55% difference) than if they were considered
individually (40 − 41% difference). Note that the combi-
nation of all three symbols (pattern 20, 26, 28), has a lower



Pattern Description % Count in % Count in %
malicious samples benign samples Difference

20, 26, 28 unescape, replace, new array 49 23 26
20, 26 unescape, replace 51 37 14
20, 28 unescape, new array 83 28 55
26, 28 replace, new array 54 40 14

Table 2: Co-occurrence statistics of heapspray features

occurrence in malicious samples than any pair of symbols
in this set. Similar trends are observed across other symbol
statistics, indicating that i) co-occurrence is a stronger dis-
criminator than individual symbol statistics and ii) not all
co-occurrences have the same discriminating power. Based
on (i), we prescribe a significance test to determine whether
some pattern occurs with substantial statistical skew in the
malicious examples as compared to the benign ones. Fur-
ther, based on (ii) different patterns can contribute to dif-
ferent weight values. Using frequent patterns also builds in
robustness to new variants of the same attack that may not
be directly recognized by signature scanners that look for
exact matches. In Section 3, we show how to select signifi-
cant frequent patterns automatically, and assign appropriate
weights for prioritization.

3. METHOD
Our goal is to identify high-value malicious JavaScript

from our collected attack samples and uncover new vulner-
abilities, or update existing anti-virus signatures. In the
training phase (Section 3.1), we use a set of annotated sam-
ples to learn a probabilistic model for the data (Algorithm 1).
In the ranking phase (Section 3.2), we prioritize the unanno-
tated samples based on their likelihood scores with respect
to the learnt model (Algorithm 2). We discuss the robustness
of our approach to adversarial manipulation of both training
and test phases in Section 3.3. We motivate our approach
over other popular learning techniques in Section 3.4.

3.1 Training Phase
In the training phase, we are given annotated sets of posi-

tive (malicious) samples (S+) and negative (benign) samples
(S−). Each JavaScript sample is encoded as a transaction,
which is a collection of items or symbols over a finite al-
phabet (say A). Recall that this set A (cf. Table 6) is the
universal set of feature symbols, and were selected from our
annotated samples statistically.

We define an itemset as a non-empty set of items or sym-
bols, e.g., α = {A1. . . . , AN}, Ai ∈ A, i = 1, . . . , N denotes
an N -itemset. Itemsets can also be thought of as patterns
embedded in transactions. Given a collection of transactions
(say D), the frequency of a pattern α in D is the number
of transactions that contain (or support) α. Patterns whose
frequency exceeds a user-defined threshold are referred to
as frequent itemsets. The goal of the training phase is to
estimate which groups of feature symbols correlate strongly
in the positive examples but are absent (or are weakly cor-
related) in the negative examples, and vice versa. We also
propose a new statistical significance test for itemsets, which
determines whether an itemset was observed in data more
often than we would expect under a random chance model.

The main steps in the training phase are listed in Algo-
rithm 1. Input to the training phase are sets S+ and S−

Algorithm 1 Training algorithm

Input: Data set of positive samples (S+), data set of negative
samples (S−), maximum size of patterns (N)

Output: Generative models Λ+ (for S+) and Λ− (for S−)
1: Find the set (F+) of frequent itemsets in S+ of size N or less,

using a frequency threshold of
|S+|
2N

2: Find the set (F−) of frequent itemsets in S+ of size N or less,

using a frequency threshold of
|S−|
2N

3: Associate each pattern αj in F+ ∪ F− with an IGM Λαj
(based on Definition 1 in Section 4)

4: Keep only ‘significant’ patterns in F+ and F− (based on
Eq. 1)

5: Keep only ‘discriminating’ patterns in F+ and F− by remov-
ing patterns common to both

6: Build a mixture (Λ+) of significant IGMs (Λαj , αj ∈ F+) for

S+ (using Eqs. 3–5)
7: Build a mixture (Λ−) of significant IGMs (Λαj , αj ∈ F−) for

S− (using Eqs. 3–5)
8: Output Λ+ and Λ−

of positive and negative training transactions, along with
a user-defined maximum size N of patterns to be consid-
ered. The actual value of N is picked by the algorithm au-
tomatically, using our significance test. The first steps (lines
1, 2, Algorithm 1) compute the frequent itemsets for both
data sets S+ and S−. The task of discovering all itemsets
whose frequencies exceed a prescribed frequency threshold is
a well-studied problem in data mining called Frequent Item-
sets Mining (FIM) [1]. We use a standard procedure known
as the Apriori algorithm for obtaining frequent itemsets in
the data [1].

For each pair (pattern, frequency), we need a way of de-
ciding if it is a useful discriminating statistic. Traditionally,
this frequency threshold is estimated outside the model and
can greatly impact the quality of the results if chosen in-
correctly. We use a significance test to decide whether an
itemset is interesting or not, rejecting all patterns whose fre-
quencies are below a noise threshold – this corresponds to
the likelihood of that the pattern being substantially smaller
than the likelihood under a background noise model. One of
our main contributions here is that we can prescribe a value
for this threshold automatically that results in an effective
classifier with strong statistical properties. In order to fix
this threshold, we associate each frequent itemset discovered
with a simple generative model called an Itemset Generating
Model (or IGM) [13], as shown in line 3, Algorithm 1 and
devise a test of significance for frequent itemsets in the data
based on likelihoods under the IGM model. Formal details
of the IGMs and this connection are given in Section 4. In-
tuitively, each pattern is associated with an IGM with the
following properties:

1. The probability of a transaction under an IGM is high



whenever the transaction contains the corresponding
itemset.

2. Ordering of itemsets according to frequencies is pre-
served under ordering of corresponding IGMs accord-
ing to their data likelihoods.

These properties give us a statistical significance test for
itemsets in the data. (We observe that the IGM is not in-
tended to be the best generative model that fits the data,
as we are only interested in thresholding itemsets whose
frequencies are not statistically significant). The signifi-
cance test is essentially based on the evidence of at least
one reasonable model (namely the IGM) over that of a uni-
form random source, and this turns out to be very useful in
practice, eliminating automatically all itemsets that do not
contribute to discriminating between malicious and benign
classes. This is the next step in our training phase (line 4,
Algorithm 1). For a given user-defined level of accuracy ε,
a pattern α of size N with frequency fα in a data set of
K transactions, is declared significant if fα > Γ where Γ is
given by

Γ =
K

2N
+

√(
K

2N

)(
1− 1

2N

)
Φ−1(1− ε) (1)

where, Φ−1(·) denotes inverse of the cumulative distribution
function (cdf) of the standard normal random variable. This
is a standard error characterization for the standard normal
random variable. For typical values of ε, size K of the given
transactions data set and size N of the itemsets under con-
sideration, the above expression tends to be dominated by
K
2N

, and so, in the absence of any other information, we use
this as the first threshold for significance to try in our algo-
rithm. If the eventual model obtained is too weak (because
of either too few or too many significant itemsets) we can
always go back to the significance testing step and select an
appropriate value of ε.

Note that while IGMs are useful to assess the statistical
significance of a given itemset, no single IGM can be used
as a reliable generative model for the whole data. This is
because, a typical data set, D = {T1, . . . , TK}, would con-
tain not one, but several, significant itemsets. Each of these
itemsets has an IGM associated with it as per Definition 1.
A mixture of such IGMs, rather than any single IGM, is a
more appropriate model for D.

The final step in our training phase is the estimation of
a mixture of IGMs for each data set S+ and S− (lines 6,
7, Algorithm 1). We can think of this step as an optimal
iterative procedure that assigns weights to the significant
patterns found in the data by maximizing the likelihood of
the data under a mixture of IGMs. Details of this weighting
technique are presented in Section 5. We use this procedure
to estimate separate mixture models for S+ and S−. The re-
sulting generative (mixture) models, Λ+ and Λ−, which are
essentially the sum of the product of the learnt weights and
the corresponding pattern frequencies, are the final outputs
of the training phase (line 8, Algorithm 1).

3.2 Ranking Phase
We now describe the ranking phase of our procedure. The

main steps in the ranking phase are listed in Algorithm 2.
Inputs to the ranking phase are the generative models Λ+

and Λ− obtained from the training phase and the set D of

Algorithm 2 Ranking algorithm

Input: Set D of test cases, learnt mixture models from training
phase (Λ+ and Λ−)

Output: Prioritized list of test cases (D)
1: for each test case T ∈ D do
2: Compute likelihood P [T |Λ+] of T in Λ+ (based on Eq. (2)

for Λ+)
3: Compute likelihood P [T |Λ−] of T in Λ− (based on Eq. (2)

for Λ−)

4: Obtain the likelihood ratio for T :
P [T | Λ+]

P [T | Λ−]

5: Sort test cases in D in descending order of likelihood ratios
6: Output sorted list D

test transactions that need to be prioritized. The first step
is to compute, for each test transaction T ∈ D, the like-
lihoods under the positive and negative generative models
(lines 1–3, Algorithm 2). Then we compute the correspond-
ing likelihood ratio (line 4, Algorithm 2). Finally, we sort
the test cases in decreasing order of likelihood ratios (line
5, Algorithm 2). This sorted list is the final output of our
ranking procedure (line 6, Algorithm 2).

After the ranking phase, we examine the JavaScript files
corresponding to the top ranked transactions using our sig-
nature scanners. This output filtering step removes any
known vulnerabilities. We observe that our method is useful
in characterizing our transactions as follows:

• We can run our testing algorithm on the training set
itself, to validate if our learnt model can recall all anno-
tated transactions accurately. If any annotated trans-
actions are classified otherwise (e.g., S+ as S−), an
expert can inspect them and check if the samples are
internally consistent. This is useful to check the cor-
rectness of the training set.

• After we run our prioritization and classification algo-
rithm on the test data, and run our signature scanners
and any other anti-malware protection on the top re-
sults, the remaining top results can either be attacks
against new vulnerabilities, including ZDVs, or simply
new signatures for known attacks that are not in our
database yet. Either case will lead to a recommenda-
tion for updating our anti-malware signature database.

Note that though our results are sensitive to the choice
of symbols (or findings exposed) in our alphabet, we peri-
odically update our symbol set semi-automatically (with in-
puts form security experts), in response to trends observed
in incident reports and advisories, as well as from the new
signatures and vulnerabilities discovered by ZDVUE. While
a completely new method of delivering a zero-day attack,
which bears no statistical similarities to any existing attack,
will not be identified, this information can be used retroac-
tively in older data sets as well.

3.3 Robustness
We collect code-samples found in error-reports from mil-

lions of client computers around the world. As a result, the
proportion of training data that the adversary can influence
is very small. If the adversary harvests a relatively large
infrastructure to deliver spurious error reports, these can
be filtered-out using DDoS detection techniques. Hence it
is difficult for an adversary to influence the patterns in the
benign training class. However, since the malicious class is



very small, it may be possible for the adversary to inject
spurious benign patterns in a high proportion of malicious
class examples. Note that this does not change the discrimi-
nating patterns. Rather than manipulate training data, the
adversary can also try to tamper with test cases. By in-
jecting high-weight benign patterns into some malicious test
cases, the adversary can hope to wrongly reduce the likeli-
hood ratio of these malicious samples (potentially increasing
false-negatives). To counter this, we can simply use likeli-
hoods under the malicious class as a robust test statistic,
rather than likelihood ratios as mentioned in the algorithm
(See Section 3.2). The other alternative for the adversary
is to try and avoid using malicious patterns in a malicious
test-case; but this amounts to discovering an entirely new
attack with no resemblance to existing or previously-known
attacks.

3.4 Other ML Methods
The key insight in ZDVUE is that co-occurrence statistics

(or frequent patterns) play a significant role in distinguish-
ing malicious reports from benign (see Sec. 2). With the
space of all possible patterns exponential in the size of the
alphabet, the dimension of feature vectors is be prohibitively
high (≈ 234 for the alphabet in Table 6). While methods like
decision-trees cannot handle such large feature spaces effi-
ciently, more efficient techniques like Naive Bayes classifiers
make strong independence assumptions contrary to our ob-
servation that some features tend to be strongly correlated.
Hyperplane-classifiers such as SVMs, logistic regression and
neural networks are sensitive to outliers [12] (especially when
classes are very imbalanced), and an adversary can easily
create outliers by introducing feature-noise in a small num-
ber of examples. In addition to outlier sensitivity, methods
like SVMs are also known to be fragile when data exhibits
class-imbalance (Recall that less than 0.06% of the samples
we collected were malicious).Our approach based on esti-
mates of frequent-patterns statistics easily scales to large-
feature data and is also more robust to adversarial manipu-
lation ( Sec. 3.3). Further, by employing a statistical model
based on class-conditional likelihoods, we avoid the pitfalls
of learning from severely class-imbalanced data.

4. IGMS AND FREQUENT ITEMSETS
In this section we briefly recall the main results regard-

ing the formal connection between itemsets and generative
models [13].

An IGM Λα for itemset α is a model under which the
probability of a transaction T is high whenever T contains
α. An Itemset Generating Model (or IGM) is specified by
a pair, Λ = (α, θ), where α ⊆ A is an N -itemset, referred
to as the “pattern” of Λ, and θ ∈ [0, 1] is referred to as the
“pattern probability” of Λ. The class of all IGMs, obtained
by considering all possible itemsets of size N (over A) and by
considering all possible pattern probability values θ ∈ [0, 1],
is denoted by I. The probability of generating a transaction
T under the IGM Λ is prescribed as follows:

P [T | Λ] = θzα(T )

(
1− θ

2N − 1

)1−zα(T )(
1

2M−N

)
(2)

where, zα(·) indicates set containment: zα(T ) = 1, if α ⊆ T ,
and zα(T ) = 0, otherwise; and M denotes the size of the
alphabet A. Observe that even for moderate values of θ

(namely, for θ > 1
2N

) the above probability distribution
peaks at transactions that contain α, and the distribution
is uniformly low everywhere else. The itemset-IGM associ-
ation is defined as follows:

Definition 1. [13] Consider an N-itemset, α = (A1,
. . . , AN ) (α ∈ 2A). Let fα denote the frequency of α in
the given database, D, of K transactions. The itemset α is
associated with the IGM, Λα = (α, θα), with θα = ( fα

K
), if

( fα
K

) > ( 1
2N

), and with θα = 0 otherwise.

This itemset-IGM association has several interesting prop-
erties [13]. First, the association under Definition 1 ensures
that ordering with respect to frequencies among N -itemsets
over A is preserved as ordering with respect data likelihoods
among IGMs in I.

Theorem 1. [13] Let D be a database of K transactions
over the alphabet A. Let α and β be two N-itemsets that
occur in D, with frequencies fα and fβ respectively. Let
Λα and Λβ be the corresponding IGMs (from I) that are
associated with α and β according to Definition 1. If θα and
θβ are both greater than ( 1

2N
), then we have, P [D | Λα] >

P [D | Λβ ] if and only if fα > fβ.

Further, if the most frequent itemset is ‘frequent enough’
then it is associated with an IGM which is a maximum like-
lihood estimate for the data, over the full class, I, of IGMs.
(We refer the reader to [13] for theoretical details of the
model and its properties).

Theorem 2. [13] Let D be a database of K transactions
over alphabet A (of size M). Let α be the most frequent
N-itemset in D and let Λα = (α, θα) be the IGM corre-
sponding to α (as prescribed by Definition 1). If P [D |Λα] >(

1
2N−1

)K (
1
2

)K(M−N)
, then Λα is a maximum likelihood es-

timate for D, over the class, I, of all IGMs.

5. MIXTURE OF IGMS
We now describe how a mixture of IGMs can be used as

a generative model for the data. Let Fs = {α1, . . . , αJ}
denote a set of significant itemsets in the data, D. Let Λαj
denote the IGM associated with αj for j = 1, . . . , J . Each
sequence, Ti ∈ D, is now assumed to be generated by a mix-
ture of the IGMs, Λαj , j = 1, . . . , J . Denoting the mixture of
IGMs by Λ, and assuming that the K transactions in D are
independent, the likelihood of D under the mixture model
can be written as follows:

P [D | Λ] =

K∏
i=1

P [Ti | Λ]

=

K∏
i=1

(
J∑
j=1

φjP [Ti | Λαj ]

)
(3)

where φj , j = 1, . . . , J are the mixture coefficients of Λ (with

φj ∈ [0, 1] ∀j and
∑J
j=1 φj = 1). Each IGM, Λαj , is fully

characterized by the significant itemset, αj , and its cor-
responding pattern probability parameter, θαj (cf. Defini-
tion 1). Consequently, the only unknowns in the expression
for likelihood under the mixture model are the mixture coef-
ficients, φj , j = 1, . . . , J . We use the Expectation Maximiza-
tion (EM) algorithm [2], to estimate the mixture coefficients



of Λ from the data set, D. Any other re-weighting technique
can also work equally well.

Let Φg = {φg1, . . . , φ
g
J} denote the current guess for the

mixture coefficients being estimated. At the start of the EM
procedure, φg is initialized uniformly, i.e. we set φgj = 1

J
∀j.

By regarding φgj as the prior probability corresponding to

the jth mixture component, Λαj , the posterior probability

for the lth mixture component, with respect to the ith trans-
action, Ti ∈ D, can be written using Bayes’ Rule:

P [l | Ti,Φg] =
φgl P [Ti | Λαl ]∑J
j=1 φ

g
jP [Ti | Λαj ]

(4)

After computing P [l | Ti,Φg] for l = 1, . . . , J and i =
1, . . . ,K, using the current guess, Φg, we obtain a revised
estimate, Φnew = {φnew1 , . . . , φnewJ }, for the mixture coef-
ficients, using the following update rule. For l = 1, . . . , J ,
compute:

φnewl =
1

K

K∑
i=1

P [l | Ti,Φg] (5)

The revised estimate, Φnew, is used as the ‘current guess’,
Φg, in the next iteration, and the procedure (namely, the
computation of Eq. (4) followed by that of Eq. (5)) is re-
peated until convergence.

6. EVALUATION
Using the methods detailed in the previous section,

we have developed an automated tool called ZDVUE for
JavaScript code prioritization that is being used daily by
security audit groups in our organization. The results pre-
sented here are for browser attack data collected between
July and November of 2009 1. We present the characteris-
tics of the data collected, and report the zero-day and its
variant that were bubbled up by the tool in Section 6.1.
Enhancing signature-based scanners is a very important re-
sult of our tool and this is discussed in Section 6.2, followed
by a comparison with another state-of-the-art tool WEPAWET
in Section 6.3. Details of how we chose parameters in the
training step, and the operating points for the classifier are
presented in Section 6.4.

The characteristics of the data used in our evaluation are
listed in Table 3. The Train Data i.e. the data that was
used for training the model consists of 13500 samples of
JavaScript code from execution contexts, which were filtered
from a larger set of samples collected between July and Oc-
tober 2009. These samples were a small fraction of the data
that correspond to browser attack attempts collected daily
using customer reported incidents, submissions of malicious
code, and Windows error reports over this period. Simi-
larly, in the Test Data, i.e., the unranked samples that were
of interest to security experts, contains 26932 instances se-
lected using the same procedure, from August to November
2009. Note that both data sets do not overlap, and the code
samples in the two sets are from different sources and dis-
tinct. The training data set was filtered based on a list of
signatures of known attacks, which gave us the positive (ma-
licious) labels. The negative (benign) labels were annotated
semi-automatically with user input. We extract the patterns

1Our data contain sensitive information from customer re-
ported incidents. We only report results from the period
that was cleared for disclosure

from each sample based on the alphabet of Table 6 and our
significance test, and construct features appropriately. The
average size of transactions (i.e. the average number of fea-
tures per sample) is also listed in Table 3.

6.1 Detection of Zero-Day Attacks
From the 26932 JavaScript samples that were processed

and prioritized, a zero-day attack exposing a vulnerability
(ZDV-I) in the Microsoft Internet Explorer browser, un-
known to our signature scanners or any other anti-virus soft-
ware during data collection was ranked among the top 1%.
Without ZDVUE, a security expert would have to manually
examine the attack data i.e., inspect the code of all the files
(26932), whereas our expert only needed to focus his atten-
tion on a smaller subset of 270 files. This attack attempt first
surfaced on 29th November 2009 and was subsequently pub-
lished as vulnerability CVE-2009-3672 in [18] (Appendix B).
Further, when more ranked results were considered by low-
ering our selection threshold, a variant of the above attack,
exploiting the same vulnerability (ZDV-II) was detected in
the top 2% of the Test data. Guidelines for good threshold
selection given a data set is discussed in detail in 6.4.

Table 4 shows the detailed results obtained on the test
data. The first column mentions the threshold that was
selected. The second column quotes the number of mali-
cious cases reported for the corresponding threshold. The
third column quotes the number of attacks (among those
reported) that were already known to our anti-virus soft-
ware. The fourth and fifth columns indicate whether ZDVUE

detected the two instances of the Zero-day attack in the Test
Data. As can be seen from the table, ZDV-I was detected
at all the thresholds, while the second ZDV-II was only de-
tected at A and B (but not at C or D). These thresholds
are explained in 6.4, and correspond to interesting operat-
ing points in our tool. In all cases except threshold A, the
number of interesting cases reported is small (just around
2% of 26932 cases). This demonstrates that our method is
good at identifying relevant cases (i.e., within 1 and 2% at
a reasonable threshold).

6.2 Signature Updates
Among our top ranked files, we found an attack that

corresponds to known vulnerability in a JavaScript sam-
ple found in an Adobe file, corresponding to CVE-2009-
0927 Appendix B. While the actual vulnerability was known
to our anti-virus signature scanners, the method of delivery
of this vulnerability was new, and our signature database
was updated. Note that this vulnerability labeled SIG-I
was found at all reasonable thresholds, as shown in Table 4.
The top ranked files (over 300 were examined by hand) con-
tributed to many such signature updates.

6.3 Performance
In the next experiment, we present performance of ZD-

VUE on annotated data. For this, we picked 100 files at
random for which we established the ground truth by man-
ually examining the files. We fed the 100 code samples to
ZDVUE and the resulting prioritization is listed in Table 5.
The top 7 ranked files (ranks 1–6) from ZDVUE were all ac-
tually interesting attacks, out of which the first file was the
Adobe signature update described in the previous section.
Note that all 100 files were also marked as benign by our
anti-virus software. The 2 cases (45 and 46) that were not



Data Date All Malicious Benign Avg. size of
Set Range ’09 cases cases cases transactions

Train Jul-Oct 13543 839 12704 11
Test Aug-Nov 26932 453 26479 6

Table 3: Data characteristics

Operating # Malicious # Known ZDV-I ZDV-II SIG-I
Point Cases Issues based

Reported on Sigs

A 5991 (22%) 286 (1.0%)
√ √ √

B 624 (2.3%) 240 (0.8%)
√ √ √

C 614 (2.2%) 237 (0.8%)
√

×
√

D 560 (2.0%) 232 (0.8%)
√

×
√

Table 4: Results for detection of Zero-Day Attacks in Test Data

Report no. ZDVUE Ground WEPAWET
rank Truth Classification

1 1 attack suspicious
2 2 attack benign
3 3 attack benign
4 3 attack suspicious
5 5 attack benign
6 5 attack benign
7 6 attack benign

8 · · · 43 7 · · · 42 benign benign
44 44 benign benign
45 44 susp. excl.
46 44 susp. excl.

47 · · · 100 45 · · · 71 benign benign

Table 5: Groundtruth Comparison with WEPAWET

prioritized well by ZDVUE were corrupted and could not be
parsed correctly (incomplete files) and excluded from our
comparison.

In Column 4 of Table 5, we compare our results on the
100 annotated samples against the results obtained using
WEPAWET [6], an anomaly-based malicious JavaScript detec-
tor. Each input file is classified as one of malicious, sus-
picious or benign. WEPAWET identified the first and fourth
samples as suspicious and the rest as benign. Since the fea-
tures used in WEPAWET are behavior-based, and rely on actual
execution of code samples in a controlled execution environ-
ment, this result is not unexpected. While the sample size
picked was small, limited by the effort required to manu-
ally verify the ground truth, we believe that the results at
least reflect the difference in approach between ZDVUE and
WEPAWET. Finally, it is possible that WEPAWET can find attacks
that our algorithm may miss and we expect that WEPAWET

can be regarded as complementary to ZDVUE (see Sec. 7 for
a discussion).

6.4 Training and Validation
During the training phase, we used the algorithm on the

Train Data to learn the model. The maximum size of pat-
terns was discovered as 5 by our algorithm, indicating that
there were no significant patterns above this size for our
training data. The first step in our evaluation is to validate
the stability of the learnt classifier. This is a key step in the
model-building phase, since, based on just the training data,
we need to determine whether the training data was suffi-
cient for the choice of parameters used. Validation involves
randomly splitting the training set into 2 parts and using one

Figure 1: Cross validation results: Precision v/s Re-
call plots obtained by varying the classifier threshold
for different splits of data into training and valida-
tion sets.

part for learning the model, and the second part for evalu-
ating performance under the learnt model. We expect that
if the statistical estimation stabilizes, we should get com-
parable results on different instances of random splitting of
training data.

In our validation experiments, we generate 3 instances of
random 2-way 50-50 splits and 2 instances of random 2-
way 75-25 splits of the Train Data (These are referred to
as 50-50-a, 50-50-b, 50-50-c, 75-25-a, 75-25-b in the figures).
In all the instances, the first parts (of size 50% or 75%)
were used to train the corresponding models and the sec-
ond parts (of size 50% or 25%) were used for validation.
The cross-validation results are plotted in Figure 1 in the
form of precision v/s recall graphs. The different points in
each curve correspond to the use of different thresholds on
the likelihood ratios computed in line 4, Algorithm 2. The
main observation is that the precision v/s recall behavior
for all the instances are very similar – 100% precision can
be achieved with a recall in the 65%-70% range. Then, as
the threshold is relaxed (reduced) the algorithm will report
more and more code samples as malicious, thereby decreas-
ing the precision of the classifier decision. The interesting
region in the operating characteristics of Figure 1 is at a
precision of 90% and a recall of 70%, at the knee of operat-



Figure 2: Finding an operating point for the classi-
fier

ing curve (inflexion point). Moving substantially away from
this knee would impact both precision and recall. Observe
that operating points which achieve high precision (even if
at the cost of some recall) are more important than those
that achieve high recall (at the cost of precision). A high
precision ensures that security experts do not have too many
suspicious reports to analyze by-hand, i.e., 90% of the files
that were labeled as attacks are indeed attacks. Moreover,
since benign cases far exceed malicious cases, a high recall
result (at the cost of lower precision) is trivial and useless
to the security expert looking for new Zero-day attacks. In
view of this, our result of 90% precision at 70% recall is
very effective from the point-of-view of detecting new ZDV
exploits. The important empirical result here is that such
operating points were available (and identifiable) in all the
instances we tested.

Finally, we plot the operating characteristic of the classi-
fier using all of the Train Data in Figure 2 – 100% of the
data was used to learn the model and the same data was
used for plotting the operating curve as well. The general
behavior is similar to the plots in Figure 1 (with marginally
better precision since we are using all of the training data).
We now select some suitable operating points for our classi-
fier – in Figure 2, these points are marked A, B, C and D.
We pick 4 points in and around the ‘knee’ of the operating
curve. Each operating point corresponds to a threshold to
be used for the likelihood ratios during testing, In partic-
ular, the thresholds for operating point A was 1.59, for B
was 2.31, for C was 3.02 and for D was 3.74. The behavior
of the ZDVs and signatures at these operating points was
discussed earlier.

7. RELATED WORK
Machine learning and data mining techniques have been

applied to various security problems [16], including anomaly
detection, intrusion detection, attack graph analysis, and
analyzing audit trails for root kits, etc. A comprehensive
discussion of these techniques is beyond the scope of this
paper.

Researchers have studied a variety of static and semi-static
techniques to address the misuse of JavaScript language fea-
tures [9]. These include (among others) (i) Blueprint [14],

an enhanced parser on clients and servers that uses annota-
tions and helps prevent unauthorized download, (ii) Staged
Information flows [5], a combined static and dynamic analy-
sis technique that generates residual checks that need to be
validated at runtime, (iii) Gatekeeper [11] and [15], which
concentrate on smaller safer subsets of JavaScript, (iv) Noz-
zle [23], where heapsprays are identified using a lightweight
interpreter, (v) and in [8] where labels to sensitive infor-
mation are attached and tracked. While these techniques
are effective, they need changes to client or/and server com-
ponents. Our work can be viewed as complementing these
efforts, in rapidly identifying and prioritizing attack candi-
dates for deeper analysis.

A number of high interaction honey clients [28, 20, 19,
22, 27, 4] have also been used to monitor system changes
that could be caused by malware. In other related work,
WEPAWET [6] is a web service that applies anomaly detec-
tion models for analyzing JavaScript code for malicious con-
tent. In [3] authors propose PROPHILER, a system intended
as a front-end to WEPAWET, based on hand-crafted HTML,
JavaScript, URL and host-based features. Our work differs
from these in two ways. First, we look at syntactic features
in attacks rather than behavioral features in JavaScript files,
mitigating the issue of replicating the diversity of target con-
figurations for attacks through honey clients. Second, in con-
trast to the independent anomaly detection models for each
of the features, we learn statistically significant correlations
among groups of features.

Another recently reported system that uses machine learn-
ing to detect drive-by-download attacks is CUJO [24]. Here,
static and dynamic analysis is used to generate reports from
which n-gram features are extracted and used for building
SVM-based classifiers. Unlike n-gram features, which focus
on specific sequential patterns in the reports, ZDVUE uses
itemsets as features which are more general and can also
detect correlations between tokens-at-a-distance. In [7], au-
thors propose ZOZZLE, which applies a Naive Bayes classifier
over hierarchical features of the JavaScript Abstract Syntax
Tree (AST). While it is lightweight and thereby suitable for
in-browser adoption, the Naive Bayes classifier makes an un-
realistic assumption that features are statistically indepen-
dent; by contrast, ZDVUE explicitly estimates the correlations
between features and uses them for prioritization.

Finally, Argos [21] is an x86 emulator for capturing and
fingerprinting disclosed ZDVs, to provide accurate input to
signature scanners. The Zero-Day Initiative [26] maintains
a current list of known ZDVs, which provides economic in-
centives to anyone reporting a new ZDV.

8. CONCLUSIONS
Detecting new vulnerabilities is a critical problem that

confronts security response teams on an everyday basis. In
this paper, we develop methods, which are effective in find-
ing new vulnerabilities even before they are successfully ex-
ploited in the field. Our methods are based on a rigorous
statistical characterization of previously known exploits. We
use a combination of frequent pattern mining techniques
from data mining and generative model estimation tech-
niques from machine learning to develop a statistical filter
for detecting malicious payload intended to exploit a new
vulnerability. Our results demonstrate that our techniques
are robust and are able to detect high-value ZDVs in real-
world data sets. Although this paper primarily focuses on



detecting ZDVs in JavaScript, our methods are applicable
in other contexts, e.g., malicious audio and video files, Mi-
crosoft Word and Excel macro viruses, etc.
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A. JAVASCRIPT FEATURES
Table 6 lists the features that constitute our alphabet.

B. HEAPSPRAY ATTACKS
• CVE-2008-4844: Use-after-free vulnerability in mshtml

(dll) in Microsoft Internet Explorer 5.01, 6, and 7 on
Windows XP SP2 and SP3, Server 2003 SP1 and SP2,
Vista Gold and SP1, and Server 2008 allows remote at-
tackers to execute arbitrary code via a crafted XML
document containing nested SPAN elements, as ex-
ploited in the wild in December 2008.

• CVE-2008-0015: Stack-based buffer-overflow in the
function ReadFromStream (CComVariant) in the ATL
as used in the MPEG2TuneRequest ActiveX control in
msvidctl.dll in DirectShow, in Microsoft Windows 2000
SP4, XP SP2 and SP3, Server 2003 SP2, Vista Gold,
SP1, and SP2, and Server 2008 Gold and SP2 allows

remote attackers to execute arbitrary code via a crafted
web page, as exploited in the wild in July 2009, aka
”Microsoft Video ActiveX Control Vulnerability.”

• CVE-2009-0075: Microsoft Internet Explorer 7 does
not properly handle errors during attempted access to
deleted objects, which allows remote attackers to ex-
ecute arbitrary code via a crafted HTML document,
related to CFunctionPointer and the appending of doc-
ument objects, aka ”Uninitialized Memory Corruption
Vulnerability.”

• CVE-2009-0927: Stack-based buffer overflow in Adobe
Reader and Adobe Acrobat 9 before 9.1, 8 before 8.1.3
, and 7 before 7.1.1 allows remote attackers to exe-
cute arbitrary code via a crafted argument to the getI-
con method of a Collab object, a different vulnerability
than CVE-2009-0658.

• CVE-2009-3672: Microsoft Internet Explorer 6 and 7
does not properly handle objects in memory that (1)
were not properly initialized or (2) are deleted, which
allows remote attackers to execute arbitrary code via
vectors involving a call to the getElementsByTagName
method for the STYLE tag name, selection of the sin-
gle element in the returned list, and a change to the
outerHTML property of this element, related to Cas-
cading Style Sheets (CSS) and mshtml.dll, aka ”HTML
Object Memory Corruption Vulnerability.



Id Feature Description Id Feature Description

1 document.write Write HTML 18 substr Extracts characters
expression from a string
to document

2 evaluate Evaluates and/or 19 shellcode Shell code
executes a presence
string in JS string

3 push Add array 20 unescape Decode an
elements encoded string

4 msDataSourceObject ActiveX object for 21 u0A0A u0A0A Injection of
Microsoft web characters 0A0A
components

5 setTimeout Evaluates expression 22 CompressedPath Download path
after timeout property on an

ActiveXObject
6 cloneNode Create object copy 23 function Function or

class definition
7 createElement Create HTML element 24 shellexecute Call Shell API

8 window Current Document 25 u0c0c u0c0c Injection of
object characters 0c0c

9 getElementbyId Get an element 26 replace Replace a matched
from the substring with
current document a string

10 object Error JS exception 27 Collab.CollectEmailInfo Adobe Acrobat
object method for

for email details
11 u0b0c u0b0b Injection of 28 new Array Heap memory

character 0b0c0b0b allocation
12 CollectGarbage Call to garbage 29 u0b0c u0b0c Injection of

collector characters 0b0c0b0c
13 SnapshotPath Snapshot path 30 LoadPage Load a HTML

property on expression
an ActiveXObject

14 u9090 u9090 NOP injection 31 createControlRange Create a control
container

15 new ActivexObject Instantiate 32 Click JS click event
ActiveX object

16 navigator.appversion Get browser version 33 appV̇iewerVersion Get Adobe Acrobat
Reader version

17 0x0c0c0c0c Injection of 0c0c0c 34 function packed JS packer function

Table 6: JavaScript Features


