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ABSTRACT
We report on a large-scale telemetry project. The system gathered
file reports from 20.7 million machines that ran the Windows Up-
grade Advisor over a period of 13 months. The data gives a unique
insight into file prevalence across a web-scale population. Among
interesting findings is that over half of all files reported are seen on
a single system and never seen again. There is considerable inno-
vation, with new files being generated in the population at a rate
of thousands per day. The client systems also exhibit extraordinary
diversity with the least active and most active machines reporting
very different file distributions. The data points to the extreme dif-
ficulty of building an exhaustive library of existing software. The
longtail nature of the distribution shows that even 20 million sys-
tems is nowhere near enough to generate a comprehensive picture
of the universe of Windows software. The largest publicly available
library, the National Software Registry Library, contains a mere
0.26% of the files reported by our clients.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: MANAGEMENT OF COMPUTING
AND INFORMATION SYSTEMS—Security and Protection

General Terms
Measurement, Security

Keywords
whitelist, file prevalence, malware detection

1. INTRODUCTION
The Windows ecosystem may be the largest and most diverse among
the major Operating Systems. Estimates from industry analysts are
that about 340 million Windows PC’s ship every year. Despite the
scale of the installed base we have relatively few measurements on
this vast population of machines.

In this paper we report on a large-scale telemetry project that gath-
ered data from over 20 million reporting machines. The telemetry
was received from the Windows Upgrade Advisor, a compatibility
tool that advises users about whether their hardware is capable of
upgrading to Windows 7. The tool gathers certain data on the ma-
chine and its installed programs. While no information that iden-
tifies the user or compromises privacy is gathered, the data gives
us several insights into the what a web-scale population of users
has installed. The telemetry is limited and reports consist primar-
ily of SHA-1 hashes, and other metadata, of executable files that
were installed through Add-Remove Programs or the Microsoft In-
staller. However, we do gain an insight into the spread of systems,
share of OS and software versions, file prevalence and the longtail
distribution of files in the ecosystem.

One surprising finding is the large number of single-instance files
reported. One half of all files are reported by a single system and
never seen again. The proportion of such single-instance files drops
with scale, but does so at a surprisingly slow rate. When the pop-
ulation is 100,000 systems 99% of reported files have already been
seen, by a millon systems this increases to 99.7% and 99.82% by
20 million. However the rate of increase is such that it appears un-
likely that an exhaustive list can be built. This is definitely a long
tail phenomenon.

One might imagine that the large population of single-instance files
are generated by obscure software vendors. This appears not to be
the case: the companies that produce the most popular applications
at the head of the distribution (e.g., Microsoft, Symantec, Sun and
Adobe) are also very well represented in the tail.

There is a great deal of diversity among the reporting systems. The
most active quintile of systems have on average 5.2× as many pro-
grams installed as the least active quintile, and 6.1× as many exe-
cutable files.

We examine the intersection between our dataset and the National
Software Registry Library (NSRL), an annually updated collection
of 21 million file hashes maintained by NIST. Surprisingly we find
small overlap. Only 0.26% of the files in our dataset were also in
the NSRL, and most of these were found in the first five weeks of
reporting. This suggests that making any such library exhaustive is
almost impossible. The innovation rate is extremely high. The dis-
tribution of files over systems is a longtail phenomenon, it appears
that even at 20 million systems we are nowhere close to having



“seen everything.”

The remainder of this paper is as follows. Section 2 describes the
methodology used to gather the data and important characteristics
of the dataset. Section 3 explores system-level properties such as
OS, language, number of programs and files installed, etc. Section
4 examines the distributions of programs and files, and the updating
habits of users. Section 5 explores popularity or ubiquity of files,
the distribution of rare and single-instance files in the population
and the innovation rate of new files. Section 6 examines the overlap
between our dataset and the National Software Registry Library
and a large collection of malware signatures.

2. METHODOLOGY
In this section, we describe the methodology used to obtain and
collect the data analyzed in this study. All of the raw telemetry
data is generated by users running the Windows 7 Upgrade Advi-
sor software. Prior to launching Windows 7, Microsoft deployed
the “Windows 7 Upgrade Advisor” [14] website giving users with
computers running either the Windows XP or Windows Vista op-
erating system an opportunity to download an application, which
we call Upgrade Advisor, to evaluate whether or not their com-
puter can be safely upgraded to the Windows 7 operating system.
The reason for a user to run this application is so that she does not
start the Windows 7 upgrade process and hit a problem without a
solution.

The reporting interval of the data analyzed in this study is 13.5
months ranging from June 2010 to July 2011. Files are represented
by a File ID which is equivalent to the SHA-1 hash for files up to 30
MBytes. For files over 30 MBytes, the File ID is the SHA-1 of the
first 30 MBytes of the file. It should be noted that we are not using
cryptographic properties of the SHA-1 hash; the SHA-1 serves as a
unique identifier only.

The Upgrade Advisor checks all of the hardware including the CPU
(central processing unit), memory, and available disk drive space
to determine if the computer meets the minimum requirements for
running Windows 7. In addition, the Upgrade Advisor checks all
of the peripheral hardware such as the printers, mice, keyboard,
monitor, etc. to determine if they are supported by Windows 7.
Finally, the Upgrade Advisor checks all installed applications to see
if these programs would safely run on the new operating system.

There are many different ways to install a program on a computer.
Extremely simple executable programs may be copied directly to
the computer’s hard drive. However, most programs are installed
using the Add/Remove Program (ARP) functionality in the core
Windows Operating System or a separate installer, such as the Mi-
crosoft Installer (MSI). The telemetry data includes several pro-
gram installation sources detected by the Upgrade Advisor which
are specified in Table 1. The majority (73.6%) of the programs were
installed using ARP, and the MSI was used by 20.2%. While most
of the programs were installed either by ARP or MSI, the Upgrade
Advisor attempts to determine if other programs were installed on
the machine using other methods such as copying programs or us-
ing installers other than MSI. The set of programs identified by
this alternate detection method is labeled as File (6.0%) in Table
1. There is a separate mechanism to detect when OEMs (original
equipment manufacturers) bulk install software on new computers.
A very small percentage of applications (0.086%) were installed
in this manner by the manufacturer. If the Upgrade Advisor de-
tects that an application was installed using any of these methods,

Source Percent
Add/Remove Program 73.752
Msi 20.175
File 5.987
Oem 0.086

Table 1: Installation sources for the programs.

File Type Percent
.exe 98.08
.sys 1.59
.cpl 0.33

Table 2: File types in the Windows telemetry data.

it transmits a collection of telemetry data to a backend web service
identifying the program including the version (e.g. Adobe Acrobat
Reader v7.0, Firefox v3.6), and the files contained with this version
of the program. Each program includes a collection of individual
executable files that are associated with the program. It should be
noted that the files are not transmitted to the web service. Instead
an identifier is sent which specifies a unique mapping from a ver-
sioned program ID to the IDs of all files installed by the program.
This program and file telemetry is analyzed in detail in Section 4.
The telemetry data also contains information regarding the individ-
ual system (i.e. computer) used to install the program; the system
data is described in Section 3.

Once the backend web service receives the telemetry report, the
data collected from the user’s machine is analyzed, and the user is
notified via the webpage whether or not the computer can be safely
upgraded to Windows 7. If the Upgrade Advisor determines that
the user cannot upgrade, it attempts to return the diagnosis to the
Upgrade Advisor webpage displayed in the user’s browser alerting
them to the potential conflicts. If the conflict can be resolved, such
as by adding more memory or buying a new printer for example,
the user can revisit the Upgrade Advisor webpage at a later date to
determine if the conflict has been successfully resolved.

The distribution of file types collected in the dataset is stored in
Table 2. For the most part the Upgrade Advisor records only the
top-level, user mode application files (i.e. .exe) (98.08%) but not
any dynamically linked library (.dll), ActiveX Control (.ocx) or
other executable types of executable files. The data includes a small
amount (1.59%) of kernel mode drivers (i.e. .sys files) and a tiny
fraction (0.33%) of Windows control panel files.

In the remainder of this paper, we analyze the telemetry data in de-
tail. It should be appreciated that we do not have direct access to
files; they reside on the user’s remote computer. Also it should be
noted that this telemetry data has been collected primarily to facil-
itate the rollout of Windows 7. Many things that would be interest-
ing to report are not recorded. The schema cannot be changed and
the purpose of this paper is to reach meaningful conclusions based
on the existing data received from users contemplating upgrading
to Windows 7.

Privacy Concerns: The Windows 7 Upgrade Advisor data collec-
tion is covered by the corresponding privacy policy [15]. All au-
thors on this study were employed by Microsoft during the period
when they had access to this data; four authors were full-time em-
ployees, and the fifth author was working as a summer intern. The



data collected by the Upgrade Advisor does not directly include
any Personally Identifying Information (PII). While the data does
contain information such as a machine ID and programs names, no
data is collected which allow us to identify the owner of the com-
puter. The machine ID is simply a randomly generated GUID. No
IP address or path information of files are in the dataset.

3. SYSTEMS
A total of 20.7 million computers reported during the 13.5 month
observation period. We study some basic statistics of the reporting
computer population in this section.

3.1 Operating System and System Properties
The composition of operating systems on the reporting machines
is given in Table 3, with approximately 45% of machines having
XP Professional and 26% having Vista Home Premium. Aggre-
gating by OS type we find that 47.91% of machines were running
some version of XP, 37.43% were running some version of Vista
and 14.53% were running some version of Windows 7. Recall that
the triggering event for reporting was running the Windows 7 com-
patibility testing tool which evaluates whether or not the machine
is capable of running Windows 7. Running the tool does not nec-
essarily imply that the user installed Windows 7. We do not have
a measurement of what fraction of users who ran the compatibility
tool found that their machine was indeed Windows 7 capable, or
of the fraction that proceeded to install. There was no significant
change in the mix of OS’s during the period. That is, the fraction of
reporting machines that were running XP Professional for the first
two months of the interval, 45.3%, was approximately equal to the
fraction running it at the end of the interval, 44.1%. This makes
sense: the two main reasons that this fraction might change would
be if XP users upgraded to Vista and then subsequently upgraded
to Windows 7, or if XP users were upgrading at a different rate to
Vista users. The first possibility seems remote: we assume that few
users would upgrade to Vista, since Windows 7 had already been
available for 8 months by the beginning of our observation interval.
This allows us to conclude with high confidence that there was no
significant difference in the rates at which XP users and Vista users
were upgrading.

One curiosity observed in Table 3 is that 13.94% of the systems
are already running some version of the Windows 7 operating sys-
tem. Why are these users visiting the Windows 7 Upgrade Advisor
website if they are already running Windows 7? First, there is no
restriction on running the Upgrade Advisor on Windows 7. Some
users will run the program before adding a new feature to ensure
that they have a machine that can handle it. For example, someone
going from “Windows 7 Starter” to “Windows 7 Professional” will
run the program to make sure that their hardware will work. Sim-
ilarly, some users with Professional will run it before upgrading to
Ultimate, and so on. It is very rare to see a top line OS running the
tool. The other reason users run the Upgrade Advisor on Windows
7 is to diagnosis existing compatibility issues.

Table 4 shows the major language code of the machine. This code
determines various system settings for the User Interface (UI). Lan-
guage is the main setting affected by the code, though other local-
ization factors, such as how date and time are presented also depend
on it. The population is fairly diverse with just under 50% coming
from machines with English as the UI culture. German, Chinese
and Spanish are the next largest populations of reporting machines,
accounting for between 6 and 8% each. Note that this indicates the
fraction of systems running the Upgrade Advisor. This almost cer-

OS version Percent
XPProfessional 44.98
VistaHomePremium 25.80
Win7Ultimate 5.64
VistaHomeBasic 4.65
Win7HomePremium 4.47
VistaUltimate 3.52
XPMediaCenter 2.77
VistaBusiness 2.67
Win7Professional 1.47
Win7Starter 1.41
Win7HomeBasic 0.95
Other 1.67

Table 3: Major OS versions present in the dataset with per-
centages. On aggregate 47.91% of systems were running some
variant of XP, 37.43% Vista and 14.53% Windows 7.

Code Language Percent
en English 49.74
de German 7.78
zh-CHS Chinese Standard 6.48
es Spanish 6.10
fr French 4.85
ru Russian 3.36
ja Japanese 3.19
pt-BR Portugese (Brasil) 3.06
it Italian 2.55
nl Dutch 2.18
ko Korean 1.85
zh-CHT Chinese Traditional 1.64
tr Turkish 1.40
sv Swedish 0.91
pl Polish 0.91

Table 4: Major UI culture percentages.

tainly indicates interest or intent to upgrade to Windows 7. How-
ever the percentages in Table 3 are probably only approximately
indicative of the relative numbers of Windows machines in the var-
ious language regions. For example, it is quite likely that users
from developed markets, like Germany, upgrade more quickly than
those from developing markets like Brazil.

Years ago, the CPU (central processing unit) manufacturers real-
ized many users would need to access more the 4 gigabytes of
memory and began to sell CPUs with 64-bit architectures. The
most popular 64-bit architecture, X64, can either run a 32-bit or
a 64-bit operating system since the 64-bit architecture is superset
of the the standard 32-bit i386 architecture. The Upgrade Advisor
telemetry two contains two fields related to 64-bit CPUs: X64 Ca-
pable and X64 Running. X64 Capable indicates if the CPU can run
a 64-bit of the OS while X64 Running indicates whether or not the
computer is actually running a 64-bit OS. For this dataset, 76.16%
of the systems are capable of running a 64-bit operating system
but only 12.01% of the systems are actually running a 64-bit OS.
The reason only 12% of the machines are running 64-bit operating
systems is probably because the computers running the Upgrade
Advisor are mostly older computers manufactured when high-end
computers did not have more than 4 gigabytes of RAM.



(a) The average number of machines reporting each
week.

(b) The cumulative total number of machines.

Figure 1: Arrival rate of new machines reporting, beginning in June 2010.

Day of Week Percent
Monday 14.12
Tuesday 13.60
Wednesday 12.64
Thursday 12.43
Friday 14.44
Saturday 17.01
Sunday 15.73

Table 5: Systems running the Windows 7 Upgrade Advisor tool
by day of week.

Figure 1 shows the arrival rate of reporting machines. Figure 1
(a) shows the average number of machines per week, while (b)
shows the cumulative population. It can be seen that machines ar-
rive at a much greater rate at the beginning of the period. There is
a propensity to run the Upgrade Advisor on weekends rather than
weekdays as shown in Table 5. Over the observation period Satur-
days were the busiest day, accounting for 17.01% of reports, while
Wednesdays were the quietest with 12.64% of reports. Observe
that 32.74% of reports arrive during weekends. This suggests that
a majority of the reports are coming from consumer rather than en-
terprize systems.

3.2 Number of files and programs per system
We next investigate the number of programs and number of files per
reporting system. These are shown in Figure 2 (a) and (b) respec-
tively. The average number of programs installed is 110 and the
median is 81. Recall that primarily programs that were installed
using ARP or MSI are reported. The average number of files per
system is 756 and the median is 566. In addition, only .exe, .sys and
a few other filetypes were reported in the Upgrade Advisor dataset.
Hence, .dlls, for example are not included. Thus the total file count
can be expected to be higher than Figure 2 (b) indicates, by a factor
of perhaps two or more. Observe that both the number of programs
per system (Figure 2 (a)) and the number of files per systems (Fig-
ure 2 (b)) appear to have approximately log-normal distributions.

3.3 Space consumed on disk
The distribution of individual file sizes is discussed in Section 4.
If we sum the sizes of all of the files reported by a particular ma-
chine we get an indication of the total size consumed by installed
programs on the disk. This is shown in Figure 3. The average
space consumed is 761 MBytes and the median is 499 MBytes. As
with the programs and files per system (Figure 2) the distribution
appears to have a roughly log-normal shape.

Again we caution that this includes only programs that were in-
stalled using ARP or MSI, and includes only the .exe files. It does
not include any of the files associated with the operating system,
any programs installed other than by ARP or MSI, or any user files
such as documents, images, music files etc. Thus the actual space
consumed on the disk by the installed programs could easily be a
factor of two or more higher than this, and Figure 3 gives no guide
whatever as to the total space occupied on the disk of the reporting
system. It is nonetheless interesting to compare with the results of
Douceur and Bolosky [9]. They found, in 1999, that 81% of the
systems they studied had less than 2 GBytes of storage space. Thus
the average system from 1999 would scarcely have space to store
the programs that an average system has in 2010 (leaving no room
for OS or user files).

3.4 Dividing into Quintiles
There is enormous diversity in the population of reporting ma-
chines. Reporting average, or median statistics, or even display-
ing histogram data can fail to give an accurate impression of diver-
sity. This is particularly the case with heavytail phenomena where
a small fraction of the population can have an outsized influence on
the averages [17]. To this end we divide the population of report-
ing systems into quintiles by filecount. Quintile 1, Q1, contains the
20% of systems with the fewest files, Q2 contains the next 20% of
systems and so on. Each of the quintiles contain (obviously) just
over 4 million machines (i.e., 20.7 million divided by five). These
are effectively segments of Figure 2 (b). The quintile boundaries
occur at 313, 475, 660, and 992 files. We will find, in Section 5,
that there is enormous difference between the least and most active
machines (i.e., Q1 and Q5 respectively).



(a) Programs per system, the average is 110 and the
median is 81.

(b) Files per system. The average is 756 and the median
is 566.

Figure 2: Histograms of the number of programs and number of files per system.

Figure 3: Total size on disk of reported files. The median is 499
MBytes and the average is at 761 MBytes.

4. PROGRAMS AND FILES
4.1 Arrival rate of files
A total of 36,883,613 files with distinct SHA-1 hashes were re-
ported during the observation period. Figure 4 shows the arrival
rate of distinct new files as a function of time over the observa-
tion period. Observe that the arrival rate drops very sharply dur-
ing the first four weeks. This is due to the fact that as our dataset
of file SHA-1’s grows, more and more of the files that any given
machine has to report have already been reported by another ma-
chine. For example, for the first machine to report every single
file is previously-unseen. For the second machine to report, only
files that the first machine didn’t possess will count as previously-
unseen. Thus, as the population increases, each new machine con-
tributes only files that had never been seen on any of the previous
reporting machines.

We graph the evolution of this reporting rate in Figure 5. This figure

displays the average number of previously-unseen files that each
reporting machine contributes as a function of time. Effectively
Figure 5 is the arrival rate of files (Figure 4) divided by the arrival
rate of the population (Figure 1 (a)). As can clearly be seen this
drops very sharply at first, but plateaus quite rapidly. During the
first week the average machine reports 5.3 previously unseen files,
but by week five this has dropped to 1.6. However, it remains ef-
fectively unchanged for the remaining 50 weeks of the observation
period. Thus, the rate at which systems have new files to report
appears to hit a limit when the population reaches six million (i.e.,
the population at week five from Figure 1 (b)). There is little reason
based on Figure 5 to believe that at any population size we would
achieve the point where we have “seen everything.”

Figure 4: Arrival rate of new files by week since June 2010.

4.2 Distribution of file sizes
Figure 6 shows the histogram of individual file sizes. The average,
3.437 MBytes, is greater than the median, 0.402 MBytes, by a fac-
tor of 8.5. The large gap between the mean and median indicates
that the distribution of file sizes is heavytailed. That is, even though
the number of files having large sizes is small, the tail of Figure 6



Figure 5: Average number of previously-unseen files that a re-
porting machine contributes to the dataset as a function of time.
Observe that this number drops very sharply at first, but then
plateaus. During the first week machines contributed on aver-
age 5.3 such files each, by week 55 this had dropped to about
1.6.

Figure 6: Histogram of file sizes in MBytes. The average is
3.437 MBytes, while the median is 0.402 MBytes.

has considerable weight. Fully half of the area under the histogram
lies to the right of 3.437 MBytes.

A total of 546,973 or 1.45% of files have reported size greater than
30 MBytes. These are larger than the 30 MBytes limit imposed
by the SHA-1 algorithm described in Section 2. This suggests that
the 30 MBytes cutoff is a reasonable compromise, in that it saves
considerable compute time on the client (calculating SHA-1 of a
file is an expensive operation) while introducing minimal risk of
hash collisions. In order for a hash collision to occur two files
would have to be bit for bit the same for their first 30 MBytes.

4.3 Common publishers
Table 6 shows the most common “Company Name” fields for files
in the dataset. These are the companies that have produced the
largest number of files, not (necessarily) those that have produced
the most common files. We remind that this is correlated with, but
not the same as, the most common program publishers. We caution

Company Name All files SI files
Microsoft Corporation 7.94 9.18
Symantec Corporation 5.57 7.12
Sun Microsystems, Inc. 1.64 2.20
Adobe Systems, Incorporated 1.4 1.93
Adobe Systems Incorporated 0.98 1.36
Nero AG 0.76 0.70
Parallels Software International, Inc. 0.50 0.56
Hewlett-Packard 0.46 0.35
Macromedia, Inc. 0.45 0.53
Realtek Semiconductor Corp. 0.44 0.53
Adobe Systems, Inc. 0.42 0.40
Logitech Inc. 0.31 0.28
Electronic Arts, Inc. 0.31 0.38
Autodesk, Inc. 0.31 0.35
Google Inc. 0.28 0.33
RealNetworks, Inc. 0.27 0.26
Macrovision Corporation 0.27 0.35
BitRock SL 0.24 0.28
Nokia 0.22 0.18
Intel Corporation 0.21 0.24
InstallShield Software Corporation 0.21 0.28
Apple Inc. 0.21 0.25
Alexander Roshal 0.21 0.26
Hewlett-Packard Co. 0.21 0.20
Yahoo! Inc. 0.18 0.24

web technology Corp.
http://www.webtech.co.jp/exepress/ 0.18 0.14
Atomix Productions 0.16 0.07
WildTangent 0.16 0.15
Igor Pavlov 0.16 0.15
NVIDIA Corporation 0.16 0.15

Table 6: Most common company names across all files and
single-instance files.

that the relative number of files is not indicative of market share
of any particular product. Most of the large software vendors are
represented. The names “Alexander Roshal” and “Igor Pavlov” are
those reported by the WinRAR and 7-Zip applications respectively.

We also tabulate the companies that produce the greatest number
of single-instance files (see Section 5.2).

4.4 Distribution of systems per file
Figure 7 shows the histogram of the number of systems per file. To
dispel the risk of confusion it is worth explaining how this differs
from histogram of files per system (shown in Figure 2 (b)). While
these are similarly named they are quite different, and neither is
derivable from the other. The files per system histogram (Figure 2
(b)) is found by counting the number of files on each system and
then forming into bins (of width 100 in Figure 2 (b)). The systems
per file histogram in Figure 7 is formed by counting the number of
systems that each particular file appears on. As can be seen from
Figure 7 there are 18 million files (i.e., half of the total reported)
that appear on only one system each. There are about 5 million
files that appear on two systems each, 2 million that appear on three
systems each and so on.

We refer to files that appear only on a single system as single-
instance (SI) files. The fact that there are 18 million such files does



Figure 7: Histogram of number of systems per file. Observe
that one half of all files (i.e., 107.27 ≈ 18.5 million) appear on
only one system, that is a second copy never appears after the
first report.

not, of course, imply that most of the 20 million reporting machines
contain a SI file. In fact we will see in Section 5 that this is not the
case. Most of the 18 million SI files are concentrated among a rela-
tively small number of systems. In fact one reporting system alone
accounted for 1,528 SI files.

4.5 Updating Software
The reluctance of users to update software is well known. In Table
7 we tabulate the percentages of systems reporting different ma-
jor subversions of AcroRd32.exe, an executable associated with
Adobe Acrobat Reader. We also tabulate the release date for the
subversions. Observe that the majority of systems report versions
that were significantly out-of-date by the time the observation pe-
riod began (June 2010). Almost all systems, 89.9%, had versions
earlier than 9.4, the latest available at the beginning of the period.
Versions more than one year out-of-date accounted for 72.6% of
systems, and 57.6% and 42.2% of systems were running versions
that were more than two and three years out-of-date respectively.
We observe a similar pattern across other popular applications such
as Firefox, iTunes, etc. The conclusion seems clear that users lack
motivation to upgrade software, even for applications which are
frequently targeted by malware authors.

5. UBIQUITY
Some programs and files are very common, reaching a majority of
Windows machines, while others are installed on only a handful,
or even one. The population statistics of our dataset give valuable
insights into the penetration of files in the population.

5.1 Penetration of rare files
We saw in Section 4.4 that fully half of all the files reported were
single-instance, meaning that they were seen on only a single sys-
tem. We now explore the distribution of files by rareness. Our
motivation for doing so is guided in part by our interest in the fea-
sibility of using prevalence as a feature in determining reputation,
which we deal with in Section 5.5 below.

Figure 8 (a) shows the percent of systems that have no files that
appear on fewer than X other systems (for various values of X).
That is, 77.5% of systems do not have a single-instance file: every

Version Release date Percent
4.0 April 1999 1.78
5.0 May 2001 9.96
5.1 July 2003 1.79
6.0 Jan. 2005 6.41
7.0 Nov. 2006 16.08
8.0 June 2007 6.17
8.1 NA 13.36
8.2 NA 2.07
9.0 July 2008 7.46
9.1 May 2009 7.54
9.2 Oct. 2009 6.17
9.3 Jan. 2010 11.12
9.4 May 2010 4.78

10.0 Nov. 2010 3.95

Table 7: Major versions of AcroRd32.exe with percentages.
Observe that a 89.9% of systems have versions that were out-of-
date by the beginning of the observation interval (June 2010).
Further, 72.62%, 57.6%, and 42.2% have versions that were
more than one, two or three years out-of-date respectively.

file that they report is also reported by at least one other system.
The plot shows how this evolves for the population as we increase
X through six orders of magnitude. The percentage drops quite
rapidly, so that 48.9% of all machines have no files that weren’t
also present on at least 32 other systems, and only 27% of systems
have no files that aren’t present on at least 256 other systems.

Figure 8 (b) graphs this percentage for Q1, the least-active quintile.
This shows that rare files are far less common on the least active
machines. Fully 88.7% of Q1 machines had no single-instance file,
74.7% had no files that weren’t present on at least 32 other systems,
and 53.8% had no files that weren’t also reported by at least 256
other systems. At the extreme 2.3% of these systems do not have a
single file that wasn’t also present on at least 210 ≈ 1 million other
systems.

5.2 Single-instance files
We saw, in Figure 7, that half of the files reported were single-
instance. It is not hard to imagine how some files end up on millions
of systems. We can easily picture the .exe’s associated with popular
applications such as Firefox, Acrobat and Office achieving great
popularity. But what of the other extreme? Where do the 18 million
single-instance files in Figure 7 come from? A logical possibility
is that they they are the files associated with extremely obscure
applications. This appears not to be the case. Table 6 shows the
most common Company name associated with single-instance files.
That is, which companies accounted for which percentages of the
single-instance files. As can be seen, the producers of the single-
instance files are the same producers who produce the most popular
applications and programs: Microsoft, Symantec, Sun and Adobe
head the list. Thus, while one might imagine that the head of the
distribution (i.e., popular files) occupied by Microsoft, Adobe, etc,
and the tail (i.e., single-instance files) occupied by obscure software
vendors, this appears not to be the case. The tail of the distribution
has just as much representation from top vendors as the head.

This suggests that many popular applications are packaged and de-
livered to users in a fashion that makes individual executable files
unique. It appears this practice is quite common. This would ex-



(a) The evolution for the overall population. (b) The evolution for the least active quintile of ma-
chines, Q1 (as defined in Section 3.4).

Figure 8: Percent of systems having no files that are present on fewer than X other machines, as a function of X.

plain why the arrival rate of previously-unseen files does not drop
beyond 1.6 even as the population grows from 5 to 20 million sys-
tems.

5.3 Estimating the unseen files
At any population size, of course, we have seen only the reports
from a fraction of the total population of Windows machines. There
remain files that have not been seen, simply due to the sample size.
For example, if a file is present on a fraction p of systems then the
probability that we see a copy in a sample population of size Q is
1 − (1 − p)Q (assuming unbiased sampling). As Q increases, so
do our chances of seeing the file.

The standard way of estimating the unseen portion of the distribu-
tion is Good-Turing estimation [10]. This estimates that the proba-
bility that a reported file is new at population Q is:

Φ(Q) =
N1(Q)∑∞

k=1 k ·Nk(Q)
(1)

where Nk(Q) is the number of files that are present on k systems
when we have a population of size Q. That is, the Nk(Q) are as
displayed in the histogram Figure 7, so that N1(Q) ≈ 18 million,
etc(i.e., the x-axis of Figure 7 is k and the y-axis is log10 Nk(Q)).
That is, the probability of unseen files is estimated to be the same as
the fraction of single-instance types. As the population grows this
clearly shrinks: the cumulative collection of files grows as time
goes by, so the probability of any newly encountered file being un-
known should drop. Figure 9 shows the evolution of Φ(Q) as our
population Q grows. It falls very sharply a first, but then slows. At
log10 Q = 4 (i.e., ten thousand systems) Φ(Q) ≈ 0.03, indicating
that about 97% of files will have been seen before. At log10 Q = 5
(i.e., one hundred thousand systems) Φ(Q) ≈ 0.01, indicating that
99% of reporting files have already been seen. This increases with
scale, but at a slowing rate. At log10 Q = 6 (i.e., population of one
million) Φ(Q) ≈ 0.003 indicating that about 99.7% of arriving
files have already been seen. Φ(Q) continues to fall slowly reach-
ing 0.0018 at Q = 20 million. At this population approximately
99.82% of arriving files have already been seen. Thus, scale helps
in the exhaustiveness of the list, but at an extremely slow pace.

Figure 9: Fraction of reported files that are new as a function of
population size. This continues to drop slowly with scale, reach-
ing 0.0018 at 20 million systems. That is, 99.82% of reported
files have already been seen when the population reaches 20
million.

Since machines report an average of 756 files (from Section 4) we
thus expect about 0.0018 × 756 ≈ 1.36 of the files reported per
system to be previously unseen. This cross-checks well with the
observed rate of about 1.6 found in Section 4 (i.e., the plateau rate
of new files per machine shown in Figure 5).

5.4 Innovation Rate
It is natural to wonder how many files there are, and how many
new are created every day. The two measures that we have (previ-
ously unseen files as a function of time in Figure 5 and fraction of
reported files are new as a function of population in Figure 9) sug-
gest a stubbornly slow decay of the innovation rate as population
increases. At a population of 20 million machines not only have we
not “seen everything” but the rate at which new things arrive is not
decreasing. This strongly suggests that even if we had a reporting
population of 100 million or a billion we will continue to learn of



new files.

An elegant means of estimating the number of new files that we
might expect to see is given by Good and Toulmin [11]. They sug-
gest that a doubling of the sampled population (i.e., if we had 2Q
instead of Q systems) will result in

∞∑
k=1

(−1)kNk = N1 −N2 + N3 −N4 + N5 − · · · ,

previously unseen files being observed (where as before Nk is the
number of files that have been seen k times at population Q). Eval-
uating this for our dataset, (i.e., summing the Nk in Figure 7) sug-
gests that 14.12 million new files should be expected if we doubled
the sampled population from 20.7 to 41.4 systems. Again, this ac-
cords well with the persistent rate of arrival of new files shown in
Figure 5. While the scale of the sampled population is large by no
means is it large enough to have “seen everything.”

As a motivating example of the innovation rate of new files, we con-
sider the program Google Chrome. We examined in detail the in-
stallation pattern of closely related subversions. We did this by in-
stalling on machines that we controlled, and thus we could examine
all files and the directory structure (i.e., these were not drawn from
the Upgrade Advisor dataset). We notice that comparing installa-
tions of two subversions, 5.0.375.126 and 5.0.375.127, subdirec-
tories are created for each new subversion of the Chrome browser
which include all files but two (chrome.exe and wow_helper.exe).
Interestingly, all but one of the 64 files in each of these two subdi-
rectories have new SHA-1 hashes, even though pairs of files share
identical file names and file sizes. Clearly, these two installations
which differed by only 10 days (Aug. 10, 2011 and Aug. 20,
2011), generate files that are new as far as SHA-1 is concerned,
even though they are almost certainly identical in function.

5.5 Ubiquity based reputation
Current anti-virus (AV) techniques predominantly rely on signa-
tures of known-bad files. These signatures are generated by ana-
lysts who examine suspect files, make a determination as to whether
they are good or bad, and then create a signature if they are regarded
as bad. These signatures are not always simple hashes, when pos-
sible they produce generic signatures that allow identification of
a whole family of malware. While analysts can be assisted using
automatically generated reports from static and dynamic analysis
of the files the process is manually intensive. This process scales
very poorly. The more ingenious malware authors will strive to
make their code polymorphic so that a signature generated for one
instance will not detect others. This places a potentially unman-
ageable burden on AV companies. Spectacular false positives oc-
casionally occur, such as when the McAfee VirusScan AV program
wrongly labeled svchost.exe (an important Windows file that
acts as a host for DLL files) as malicious, or when Microsoft Secu-
rity Essentials classified a version of Google’s Chrome browser as
bad [16].

Whitelists are sometimes suggested as an alternative. The idea is
simple in principle: instead of allowing files to run unless they are
determined to be bad (i.e., an AV signature declares that they are
known bad) forbid all files from running unless they are known to
be good. This is the approach taken, for example, by the iPhone:
there is a single point through which applications can be installed
(the AppStore), applications are scrutinized before they can appear
(the iPhone App Certification Process) and everything that is not

approved is forbidden. This has the advantage that if an approved
App is later determined to be bad (e.g., when a screen-lock app
was, in Apple’s view, inappropriately gathering password data [7])
the company can remove it from the AppStore). This approach
has the disadvantage, however, that it is a curated whitelist: the
list must be manually maintained. This may be feasible where the
number of applications runs to thousands or tens of thousands, but
would appear to be completely unworkable when, as we have seen,
there are scores of millions of files.

An alternative approach is a non-curated whitelist where inclusion
does not require manual inspection. Symantec incorporates a rep-
utation based strategy in their products [4]. Similarly, Microsoft
uses some form of reputation in Internet Explorer 9’s AppRep sys-
tem [8, 12]. Specific algorithmic details have not been disclosed
for either system. We now investigate the challenges faced in try-
ing to develop a non-curated whitelist based on the data received
from the Upgrade Advisor. For example, popularity in a large pop-
ulation might be an indication of reputation. For example, any file
that reaches X% of the population (as the most popular files we
found in Section 4.3 do) is almost certainly good.

Based on the data in Figure 8 it does not appear that prevalence
alone can be used to block files. We argue in Section 6.2 below that
at least 99.5% of files in our dataset are not malware. Assuming this
to be the case the enormous number of single-instance files make
a popularity threshold hard to enforce. While 77.5% of machines
don’t have a single-instance file this means that 22.5% of systems
do. We have no insight into severity the consequences of denying
these files the right to run might be.

It does not appear feasible that rareness alone can be used to black-
list an executable in the general population. There are simply too
many files which appear seldom. While 69% of the Q1 machines
have no files whatever that aren’t seen on fewer than 64 other ma-
chines, this doesn’t allow us to conclude that the remaining 31%
are at risk.

Classifying files as good or bad is extremely hard. Our data points
to a very longtail distribution of files. While rareness alone does
not seem a strong enough feature to make a binary good/bad classi-
fication it certainly gives a measure of the consequences of a false
positive or false negative. That is, a count of the number of systems
per file (such as in Figure 7) helps allocate analyst effort. The cost
of a false positive (mistakenly classifying good software as mali-
cious) and a false negative (classifying malicious software as good)
both increase with the number of systems that a file is reported on.

6. OVERLAP WITH OTHER DATASETS
In this section, we explore the overlap of the Windows Upgrade Ad-
visor telemetry data with two other datasets: the National Software
Registry Library (NSRL) and a large set of telemetry received from
a suite of commercial antimalware products during April 2011. The
goal of these comparisons is to understand how the set of files iden-
tified by the Upgrade Advisor compares to similar large datasets
collected for other purposes.

6.1 NSRL Collection
The NSRL [1] is a collection of file signatures maintained by the
National Institute of Standards and Technology (NIST). The main
purpose of the NSRL is to aid law enforcement officials in pro-
filing matching files found on a suspect’s computer. It contains
the SHA-1, MD5 and CRC hashes of over 21 million files. The



file meta-data includes the file name, file size and associated op-
erating system. The files are largely commercial software and the
hashes are generated from disk and web crawls. NIST points out
that the files cannot be considered either “good” or “bad.” There is
no prevalence information in the dataset. Thus, it is not possible to
determine whether a file has been seen once or millions of times.
Our copy of the NSRL dataset has 20.1 million distinct files. We
find an overlap of 98,594 with the file hashes collected by the Win-
dows Upgrade Advisor. This count is surprisingly low, accounting
for only 0.26% of the files observed in our dataset. That is 99.74%
of the files in our dataset were unknown to NSRL.

This raises two interesting questions. First, why is so little of what
is in the NSRL database found by the Upgrade Advisor dataset?
Second, why is so little of what is in the Upgrade Advisor dataset
in NSRL?

Tackling the first of these questions: one reason for the low overlap
is that, as Table 8 shows, many of the files in the NSRL database
were observed running on older versions of Windows (e.g. Win-
dows 95), operating systems other than Windows (e.g. Linux), or
unknown operating systems. In fact, the largest category for rela-
tively recent operating systems is Windows XP with a percentage
of 1.06%. Similarly, the largest category for Windows Vista (not
shown in the table) is 0.10%. Although, a generic Windows operat-
ing system designation (“WIN”) was provided for over 25% of the
files. It appears NSRL covers legacy executables dating back over
25 years (e.g. Win95 and earlier), while the vast majority of files
in the Upgrade Advisor set are reported by machines running Win-
dows XP or later (see Table 3). Thus NSRL has copies of programs
and files that have long been superseded by newer versions. This
partially explains why our dataset has so few of the NSRL files: a
significant percentage of what is in NSRL is old and derives from
operating systems other than in our reporting population.

As to the second question: why are 99.74% of the files that we
find not in the NSRL? First, and most obviously, the NSRL con-
tains hashes only of files possessed by NIST. These are obtained by
web crawls and scans of disks. Our dataset merely contains SHA-1
hashes, and we do not have copies of any of the files. To keep a sin-
gle copy of all 36.9 million files in our dataset would require 122
TBytes (using the average file size computed in Section 4). Second,
our findings in Section 5.4 show that generating an exhaustive list
is all but infeasible: previously unseen files continue to arrive at a
rate that barely slows as the population increases. Figure 10 shows
the arrival pattern of files in the Upgrade Advisor dataset that over-
lap with the NSRL collection. The vast majority arrive very early,
with 74% arriving in the first five weeks. This indicates that the
intersection consists primarily of files that are relatively common
in the Upgrade Advisor set. For example, if a file is reported with
probability p per week; then after m weeks it has a 1 − (1 − p)m

chance of being in the dataset. This follows a power law decay
roughly similar to Figure 10; the fact that the decay is very sharp
indicates that p, the probability of being reported each week is not
small.

6.2 Anti-Malware Telemetry Data
In this section, we investigate the overlap of the Upgrade Advisor
telemetry data with a second large file collection of file hashes ob-
tained from the telemetry data transmitted by a set of anti-malware
(AM) products manufactured by our company. These reports were
primarily generated by three main sources: Windows Defender,
Microsoft Security Essentials (MSE), and the Microsoft Malicious

OS Percent
"358" 43.25
"WIN" 25.11
"UNK" 5.36
"Gen" 3.01
"Linux" 2.98
"WIN2000" 2.76
"WIN95" 2.54
"WIN98" 2.34
"Solaris" 1.48
"WINNT" 1.37
"Mac" 1.07
"WINXP" 1.06
"XP SP2" 0.68
"WINNT4.0" 0.52
"Mac OS 9+" 0.44

Table 8: Distribution of operating systems in the NSRL.

Figure 10: Arrival rate of new files that overlap with the NSRL
dataset. Observe that the majority arrive very early in the ob-
servation period, with 74% arriving in the first five weeks.

Software Removal Tool (MSRT). Windows Defender is an anti-
spyware product installed by default in the Windows Vista and
Windows 7 operating systems. MSE is an anti-virus product which
can be downloaded from the internet. The MSRT is a limited, anti-
virus system also included in various versions of Windows which
automatically cleans approximately 100, well known families of
malware. Similar to the Upgrade Advisor data, we do not have ac-
cess to the files encountered by the anti-malware products because
the files only reside on the remote computers. In particular, we
investigated a collection of telemetry reports from 156 million dis-
tinct files monitored by all of these anti-malware products over a
one month period during April 2011.

Comparing the two file hash collections, we observed an overlap of
1.78% of all files in the AM telemetry with the Upgrade Advisor
dataset. In addition, we found an overlap of 0.5% of files detected
by the AM products as malicious (i.e. known malware). The small
overlap can be explained as follows. Most of the files observed
in the Upgrade Advisor dataset are the most common files found
on all computers. The majority were installed via ARP or MSI.
On the other hand, the telemetry reports from the AM products
are searching for known and previously undetected malware. To



limit the number of reports to the AM backend service, reports are
transmitted only concerning unsigned and therefore untrusted files.
Since the malware’s goal is too evade detection, we do not expect
it to be commonly installed via ARP or MSI. This is confirmed by
the small overlap between the two datasets.

7. RELATED WORK
Despite the explosive growth in the number of users of and ma-
chines connected to the Internet, large-scale measurements studies
have been rare. In 1999, Douceur and Bolosky [9] carried out a me-
thodical study of 4,801 machines. They examine file size, type, age
as well as attributes related to directory structure. They were able
to measure many attributes that are not gathered in our telemetry.
However, our dataset is larger by three orders of magnitude, and we
study prevalence, a factor not examined in detail by Douceur and
Bolosky. This was the largest study for almost a decade. In 2007,
Agrawal et al. [2] published a five year study of the file system
changes in a population of 60,000 Windows PCs. They measured
various temporal changes related to files and directory structure.
Both of these studies were conducted on computers within a large
software development company. As such, the diversity of systems
was limited. Since our study covers any user who chose to run the
Upgrade Advisor, it provides a better representation of the general
population as a whole.

More recently, authors from Symantec have published two papers
related to malware classification using file reputation. Nachenberg
et al. [4] describe a high-level overview of the reputation system
used in their products. While algorithmic details are lacking in
this paper, it provides evidence that reputation is a good approach
to malware detection. In [5], Chau et al.propose a system which
simultaneously builds a joint reputation of files and the machines
that report them. Microsoft provides some insight into the reputa-
tion system employed by Internet Explorer 9’s application reputa-
tion system [8, 12]. Several security startups or companies offer
application white-listing solutions. Bit9 offers several products [3]
which assign files to one of three categories: whitelisted, black-
listed, and graylisted. Files which cannot are not known to be ma-
licious or benign are assigned to the graylist.

Forensics experts employ whitelists to filter out files previously
known to be benign. However, a very small change in a cryp-
tographic file has (e.g. SHA-1) completely alters the hash value.
Chawathe [6] proposed using locality sensitive hashes as a way of
finding near-matches to implement a whitelist for the purpose of
forensics. Other authors have proposed methods for controlling file
execution on computers. Lu et al. [13] propose a log-based moni-
toring system which creates a backup mechanism and monitors the
system changes due to file execution. When the system administra-
tor determines that the program altered the system in some forbid-
den way (e.g. writes a file to disk), the proposed system allows the
administrator to remove the file and back out the file’s changes to
the system.

Despite frequent claims that blacklisting is broken or non-scalable,
there has been relatively little effort to study the feasibility of white-
listing. Efforts in this space have largely centered around a cu-
rated white-list. The iPhone appstore, for example, requires that
all applications go through a vetting procedure before release. This
vetting is to some degree manual. Mistakes occasionally happen,
as when an app was capturing user passwords in an unauthorized
way. However an ecosystem with a 4 year history, a central point of
control and thousands of apps, clearly faces a very different chal-

lenge from a distributed ecosystem with two decades of history, an
installed based of over a billion machines and executable applica-
tions that run into the tens, or hundreds of millions. Since there is
no central point of control nobody really knows how many appli-
cations have been written for the Windows platform.

8. CONCLUSIONS
One of our primary motivations for conducting this study was to
ascertain the feasibility of creating a non-curated whitelist for con-
sumers which would automatically block the installation of any
new programs not currently on the whitelist. After analyzing the
rate of the incoming data, we believe this is an extremely daunting
task. Products such as Internet Explorer and Symantec’s security
products avoid this issue by alerting the user if the incoming file
does not have a sufficient “good” reputation, but this strategy places
the burden on the end user. Making the correct decision in this case
is challenging even for computer security experts. We believe that
running a semi-curated whitelist, such as employed by Bit9, has
more merit in some cases for the enterprise. By semi-curated we
mean the following: a security vendor provides a large whitelist for
known benign files and a large blacklist for known malware. Any
files not on these lists are presented to the IT staff who make the fi-
nal decision as to whether or not to add the program to the whitelist
allowing it to run. In the case where an employee wants to install
a new version of, e.g., FireFox, the IT staff has the final say. For
many companies where the vast majority of employees should not
be installing software in any case, this strategy is in practice today.
For other cases where employees are allowed to install software on
their machines, this inserts a set of checks and balances to help en-
sure the safety of the company’s computer infrastructure. To some
extent, IT staffs have been practicing this today without a dedicated
whitelist by verifying OS and application security patches off-line
before widely deploying to all of the company’s computers.

To deploy an automatically blocking whitelist for consumers would
require cooperation between software developers and operating sys-
tem manufacturers. Apple uses this policy today with their App-
Store. All iPad and iPod Touch applications are downloaded and
managed via the Apple AppStore. While this works for a new com-
puting platform such as the iPad, it is difficult to imagine how to
use this solution for general purpose home PCs given the current
widespread available of millions of applications. However, future
versions of the operating systems could allow users to “opt-in” to
such a system to at least provide some help in the fight against in-
stalling malware. To be effective, the software developers would
probably want to ensure that they release their software to the app
store first before releasing it to end users through other distribution
channels such as on their web site or in shrink wrapped boxes. Do-
ing so would avoid the problem where an end user was the first to
download the new software update which blocked because it had
not generated a sufficient good reputation.

This app store model then places the burden of verifying that the
software is not malicious on the operating system manufacturer.
One would assume that the OS manufacturer would automatically
trust software developed by large software companies. For exam-
ple, Microsoft could automatically trust any software developed by
Google, and vice versa. The question is what to do about the small
and mid-tier developers in the middle. Clearly, more exhaustive
testing would need to be applied to products from these small com-
panies. Over time, manufacturers would build a reputation, good
or bad, for these small entities which would affect their ability to
publish through the app store. As a result, legitimate developers



would have an incentive to only publish trustworthy code.
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