Evolution of Parallel Patterns: from Design tool to development tool

Tim Mattson
Intel Labs
Disclaimer

READ THIS ... its very important

• The views expressed in this talk are those of the speaker and not his employer.
• This is an academic style talk and does not address details of any particular Intel product. You will learn nothing about Intel products from this presentation.
• This was a team effort, but if I say anything really stupid, it’s my fault ... don’t blame my collaborators.

Slides marked with this symbol were produced by Kurt Keutzer and myself for CS194 ... A UC Berkeley course on Architecting parallel applications with Design Patterns.
The many core challenge

- A harsh assessment ...
 - We have turned to multi-core chips not because of the success of our parallel software but because of our failure to continually increase CPU frequency.

- Result: a fundamental and dangerous mismatch
 - Parallel hardware is ubiquitous ... Parallel software is rare

- The Many Core challenge ...
 - Parallel software must become as common as parallel hardware

After ~30 years of parallel computing research, we know:

(1) automatic parallelism doesn’t work

(2) an endless quest for the perfect parallel language is counterproductive ...

“worse is better” (Richard Gabriel, 1991)

So how can we address the many core challenge?
Architecting Parallel Software

- We believe the solution to parallel programming starts with developing a good software architecture
Architecting Parallel Software

- We believe the solution to parallel programming starts with developing a good software architecture

 • Analogy: the layout of machines/processes in a factory
We believe the solution to parallel programming starts with developing a good software architecture.

Example: SW Architecture of Large-Vocabulary Continuous Speech Recognition

... and how do we systematically describe software architectures?
Our Pattern Language (OPL 2012)

Structural Patterns
- Model-View-Controller
- Iterative-Refinement
- Map-Reduce
- Layered-Systems
- Puppeteer

Computational Patterns
- Unstructured-Grids
- Structured-Grids
- Graphical-Models
- Finite-State-Machines
- Backtrack-Branch-and-Bound
- N-Body-Methods
- Circuits
- Spectral-Methods
- Monte-Carlo

Finding Concurrency Patterns
- Task Decomposition
- Data Decomposition
- Ordered task groups
- Data sharing
- Design Evaluation

Parallel Algorithm Strategy Patterns
- Task-Parallelism
- Data-Parallelism
- Discrete-Event
- Geometric-Decomposition
- Speculation

Implementation Strategy Patterns
- SPMD
- Fork/Join
- Loop-Par.
- Shared-Queue
- Distributed-Array
- Kernel-Par.
- Actors
- Workpile
- Shared-Map
- Algorithms and Data structure
- Program structure
- Vector-Par
- Parallel Graph Traversal

Parallel Execution Patterns
- Coordinating Processes
- Stream processing
- Shared Address Space Threads
- Task Driven Execution

Concurrency Foundation constructs (not expressed as patterns)
- Thread/proc management
- Communication
- Synchronization

Applications
- Graph-Algorithms
- Dynamic-Programming
- Dense-Linear-Algebra
- Sparse-Linear-Algebra
- Unstructured-Grids
- Structured-Grids
- Graphical-Models
- Finite-State-Machines
- Backtrack-Branch-and-Bound
- N-Body-Methods
- Circuits
- Spectral-Methods
- Monte-Carlo
Researchers from UCB, Intel, UIUC, and others collaborated to create “the grand canonical pattern language” of parallel application programming.
Pattern examples

Structural Patterns: Define the software structure. *Not* what is computed

- Pipe-and-Filter
- Iterative refinement
- MapReduce

Computational Patterns: Define the computations "inside the boxes"

- Structured mesh
- Graphical Models

Parallel Patterns: Defines parallel algorithms

- Fork-join
- SPMD
- Data parallel
OPL Pattern Language

Applications

Structural Patterns
- Model-View-Controller
- Iterative-Refinement
- Map-Reduce
- Layered-Systems
- Puppeteer

Dense Linear Algebra
- Graph-Algorithms
- Dynamic-Programming
- Backtrack-Branch-and-Bound

Sparse Linear Algebra
- Graphical-Models
- Finite-State Machines
- N-Body-Methods
- Circuits
- Spectral-Methods
- Monte-Carlo

Graph - Algorithms
- Unstructured-Grids
- Structured-Grids
- Graphical-Models
- Backtrack-Branch-and-Bound

Distributed - Array
- Shared-Memory
- Shared-Data

Parallel - Graph Traversal
- Parallel Algorithm Strategy Patterns
- Task-Parallelism
- Divide and Conquer
- Pipeline
- Geometric-Decomposition
- Speculation

Implementation Strategy Patterns
- SPMI
- Kernel Par.
- Program structure
- Fork/Join
- Actors
- Vector-Par
- Loop-Par.
- Workpile

Parallel Execution Patterns
- Coordinating Processes
- Stream Processing
- Shared-Queue
- Parallel Graph Traversal
- Algorithms and Data structure

Distributed memory cluster and MPP computers
Source: Keutzer and Mattson Intel Technology Journal, 2010

Patterns travel together ... informs framework design (a pathway for cactus is shown here)
LVCSR Software Architecture

LVCSR = Large vocabulary continuous speech recognition.
Speech Recognition Results

- Architecture expressed as a composition of design patterns and implemented as a C++ Framework.
 - Input: Speech audio waveform
 - Output: Recognized word sequences

- Achieved 11x speedup over sequential version
- Allows 3.5x faster than real time recognition
- Our technique is being deployed in a hotline call-center data analytics company
 - Used to search content, track service quality and provide early detection of service issues

Scalable HMM based Inference Engine in Large Vocabulary Continuous Speech Recognition, Kisun You, Jike Chong, Youngmin Yi, Ekaterina Gonina, Christopher Hughes, Wonyong Sung and Kurt Keutzer, IEEE Signal Processing Magazine, March 2010
Prof. Dorothea Kolossa
Speech Application Domain Expert
Technische Universität Berlin

Extended *audio-only speech recognition* framework to enable *audio-visual speech recognition (lip reading)*

Achieved a **20x speedup** in application performance compared to a sequential version in C++

The application framework enabled a *Matlab/Java programmer* to *effectively utilize highly parallel platform*

Source: K. Keutzer and his research group at UCB, slides from CS194 Spring 2012
Par Lab Research Overview

Easy to write correct software that runs efficiently on manycore
Par Lab Research Overview

Easy to write correct software that runs efficiently on manycore

Design Pattern Language (OPL)

Parallel Libraries

High level, safe, concurrency through high level frameworks

Parallel Frameworks

Legacy Code

Low level, risky, hardware details fully exposed

Schedulers

Communication & Synch. Primitives

Legacy OS

OS Libraries & Services

Hypervisor

Intel Multicore/GPGPU

RAMP Manycore

Static Verification

Type Systems

Directed Testing

Dynamic Checking

Debugging with Replay

Efficiency Layer

Productivity Layer

Applications

Personal Health

Image Retrieval

Hearing, Music

Speech

Parallel Browser

High level, safe, concurrency through high level frameworks

Low level, risky, hardware details fully exposed

Efficiency Language Compilers

Type Systems

High level, safe, concurrency through high level frameworks

Low level, risky, hardware details fully exposed

High level, safe, concurrency through high level frameworks

Low level, risky, hardware details fully exposed
How do we squeeze high performance from framework-based applications?

- SEJITS: Scalable, embedded, just in time specialization
 - Code with a high level language (e.g. Python or Ruby) that is mapped onto a low level, efficiency language (e.g. OpenMP/C or CUDA).
 - SEJITS system to embed optimized kernels specialized at runtime to flatten abstraction overhead and map onto hardware features.

SEJITS comes from Armando Fox’s group at UC Berkeley.
Turning Patterns expressed as Python code into high performance parallel code

ASP: SEJITS for Python

ASP ... a platform to write domain specific frameworks.
Helps turn design patterns into code.
How do these two shapes fit together?

Pretty obvious.

How do these two shapes fit together? Not as obvious when dealing with complex, 3D molecular structures.

Why does it matter how molecules fit together? Because most biological processes involve molecular binding.

Source: Henry Gabb, parlab retreat winter 2011
Shape Fitting by Cartesian Grid Correlations

Project molecules A and B onto a grid and assign values to nodes based on locations of atoms.

Translate/rotate molecules to maximize the correlation.

Inefficient: $O(N^6)$, N^3 additions and multiplications for every N^3 translations (α, β, γ).

Solve more efficiently using Fourier correlation: $O(N^3 \log N^3)$.

Source: Henry Gabb, parlab retreat winter 2011
Application “Box-and-Arrow” Diagram

Molecule A

Molecule B

Fourier Transform

Complex Conjugate

Fourier Correlation

Done

Sort Geometries

Source: Henry Gabb, parlab retreat winter 2011
Productivity Programmer Responsibilities

Original loop-based, iterative code:

```python
for a in range(-1.0, 1.0 + del, del):
    for b in range(-1.0, 1.0 + del, del):
        for g in range(-1.0, 1.0 + del, del):
            # ftdock algorithm
```

The productivity programmer knows the body of this loop-nest is “embarrassingly parallel” ... but there is no way a compiler could figure this out

Source: Henry Gabb, parlab retreat winter 2011
To expose the most concurrency in a natural way, it was best to recast the problem in terms of map-reduce.

i.e. the productivity programmer is responsible for a good design.

Source: Henry Gabb, parlab retreat winter 2011
Productivity Programmer Responsibilities

Original loop-based, iterative code:

```python
for a in range(-1.0, 1.0 + del, del):
    for b in range(-1.0, 1.0 + del, del):
        for g in range(-1.0, 1.0 + del, del):

            # ftdock algorithm
```

New Code inspired by the map-reduce pattern:

```python
a = b = g = list(range(-1.0, 1.0 + del, del))
geometries = AllCombMap([a, b, g], ftdock, *args)
```

Source: Henry Gabb, parlab retreat winter 2011
SEJITS/FTDock Results

• What SEJITS did for FTDock
 • Parallelism exploited though a map-reduce module
 • Mapped FFTW onto the application … with no changes to application code.

• Minimal burden on productivity programmer:
 • Pattern-based design of application
 • Functional programming style
 • Significantly easier development:
 • Original version: 4,700 lines of C and Perl
 • New version: 500 lines of Python
 • Caveat: LOC not necessarily a good measure of productivity

• Performance (16-core Xeon):
 • Serial: ~24 hours
 • Parallel: ~3 hours

Source: Henry Gabb, parlab retreat winter 2011
Incorporating new specializers

FTDock – Protein Docking

- Independent dockings in 3D search space
- Requires one-line change to application.
- Achieves 290x speedup on 450 cores.

FTDock Specializer Core

```python
class FtdockMRJob(AspMRJob):
    def mapper(self, coords, ignored):
        args = self.data[protein_data]
        score = ftdock(coords, *args)
        yield 1, score
```

FTDock Throughput vs. Problem Size

Source: M. Driscoll, E. Georgana, P. Koanantakool, 2012 ParLab winter Retreat.
More Complicated Applications of SEJITS

• Complex interfaces to optimized libraries:
 • JIT’ed insertion of FFTW (accommodate APIs, build plans, clean up when done)

• Interface to auto-tuning:
 • Runtime auto-tuning to optimize library routines.
 • Cached so subsequent uses avoid auto-tuning overhead.

• Family of specializers to support other computational patterns:
 • Stencil
 • Graph algorithms
 • Graphical models
 • … and over time we’ll fill in framework elements for all structural and computational patterns
Conclusion

• Understanding software architecture is how we will solve the many core programming challenge.
• An architecture is analogous to a factory … a structural arrangement of computational elements

• We define software architecture in terms of a pattern language called OPL.
 • Architectural patterns:
 • Structural patterns
 • Computational patterns
 • Parallel programming patterns (PLPP):
 • Algorithm strategy
 • Implementation strategy
 • Parallel execution Patterns