Bringing theories to life: Computer Science at Microsoft Research

Tony Hey
Microsoft Research Connections
Microsoft Research Connections

Work with the worldwide academic research community to speed research, improve education, and foster innovation.

- Collaborations to pursue scientific breakthroughs
- Accelerate scientific exploration with computing
- Inspire computer and information scientists and engineers
Engagement and Collaboration Focus

<table>
<thead>
<tr>
<th>Research Accelerators</th>
<th>Global Partnerships</th>
<th>External Researchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• WorldWide Telescope</td>
<td>• Microsoft Research-INRIA Joint Centre</td>
<td>• Faculty Fellows</td>
</tr>
<tr>
<td>• Layerscape</td>
<td>• Microsoft Research Asia (MSRA) Joint Lab Program</td>
<td>• Graduate Women Scholars</td>
</tr>
<tr>
<td>• Chronozoom</td>
<td>• FAPESP-Microsoft Institute</td>
<td>• Jim Gray eScience Award</td>
</tr>
<tr>
<td>.Net Bio</td>
<td>• Microsoft LACCIR Federation</td>
<td>• Student Internships</td>
</tr>
<tr>
<td>• Chemistry Add-in for Word</td>
<td></td>
<td>• ACM Student Research Competition</td>
</tr>
<tr>
<td>• Zentity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Microsoft Translator Hub

Microsoft Translator Hub is helping smaller languages thrive by putting the power to build machine translation systems in the hands of local communities.

- E. David Hannan
 National Geographic Fellow, author and activist

ABOUT MICROSOFT TRANSLATOR HUB

Microsoft Translator Hub empowers businesses and communities to build, improve, and deploy customized automatic language translation systems—bringing better and specialized translation quality to established languages, as well as to many native languages of the world that are not yet well supported by major translation providers.

Powered by Windows Azure, Microsoft Translator Hub is an extension of the Microsoft Translator platform and service. You can build a superior translation system easily, within a private website, by combining your translated documents with the power of Microsoft Translator’s big data and AI. Once you are satisfied with your translation, you may share it publicly on the web.

MORE INFORMATION

Microsoft Translator Hub Overview
Microsoft Translator Hub Forum

Microsoft Research Connections Research Accelerators Gallery

Project Trident: Toolset based on Windows Workflow Foundation that provides scientists’ need for a flexible, powerful way to analyze large, diverse datasets.

Chemistry Add-in for Word: Chem4Word is an add-in for Microsoft Word that enables semantic authoring of chemical structures.

ConferenceXP: Platform for real-time collaboration that seamlessly connects people or groups over a network, providing high-quality, low-latency videoconferencing and a rich set of collaboration capabilities.

.NET Bio: This open-source platform features a library of commonly used bioinformatics functions plus applications built upon that framework, and can be extended by using any Microsoft .NET language.

ChronoZoom: An open source platform to make time relationships between different studies of history clear and vivid. In the process, it provides a framework for exploring related electronic resources.

http://www.outercurve.org/
Supporting research through SEIF

Software Engineering Innovation Foundation

Research.Microsoft.com/seif
$300,000 in awards each year since 2009

South American Successes

Diego Garbervetsky, Universidad de Buenos Aires, Argentina, 2010
Sebastian Uchitel, Universidad de Buenos Aires, Argentina, 2010
Karin Breitman, PUC do Rio de Janeiro, Brazil, 2010
Romain Robbes, University of Chile, Chile, 2011

Next call: October 2012
Microsoft developed a ‘synch-and-stabilize’ approach that allows ‘large teams to work like small teams’

‘Daily synchronizations through product builds, periodic milestone stabilizations, and continual testing’

Size and Scale of Teams and Code

<table>
<thead>
<tr>
<th>Ship Date</th>
<th>Product</th>
<th>Dev Team Size</th>
<th>Test Team Size</th>
<th>Lines of code (LoC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1993</td>
<td>Windows NT</td>
<td>200</td>
<td>140</td>
<td>4-5 million</td>
</tr>
<tr>
<td>December 1999</td>
<td>Windows 2000</td>
<td>1,400</td>
<td>1,700</td>
<td>29+ million</td>
</tr>
<tr>
<td>October 2001</td>
<td>Windows XP</td>
<td>1,800</td>
<td>2,200</td>
<td>40 million</td>
</tr>
</tbody>
</table>

Data from ‘The Build Master’ by Vincent Maraia
A study by NIST in 2002 estimated that software bugs cost the US economy more than $60B p.a.

“Programmers spend far longer fixing bugs in existing code than they do in writing new code”

- Need for software tools to not only find bugs before software is released but also to analyze errors when they are reported
- “Use software to make software better”
Then:

40 percent of major decisions are based not on facts, but on the manager’s gut.

Now:

Empower software development teams to gain and share insight from their data to make better decisions.

Used in huge code bases.

Socio-technical congruence

Bug reporting and triage

Data-driven software engineering
Branching in Source Control Management Systems

Coordinating the work of 100’s of developers is difficult

> A common solution is to use branches in SCM systems

- **Benefits**: Isolating concurrent work during times of instability
- **Cost**: Increase the time that changes percolate through the system (Code Velocity)
Code flow for a single file

Code Velocity for this file is particularly bad...
Branch Analytics (1)

How do we coordinate parallel development?

How do we structure the branch hierarchy? Can we reduce the complexity of branching?
Techniques:

- **Survey** devs to understand their problems with branching
- **Mine** dev. data for relationship of teams and branches
- **Simulate** benefits and cost of alternative branch structures

Actions/Tools:

- **Alert** users about possible conflicts
- **Recommend** branch structure, e.g. del., add, merge etc.
- **Perform** semi-automatic branch refactoring
Most pairs of branches are not similar

Same devs working on different things is OK

Same files should mean same people

Same files, but different team means possible problems

Mine “File Similarity” / “Developer Similarity”

Dark areas mean many branch pairs in that area.
Assessing Branches (1)

Simulate alternate branch structure to assess cost and benefit of individual branches by re-playing Windows history

- **Cost: Average Delay Increase per Edit**
 How much delay does a branch introduce into development?

- **Cost: Integrations per Edit on a Branch**
 What is the integration/edit within a branch?

- **Benefit: Provided Isolation per Edit**
 How many conflicts does a branch prevent per edit?
Assessing Branches (2)

Red dots are branches with high cost but low benefit.

Green dots are branches with high benefit and low cost.

Each dot is a branch.
Assessing Branches (3)

Red dots are branches with high cost but low benefit.

Green dots are branches with high benefit and low cost.

If high-cost-low-benefit had been removed, changes would each have saved 8.9 days of delay and only introduced 0.04 additional conflicts.
Summary: Branch Analytics

Software Analytics makes software development data actionable

- Branch analytics key to improve code velocity
- Better design of development structure
- Efficient scheduling
- Reliable systems with low conflicts
Next stage: the bug gets to a developer

- But it might be the wrong developer, or more skills might be needed
- In Mozilla and Eclipse, between 37%-44% of bug reports are “tossed” to another developer
- Tossing increases time-to-correction

Microsoft Research teams have been able to reduce tossing by up to 72%

- And prediction accuracy goes up by 23% points compared to traditional approaches
- Uses a graph model based on Markov chains, which capture a bug tossing history and discover team structures

Global Software Servicing

Microsoft’s major code is maintained and evolved by programmers who were not the developers. Testers in e.g. China and India lack in-depth knowledge and institutional memory.

Issues:

- Strategic (keep projects disjoint architecturally)
- Cultural (face-to-face is important)
- Inadequate communication (time zones)
- Knowledge management (move people between zones)
- Project and process management (synchronized deadlines)
- Technical issues (bandwidth)
Source of satisfying information at MS India

“Things like even software verification, this has been the Holy Grail of computer science for many decades but now in some very key areas, for example, driver verification we’re building tools that can do actual proof about the software and how it works in order to guarantee the reliability.”

Bill Gates, April 18, 2002
Important ‘niche’ application: Device Drivers

- Bugs can have severe effects
- Relatively small code base (usually ≤ 50 KLOC)
- Crash-freedom specified by finite-state API protocols
- Correctness depends mostly on flow of control, not data
Predicate abstraction and refinement

- boolean program
- model checker
- abstract trace
- concrete trace
- C program
- predicates
- predicate abstraction
- predicate refinement
- correct
- feasible?
 - yes
 - no
- error message
SLAM today

- Static Driver Verifier
- Finite-state API protocols specified by experts
- Applied regularly to all Microsoft device drivers of the supported device models
- >300 bugs found in driver samples
- Released in DDK, available to third-party developers
Z3 is a collection of Symbolic Reasoning Engines

DPLL Simplex Rewriting Superposition

Congruence Closure Groebner Basis $\forall \exists$ elimination Euclidean Solver

Z3 is a high-performance theorem prover developed by the RiSE group in Microsoft Research. It is freely available for academic research:

http://research.microsoft.com/projects/z3
Impact of Z3

Z3 is used by many research groups (> 700 citations)
More than 17,000 downloads
Z3 placed 1st in 17/21 categories in the 2011 competition

Z3 solved more than 3 billion constraints created by SAGE!
Checking Win8 and Office.

Z3 used to check Azure Firewall Policies

Z3 ships with the Static Driver Verifier
About Dafny

- Dafny is a programming language with a program verifier
- Pushes state-of-the-art
- Used in teaching
- >100K programs submitted for verification on rise4fun.com
- Used by two medalist teams in VSTTE 2012 program verification competition

Microsoft Research Faculty Summit 2012
Riviera Maya, Mexico | May 23-25 | In partnership with CONACYT

Program safely. With Dafny.
http://research.microsoft.com/dafny
Dafny Demo

Program safely. With Dafny.
http://research.microsoft.com/dafny
Thanks to our featured Microsoft Researchers

- Christian Bird
- Tom Zimmermann
- Nachi Nagappan
- Brendan Murphy
- Sriram Rajamani
- Rustan Leino
- Wolfram Schulte
- Tom Ball
Summary: Future of Software Engineering

Software Analytics enables data-driven decision-making, which process, practice, tool to use and deploy under which context.

Logic-based tools help develop better software artifacts. They help model, analyze, optimize, and synthesize software artifacts.

Future platforms excite and pose new challenges. They include web, mobile devices (phone, tablet), datacenter, and games.
Some Resources

- Microsoft Research
 - http://research.microsoft.com
- Microsoft Research downloads:
 - http://research.microsoft.com/research/downloads
- Microsoft Research Connections
- Research in Software Engineering (RiSE) Group
- Scholarly Communications
 - http://www.microsoft.com/scholarlycomm
- Outercurve Foundation
 - http://www.outercurve.org/
- Tony Hey on eScience
 - http://tonyhey.net/