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Abstract—Product classification in Commerce search (e.g.,
Google Product Search, Bing Shopping) involves associating
categories to offers of products from a large number of mer-
chants. The categorized offers are used in many tasks including
product taxonomy browsing and matching merchant offers to
products in the catalog. Hence, learning a product classifier
with high precision and recall is of fundamental importance in
order to provide high quality shopping experience.

A product offer typically consists of a short textual de-
scription and an image depicting the product. Traditional
approaches to this classification task is to learn a classifier
using only the textual descriptions of the products. In this
paper, we show that the use of images, a weaker signal in our
setting, in conjunction with the textual descriptions, a more
discriminative signal, can considerably improve the precision of
the classification task, irrespective of the type of classifier being
used. We present a novel classification approach, Confusion
Driven Probabilistic Fusion++ (CDPF++), that is cognizant of
the disparity in the discriminative power of different types
of signals and hence makes use of the confusion matrix of
dominant signal (text in our setting) to prudently leverage
the weaker signal (image), for an improved performance.
Our evaluation performed on data from a major Commerce
search engine’s catalog shows a 12% (absolute) improvement in
precision at 100% coverage, and a 16% (absolute) improvement
in recall at 90% precision compared to classifiers that only
use textual description of products. In addition, CDPF++ also
provides a more accurate classifier based only on the dominant
signal (text) that can be used in situations in which only the
dominant signal is available during application time.
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I. INTRODUCTION

Online shopping has revolutionized the way we shop.
US online retail spending surpassed $155B in 2009, and
is expected to surpass $248B in 2014 [1]. A recent Nielsen
study reports that over 80% of American Internet users will
make an online purchase in the next six months [2]. The
last decade has witnessed a surge of commercial portals
(such as Amazon), comparison shopping sites (such as
PriceGrabber and NextTag), and commerce search verticals
(such as Google Product Search and Bing Shopping).

In the commerce search setting, description of products,
referred to as offers in this paper, are available from a
variety of sources, including product manufacturers (e.g.,
Sony, Canon, Samsung, etc.), data providers (e.g.,Etilize),
and merchants (e.g., Target, Walmart, BestBuy, etc.). Offers

usually consist of a brief textual description of the product
(often, the title of the product), and sometimes its corre-
sponding image. While some offers are categorized by offer
creators, majority of them are uncategorized.

Since online shopping sites target a rich and diverse set of
products, a key to their success is to provide the ability for
users to browse offers of products organized according to
the product taxonomy used by the commerce search engine.
In addition, such categorization becomes central for the task
of offer to product matching where the goal is to identify
the product that is in correspondence with the offer [11].
Thus, automatic classification of offers under the taxonomy
is of fundamental importance.

Existing approaches to offer classification rely purely on
the textual description of the offers [3], [19]. However,
classifiers that rely exclusively on text suffer from the
following problems:

1) Overlapping text across categories: Many categories
in the taxonomy have products that are interrelated,
and thus the textual descriptions of their products over-
lap in vocabulary usage. For example, some perfectly
valid textual descriptions for two completely different
products (a laptop and a battery) might differ in just
one word: “Acer TravelMate 4062LCI with battery”
and “Acer TravelMate 4062LCI battery”.

2) Short, undescriptive text: Product offers typically
come from merchants that expect to receive referrals
from the online shopping engine. The e-commerce site
typically has no control over the product description
provided by the merchants, and in many cases the
descriptions are brief and incomplete. For example,
a product description from a merchant may just say
‘P43A’, which is a model number of a motherboard.
If the classifier is unaware of this model number, it
will not be able to correctly classify the product.

3) Discrepancy in vocabulary usage: Offers are ob-
tained from a very large number (typically in 1000s) of
merchants. The merchants differ in their style, amount
of specification, or the vocabulary in describing the
products that they sell. Hence, any reasonable subset
of offers that are manually labeled from this pool
are too restrictive to capture all kinds of variability.
Hence, there will be mismatch between the vocabulary



of words in the data set used to train the classifier,
and in the offers to be categorized by the learned
classifier. Figure 1 illustrates this mismatch between
the term frequencies in product descriptions obtained
from a dedicated group of aggregators, and from a
large number of merchants. As an example, we can
see from this plot that the term ‘notebooks’ is more
commonly used by merchants to refer interchangeably
with the term ‘laptop’ used predominantly by the
aggregators.

Figure 1. Differences in vocabulary between product descriptions from
e-commerce aggregators (blue plot) and merchants (red plot, with spikes).
Terms are sorted by the probability of occurrence in the descriptions from
e-commerce aggregators.
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Figure 2. Complexity of purely text-based classification in e-commerce
setting: (a) Overlapping text across categories (b) Short undescriptive text
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Figure 3. Complexity of images: (a) Heterogenous categories (both offers
belong to ‘computing accessories’ category) (b) Ambiguity of images

While incremental improvements can be obtained by
trying new techniques that exploit textual features, in this
paper we take a different approach. In particular, we observe
that virtually all products in an e-commerce site have an

associated image. This is because users shop visually, and
they are thus more attracted to products with images. These
images can be used in conjunction with text to improve
classification. For example, consider Figure 2a, which shows
a laptop and a battery. While their textual descriptions are
exactly the same except for the word “with”, their images
are clearly different. In the same vein, in Figure 2b, even if
the textual descriptions are uninformative, we can recognize
from the images that they correspond to a computer mouse
and a computer motherboard.

Using images for product classification presents its own
challenges. Even after more than a decade of research in
computer vision, image classification is a largely unsolved
problem. Existing state-of-the-art image classifiers perform
well only on certain categories and with limited amounts
of variability [6]. In fact, a number of recent works in
image classification have looked into using textual cues
such as tags associated with similar images [8][17], and
the textual content of webpages containing the images to
improve classification performance [10]. In this paper, we
ask the converse question:

Can images help improve text classification?

While some of the challenges posed in computer vision
benchmark datasets (e.g., PASCAL [6], Caltech 256 [7])
carry over in our application, there are also differences in
our setting, that makes the problem even harder. Typically,
classification tasks considered in the benchmark datasets
focus exclusively on categorizing homogenous categories. In
a product catalog, the categories can be quite heterogenous: a
category in the product taxonomy often consists of products
from very diverse sub-categories. As an example, in Fig-
ure 3(a), we observe that products (e.g., mouse, power cords,
etc.) from the same category (‘Computer Accessories’) can
have completely different images. Moreover, the association
between categories and images can be noisy. For example,
in Figure 3(b), we observe an example of a product offer for
a sleeve for a Microsoft Zune that shows the image of Zune
itself as opposed to the sleeve. Because of these difficulties,
an image-based classifier is significantly less accurate in our
setting compared to a text-based classifier.

Not withstanding the above mentioned difficulties, in this
paper we show that visual cues can be used to significantly
improve classification accuracy. Although classification us-
ing generic multi-modal signals has been recently proposed
in the literature, the use of images to aid text classification
in a setting where there is significant difference in discrim-
inative power between the two types of signals has not
been systematically studied before. In fact, the only previous
work [20] we are aware of is in the context of document
classification. In that setting, several images in the document
are used in conjunction with the text to identify the true
category of a document. In our setting, an offer is provided
with only a brief textual description and an image, and we



would like to use the provided image as the additional signal
to improve classification accuracy.

While the image signal can be very helpful as mentioned
above, a few questions about its uniformity, processing
cost, and general availability during application time remain.
As with the text signal, image signal may also exhibit
variability, especially when large number of data sources are
involved, as in the current setting. In some cases, extracting
image features during application time may be prohibitively
expensive. While in some other situations, the image signal
may be absent altogether. Given these challenges, an im-
proved text-only classifier during application time is always
desirable. So, we ask the question:

Can we learn an improved classifier based on textual
features during testing time while exploiting text and

image signals and unlabeled data available during
training time?

In this paper, we make the following contributions:
• We initiate a study into the relatively unexplored setting

where the image signals are less discriminative com-
pared to text-based signals, and explore how image
signals can be effectively used to improve the per-
formance resulting from a purely text-based product
classification.

• To address the challenges in product classification,
we propose a novel classification algorithm: Confusion
Driven Probabilistic Fusion++ (CDPF++). CDPF++
lessens the burden of image classifier needing to learn
the entire decision surface by selectively learning multi-
ple 3-way image classifiers that focus on category pairs
on which the text classifier makes most errors.

• We performed all our experiments on real data obtained
from the Bing Shopping catalog, demonstrating real-
world significance of our proposed method, CDPF++.
Our evaluation shows a 12% (absolute) improvement
in precision at 100% coverage, and a 16% (absolute)
improvement in recall at 90% precision compared to
classifiers that only use textual description of products.
Moreover, CDPF++ also results in a better text-only
classifier, significantly outperforming the text-based
baseline classifier.

The rest of the paper is organized as follows. In
Section II, we provide an overview of the methods we
use in this paper. In Section III, we present experimental
results, and in Section IV, we discuss related work. We
provide concluding remarks and thoughts for future work
in Section V.

II. CLASSIFICATION BY SELECTIVELY COMBINING TEXT
AND IMAGE SIGNALS

In this section we outline the principles for selective
combination of multi-modal signals in training a product

classifier. We then propose our product classifiers following
these principles.

A. Design principles for combining text and images

There is a large body of literature on learning classifiers
that combine multiple views of the same signal source
(c.f. [12] for a survey). Inspired by their success in various
applications, these methods are also used in multimodal
settings (c.f. [8]), where the source of the signals, or alter-
natively their modalities, are different. Examples of multiple
modalities include speech waveforms and textual transcripts,
or speech waveforms and images. It is often the case that dif-
ferent modalities vary in their discriminative power needed
for various classification tasks. This is particularly true in
our setting: textual cues arising from the free textual product
description are more discriminative than that of image cues.
In fact, in an experiment where we compared text-based
classifier with image-based classifier, the performance of
former was 74.5% while that of the latter was 54.7%, further
validating that the image cues is weaker. In this setting, any
method that combines text and image signals should have
the following characteristics:

• Cognizance of signals’ discrimination capabilities:
The method should be aware of the disparities in
discriminative abilities of various signals so that best
improved classification performance is achieved when
they are combined.

• Use weaker signal selectively: Instead of using the
image signal (the weaker signal compared to text) to
learn the entire discriminative surface over a large
number of categories, it should be selectively used
to learn a decision surface that discriminates a much
fewer number of categories. This drastically reduces the
complexity of the classification task involving image
signals.

• Ability to adapt: The method should be able to adapt
to changing vocabularies of textual descriptions, as
described in Section I.

• Improved Text-only classifier: To handle situations
where the image signal is expensive to obtain or is
not present during application time, the method should
be capable of building an improved text-only classifier
by exploiting the image signal available during training
time.

Based on the above principles, we propose a Confusion
Driven Probabilistic Fusion (CDPF) approach to training a
product classifier with labeled training data, which follows
the first two of our design principles. We then present
CDPF++, an extension of CDPF that uses a semisupervised
learning approach to exploit the regularity of the unlabeled
data to further improve the product classifier. CDPF++
follows all of our four design principles.
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Figure 4. Confusion Driven Probabilistic Fusion (CDPF) uses multiple
3-way image classifiers to help reduce text classifier’s confusions.

B. Confusion Driven Probabilistic Fusion (CDPF)

We describe CDPF as it applies in our setting.
1) Training CDPF: Algorithm 1 describes the algorithm

for training a CDPF classifier. We first identify those
categories in which the the text classifier is most highly
confused. For this, we divide the training data L into two
non-overlapping subsets, B and S. We use B to train a
text classifier, HT , and also to identify the top η confusing
pairs of categories, CT (GETCONFUSIONPAIRS). For each
of these pairs, we learn a 3-way image classifier between the
confusing pairs, and an additional background category (⊥)
that consists of all categories other than the pair under con-
sideration. ⊥ captures the possibility that the true category
can be different from the categories in the pair. Note that the
choice of η determines how much of the image information
is being used.

Once all the η+1 classifiers are trained, each (x, y) ∈ S
is represented using z which consists of K+3× η features,
K of which are the prediction probabilities of HT , while
the remaining 3× η features are the prediction probabilities
from the η 3-way image classifiers. These instances along
with their labels are used to create a new training set L′s.
The final classifier H is then trained on this new labeled
dataset.

To train various component classifiers (e.g., H , HT , etc.),
CDPF assumes availability of a supervised classifier training
method, TRAINCLASSIFIER. Any standard supervised clas-
sifier training algorithm, e.g., Logistic Regression, Support
Vector Machine (SVM), may be used as TRAINCLASSIFIER.

2) Discussion: CDPF builds on the concept of ‘stacked
generalization’ [23] which provides a rich framework for
combining varied feature sets and classifiers for increased
robustness and generalization. An instantiation of ‘stacked
generalization’ is Probabilistic Fusion (PF) wherein separate
base classifiers are trained, independently for each signal and
consequently the outputs from these classifiers, now in the
same space of prediction probabilities, are combined to learn
the final classifier.

Unlike in the case of Probabilistic Fusion, the use of

Algorithm 1 Confusion Driven Probabilistic Fusion (CDPF)
1: Input: L = {(x1, y1), . . . , (xn, yn)} of n labeled

instances, where xj
T and xj

I are the text and image
features of instance xj ; η: the maximum number of
image classifiers trained

2: Output: H , a classifier trained on L exploiting both text
and image features

3: Split L into B and S
4: HT = TRAINCLASSIFIER({(xT , y) | (x, y) ∈ B})
5: CT = GETCONFUSIONPAIRS(HT , {(xT , y) | (x, y) ∈
S})

6: /* Train a 3-way image classifier for each confusion pair, */
7: /* upto a maximum of η such classifiers. */
8: Hpool = ∅
9: for all (c1, c2) ∈ TOPCONFUSIONPAIRS(CT , η) do

10: F = {(x, y) ∈ S | y = c1 or y = c2}
11: for all (x, y) ∈ S − F do
12: F = F ∪ {(x,⊥)}
13: end for
14: Hc1c2 = TRAINCLASSIFIER({(xI , y) | (x, y) ∈ F})
15: Hpool = Hpool ∪Hc1c2

16: end for
17: /* Use the text and all 3-way image classifiers to embed */
18: /* instances in a space of class membership probabilities.*/
19: Define L′

s = ∅
20: for all (x, y) ∈ S do
21: z′T = GETPREDICTIONPROBABILITIES(HT ,xT )
22: z′I = ∅
23: for all h ∈ Hpool do
24: zhI = GETPREDICTIONPROBABILITIES(h,xI)
25: z′I = z′I ∪ zhI
26: end for
27: z′ = (z′T , z

′
I)

28: L′
s = L′

s ∪ {(z′, y)}
29: end for
30:
31: H = TRAINCLASSIFIER(L′

s)

multiple 3-way image classifiers creates easier classification
task for the image classifier [9]. Since the 3-way image
classifier focuses on the pairs of categories that are most
confusing for the text classifier, we can improve on the
overall classification task, especially when the two modal-
ities are complementary to each other. This way, CDPF is
cognizant of the discriminative capabilities of the signals,
and selectively uses the weaker signal (image in our case),
satisfying the first two requirements mentioned in Section
II-A. In Section III, we present results that establishes
complementarity of the two kinds of signals.

C. Leveraging unlabeled data: CDPF++

As we discussed in Section II-A, we would like the clas-
sifier to adapt to changing vocabularies in the specifications
(e.g., new products). In addition, we would like to obtain a
text-based classifier that has successfully captured the infor-
mation in the image signal. To achieve these two properties,
we extended CDPF to CDPF++. The idea behind CDPF++



is that we make use of abundant unlabeled data to both
(a) adapt to changing vocabulary without requiring manual
labeling and (b) infuse the information in the image cues to
the text-only component of the classifier. We capture these
two properties by learning CDPF++ using a semisupervised
technique based on the self-training paradigm [25].

CDPF++ is learned in an iterative fashion: Starting with
CDPF, it is iteratively re-learned by making using of ad-
ditional data that is automatically labeled (with high confi-
dence) using the classifier trained in the current iteration. We
also allow for the label of an automatically labeled instance
to change in subsequent iterations, as it enables recovery
from possible misclassification in the previous iterations.

Unlike in the traditional self training setup where the clas-
sifier that is re-trained is based on a single type of feature,
CDPF++ makes use of both image and textual signals during
learning. CDPF++ achieves all the requirements stated in
Section II-A. In particular, it results in a better text-only
component since information from the images are fed by
adding automatically labeled data that used both image and
text features. In addition, it adapts by using the unlabeled
data.

III. EVALUATION

In this section, we evaluate the following:
• Value of images & unlabeled data: Compared to a

text-based classifier, is improved product classification
performance possible by exploiting image signal &
widely available unlabeled data? This is our main
evaluation setting. (Section III-C)

• Improvement of Text-only classifier: Images may
not always be available during classification time. For
instance, when classifying millions of offers on a daily
basis (common in commerce search setting), image
processing may create a considerable overhead and
hence may not be performed. We want to investigate
how the text component of classifiers that make use of
both signals (e.g., CDPF++) can perform compared to a
pure Text-based classifier that only uses textual features
during training. (Section III-D)

• Ablation Studies: Can images (in the absence of
unlabeled data) also help improve classification perfor-
mance over text-based classifier? What is the effect of
unlabeled data? (Section III-E)

We also perform qualitative analysis in Section III-F to
study complementarity of the two kinds of signals, and also
their learned roles in the classification task.

A. Algorithms used for Comparison

We compare the following algorithms:
• Text & Text++: Text is a classifier learned using only

the textual features (and labels) of the labeled data. Its
self-trained counterpart is Text++. Starting with Text,
Text++ is iteratively re-learned using, both, labeled

data and a portion of the unlabeled data (along with
their predicted labels) that are confidently predicted by
the classifier at the current iteration. Text is our main
baseline algorithm.

• Concat:Concat is a classifier learned on features ob-
tained by concatenating text and image features.

• PF & PF++: An instantiation of ‘stacked generaliza-
tion’ is Probabilistic Fusion (PF), wherein separate base
classifiers are trained, independently, for each signal
and consequently the outputs from these classifiers,
now in the same space of prediction probabilities, are
combined to learn the final classifier. PF++ is the self-
trained counterpart of PF that also uses unlabeled data
along with their predictions to iteratively learn a better
classifier.

• CoTraining: CoTraining [4] has been successfully used
in a variety of multi-view problems in domains such
as computer vision (c.f. [15], [21]) where there is
abundance of unlabeled data and limited amount of
labeled data. It is also an iterative algorithm in which
separate classifiers are trained for each view, and the
most confidently labeled instances from these separate
classifiers are added to the training pool for re-training.

• CDPF & CDPF++: CDPF is described in Section II-B,
while CDPF++ is presented in II-C. CDPF++ is the
main algorithm proposed in this paper.

B. Experimental Setup

1) Dataset: The dataset used for the experiments in this
section comprised of K = 17 categories related to computing
(e.g., Laptop Computers, Motherboards, Computer Memory,
etc.). This dataset was collected from the Bing Shopping
catalog, a major Commerce Search engine. We used a total
of N = 17989 instances for training and 10026 instances
during testing. The test dataset is highly skewed in terms of
number of instances per category, with average number of
instances per category being 590. The largest and smallest
categories have 1410 and 129 instances, respectively. We
perform experiments in a transductive setting, and construct
the unlabeled data by hiding labels from test instances.

The categories chosen for our experimentation overlap
both in textual content (e.g., vocabulary used in describing
laptops and desktops, or cameras and camcorders), and also
in image content (e.g., a mouse from computing accessories
category shown along with a desktop).

Additionally, we also experimented with data from 5 cam-
era related categories (e.g., Camcorders, Digital Cameras,
Lenses, etc.). We observed similar trends as the results
presented in this section and hence we omit the details due
to lack of space.

2) Features used: For textual representation, we first
derived lexical features based on standard tokenization of
product descriptions into unigrams and bigrams. We used
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Figure 5. Gist representation of an image.

boolean feature representing the presence or absence of these
n-grams, as they tend to uniquely occur in offer descriptions.

For image representation, we capture the global structure
of the objects in the image using a combination of textural
property and their spatial layout (c.f. [22]). Textural property
is captured, at each pixel in the image, using the responses of
steerable pyramid tuned to 6 orientations and at 5 different
scales. The spatial information is captured by dividing the
image into 4× 4 local grids, and computing the mean value
of the magnitude of the response within those grids. The
resulting 4×4×30 vector is used as the feature representation
of the image. Figure 5 shows an example image and its
corresponding gist feature represented as an image.

3) Base Classifier: Methods described in this paper,
including CDPF++, make use of a standard classifier as
one of their components. We use Multiclass Logistic Re-
gression for this purpose. This classifier is parameterized
by W, a collection of weight vectors {wk}, one for each
category k ∈ K. Each component wjk measures the relative
importance of the jth feature for predicting kth label. The
logistic regression learns a mapping from the feature vector
of instance z to the label y, using the following softmax
logistic function:

P (y = k | z,W) =
exp (bk + z ·Wk)

1 +
∑K

j=1 exp (bj + z ·Wj)
(1)

where bj (1 ≤ j ≤ K) are bias terms. Given a labeled
dataset L = {(x1, y1), . . . , (xn, yn)}, logistic regression
learns the parameters W so as to maximize the conditional
log-likelihood of the labeled data:

W∗ ← argmaxW

n∑
j=1

logP (yj | xj ,W) (2)

We call this classifier training process TRAINCLASSIFIER
(see Algorithm 1). In Algorithm 1, the
GETPREDICTIONPROBABILITIES(H, z) method returns a
K-dimensional vector of category membership probabilities
for instance z, where each membership probability is
calculated using Equation 1.

4) Performance metrics: For evaluation purposes, we
have access to a test set of product offers, u ∈ U . We also
know the true category of these offers, c∗u ∈ {1, · · · ,K}, for
every u ∈ U . The classifier does not have any knowledge
about the true category but predicts the best category c̃ with
probabilistic score γu,c̃. By best category, we mean that
there is no other c whose probability is higher than γu,c̃.
We require the probabilistic score to be at least θ ∈ [0, 1]
before calling it out as the correct category. Since the
number of test examples vary largely across categories, we
measure performance using micro average precision, recall
and coverage at threshold level θ as:

Precision(θ) =

∑
u∈U I[(γu,c̃ ≥ θ) AND (c∗ = c̃)]∑

u∈U I[γu,c̃ ≥ θ]
(3)

Recall(θ) =

∑
u∈U I[(γu,c̃ ≥ θ) AND (c∗ = c̃)]

|U|
(4)

Coverage(θ) =

∑
u∈U I[(γu,c̃ ≥ θ)]

|U|
(5)

where I[z] is the indicator function. For enabling rich e-
commerce experience, precision of the classification task
becomes highly important. Hence, we use metrics that
compares precision of the system and also the recall at the
desired precision level, to evaluate the effectiveness of the
various algorithms:

1) Precision at 100% coverage: This is the overall
precision of the algorithm, and computes the fraction
of all our test offers (θ ≥ 0 in Equation. 5) that are
correctly classified.

2) Recall at a particular precision: This measures the
improvement in recall, for a particular desired pre-
cision level. We use 90% precision levels to compare
improvements in recall. Note that, we choose different
θ for each method in order to achieve the desired
precision level.

5) Parameters used: For CDPF and CDPF++, we set
η = 50. We found that the algorithm is not sensitive to this
parameter suggesting that η can be set reliably without much
tuning. For iterative re-learning in semi-supervised settings,
we used 10 iterations as we found that to be sufficient for
convergence. Also, for these setting, we only label instances
when they are confidently predicted with a probability of at
least 0.9.

We now return to the main evaluation questions presented
at the beginning of Section III.

C. Value of images & unlabeled data

Figure 6 (our main result) compares the performances
of various algorithms: Text++ uses unlabeled data, while
CoTraining, PF++, and CDPF++ exploit both images and
unlabeled data. Please note that algorithms also make use
of text-based features. We make the following observations:
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Figure 6. Image cues along with unlabeled data can help improve precision
compared Text. CDPF++ is the proposed algorithm. This is our main result,
please see Section III-C for more details.

1) Text++ shows improvement over Text. However, its
performance is much lower than that of methods that
utilize image cues, reinforcing the fact that the image
signals provide information more and above that of
the textual signals.

2) CoTraining shows better performance than the text
self training (an improvement of 5% in classification
accuracy), making the case for visual cues aiding
in bootstrapping the correct category. This is further
reinforced by a recent study [14] that showed that
CoTraining can improve classification performance
only when the signals provide additional information.

3) CoTraining performance (82%) is lower than that
of CDPF++ and PF++. The reason for this is that
during prediction time, cotraining does not leverage
information from both signals as separate classifiers
(based on text or image) are learned concurrently.

Method Text CoTraining PF++ CDPF++
Recall 78.8 86.1 92.3 95.3

Table I
COMPARISON OF RECALL AT 90% PRECISION LEVEL

In Table I we also compare against Text the recall at
90% precision level of three algorithms that make use of
both image signal and unlabeled data: CoTraining, PF++,
and CDPF++. We can see that the recall of PF++ and
CDPF++ are significantly better than that of purely text
based classifier, supporting the usefulness of visual cues
and unlabeled data in improving both precision and recall,
simultaneously.

D. Improved Text-only Classifier

Here, we are interested in evaluating the performance
of the text-only classifier component of the three methods,
CoTraining, PF++, and CDPF++, compared to the purely
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Figure 8. Using images (even in the absence of unlabeled data) helps
improve precision @ 100% coverage.

text-based classifier, Text. An improved text-only classifier
will be extremely useful in scenarios where image signals
are not available during application time, due to factors such
as image processing overhead.

Figure 7 compares the performance of the text classifier
components of CoTraining, PF++, and CDPF++. We see that
in the case of CDPF++, the text-only component classifier
achieves similar performance compared to the full CDPF++
classifier that uses both signals (see Figure 6). This is
because, during the self training process, information from
the most confidently predicted unlabeled instances are teased
out and factored into the text classifier. On the other hand,
in the case of PF++ the unlabeled examples that are most
confidently predicted are the ones that PF++’s text classifier
were already confident of and hence the text-only component
of the classifier did not improve its performance.

E. Ablation Studies

In this section, we study separately the value of images
and of unlabeled data for the product classification task.
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Figure 9. Example offers showing correct classification after images were
used in conjunction with text

1) Value of Images: Figure 8 compares Text with the
methods that exploit both image and textual cues. We
can see from the figure that classification accuracy has
substantially improved (over 10%) by making use of visual
features in addition to textual features. This improvement
in performance establishes that images can help improve
classification accuracy.

The difference in performance between Concat and
CDPF/PF can be understood as follows: Concat learns inter-
actions between the image and text signals in their feature
space while CDPF and PF learns these interaction at a much
reduced dimensional space, in the space of probabilistic
outputs of classifiers trained independently on the image
and textual features. This enables PF and CDPF to more
succinctly capture the intrinsic discrimination capability of
the feature types. Hence, PF and CDPF are more robust
than Concat and is thus reflected in the higher gain in
performance.

The drop in CDPF’s performance compared to PF may
be attributed to the fact that from the same (limited) amount
of training data, CDPF has to estimate a larger number of
parameters compared to PF. In the absence of appropriate
regularization, this may lead to overfitting and thereby
lower performance. However, with the availability of more
training data, obtained by automatically labeling unlabeled
data through self-training, this problem can be overcome, as
in Figure 6 we observe that CDPF++ outperforms PF++.

In Figure 9, we present illustrative examples to showcase
usefulness of image cues. For instance, a laptop battery
offer which was classified by Text as belonging to ‘laptop
computers’ category is correctly classified to accessories
category. A ‘mouse’ offer that Text could not classify due
to lack of features is classified correctly into the accessories
category because the image of the offer helped to identify
the category.

2) Value of Unlabeled Data: From Figures 6 and 8,
we observe that CDPF++ outperforms CDPF (86.6% vs.
84.3%). The only difference between the two algorithms is
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Figure 10. Example offers showing correct classification after using
CDPF++
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Figure 12. Second layer of learned weights of Probabilistic Fusion. Please
see the figure on screen, for resolution and Section III-F2 for details

the use of unlabeled data in case of CDPF++. This clearly
demonstrates the additional benefit that unlabeled data can
bring to the product classification task. Figure 10 shows
examples to illustrate this. The images used in these two
offers are atypical (in fact, ambiguous) representation of
laptop and desktop, respectively. However, by corroborating
multiple evidence from unlabeled data, CDPF++ corrected
the mistake of CDPF.

F. Qualitative Studies
1) Complementarity of text and image signals: We

wanted to further understand if the reason for the improved
performance using images is because image cues contain
information different from that of the textual cues. To
facilitate this, we learn two separate classifiers, one using
text features and other using image features. Figure 11a-
b shows the corresponding confusion matrices constructed
using the predicted categories on a development set that was
not used during training. The size of the black square at
ith row and jth column correspond to the probability that
instances whose correct category represented by the ith row
is labeled as jth category. A perfect classifier is one in which
there are no off-diagonal entries. We make the following
observations:

1) Confusing categories for text classifier are often dif-
ferent from that for image classifier, indicating that
they both carry unique bits of information

2) In categories where the text classifier is unreliable,
image classifier dominates. As an example, while Text
confuses ‘Laptop computers’ category with ‘Desktop
computers’, image classifier can correctly discriminate
this category.

The above observations convey the complementary nature of
the two signals, and the reason for improved performance of
classifiers that exploit image cues, in addition to textual cues.
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Figure 11c shows the confusion matrix of CDPF depicting
that image cues enable improving over the text classifier’s
predictions.

2) Relative importance of text and image signals: We
would like to understand how the classifiers make use of
the image and text features. For this task, we study the PF
classifier. Figure 12 shows second layer of learned weights
using a 17 × 34 image corresponding to each of the 17
categories, and 34 features (17 each from text and image
classifiers’ predictions, respectively). As expected, since text
feature is more dominant, predictions from the text classifier
are weighted more than the image classifier’s prediction
(shown by brighter color on the text features). However,
the non-negligible positive weights on the diagonal entries
in image features indicate that the image component is also
taken into account. Moreover, negative weights in the image
component also indicates that the classifier learns to down
weight the confidence in text component when there is non-
supporting evidence from the image component.

We see similar trends in CDPF also, but for the sake
of readability, we refrain from showing similar plots since
the large number of 3-way image classifiers makes viewing
cumbersome.

IV. RELATED WORK

There has been a lot of recent interest in using multiple
modalities to improve performance of classification tasks.
In [16], classification of gene function is performed using
both gene expression and phylogenetic data. In [5], speech
and gesture classifiers are learned using audio visual data.
In [24], a classifier is learned to infer if a person is more
susceptible to Alzhemier’s disease by combining two kinds
of image data - MRI and tomography images.

There is also relevant work in computer vision where text
associated with images are used for classification tasks. In
[18], the authors classify broadcast news video by making
use of closed text captions from news video, in addition
to the visual features from image frames of the video. In
particular, they looked at the binary classification problem
of whether the news segment is about weather. [10] studies
the problem of improving web image classification using
contextual information in the form of web page content.
Their approach is to learn separate classifiers for image and

text and use hand coded fusion rules to combine the output
of the two classifiers. In [17], tags associated with images
are used in conjunction with image features to perform
large scale landmark classification. In a more general image
classification setting, [8] leverage textual tags in conjunction
with image features.

In the above described applications, visual cues serve as
the dominant signal, and text signal is used to complement
the image features. In contrast, in our setting, the visual cues
exhibit variability in terms of within category heterogeneity
and in ambiguity across categories. Hence, we rely heavily
on text information and use images (visual content) as a
complementary signal to help improve the classification task.

To the best of our knowledge the only work that uses
images to improve text classification was proposed in [20]
where images were converted to a word using a joint classifi-
cation and clustering procedure. However, the success of this
algorithm depends on the availability of several images in a
document as a single image document would be tantamount
to a single word document which would be very unlikely to
be suggestive of the true class. In our setting, in contrast, an
offer is provided with only a brief textual description and
an image, making this approach in [20] inapplicable.

There is a large body of work in combining classifiers
(see [12] for a theoretical framework). These combination
strategies are driven by the multiview setting where the
goal is to make use of multiple feature subsets or different
portions of the data to learn separate classifiers. Of special
interest is the work of Ko et.al. [13] in which classifiers
were combined together using confusion matrix constructed
by analyzing a pair of classifiers, at a time. In CDPF we,
instead, make use of confusion matrix of the classifier built
using dominant signal (text) to construct three way classifiers
of the other signal (image). It can also be interesting to see
how [13] can be further used to combine all these three-way
classifiers.

Much work in combining multi modal signals has con-
tinued to use this rich literature in multiview learning to
combine signals from the different modalities (c.f. [18]). In
this paper, we also investigated some of these techniques.

There is also a vast literature on semi-supervised learning
techniques. The recent book of [25] provides a good ref-



erence. In this paper, we also studied two commonly used
semisupervised methods, self training [25] and cotraining [4]
that has shown to be useful in multiview and also multimodal
setting c.f. [15], [21].

V. SUMMARY AND FUTURE WORK

In this paper, we initiated a study into the relatively
unexplored classification setting involving text and image
signals, where the image signals are less discriminative
compared to text-based signals, and explored how image
signals can be used to complement text classifiers. We
focus on the domain of product classification where textual
product descriptions are brief and overlap in vocabulary
across multiple categories. Further, due to the nature of
application, the vocabulary of the product descriptions can
also vary across merchants generating them.

To address these issues, we propose a novel algorithm
Confusion Driven Probabilistic Fusion++ (CDPF++) which
learns a number of three-way image classifiers focused only
on those confusing categories of the text signal so as to
capture the region of the discriminating surface that the
dominant text classifier is unable to capture. Moreover,
by exploiting unlabeled data, CDPF++ is able to adapt to
changes in vocabulary. Through a variety of experiments
on datasets from a major Commerce search engine’s (Bing
Shopping) catalog, we observed a 12% (absolute) improve-
ment in CDPF++’s precision at 100% coverage compared to
classifiers that only use textual description of products; and
a 16% (absolute) improvement in recall at 90% precision
over the same baseline. Moreover, CDPF++ also results in
a better text-only classifier, significantly outperforming the
text-based baseline classifier.

There are a number of interesting directions for future
research including theoretical analysis of CDPF++, devising
automatic schemes to decide on the number of image
classifiers to train, and also apply CDPF++ to problems in
other domains.
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