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Abstract This paper presents a safeness condition that is more liberal than the one
commonly imposed on Datalog, based on classifying predicate arguments into input
and output arguments, thereby extending the expressiveness of Datalog-based policy
languages. It is also shown that the relaxed safeness condition is a powerful tool for
adding important features to such languages.

1 Introduction

Datalog is the basis of many rule languages for the Semantic Web (e.g. [5,17,8,11]) as well
as of many policy languages related to trust and access control (e.g. [14,13,10,15,3,2]).
However, Datalog on its own is not expressive enough for many real-world policy scena-
rios, which commonly require features such as negation, functions, constraints, or updates.
Extending Datalog with such features is not trivial, however, as it may require complex
changes to the evaluation engine, which is expensive and in many cases infeasible. Further-
more, ad hoc extensions can easily break Datalog’s complexity and termination properties;
for example, just adding a single function symbol leads to undecidability. In this paper, we
propose to replace a commonly used syntactic restriction on Datalog clauses called safeness
(essentially, variables in the head must occur also in the body; see Section 2) by a slightly
more complex, but more liberal, condition that we call I/O-safeness (Section 3). Informally,
predicate argument positions first need to be classified as input or as output arguments, and
the syntactic restrictions ensure that the arguments are always used in accordance with their
input/output specification. I/O-safeness guarantees finiteness of query results.

Input/output modes have been considered before for logic programming [9,18,19],
where the focus has been on extending the class of Prolog programs which can be eva-
luated correctly using SLDNF resolution. In contrast, the current paper focusses on using
input/output modes to safely add features to Datalog that are required in common policy
scenarios. We show in Section 4 that our definition of I/O-safeness not only itself increases
a policy language’s expressiveness, but also facilitates powerful extensions of the language
that are particularly useful in a policy setting; moreover, they preserve Datalog’s nice pro-
perties and do not require changes to the evaluation engine. In particular, we present, based
on I/O-safeness,

1. a heuristic method for preventing intractable policies (Section 4.1);
2. a safe method for extending a language with arbitrary constraints and external functions

(Section 4.2);
3. and a method for extending a policy language to support implicitly hierarchical predi-

cates (Section 4.3).

2 Datalog and Safeness: Background

This section briefly recalls Datalog and its standard syntactic safeness condition. For a more
thorough introduction, see e.g. [6].



An expression e is either a variable or a constant. Predicate symbols p are associated
with an arity ar(p)≥ 0. An atom P is of the form p(e1, ...,en), where n = ar(p). A rule ρ is
of the form P :–P1, ...,Pk, where k≥ 0 and the Pi are atoms. P is the head, and ~P = P1, ...,Pk
is the body of ρ. If k = 0, the rule is called a fact, and we omit the “:–”. A policy P is a finite
set of rules.

We write vars(ϕ) to denote the set of variables occurring in a phrase of syntax ϕ. We
say that ϕ is ground if vars(ϕ) = /0. A phrase of syntax ϕ′ is an instance of ϕ iff ϕ′ = ϕσ

for some variable substitution σ.
A ground atom P is derivable from a policy P (we write P ` P) if P is a ground instance

of a fact in P , or P :–P1, ...,Pn is a ground instance of a rule in P such that P ` Pi for all
i ∈ {1, ...,n}. A query Q is an atom, and the answers to the query (with respect to a policy
P ) is the set of all ground instances P of Q such that P ` P.

Definition 1 (Safeness). A rule P :–~P is safe if vars(P) ⊆ vars(~P). A policy is safe if all
its rules are safe. ut
Proposition 2. Let P be a policy, and Q be a query. If P is safe, then there are only finitely
many answers to Q with respect to P . ut

3 I/O-Safeness

In this section, we present an alternative safeness condition on Datalog rules, called I/O-
safeness, that is more lenient than the standard one from Def. 1 and yet preserves the finite-
ness property from Prop. 2. In Section 4, we present several applications facilitated by this
safeness condition.

Consider again the standard safeness condition. The intuition behind it is that all va-
riables in a body atom of a rule will be ground after the atom has been evaluated, because
they will eventually be grounded by some ground fact. Variables thus have the function
of output arguments. The main idea in I/O-safeness is that we also allow for input argu-
ments: here we guarantee that the input arguments of an atom are ground before the atom is
evaluated. These guarantees are enforced via syntactic restrictions.

Output variables in the head of a rule must be ground after the rule body has been
evaluated, so they are required to be equal to some input variable in the same head, or to
also occur as an output variable in the body. This implies that all output arguments ei in a
fact p(e1, ...,en) must either occur also as an input variable e j or be ground.

Input variables in the body, on the other hand, must be ground before the atom they
occur in is evaluated, so they are required to occur also as an input variable in the head
of the same rule, or as an output variable in a preceding body atom (throughout, we are
assuming a left-to-right evaluation strategy for body atoms). Finally, we also need to ensure
that all input arguments in queries are ground – in other words, a query must not have any
input variables.

Formally, we associate each predicate symbol p with a non-empty set mode(p) of modes
from the set {IN,OUT}ar(p). We extend the mode function to atoms in a natural way, i.e.,
mode(p(~e)) = mode(p). This definition allows more than one mode for a given predicate
symbol. We can thus have multiple calling patterns in which the predicate can be used.

Definition 3 (Input/Output variables). Let P= p(e1, ...,en) be an atom, µ=(m1, ...,mn)∈
mode(p), and i ∈ {1, ...,n}. We say that ei is an input variable (output variable, respecti-
vely) in P with respect to µ, if



1. ei is a variable, and
2. mi = IN (µi = OUT, respectively).

We write INµ(P) and OUTµ(P) to denote the sets of all input variables and output variables
in P with respect to µ. ut

Definition 4 (I/O-Safeness). A rule P :–P1, ..,Pn is I/O-safe if for all µ ∈ mode(P) there
exist µ1, ...,µn such that µi ∈mode(Pi) (for all i ∈ {1, ...,n}) and

1. OUTµ(P)⊆ INµ(P)∪
⋃n

j=1 OUTµ j(Pj), and
2. ∀k ∈ {1, ...,n}. INµ(Pk)⊆ INµ(P)∪

⋃k−1
j=1 OUTµ j(Pj).

A policy is I/O-safe if all of its rules are I/O-safe. A query Q is I/O-safe if there exists
µ ∈mode(Q) such that INµ(Q) = /0. ut

Proposition 5. Let P be a policy, and Q be a query. If P and Q are I/O-safe, then there are
only finitely many answers to Q with respect to P . ut

Example 1. Policies often deal with access to resources, and typically define predi-
cates such as canAccess(User,Operation,File). Under the standard safeness conditions,
we can then write rules such as canAccess(u,Read, f ) :–canAccess(u,Write, f ) and
canAccess(A,Write,//foo/bar.txt). But the arguably legitimate rule

canAccess(u,Write, f ) :–admin(u) (1)

is deemed unsafe. However, this rule can be made I/O-safe with the mode assignment
mode(canAccess) = {(OUT,OUT, IN)}. The previous two rules are also I/O-safe. But al-
lowing a rule such as (1) comes with a tradeoff: queries such as canAccess(A,Write, f )
(‘which files can A write to?’) are now I/O-unsafe; since the file argument is an input ar-
gument, it cannot be enumerated, and must be ground in queries. But this is reasonable, as
rules such as (1) may give users permissions to access a large, or even infinite, set of files. In
the presence of Rule (1), a legitimate query would be e.g. canAccess(A,Write,/foo.txt).

ut

4 Advanced Applications of I/O-safeness

4.1 Preventing intractable policies

The time complexity of Datalog evaluation is polynomial in the number of facts in the
policy (i.e., assuming that the rules with non-empty bodies are fixed) [7]. The degree of
the polynomial is bounded by the maximum number of distinct variables in a single rule.
Even though this number is usually small, policy evaluation can be intractable in practice.
In policy applications, the number of rules is typically small, whereas the number of facts
in the policy may go into the billions. Therefore, even a linear search over a single predicate
may already be prohibitively expensive.

In Example 1 in the previous section, we saw that the mode of canAccess could be set to
(OUT,OUT,OUT) in the absence of rules like (1), allowing I/O-safe queries or body condi-
tions such as canAccess(x,Write,y). But in any realistic file system with a large number
of files, such a query would be very expensive. Clearly, requiring the third parameter to be



instantiated at runtime is highly advisable, corresponding to the mode (OUT,OUT, IN). If the
number of users that can access a single file may be large, it may be even better to use the
more restrictive (IN,OUT, IN), as the first and the third parameters jointly almost determine
the second parameter (the access mode).

We can generalize this observation: predicates often have subsets of arguments that de-
termine, or nearly determine, the other arguments in the predicate. If the predicate is expec-
ted to be large, it is advisable to make sure that one of those subsets of arguments is ground
at runtime, i.e., when the corresponding atom is evaluated. The general rule is thus to set the
mode of all such groups of arguments to IN.

This provides a heuristics for controlling the complexity of a policy. It is still possible to
write intractable policies, but much harder, and it is much less likely to happen inadvertently.
If a policy or a query fails the I/O-safeness check, the system could either reject the policy or
just issue a warning. The latter case is useful because there are situations where I/O-safeness
can be legitimately ignored, e.g. if an administrator needs to enumerate all files that a user
can access and the time that this takes is not crucial.

4.2 Constraints and functions

Datalog on its own is not expressive enough for many real-world policies. For example,
it cannot express constraints such as inequality or regular expressions as a predicate, nor
functions that perform arithmetic operations or that access the environmental state. It is
tempting to add constraints and functions to Datalog, in order to be able to write policies
such as

adult(x) :– dob(x,d),CurTime()−d ≥ 18 yrs. (2)

It is impossible to express the example above in Datalog without constraints and func-
tions. But there is a good reason why Datalog does not support arbitrary functions and
constraints by default. Even just adding one function symbol to the language turns it into a
Turing-complete language, which is undesirable for most policy applications. Similarly, as
the name suggests, Constraint Logic Programming (CLP) [12] adds constraints to logic pro-
gramming, which also renders the resulting language Turing-complete for many constraint
classes. Moreover, it requires an execution strategy that is by far more complex than Data-
log’s.

We show that I/O-safeness allows Datalog-based policy languages to be extended with
constraints and functions, without sacrificing Datalog’s simplicity and efficiency, and more
liberally than in existing languages. More concretely, our solution supports arbitrary types
of constraints, and allows constraints to be placed at arbitrary positions within the rule body
as long as the I/O-safeness condition is satisfied. Moreover, it also supports pure functions.

As a first step, we observe that constraints and functions can be viewed as syntactic sugar
for predicates that are evaluated outside the Datalog engine. In particular, functions can be
represented as relations with an extra argument for the output (or several extra arguments, if
the output is a tuple). For example, Rule (2) could be rewritten internally without syntactic
sugar as

adult(x) :– dob(x,d),curTime(t),subtr(t,d,r),gte(r,18 yrs),

where curTime, subtr and gte are defined externally: when these predicates are to be eva-
luated as subgoals at runtime, the answers to them are provided by external modules that



need not be written in a rule-based language. Therefore, the only required change to the eva-
luation engine is that it needs to be able to call out to external answer providers for certain
predicates.

Most constraints are infinite relations. For example, there are infinitely many pairs of
numbers that satisfy the relation ≥. Therefore, constraint arguments should not be used
as outputs. We set the mode of all constraint arguments to IN, in order to guarantee that
the constraint is ground at runtime. The external module that deals with the constraint can
therefore be very simple: it only needs to be able to check if a ground constraint is true or
false. Complex constraint operations that are required in CLP such as unground satisfaction
checking and existential quantifier elimination are thus not needed.

For the same reasons, function arguments are set to IN, apart from the extra output argu-
ments, which are set to OUT. For instance, the nullary function curTime has mode (OUT).
Functions may have multiple modes, if there are multiple subsets of arguments that fully
determine the other arguments; for instance, subtr has the mode (IN, IN,OUT), and possi-
bly also (OUT, IN, IN), and (IN,OUT, IN), depending on the implementation of the external
module that deals with subtr.

Many functions, such as subtr or other arithmetic operations, have an infinite range.
Since the output of the function can be fed back into its own input via the rules, this can
lead to undecidability and non-termination. For example, with a simple successor function
‘ +1’ we could test if q(x) holds for all integers x: p(x) :–q(x),p(x+1).

This problem only occurs if recursion (p calls itself) is combined with an infinite-range
function. But this can be checked statically: infinite-range functions must not occur within
a recursive rule. (For example, in the policy {r., p :–q., q :–p.}, only the first of the three
rules is non-recursive.)

We then have the following result.

Proposition 6. Let P be a policy with externally evaluated constraints and functions, and Q
be a query. If no infinite-range function occurs in a recursive rule and P and Q are I/O-safe,
then there are only finitely many answers to Q with respect to P . Furthermore, if functions
and ground constraints can be evaluated in finite time, then the tabled left-to-right resolution
strategy is also complete and terminating for evaluating Q.

4.3 Hierarchical policies

Hierarchies are ubiquitous in policies. Here are a few examples:

1. In Role-Based Access Control (RBAC) [16], a role hierarchy is a partial order that
defines a seniority relation between roles. Members of a role automatically inherit per-
missions from lower-ranked roles.

2. In Mandatory Access Control (MAC) [4], access is based on security labels such as top
secret, secret, confidential, etc., attached to users and objects. The labels form a lattice,
and users with a given security label can only read objects with an equal or lower label.
Furthermore, users can only write objects with an equal or higher label.

3. Policies on file permissions often reflect the hierarchical structure of the file system.
Having permission to access a folder may imply permission to access all subfolders.

How could hierarchical structures be combined with a Datalog-based policy language?
For each predicate symbol p, we associate each of its argument positions i ∈ {1, ...,ar(p)}



with a finite binary relation /i
p on constants. Intuitively, /i

p is the hierarchy relation that is
applied to the ith argument of p.

Definition 7 (Hierarchical semantics). A ground atom p(c1, ...,cn) is hierarchically de-
rivable from a policy P (we write P `∗ p(c1, ...,cn)) iff P ` p(c1, ...,cn), or for all
i ∈ {1, ...,n}, there exists a constant c′i such that c′i = ci or c′i /

i
p ci, and P `∗ p(c′1, ...,c

′
n).

Since the rule can be applied transitively, we get the property that if p(~c′) holds, then
p also holds for all~c further down the hierarchy. Every argument position of a predicate is
associated with a hierarchy. This also covers the (usual) case where the argument position
is non-hierarchical: in this case, we set /i

p to be the empty relation.
To illustrate the method, we show how the examples above can be expressed in a

Datalog-based policy language under the hierarchical semantics.

1. We express the role-permission relation using the predicate hasPerm. For example,
hasPerm(Engineer,Read) states that users in the engineer role have read permis-
sion. The first argument position of hasPerm has a non-empty hierarchy relation: let
r1 /

1
hasPerm r2 whenever role r2 is strictly more senior than role r1 (and there exists no

role r3 in between). If we have

Engineer/1
hasPerm SeniorEngineer/1

hasPerm PrincipalEngineer, and

SeniorEngineer/1
hasPerm DistinguishedEngineer,

then hasPerm(Engineer,Read) implies hasPerm(PrincipalEngineer,Read) and
hasPerm(DistinguishedEngineer,Read).
The derivations require two applications of the second rule in Def. 7.

2. We define the hierarchies TopSecret/2
readClearanceSecret/

2
readClearanceConfidential,

and Confidential/2
writeClearance Secret/

2
writeClearance TopSecret (i.e., /2

writeClearance =
(/2

readClearance)
−1). Then the following rules implement MAC:

canRead(x, f ) :– label( f , l), readClearance(x, l).

canWrite(x, f ) :– label( f , l),writeClearance(x, l).

readClearance(x, l) :– label(x, l).
writeClearance(x, l) :– label(x, l).

If Alice has the security label Secret, she is able to read files labelled Secret and
Confidential, and write files labelled Secret and TopSecret.

3. Let f1 /
2
read f2 whenever f1 is the immediate parent path of the path f2. Then the fact

read(A,/foo/) implies read(A,/foo/bar/baz/test.txt).

How can we evaluate queries under this modified hierarchical semantics, without ha-
ving to change the existing Datalog evaluation engine? It turns out that we can encode the
hierarchical semantics directly in Datalog, while preserving the correctness and termination
guarantees, provided that I/O-safeness is enforced.

We do this by treating /i
p as a binary predicate symbol, with an associated mode set

mode(/i
p). As in the case of constraints and functions, this requires that the evaluation

engine is able to call an external module at runtime that provides answers to /i
p-queries. For



example, if (OUT, IN) ∈mode(/i
p), the module implementing /i

p must be able to enumerate
all instantiations of x that satisfy x/i

p c, given any constant c.
In the following, for all normal predicate symbols p occurring in the policy P , let n =

ar(p), and let x1, ...,xn and x′1, ...,x
′
n be distinct variables. For i ∈ {1, ...,n}, let σi be the

substitution [xi 7→ x′i], and let Mi = {πn
i (µ) | µ ∈ mode(p)} (where πn

i is the ith projection
function on n-tuples).

The algorithm below constructs a policy P ∗ that encapsulates the hierarchical semantics
from Def. 7. First initialize P ∗ := P . Then for each i ∈ {1, ...,n} such that /i

p is non-empty:

1. If OUT /∈Mi and (OUT, ) ∈mode(/i
p), add the following rule to P ∗:

p(x1, ...,xn) :–x′i /
i
p xi, p(x1σi, ...,xnσi).

2. Otherwise, if OUT ∈Mi and ( ,OUT) ∈mode(/i
p), add the following rule to P ∗:

p(x1, ...,xn) :– p(x1σi, ...,xnσi),x′i /
i
p xi .

3. Otherwise, the algorithm fails.

The following proposition states that P ∗ can be used to evaluate queries against P ac-
cording to the hierarchical semantics, provided that the original policy is I/O-safe.

Proposition 8. If P is I/O-safe and P ∗ exists, then P ∗ is I/O-safe. Furthermore, for all I/O-
safe queries Q,

P ∗ ` Q⇐⇒ P `∗ Q.

Let us now consider the “natural” modes of the hierarchies from the four examples
above:

1. We would set mode(/1
hasPerm) = {(OUT,OUT)} if the number of roles is very small.

Otherwise, we set it to {(IN,OUT),(OUT, IN)}, i.e., given a role, we should be able
to efficiently enumerate both the more senior and the more junior roles. Neither case
imposes a restriction on the mode of the first argument of hasPerm.

2. The hierarchy /2
readClearance is small, so its only mode is (OUT,OUT). This imposes no

restriction on the mode of the second argument of readClearance.
3. Assuming that the file system is large, the mode of /2

read should be restricted to
(OUT, IN), i.e., computing the parent path of a given path. (IN,OUT) is probably not
advisable as a directory may contain a large number of files, and (OUT,OUT) is clearly
not feasible. If mode(/2

read) = {(OUT, IN)}, then all modes of read must be of the form
( , IN). This is a natural choice for read, because there may be a huge number of files
that a single user can read.

5 Conclusion

We have shown that replacing Datalog’s standard safeness condition by our more liberal
I/O-safeness condition facilitates powerful language extensions that retain Datalog’s nice
complexity and termination properties. The increased expressiveness comes at the price of
a slightly more complicated syntactic restriction (which can be automatically checked), and



the requirement to specify the input/output mode for each predicate. But since the features
discussed in this paper are extremely useful in practice, we believe that this is a good tra-
deoff. Moreover, in our experience, it is intuitive and natural to write I/O-safe policies: the
largest example of a trust management policy to date [1], a hand-written electronic health
record policy consisting of 375 constrained Datalog rules, passes the I/O-safeness check
— even though it was originally developed for the Cassandra system, which runs under
the even more liberal, but generally undecidable, Constraint Logic Programming paradigm,
and therefore actually would not require I/O-safeness. Conversely, failure of I/O-safeness is
usually an indication of a bug.
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