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Abstract

This work considers computationally efficient privacy-
preserving data release. We study the task of analyzing
a database containing sensitive information about indi-
vidual participants. Given a set of statistical queries on
the data, we want to release approximate answers to the
queries while also guaranteeing differential privacy—
protecting each participant’s sensitive data.

Our focus is on computationally efficient data re-
lease algorithms; we seek algorithms whose running time
is polynomial, or at least sub-exponential, in the data
dimensionality. Our primary contribution is a compu-
tationally efficient reduction from differentially private
data release for a class of counting queries, to learning
thresholded sums of predicates from a related class.

We instantiate this general reduction with algo-
rithms for learning thresholds, obtaining new results for
differentially private data release. As two examples, tak-
ing {0, 1}d to be the data domain (of dimension d), we
obtain differentially private algorithms for:

1. Releasing all k-way conjunction counting queries
(or k-way contingency tables). For any given k,
the resulting data release algorithm has bounded
error as long as the database is of size at

least dO
(√

k log(k log d)
)
(ignoring the dependence on

other parameters). The running time is polyno-
mial in the database size. The best sub-exponential
time algorithms known prior to our work required a
database of size Õ(dk/2) [Dwork McSherry Nissim
and Smith 2006].
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2. Releasing any family of counting queries that is
specified by a constant depth AC0 predicate. This
algorithm releases accurate answers to a (1 − γ)-
fraction of the queries in the family. For any γ >
quasipoly(1/d), the algorithm has bounded error as
long as the database is of size at least quasipoly(d)
(again ignoring the dependence on other parame-
ters). The running time is quasipoly(d).

The first learning algorithm uses techniques for
representing thresholded sums of predicates as low-
degree polynomial threshold functions. The second
learning algorithm is based on a result of Jackson
Klivans and Servedio [JKS 2002], and utilizes Fourier
analysis of the database viewed as a function mapping
queries to answers.

1 Introduction

This work considers privacy-preserving statistical anal-
ysis of sensitive data. In this setting, we wish to extract
statistics from a database D that contains information
about n individual participants. Each individual’s data
is a record in the data domain U . We focus here on the
offline (or non-interactive) setting, in which the informa-
tion to be extracted is specified by a set Q of statistical
queries. Each query q ∈ Q is a function mapping the
database to a query answer, where in this work we fo-
cus on real-valued queries with range [0, 1]. Our goal is
data release: Extracting approximate answers to all the
queries in the query set Q.

An important concern in this setting is protect-
ing the privacy of individuals whose sensitive data (e.g.
medical or financial records) are being analyzed. Dif-
ferential privacy [DMNS06] provides a rigorous notion
of privacy protection, guaranteeing that each individ-
ual only has a small effect on the data release algo-
rithm’s output. A growing body of work explores the
possibility of extracting rich statistics in a differen-
tially private manner. One line of research [BLR08,
DNR+09, DRV10, RR10, HR10] has shown that differ-
ential privacy often permits surprisingly accurate statis-
tics. These works put forward general algorithms and
techniques for differentially private data analysis, but
the algorithms have running time that is (at least) expo-
nential in the dimensionality of the data domain. Thus,



a central question in differentially private data analy-
sis is to develop general techniques and algorithms that
are efficient, i.e. with running time that is polynomial
(or at least sub-exponential) in the data dimensional-
ity. While some computational hardness results are
known [DNR+09, UV11, GHRU11], they apply only to
restricted classes of data release algorithms.

This Work. Our primary contribution is a compu-
tationally efficient new tool for privacy-preserving data
release: a general reduction to the task of learning
thresholds of sums of predicates. The class of predicates
(for learning) in our reduction is derived directly from
the class of queries (for data release).

At a high level, we draw a connection between data
release and learning as follows. In the data release
setting, one can view the database as a function: it maps
queries in Q to answers in [0, 1]. The data release goal is
approximating this function on queries/examples in Q.
The challenge is doing so with only bounded access
to the database/function; in particular, we only allow
access that preserves differential privacy. For example,
this often means that we only get a bounded number
of oracle queries to the database function with noisy
answers.

At this high level there is a striking similarity to
learning theory, where a standard goal is to efficiently
learn/approximate a function given limited access to
it, e.g. a bounded number of labeled examples or
oracle queries. Thus a natural approach to data re-
lease is learning the database function using a com-
putational learning algorithm. Before proceeding, we
note that previous works drew similar connections be-
tween private data release and learning theory. The
works [DNR+09, DRV10, GHRU11] are perhaps closest
in spirit to ours. We elaborate on related works below.

While the approach outlined above is intuitively ap-
pealing at a high level, it faces immediate obstacles be-
cause of apparent incompatibilities between the require-
ments of learning algorithms and the type of “limited”
access to data that are imposed by private data release.
For example, in the data release setting a standard tech-
nique for ensuring differential privacy is adding noise,
but many efficient learning algorithms fail badly when
run on noisy data. As another example, for private data
release, the number of (noisy) database accesses is often
very restricted: e.g sub-linear, or at most quadratic in
the database size. In the learning setting, on the other
hand, it is almost always the case that the number of
examples or oracle queries required to learn a function
is lower bounded by its description length (and is often
a large polynomial in the description length).

Our work explores the connection between learning
and private data release. We

(i) give an efficient reduction that shows that, in fact, a
general class of data release tasks can be reduced to
related and natural computational learning tasks;
and

(ii) instantiate this general reduction using new and
known learning algorithms to obtain new compu-
tationally efficient differentially private data release
algorithms.

Before giving more details on our reduction in
Section 1.1, we briefly discuss its context and some
of the ways that we apply/instantiate it. While the
search for efficient differentially private data release
algorithms is relatively new, there are decades of work
in learning theory aimed at developing techniques and
algorithms for computationally efficient learning, going
back to the early work of Valiant [Val84]. Given the
high-level similarity between the two fields, leveraging
the existing body of work and insights from learning
theory for data release is a promising direction for
future research; we view our reduction as a step in this
direction. We note that our work is by no means the
first to draw a connection between privacy-preserving
data release and learning theory; as discussed in the
“Related Work” section below, several prior works used
learning techniques in the data release setting. A
novelty in our work is that it gives an explicit and
modular reduction from data release to natural learning
problems. Conceptually, our reduction overcomes two
main hurdles:

– bridging the gap between the noisy oracle access
arising in private data release and the noise-free
oracle access required by many learning algorithms
(including the ones we use).

– avoiding any dependence on the database size in the
complexity of the learning algorithm being used.

We use this reduction to construct new data re-
lease algorithms. In this work we explore two main
applications of our reduction. The first aims to an-
swer boolean conjunction queries (also known as con-
tingency tables or marginal queries), one of the most
well-motivated and widely-studied classes of statistical
queries in the differential privacy literature. Taking the
data universe U to be {0, 1}d, the k-way boolean con-
junction corresponding to a subset S of k attributes
in [d] counts what fraction of items in the database
have all the attributes in S set to 1. Approximat-
ing the answers for k-way conjunctions (or all conjunc-
tions) has been the focus of several past works (see,
e.g. [BCD+07, KRSU10, UV11, GHRU11]). Applying
our reduction with a new learning algorithm tailored



for this class, we obtain a data release algorithm that,

for databases of size dO
(√

k log(k log d)
)
, releases accurate

answers to all k-way conjunctions simultaneously (we
ignore for now the dependence of the database size on
other parameters such as the error). The running time is
poly(dk). Previous algorithms either had running time
2Ω(d) (e.g. [DNR+09]) or required a database of size
dk/2 (adding independent noise [DMNS06]). We also
obtain better bounds for the task of approximating the
answers to a large fraction of all (i.e. d-way) conjunc-
tions under arbitrary distributions. These results follow
from algorithms for learning thresholds of sums of the
relevant predicates; we base these algorithms on learn-
ing theory techniques for representing such functions
as low-degree polynomial threshold functions, following
works such as [KS04, KOS04]. We give an overview of
these results in Section 1.2 below.

Our second application uses Fourier analysis of the
database (viewed, again, as a real-valued function on the
queries in Q). We obtain a new quasi-polynomial data
release algorithm for low-depth (AC0) counting queries.
This uses an algorithm for learning Majority-of-AC0

circuits due to Jackson et al. [JKS02]. We elaborate
on this result in Section 1.3 below.

1.1 Private Data Release Reduces to Learning
Thresholds In this section we give more details on
the reduction from privacy-preserving data release to
learning thresholds. The full details are in Sections 3
and 4. We begin with loose definitions of the data
release and learning tasks we consider, and then proceed
with (a simple case of) our reduction.

Counting Queries, Data Release and Learning
Thresholds. We begin with preliminaries and an
informal specification of the data release and learning
tasks we consider in our reduction (see Sections 2 and
3.1 for full definitions). We refer to an element u in
data domain U as an item. A database is a collection
of n items from U . A counting query is specified by
a predicate p : U → {0, 1}, and the query qp on
database D outputs the fraction of items in D that
satisfy p, i.e. 1

n

∑n
i=1 p(Di). A class of counting queries

is specified by a set Q of query descriptions and a
predicate P : Q × U → {0, 1}. For a query q ∈ Q, its
corresponding predicate is P (q, ·) : U → {0, 1}. We
will sometimes fix a data item u ∈ U and consider the
predicate pu(·) , P (·, u) : Q → {0, 1}.

Fix a data domain U and query class Q (specified
by a predicate P ). A data release algorithm A gets as
input a database D, and access to a distribution G over
Q (see below), and outputs a synopsis S : Q → [0, 1]
that provides approximate answers to queries in Q.

We say that A is an (α, β, γ) distribution-free data
release algorithm for (U ,Q, P ) if, for any distribution
G over the query set Q, with probability 1 − β over
the algorithm’s coins, the synopsis S satisfies that with
probability 1 − γ over q ∼ G, the (additive) error of
S on q is bounded by α. Later we will also consider
data release algorithms that only work for a specific
distribution or class of distributions (in this case we
will not call the algorithm distribution-free). Finally,
we assume for now that the data release algorithm only
accesses the distribution G by sampling queries from
it, but later we will also consider more general types
of access (see below). A differentially private data
release algorithm is one whose output distribution (on
synopses) is differentially private as per Definition 1.
See Definition 4 for full and formal details.

Fix a class Q of examples and a set F of predi-
cates on Q. Let Fn,t be the set of thresholded sums
from F , i.e., the set of functions of the form f =
I
{

1
n

∑n
i=1 fi > t

}
, where fi ∈ F for all 1 6 i 6 n. We

refer to functions in Fn,t as n-thresholds. An algorithm
for learning thresholds gets access to a function in Fn,t

and outputs a hypothesis h : Q → {0, 1} that labels ex-
amples in Q. We say that it is a (γ, β) distribution-free
learning algorithm for learning thresholds over (Q,F) if,
for any distribution G over the set Q, with probability
1−β over the algorithm’s coins the output hypothesis h
satisfies that with probability 1−γ over q ∼ G, h labels
q correctly. As above, later we will also consider learn-
ing algorithms that are not distribution free, and only
work for a specific distribution or class or distributions.
For now, we assume that the learning algorithm only
accesses the distribution G by drawing examples from
it. These examples are labeled using the target function
that the algorithm is trying to learn. See Definition 5
for full and formal details.

The Reduction. We can now describe (a simple
case of) our reduction from differentially private data
release to learning thresholds. For any data domain
U , set Q of query descriptions, and predicate P :
Q × U → {0, 1}, the reduction shows how to construct
a (distribution free) data release algorithm given a
(distribution free) algorithm for learning thresholds over
(Q, {pu : u ∈ U}), i.e., any algorithm for learning
thresholds where Q is the example set and the set
F of predicates (over Q) is obtained by the possible
ways of fixing the u-input to P . The resulting data
release algorithm is (α, β, γ)-accurate as long as the
database is not too small; the size bound depends on
the desired accuracy parameters and on the learning
algorithm’s sample complexity. The efficiency of the
learning algorithm is preserved (up to mild polynomial
factors).



Theorem 1.1. (Reduction from Data Release
to Learning Thresholds, Simplified) Let U be a
data universe, Q a set of query descriptions, and P : Q×
U → {0, 1} a predicate. There is an ε-differentially pri-
vate (α, β, γ)-accurate distribution free data-release al-
gorithm for (U ,Q, P ), provided that:

1. there is a distribution-free learning algorithm L
that (γ,β)-learns thresholds over (Q, {pu : u ∈ U})
using b(n, γ, β) labeled examples and running time
t(n, γ, β) for learning n-thresholds.

2. n > C·b(n′,γ′,β′)·log(1/β)
ε·α·γ , where n′ = Θ(log |Q|/α2),

β′ = Θ(β · α), γ′ = Θ(γ · α), C = Θ(1).

Moreover, the data release algorithm only accesses
the query distribution by sampling. The number of
samples taken is O(b(n′, γ′, β′) · log(1/β)/γ) and the
running time is poly(t(n′, γ′, β′), n, 1/α, log(1/β), 1/γ).

Section 3.2 gives a formal (and more general) state-
ment in Theorem 3.1. Section 3.3 gives a proof overview,
and Section 4 gives the full proof. Note that, since the
data release algorithm we obtain from this reduction is
distribution free (i.e. works for any distribution on the
query set) and only accesses the query distribution by
sampling, it can be boosted to yield accurate answers on
all the queries [DRV10].

A More General Reduction. For clarity of ex-
position, we gave above a simplified form of the re-
duction. This assumed that the learning algorithm is
distribution-free (i.e. works for any distribution over
examples) and only requires sampling access to labeled
examples. These strong assumptions enable us to get
a distribution-free data release algorithm that only ac-
cesses the query distribution by sampling.

We also give a reduction that applies even to
distribution-specific learning algorithms that require (a
certain kind of) oracle access to the function being
learned. In addition to sampling labeled examples, the
learning algorithm can: (i) estimate the distribution G
on any example q by querying q and receiving a (mul-
tiplicative) approximation to the probability G[q]; and
(ii) query an oracle for the function f being learned on
any q such that G[q] ̸= 0. We refer to this as approxi-
mate distribution restricted oracle access, see Definition
6. Note that several natural learning algorithms in the
literature use oracle queries in this way; in particular,
we show that this is true for Jackson’s Harmonic Sieve
Algorithm [Jac97], see Section 6.

Our general reduction gives a data release algorithm
for a class GQ of distributions on the query set, provided
we have a learning algorithm which can also use approx-
imate distribution restricted oracle access, and which

works for a slightly richer class of distributions GQ′ (a
smooth extension, see Definition 7). Again, several such
algorithms (based on Fourier analysis) are known in the
literature; our general reduction allows us to use them
and obtain the new data release results outlined in Sec-
tion 1.3.

Related Work: Privacy and Learning. Our
new reduction adds to the fruitful and growing inter-
action between the fields of differentially private data
release and learning theory. Prior works also explored
this connection. In our work, we “import” learning the-
ory techniques by drawing a correspondence between
the database (in the data release setting), for which
we want to approximate query answers, and the target
function (in the learning setting) which labels examples.
Several other works have used this correspondence (im-
plicitly or explicitly), e.g. [DNR+09, DRV10, GHRU11].
A different view, in which queries in the data release set-
ting correspond to concepts in learning theory, was used
in [BLR08] and also in [GHRU11].

There is also work on differentially private learning
algorithms in which the goal is to give differentially pri-
vate variants of various learning algorithms [BDMN05,
KLN+08].

1.2 Applications (Part I): Releasing Conjunc-
tions We use the reduction of Theorem 1.1 to obtain
new data release algorithms “automatically” from learn-
ing algorithms that satisfy the theorem’s requirements.
Here we describe the distribution-free data release algo-
rithms we obtain for approximating conjunction count-
ing queries. These use learning algorithms (which are
themselves distribution-free and require only random
examples) based on polynomial threshold functions.

Throughout this section we fix the query class under
consideration to be conjunctions. We take U = {0, 1}d,
and a (monotone) conjunction q ∈ Q = {0, 1}d is
satisfied by u iff ∀i s.t. qi = 1 it is also the case
that ui = 1. (Our monotone conjunction results
extend easily to general non-monotone conjunctions
with parameters unchanged.1) Our first result is an
algorithm for releasing k-way conjunctions:

Theorem 1.2. (Distribution-Free Data Release
for k-way conjunctions) There is an ε-differentially

1To see this, extend the data domain to be {0, 1}2d, and for
each item in the original domain include also its negation. General
conjunctions in the original data domain can now be treated

as monotone conjunctions in the new data domain. Note that
the locality of a conjunction is unchanged. Our results in this
section are for arbitrary distributions over the set of monotone

conjunctions (over the new domain), and so they will continue to
apply to arbitrary distributions on general conjunctions over the
original data domain.



private (α, β, γ)-accurate distribution-free data release
algorithm, which accesses the query distribution only
by sampling, for the class of k-way monotone Boolean
conjunction queries. The algorithm has runtime poly(n)
on databases of size n provided that

n > d
O

(√
k log( k log d

α )
)
· Õ

(
log (1/β)

3

εαγ2

)
.

Since this is a distribution-free data release algo-
rithm that only accesses the query distribution by sam-
pling, we can use the boosting results of [DRV10] and
obtain a data release algorithm that generates (w.h.p.)
a synopsis that is accurate for all queries. This increases
the running time to dk · poly(n) (because the boosting
algorithm needs to enumerate over all the k-way con-
junctions). The required bound on the database size in-
creases slightly but our big-Oh notation hides this small
increase. The corollary is stated formally below:

Corollary 1.1. (Boosted Data Release for k-
way Conjunctions) There is an ε-differentially pri-
vate (α, β, γ = 0)-accurate distribution-free data release
algorithm for the class of k-way monotone Boolean con-
junction queries with runtime dk · poly(n) on databases
of size n, provided that

n > d
O

(√
k log( k log d

α )
)
· Õ

(
log (1/β)

3

εα

)
.

We also obtain a new data release algorithm for
releasing the answers to all conjunctions:

Theorem 1.3. (Distribution-Free Data Release
for All Conjunctions) There is an ε-differentially
private (α, β, γ)-accurate distribution-free data release
algorithm, which accesses the query distribution only
by sampling, for the class of all monotone Boolean
conjunction queries. The algorithm has runtime poly(n)
on databases of size n, provided that

n > dO(d
1/3·log2/3( d

α )) · Õ

(
log (1/β)

3

εαγ2

)
.

Again, we can apply boosting to this result; this
gives improvements over previous work for a certain
range of parameters (roughly k ∈ [d1/3, d2/3]). We omit
the details.

Related Work on Releasing Conjunctions.
Several past works have considered differentially pri-
vate data release for conjunctions and k-way conjunc-
tions (also known as marginals and contingency ta-
bles). As a corollary of their more general Laplace
and Gaussian mechanisms, the work of Dwork et al.

[DMNS06] showed how to release all k-way conjunc-
tions in running time dO(k) provided that the database
size is at least dO(k). Barak et al. [BCD+07] showed
how to release consistent contingency tables with sim-
ilar database size bounds. The running time, how-
ever, was increased to exp(d). We note that our data-
release algorithms do not guarantee consistency. Gupta
et al. gave distribution-specific data release algorithm for
k-way and for all conjunctions. These algorithms work
for the uniform distribution over (k-way or general) con-
junctions. The database size bound and running time

were (roughly) dÕ(1/α
2). For distribution-specific data

release on the uniform distribution, the dependence on
d in their work is better than our algorithms but the de-
pendence on α is worse. Finally, we note that the gen-
eral information-theoretic algorithms for differentially
private data release also yield algorithms for the spe-
cific case of conjunctions. These algorithms are (signifi-
cantly) more computationally expensive, but they have
better database size bounds. For example, the algo-
rithm of [HR10] has running time exp(d) but database
size bound is (roughly) Õ(d/α2) (for the relaxed notion
of (ε, δ)-differential privacy).

In terms of negative results, Ullman and Vadhan
[UV11] showed that, under mild cryptographic assump-
tions, no data release algorithm for conjunctions (even
2-way) can output a synthetic database in running time
less than exp(d) (this holds even for distribution-specific
data release on the uniform distribution). Our results
side-step this negative result because the algorithms do
not release a synthetic database.

Kasiviswanathan et al. [KRSU10] showed a lower
bound of Ω̃

(
min

{
dk/2/α, 1/α2

})
on the database size

needed for releasing k-way conjunctions. To see that
this is consistent with our bounds, note that our bound

on n is always larger than f(α) = 2
√

k log(1/α)/α. We
have f(α) < 1/α2 only if k < log(1/α). But in the range
where k < log(1/α) our theorem needs n to be larger
than dk/α which is consistent with the lower bound.

1.3 Applications (Part II): AC0-Counting
Queries We also use Theorem 1.1 (in its more general
formulation given in Section 3.2) to obtain a new
data release algorithm for answering general AC0

counting queries (in quasi-polynomial time). Here
we fix the data universe to be U = {0, 1}d, and take
the set of query descriptions to also be Q = {0, 1}d.
The algorithm is distribution-specific, working for the
uniform distribution over query descriptions,2 and
instantiates the reduction with a learning algorithm

2More generally, we can get results for smooth distributions,
we defer these to the full version.



that uses Fourier analysis of the target function. Thus
the full data release algorithm uses Fourier analysis of
the database (viewed as a function on queries).

Consider any query family whose predicate is com-
puted by a constant depth (AC0) circuit. For any fam-
ily of this type, in Section 6 we obtain a data release
algorithm over the uniform distribution that requires a
database of quasi-polynomial (in d) size (and has run-
ning time polynomial in the database size, or quasi-
polynomial in d).

Theorem 1.4. (Uniform Distribution Data Re-
lease for AC0 Counting Queries) Take U = Q =
{0, 1}d, and P (q, u) : Q × U → {0, 1} a predicate com-
puted by a Boolean circuit of depth ℓ = O(1) and size
poly(d). There is an ε-differentially private data release
algorithm for this query class over the uniform distribu-
tion on Q. For databases of size n, the algorithm has
runtime poly(n) and is (α, β, γ)-accurate, provided that:

n > dO(log
ℓ( d

αγ )) · Õ
(
log3 (1/β)

εα2γ

)
.

This result uses our reduction instantiated with
an algorithm of Jackson et al. [JKS02] for learning
Majority-of-AC0 circuits. To the best of our knowledge,
this is the first positive result for private data release
that uses the (circuit) structure of the query class
in a “non black-box” way to approximate the query
answer. We note that the class of AC0 predicates
is quite rich. For example, it includes conjunctions,
approximate counting [Ajt83], and GF [2] polynomials
with polylog(d) many terms. While our result is specific
to the uniform distribution over Q, we note that some
query sets (and query descriptions) may be amenable to
random self-reducibility, where an algorithm providing
accurate answers to uniformly random q ∈ Q can be
used to get (w.h.p.) accurate answers to any q ∈ Q.
We also note that Theorem 1.4 leaves a large degree
of freedom in how a class of counting queries is to be
represented. Many different sets of query descriptions
Q and predicates P (q, u) can correspond to the same set
of counting queries over the same U , and it may well be
the case that some representations are more amenable
to computations in AC0 and/or random self-reducibility.
Finally, we note that the hardness results of Dwork et al.
[DNR+09] actually considered (and ruled out) efficient
data-release algorithms for AC0 counting queries (even
for the uniform distribution case), but only when the
algorithm’s output is a synthetic database. Theorem
1.4 side-steps these negative results because the output
is not a synthetic database.

2 Preliminaries

Data sets and differential privacy. We consider
a data universe U , where throughout this work we take
U = {0, 1}d. We typically refer to an element u ∈ U as
an item. A data set (or database) D of size n over the
universe U is an ordered multiset consisting of n items
from U . We will sometimes think of D as a tuple in Un.
We use the notation |D| to denote the size of D (here,
n). Two data sets D,D′ are called adjacent if they are
both of size n and they agree in at least n−1 items (i.e.,
their edit distance is at most 1).

We will be interested in randomized algorithms that
map data sets into some abstract range R and satisfy
the notion of differential privacy.

Definition 1. (Differential Privacy [DMNS06])
A randomized algorithm M mapping data sets over U
to outcomes in R satisfies (ε, δ)-differential privacy if
for all S ⊂ R and every pair of two adjacent databases
D,D′, we have P(M(D) ∈ S) 6 eε P(M(D′) ∈ S) + δ .
If δ = 0, we say the algorithm satisfies ε-differential
privacy.

Counting queries. A class of counting queries is
specified by a predicate P : Q × U → {0, 1} where Q
is a set of query descriptions. Each q ∈ Q specifies a
query and the answer for a query q ∈ Q on a single
data item u ∈ U is given by P (q, u). The answer of a
counting query q ∈ Q on a data set D is defined as
1
n

∑
u∈D P (q, u) .
We will often fix a data item u and databaseD ∈ Un

of n data items, and use the following notation:

– pu : Q → {0, 1}, pu(q)
def
= P (q, u). The predicate on

a fixed data item u.

– fD : Q → [0, 1], fD(q)
def
= 1

n

∑
u∈D P (q, u). For an

input query description and fixed database, counts
the fraction of database items that satisfy that
query.

– fD
t : Q → {0, 1}, fD

t (q)
def
= I

{
fD(q) > t

}
. For

an input query description and fixed database and
threshold t ∈ [0, 1], indicates whether the fraction
of database items that satisfy that query is at least
t. Here and in the following I denotes the 0/1-
indicator function.

We close this section with some concrete exam-
ples of query classes that we will consider. Fix U =
{0, 1}d and Q = {0, 1}d. The query class of mono-
tone boolean conjunctions is defined by the predicate
P (q, u) =

∧
i : qi=1 ui . Note that we may equivalently

write P (q, u) = 1−
∨

i : ui=0 qi . The query class of par-

ities over {0, 1}d is defined by the predicate P (q, u) =∑
i:ui=1 qi (mod 2) .



3 Private Data Release via Learning
Thresholds

In this section we describe our reduction from private
data release to a related computational learning task of
learning thresholded sums. Section 3.1 sets the stage,
first introducing definitions for handling distributions
and access to an oracle, and then proceeds with notation
and formal definitions of (non-interactive) data release
and of learning threshold functions. Section 3.2 formally
states our main theorem giving the reduction, and
Section 3.3 gives an intuitive overview of the proof. The
formal proof is then given in Section 4.

3.1 Distribution access, data release, learning
thresholds

Definition 2. (Sampling or Evaluation Access
to a Distribution) Let G be a distribution over a set
Q. When we give an algorithm A sampling access to G,
we mean that A is allowed to sample items distributed
by G. When we give an algorithm A evaluation access
to G, we mean that A is both allowed to sample items
distributed by G and also to make oracle queries: in
such a query A specifies any q ∈ Q and receives back the
probability G[q] ∈ [0, 1] of q under G. For both types of
access we will often measure A’s sample complexity or
number of queries (for the case of evaluation access).3

Definition 3. (Sampling Access to Labeled Exam-
ples) Let G be a distribution over a set Q of potential
examples, and let f be a function whose domain is Q.
When we give an algorithm A sampling access to labeled
examples by (G, f), we mean that A has sampling access
to the distribution (q, f(q))q∼G.

Definition 4. (Data Release Algorithm) Fix U
to be a data universe, Q to be a set of query descrip-
tions, GQ to be a set of distributions on Q, and P (q, u) :
Q×U → {0, 1} to be a predicate. A (U ,Q,GQ, P ) data
release algorithm A is a (probabilistic) algorithm that
gets sampling access to a distribution G ∈ GQ and takes
as input accuracy parameters α, β, γ > 0, a database
size n, and a database D ∈ Un. A outputs a synopsis
S : Q → [0, 1].

We say that A is (α, β, γ)-accurate for databases
of size n, if for every database D ∈ Un and query
distribution G ∈ GQ:
(3.1)

P
S←A(n,D,α,β,γ)

[
P

q∼G

[
|S(q)− fD(q)| > α

]
> γ

]
< β

3Note that, generally speaking, sampling and evaluation access
are incomparably powerful (see [KMR+94, Nao96]). In this work,
however, whenever we give an algorithm evaluation access we will
also give it sampling access.

We also consider data release algorithms that get
evaluation access to G. In this case, we say that A
is a data release algorithm using evaluation access.
The definition is unchanged, except that A gets this
additional form of access to G.

When P and U are understood from the context,
we sometimes refer to a (U ,Q,GQ, P ) data release
algorithm as an algorithm for releasing the class of
queries Q over GQ.

This work focuses on differentially private data
release algorithms, i.e. data release algorithms which
are ε-differentially private as per Definition 1 (note
that such algorithms must be randomized). In such
data release algorithms, the probability of any output
synopsis S differs by at most an eε multiplicative factor
between any two adjacent databases.

We note two cases of particular interest. The first
is when GQ is the set of all distributions over Q. In this
case, we say that A is a distribution-free data release
algorithm. For such algorithms it is possible to apply
the “boosting for queries” results of [DRV10] and obtain
a data release algorithm whose synopsis is (w.h.p.)
accurate on all queries (i.e. with γ = 0). We note
that those boosting results apply only to data release
algorithms that access their distribution by sampling
(i.e. they need not hold for data release algorithms that
use evaluation access).

A second case of interest is when GQ contains only
a single distribution, the uniform distribution over all
queries Q. In this case both sampling and evaluation
access are easy to simulate.

Remark 1. Throughout this work, we fix the accuracy
parameter α, and lower-bound the required database size
n needed to ensure the (additive) approximation error
is at most α. An alternative approach taken in some of
the differential privacy literature, is fixing the database
size n and upper bounding the approximation error α
as a function of n (and of the other parameters). Our
database size bounds can be converted to error bounds
in the natural way.

Definition 5. (Learning Thresholds) Let Q be a
set (which we now view as a domain of potential unla-
beled examples) and let GQ be a set of distributions on
Q. Let F be a set of predicates on Q, i.e. functions
Q → {0, 1}. Given t ∈ [0, 1], let Fn,t be the set of all
threshold functions of the form f = I

{
1
n

∑n
i=1 fi > t

}
where fi ∈ F for all 1 6 i 6 n. We refer to functions in
Fn,t as n-thresholds over F . Let L be a (probabilistic)
algorithm that gets sampling access to labeled examples
by a distribution G ∈ GQ and a target function f ∈ Fn,t.
L takes as input accuracy parameters γ, β > 0, an in-



teger n > 0, and a threshold t ∈ [0, 1]. L outputs a
boolean hypothesis h : Q → {0, 1}.

We say that L is an (γ, β)-learning algorithm for
thresholds over (Q,GQ,F) if for every γ, β > 0, every
n, every t ∈ [0, 1], every f ∈ Fn,t and every G ∈ GQ,
we have

(3.2) P
h←L(n,t,γ,β)

[
P

q∼G
[h(q) ̸= f(q)] > γ

]
< β .

The definition is analogous for all other notions of
oracle access (see e.g. Definition 6 below).

3.2 Statement of the main theorem In this sec-
tion we formally state our main theorem, which estab-
lishes a general reduction from private data release to
learning certain threshold functions. The next definition
captures a notion of oracle access for learning algorithms
which arises in the reduction. The definition combines
sampling access to labeled examples with a limited kind
of evaluation access to the underlying distribution and
black-box oracle access to the target function f.

Definition 6. (approximate distribution-
restricted oracle access) Let G be a distribution
over a domain Q, and let f be a function whose
domain is Q. When we say that an algorithm A has
approximate G-restricted evaluation access to f , we
mean that

1. A has sampling access to labeled examples by
(G, f); and

2. A can make oracle queries on any q ∈ Q, which
are answered as follows: there is a fixed constant
c ∈ [1/3, 3] such that (i) if G[q] = 0 the answer
is (0,⊥); and (ii) if G[q] > 0 the answer is a pair
(c ·G[q], f(q)).

Remark 2. We remark that this is the type of of oracle
access provided to the learning algorithm in our reduc-
tion. This is different from the oracle access that the
data release algorithm has. We could extend Definition
4 to refer to approximate evaluation access to G; all our
results on data release using evaluation access would ex-
tend to this weaker access (under appropriate approxi-
mation guarantees). For simplicity, we focus on the case
where the data release algorithm has perfectly accurate
evaluation access, since this is sufficient throughout for
our purpose.

One might initially hope that privately releasing a
class of queries Q over some set of distributions GQ
reduces to learning corresponding threshold functions
over the same set of distributions. However, our
reduction will need a learning algorithm that works

for a potentially larger set of distributions GQ′ ⊇ GQ.
(We will see in Theorem 3.1 that this poses a stronger
requirement on the learning algorithm.) Specifically,
GQ′ will be a smooth extension of GQ as defined next.

Definition 7. (smooth extensions) Given a distri-
bution G over a set Q and a value µ > 1, the µ-smooth
extension of G is the set of all distributions G′ which
are such that G′[q] 6 µ ·G[q] for all q ∈ Q. Given a set
of distributions GQ and µ > 1, the µ-smooth extension
of GQ, denoted GQ′, is defined as the set of all distri-
butions that are a µ-smooth extension of some G ∈ GQ.

With these two definitions at hand, we can state our
reduction in its most general form. We will combine this
general reduction with specific learning results to obtain
concrete new data release algorithms in Sections 5 and 6.

Theorem 3.1. (Main Result: Private Data Re-
lease via Learning Thresholds) Let U be a data
universe, Q a set of query descriptions, GQ a set of
distributions over Q, and P : Q × U → {0, 1} a predi-
cate.

Then, there is an ε-differentially private (α, β, γ)-
accurate data-release algorithm for databases of size n
provided that

– there is an algorithm L that (γ,β)-learns thresh-
olds over (Q,GQ′, {pu : u ∈ U}), running in time
t(n, γ, β) and using b(n, γ, β) queries to an approx-
imate distribution-restricted evaluation oracle for
the target n-threshold function, where GQ′ is the
(2/γ)-smooth extension of GQ; and

– we have
(3.3)

n >
C · b(n′, γ′, β′) · log

(
b(n′,γ′,β′)

αγβ

)
· log(1/β′)

εα2γ
,

where n′ = Θ(log |Q|/α2), β′ = Θ(βα), γ′ = Θ(γα)
and C > 0 is a sufficiently large constant.

The running time of the data release algorithm is
poly(t(n′, γ′, β′), n, 1/α, log(1/β), 1/γ).

The next remark points out two simple modifica-
tions of this theorem.

Remark 3. 1. We can improve the dependence on n
in (3.3) by a factor of Θ(1/α) in the case where
the learning algorithm L only uses sampling access
to labeled examples. In this case the data release
algorithm also uses only sampling access to the
query distribution G. The precise statement is
given in Theorem 4.1 which we present after the
proof of Theorem 3.1.



2. A similar theorem holds for (ε, δ)-differential pri-
vacy, where the requirement on n in (3.3) is im-
proved to a requirement on

√
n up to a log(1/δ)

factor. The proof is the same, except for a differ-
ent (but standard) privacy argument, e.g., using the
Composition Theorem in [DRV10].

3.3 Informal proof overview Our goal in the data
release setting is approximating the query answers
{fD(q)}q∈Q. This is exactly the task of approximat-
ing or learning a sum of n predicates from the set
F = {pu : u ∈ U}. Indeed, each item u in the database
specifies a predicate pu, and for a fixed query q ∈ Q
we are trying to approximate the sum of the predicates
fD(q) = 1

|D| ·
∑

u∈D pu(q). We want to approximate

such a sum in a privacy-preserving manner, and so we
will only permit limited access to the function fD that
we try to approximate. In particular, we will only allow
a bounded number of noisy oracle queries to this func-
tion. Using standard techniques (i.e. adding appropri-
ately scaled Laplace noise [DMNS06]), an approxima-
tion obtained from a bounded number of noisy oracle
queries will be differentially private. It remains, then,
to tackle the task of (i) learning a sum of n predicates
from F using an oracle to the sum, and (ii) doing so
using only a bounded (smaller than n) number of oracle
queries when we are provided noisy answers.

From Sums to Thresholds. Ignoring privacy
concerns, it is straightforward to reduce the task of
learning a sum fD of predicates (given an oracle for fD)
to the task of learning thresholded sums of predicates
(again given an oracle for fD). Indeed, set k =
⌈3/α⌉ and consider the thresholds t1, . . . , tk given by
ti = i/(k + 1). Now, given an oracle for fD, it is
easy to simulate an oracle for fD

ti for any ti. Thus,
we can learn each of the threshold functions fD

ti to
accuracy 1 − γ/k with respect to G. Call the resulting
hypotheses h1, . . . , hk. Each hi labels a (1 − γ/k)-
fraction of the queries/examples in Q correctly w.r.t the
threshold function fD

ti . We can produce an aggregated
hypothesis h for approximating fD as follows: given
a query/example q, let h(q) equal ti where ti is the
smallest i such that hi(q) = 0 and hi+1(q) = 1. For
random q ∼ G, we will then have |h(q)− fD(q)| 6 α/3
with probability 1− γ (over the choice of q).

Thus, we have reduced learning a sum to learning
thresholded sums (where in both cases the learning is
done with an oracle for the sum). But because of
privacy considerations, we must address the challenges
mentioned above: (i) learning a thresholded sum of n
predicates using few (less than n) oracle queries to the
sum, and (ii) learning when the oracle for the sum
can return noisy answers. In particular, the noisy sum

answers can induce errors on threshold oracle queries
(when the sum is close to the threshold).

Restricting to Large Margins. Let us say that
a query/example q ∈ Q has low margin with respect to
fD and ti if |fD(q) − ti| 6 α/7. A useful observation
is that in the argument sketched above, we do not
need to approximate each threshold function fD

ti well
on low margin elements q. Indeed, suppose that each
hypothesis hi errs arbitrarily on a set Ei ⊆ Q that
contains only inputs that have low margin w.r.t. fD

and ti, but achieves high accuracy 1− γ/k with respect
to G conditioned on the event Q \ Ei. Then the above
aggregated hypothesis h would still have high accuracy
with high probability over q ∼ G; more precisely, h
would satisfy |h(q) − fD(q)| 6 2α/3 with probability
1− γ for q ∼ G.

The reason is that for every q ∈ Q, there can only be
one threshold i∗ ∈ {1, . . . , k} such that |fD(q) − ti∗ | 6
α/7 (since any two thresholds are α/3- apart from each
other). While the threshold hypothesis hi∗ might err on
q (because q has low margin w.r.t. ti∗), the hypotheses
hi∗−1 and hi∗+1 should still be accurate (w.h.p. over
q ∼ G), and thus the aggregated hypothesis h will still
output a value between ti∗−1 and ti∗+1.

Threshold Access to The Data Set. We will
use the above observation to our advantage. Specifically,
we restrict all access to the function fD to what we call a
threshold oracle. Roughly speaking, the threshold oracle
(which we denote T O and define formally in Section 4.1)
works as follows: when given a query q and a threshold t,
it draws a suitably scaled Laplacian variable N (used to
ensure differential privacy) and returns 1 if fD(q)+N >
t+α/20; returns 0 if fD(q)+N 6 t−α/20; and returns
“⊥” if t − α/20 < fD(q) +N < t + α/20. If D is large
enough then we can ensure that |N | 6 α/40 with high
probability, and thus whenever the oracle outputs ⊥ on
a query q we know that q has low margin with respect
to fD and t (since α/20 + |N | < α/7).

We will run the learning algorithm L on examples
generated using the oracle T O after removing all exam-
ples for which the oracle returned ⊥. Since we are con-
ditioning on the T O oracle not returning ⊥, this trans-
forms the distribution G into a conditional distribution
which we denote G′. Since we have only conditioned on
removing low-margin q’s, the argument sketched above
applies. That is, the hypothesis that has high accuracy
with respect to this conditional distribution G′ is still
useful for us.

So the threshold oracle lets us use noisy sum an-
swers (allowing the addition of noise and differential
privacy), but in fact it also addresses the second chal-
lenge of reducing the query complexity of the learning
algorithm. This is described next.



Savings in Query Complexity via Subsam-
pling. The remaining challenge is that the threshold
oracle can be invoked only (at most) n times before we
exceed our “privacy budget”. This is problematic, be-
cause the query complexity of the underlying learning
algorithm may well depend on n, since fD is a sum of
n predicates. To reduce the number of oracle queries
that need to be made, we observe that the sum of n
predicates that we are trying to learn can actually be
approximated by a sum of fewer predicates. In fact,
there exists a sum fD′

of n′ = O(log |Q|/α2) predicates
from F that is α/100-close to fD on all inputs in Q,
i.e. |fD(q)− fD′

(q)| 6 α/100 for all q ∈ Q. (The proof
is by a subsampling argument, as in [BLR08]; see Sec-
tion 4.1.) We will aim to learn this “smaller” sum. The
hope is that the query complexity for learning fD′

may
be considerably smaller, namely scaling with n′ rather
than n. Notice, however, that learning a threshold of
fD′

requires a threshold oracle to fD′
, rather than the

threshold oracle we have, which is to fD. Our goal,
then, is to use the threshold oracle to fD to simulate
a threshold oracle to fD′

. This will give us “the best
of both worlds”: we can make (roughly) O(n) oracle
queries thus preserving differential privacy, while using
a learning algorithm that is allowed to have query com-
plexity superlinear in n′.

The key observation showing that this is indeed pos-
sible is that the threshold oracle T O already “avoids”
low-margin queries where fD

t and fD′

t might disagree!
Whenever the threshold oracle T O (w.r.t. D) answers
l ̸= ⊥ on a query q,, we must have |fD(q) − t| >
α/20 − N > α/100, and thus fD

t (q) = fD′

t (q). More-
over, it is still the case that T O only answers ⊥ on
queries q that have low margins w.r.t fD′

t . This means
that, as above, we can run L using T O (w.r.t. D) in
order to learn fD′

. The query complexity depends on n′

and is therefore independent of n. At the same time, we
continue to answer all queries using the threshold oracle
with respect to fD so that our privacy budget remains
on the order |D| = n. Denoting the query complexity
of the learning algorithm by b(n′) we only need that
n ≫ b(n′). This allows us to use learning algorithms
that have b(n′) ≫ n′ as is usually the case.

Sampling from the conditional distribution.
In the exposition above we glossed over one technical de-
tail, which is that the learning algorithm requires sam-
pling (or distribution restricted) access to the distribu-
tion G′ over queries q on which T O does not return
⊥, whereas the data release algorithm we are trying to
build only has access to the original distribution G. We
reconcile this disparity as follows.

For a threshold t, let ζt denote the probability
that the oracle T O does not return ⊥ when given a

random q ∼ G and the threshold t. There are two cases
depending on ζt:

ζt < γ: This means that the threshold t is such that
with probability 1− γ a random sample q ∼ G has
low margin with respect to fD and t. In this case,
by simply outputting the constant-t function as our
approximation for fD, we get a hypothesis that has
accuracy α/3 with probability 1 − γ over random
q ∼ G.

ζt > γ: In this case, the conditional distribution G′ in-
duced by the threshold oracle is 1/γ-smooth w.r.t.
G. In particular, G′ is contained in the smooth
extension GQ′ for which the learning algorithm is
guaranteed to work (by the conditions of Theo-
rem 3.1). This means that it we can sample from G′

using rejection sampling to G. It suffices to over-
sample by a factor of O(1/γ) to make sure that we
receive enough examples that are not rejected by
the threshold oracle.

Finally using a reasonably accurate estimate of ζ, we can
also implement the distribution restricted approximate
oracle access that may be required by the learning
algorithm. We omit the details from this informal
overview.

4 Proof of Theorem 3.1

In this section, we give a formal proof of Theorem 3.1.
We formalize and analyze the threshold oracle first.
Then we proceed to our main reduction.

4.1 Threshold access and subsampling We be-
gin by describing the threshold oracle that we use to
access the function fD throughout our reduction; it is
presented in Figure 1. The oracle has two purposes.
One is to ensure differential privacy by adding noise ev-
ery time we access fD. The other purpose is to “filter
out” queries that are too close to the given threshold.
This will enable us to argue that the threshold oracle
for fD

t agrees with the function fD′

t where D′ is a small
subsample of D.

Throughout the remainder of this section we fix all
input parameters to our oracle, i.e. the data set D and
the values b, α > 0. We let β > 0 denote the desired
error probability of our algorithm.

Lemma 4.1. Call two queries (q, t), (q′, t′) distinct if
q ̸= q′. Then, the threshold oracle T O(D,α, b) answers
any sequence of b distinct adaptive queries to fD with
ε-differential privacy.

Proof. This follows directly from the guarantees of the
Laplacian mechanism as shown in [DMNS06]. �



Input: data set D of size n, tolerance α > 0, query bound b ∈ N.
Threshold Oracle T O(D,α, b):

– When invoked on the j-th query (q, t) ∈ Q× [0, 1), do the following:

– If j > b, output ⊥ and terminate.

– If (q, t′) has not been asked before for any threshold t′, sample a fresh Laplacian variable Nq ∼
Lap(b/εn) and put Aq = fD(q) +Nq. Otherwise reuse the previously created value Aq.

–

Output


0 if Aq 6 t− 2α/3,

1 if Aq > t+ 2α/3,

⊥ otherwise.

Figure 1: Threshold oracle for fD. This threshold oracle is the only way in which the data release algorithm ever
interacts with the data set D. Its purpose is to ensure privacy and to reject queries that are too close to a given
threshold.

Our goal is to use the threshold oracle for fD
t to

correctly answer queries to the function fD′

t where D′

is a smaller (sub-sampled) database that gives “close”
answers to D on all queries q ∈ Q. The next lemma
shows that there always exists such a smaller database.

Lemma 4.2. For any α > 0, there is a database D′ of
size

(4.4) |D′| 6 10 log |Q|
α2

such that
max
q∈Q

∣∣∣fD(q)− fD′
(q)
∣∣∣ < α .

Proof. The existence of D′ follows from a subsampling
argument as shown in [BLR08]. �
The next lemma states the two main properties of the
threshold oracle that we need. To state them more
succinctly, let us denote by

Q(t, α) = {q ∈ Q : |fD(q)− t| > α}

the set of elements in Q that are α-far from the
threshold t.

Lemma 4.3. (Agreement) Suppose D satisfies

(4.5) |D| > 30b · log(b/β)
εα

,

Then, there is a data set D′ of size |D′| 6 90·α−2 log |Q|
and an event Γ (only depending on the choice of the
Laplacian variables) such that Γ has probability 1 − β
and if Γ occurs, then T O(D,α, b) has the following
guarantee: whenever T O(D,α, b) outputs l on one of
the queries (q, t) in the sequence, then

1. if l ̸= ⊥ then l = fD′

t (q) = fD
t (q) , and

2. if l = ⊥ then q ̸∈ Q(t, α) .

Proof. Let D′ be the data set given by Lemma 4.2 with
its “α” value set to α/3 so that∣∣∣fD(q)− fD′

(q)
∣∣∣ < α/3

for every input q ∈ Q.
The event Γ is defined as the event that every Lapla-

cian variable Nq sampled by the oracle has magnitude
|Nq| < α/3. Under the given assumption on |D| in 4.5
and using basic tail bounds for the Laplacian distribu-
tion, this happens with probability 1− β.

Assuming Γ occurs, the following two statements
hold:

1. Whenever the oracle outputs l ̸= ⊥ on a query
(q, t), then we must have either fD(q) + Nq − t >
2α/3 (and thus both fD(q) > t+α/3 and fD′

(q) >
t) or else fD(q) +Nq − t 6 −2α/3 (and thus both

fD(q) < t− α/3 and fD′
(q) < t). This proves the

first claim of the lemma.

2. Whenever q ∈ Q(t, α), then |fD(q)+Nq−t| > 2α/3,
and therefore the oracle does not output ⊥. This
proves the second claim of the lemma.

�

4.2 Privacy-preserving reduction In this section
we describe how to convert a non-private learning
algorithm for threshold functions of the form fD

t to a
privacy-preserving learning algorithm for functions of
the form fD. The reduction is presented in Figure 2.
We call the algorithm PrivLearn.



Input: Distribution G ∈ GQ, data set D of size n, accuracy parameters α, β, γ > 0; learning algorithm L for
thresholds over (Q,GQ,F) as in Theorem 3.1 requiring b(n′, γ′, β′) labeled examples and approximate restricted
evaluation access to the target function.
Parameters: See (4.6) and (4.7).
Algorithm PrivLearn for privately learning fD:

1. Let T O denote an instantiation of T O(D,α/7, btotal).

2. Sample biter points {qj}16j6biter from G.

3. For each iteration i ∈ {1, . . . , k} :

(a) Let ti = i/k + 1.

(b) For each qj , j ∈ [biter] send the query (qj , ti) to T O and let lj denote the answer. Let Bi = {j : lj ̸= ⊥}.

(c) If |Bi|
biter

< γ
2 , output the constant ti function as hypothesis h and terminate the algorithm.

(d) Run the learning algorithm L(n′, ti, γ′, β′) on the labeled examples {(qj , lj)}j∈Bi , answering evaluation
queries from L as follows:

– Given a query q posed by L, let l be the answer of T O on (q, ti).

– If l = ⊥, then output (0,⊥). Otherwise, output (G[q] · biter
|Bi| , l) .

(e) Let hi denote the resulting hypothesis.

4. Having obtained hypotheses h1, . . . , hk, the final hypothesis h is defined as follows: h(q) equals the smallest
i ∈ [k] such that hi(q) = 1 and hi−1(q) = 0 (we take h0(q) = 0 and hk+1(q) = 1).

Figure 2: Reduction from private data release to learning thresholds (non-privately).

Setting of parameters. In the description of
PrivLearn we use the following setting of parameters:
(4.6)

n′ =
4410 · log |Q|

α2
, k =

⌈
3

α

⌉
, γ′ =

γ

k
, β′ =

β

6k
,

bbase = b(n′, γ′, β′), biter =
100bbase · log(1/β′)

γ
,(4.7)

btotal = 2k · biter.

Analysis of the reduction. Throughout the
analysis of the algorithm we keep all input parameters
fixed so as to satisfy the assumptions of Theorem 3.1.
Specifically we will need

(4.8) |D| > 210 · btotal · log(10btotal/β)
εα

.

We have made no attempt to optimize various constants
throughout.

Lemma 4.4. (Privacy) Algorithm PrivLearn satis-
fies ε-differential privacy.

Proof. In each iteration of the loop in Step 3 the
algorithm makes at most 2biter queries to T O (there are
biter calls made on the samples and at most bbase 6 biter

evaluation queries). But note that T O is instantiated
with a query bound of btotal = 2kbiter. Hence, it follows
from Lemma 4.1 that T O satisfies ε-differential privacy.
Since T O is the only way in which PrivLearn ever
interacts with the data set, PrivLearn satisfies ε-
differential privacy. �
We now prove that the hypothesis produced by the
algorithm is indeed accurate, as formalized by the
following lemma.

Lemma 4.5. (Accuracy) With overall probability 1−
β, the hypothesis h returned by PrivLearn satisfies

(4.9) P
q∼G

{∣∣h(q)− fD(q)
∣∣ 6 α

}
> 1− γ .

Proof. We consider three possible cases:

1. The first case is that there exists a t ∈ {t1, . . . , tk}
such that distribution G has at least 1 − γ/10
of its mass on points that are α-close to t. In
this case a Chernoff bound and the choice of
biter ≫ bbase imply that with probability 1− β the
algorithm terminates prematurely and the resulting
hypothesis satisfies (4.9).

2. In the second case, there exists a t ∈ {t1, . . . , tk}
such that the probability mass G puts on points



that are α-close to t is between 1− γ and 1− γ/10.
In this case if the algorithm terminates prematurely
then (4.9) is satisfied; below we analyze what hap-
pens assuming the algorithm does not terminate
prematurely.

3. In the third case every t ∈ {t1, . . . , tk} is such that
G puts less than 1−γ of its mass on points α-close
to t. In this third case if the algorithm terminates
prematurely then (4.9) will not hold; however, our
choice of biter implies that in this third case the
algorithm terminates prematurely with probability
at most 1 − β. As in the second case, below we
will analyze what happens assuming the algorithm
does not terminate prematurely.

Thus in the remainder of the argument we may assume
without loss of generality that the algorithm does not
terminate prematurely, i.e. it produces a full sequence
of hypotheses h1, . . . , hk. Furthermore, we can assume
that the distribution G places at most 1−γ/10 fraction
of its weight near any particular threshold ti. This leads
to the following claim, showing that in all iterations, the
number of labeled examples in Bi is large enough to run
the learning algorithm.

Claim 1. P {∀i : |Bi| > bbase} > 1− β
3 .

Proof. By our assumption, the probability that a
sample q ∼ G is rejected at step t of PrivLearn is
at most γ/10. By the choice of biter it follows that
|Bi| > bbase with probability 1 − β/k. Taking a union
bound over all thresholds t completes the proof. �

The proof strategy from here on is to first analyze
the algorithm on the conditional distribution that is
induced by the threshold oracle. We will then pass from
this conditional distribution to the actual distribution
that we are interested in, namely, G.

We chose |D| large enough so that we can apply
Lemma 4.3 to T O with the “α”-setting of Lemma 4.3 set
to α/7. Let D′ be the data set and Γ be the event given
in the conclusion of Lemma 4.3 applied to T O. (Note
that n′ = |D′| 6 72 · 90α−2 log |Q| as stated above.)

By the choice of our parameters, we have

(4.10) P {Γ} > 1− β

3
.

Here the probability is computed only over the internal
randomness of the threshold oracle T O which we denote
by R. Fix the randomness R of T O such that R ∈ Γ.
For the sake of analysis, we can think of the randomness
of the oracle as a collection of independent random
variables (Nq)q∈Q (where Nq is used to answer all

queries of the form (q, t′)). In particular, the behavior
of the oracle would not change if we were to sample all
variables (Nq)q∈Q up front. When we fix R we thus
mean that we fix Nq for all q ∈ Q.

We may therefore assume for the remainder of the
analysis that T O satisfies properties (1) and (2) of
Lemma 4.3.

Let us denote by Qi ⊆ Q the set of examples for
which T O would not answer ⊥ in Step 3 at the i-th
iteration of the algorithm. Note that this is a well-
defined set since we fixed the randomness of the oracle.
Denote by Gi the distribution G conditioned on Qi.
Further, let Zi = Pq∼G {q ∈ Qi} . Observe that

(4.11) Gi[q] =

{
G[q]/Zi q ∈ Qi

0 otherwise.
.

The next lemma shows that PrivLearn answers eval-
uation queries with the desired multiplicative precision.

Lemma 4.6. With probability 1 − β/6k (over the ran-
domness of PrivLearn), we have

(4.12)
Zi

3
6 |Bi|

biter
6 3Zi .

Proof. The lemma follows from a Chernoff bound with
the fact that we chose biter ≫ bbase. �
Assuming that (4.12) holds, we can argue that the learn-
ing algorithm in step t produces a “good” hypothesis as
expressed in the next lemma.

Lemma 4.7. Let t ∈ {t1, . . . , tk}. Conditioned
on (4.12), we have that with probability 1 − β/6k
(over the internal randomness of the learning algorithm
invoked at step i) the hypothesis hi satisfies

P
q∼Gi

{
hi(q) = fD

ti (q)
}
> 1− γ

k
.

Proof. This follows directly from the guarantee of the
learning algorithm L once we argue that (with the
claimed probability):

1. Each example q is sampled from Gi and labeled
correctly by fD′

ti (q) and fD′

ti (q) = fD
ti (q).

2. All evaluation queries asked by the learning algo-
rithm are answered with the multiplicative error
allowed in Definition 6.

3. The algorithm received sufficiently many, i.e., bbase,
labeled examples.

The first claim follows from the definition ofGi, since we
can sample from Gi by sampling from G and rejecting if



the oracle T O returns ⊥. Since Γ is assumed to hold, we
can invoke property (1) of Lemma 4.3 to conclude that
whenever the oracle does not return ⊥, then its answer
agrees with fD′

ti (q) and moreover fD′

ti (q) = fD
ti (q).

To see the second claim, consider an evaluation
query q. We consider two cases. The first case is where
the threshold oracle returns ⊥ and PrivLearn out-
puts (0,⊥). Note that in this case indeed Gi puts 0
weight on the query q. In the second case PrivLearn
outputs (G[q] · biter/|Bi|, l). By (4.11) and since we as-
sumed Γ holds, the output satisfies the desired multi-
plicative bound.

The third claim is a direct consequence of
Claim 1. �

We conclude from the above that with probability
1−β/3 (over the combined randomness of PrivLearn
and of the learning algorithm), simultaneously for all
i ∈ [k] we have
(4.13)

P
q∼G

{
hi(q) ̸= fD

ti (q)
∣∣∣ Qi

}
= P

q∼Gi

{
hi(q) ̸= fD

ti (q)
}
6 γ

k
.

This follows from a union bound over all k applications
of Lemma 4.6 and Lemma 4.7.

We can now complete the proof of Lemma 4.5. That
is, we will show that assuming (4.13) the hypothesis h
satisfies

P
q∼G

{∣∣h(q)− fD(q)
∣∣ 6 α

}
> 1− γ .

Note that

1. (4.13) occurs with probability 1− β/3,

2. our assumption on the threshold oracle, i.e., R ∈ Γ
also occurs with probability 1 − β/3 (over the
randomness of the oracle)

3. the event in Claim 1 holds with probability 1−β/3.

Hence all three events occur simultaneously with prob-
ability 1 − β which is what we claimed. We proceed
by assuming that all three events occurred. In the
following, let

Erri = {q ∈ Q : hi(q) ̸= fD
ti (q)}

denote the set of points on which hi errs. We will need
the following claim.

Claim 2. Let q ∈ Q. Then,∣∣h(q)− fD(q)
∣∣ > α =⇒ q ∈

∪
i∈[k]

Erri ∩Qi .

Proof. Arguing in the contrapositive, suppose q ̸∈∪
i∈[k] Erri ∩Qi. This means that for all i ∈ [k] we have

that either q ̸∈ Erri or q ̸∈ Qi.
However, we claim that there can be at most one

i ∈ [k] such that q ̸∈ Qi meaning that q is rejected at
step i. This follows from property (2) of Lemma 4.3
which asserts that if q ̸∈ Qi, then we must have
|fD(q)− ti| < α/7, and the fact that any two thresholds
differ by at least α/3.

Hence, under the assumption above it must be the
case that q ̸∈ Erri for all but at most one i ∈ [k]. This
means that all but one hypothesis hi correctly classify
q. Since the thresholds are spaced α/3 apart, this
means the hypothesis h has error at most 2α/3 6 α
on q. �

With the previous claim, we can finish the proof.
Indeed,

P
q∼G

{∣∣h(q)− fD(q)
∣∣ > α

}
6 P

q∼G

 ∪
i∈[k]

Erri ∩Qi


(using Claim 2)

6
k∑

i=1

P
q∼G

{Erri ∩Qi}(union bound)

=

k∑
i=1

P
q∼G

{q ∈ Erri | Qi} P
q∼G

{Qi}

6
k∑

i=1

P
q∼G

{q ∈ Erri | Qi}

6 k · γ
k

(using (4.13))

= γ .

This concludes the proof of Lemma 4.5 �

Lemma 4.4 (Privacy) together with Lemma 4.5
(Accuracy) conclude the proof of out main theorem,
Theorem 3.1.

4.3 Quantitative Improvements without Mem-
bership Queries Here we show how to shave off a fac-
tor of 1/α in the requirement on the data set size n in
Theorem 3.1. This is possible if the learning algorithm
uses only sampling access to labeled examples.

Theorem 4.1. Let U be a data universe, Q a set of
query descriptions, GQ a set of distributions over Q,
and P : Q× U → {0, 1} a predicate.

Then, there is an ε-differentially private (α, β, γ)-
accurate data-release algorithm provided that there



is an algorithm L that (γ,β)-learns thresholds over
(Q,GQ′, {pu : u ∈ U}) using b(n, γ, β) random exam-
ples; and we have

n >
C · b(n′, γ′, β′) · log

(
b(n′,γ′,β′)

αγβ

)
· log(1/β′)

εαγ
,

where n′ = Θ(log |Q|/α2), β′ = Θ(βα), γ′ = Θ(γα) and
C > 0 is a sufficiently large constant. If L runs in time
t(n, γ, β) then the data release algorithm runs in time
poly(t(n′, γ′, β′), n, 1/α, log(1/β), 1/γ).

Proof. The proof of this theorem is identical to that of
Theorem 3.1 except that we put btotal = 2biter rather
than 2kbiter. It is easy to check that the algorithm
indeed makes only btotal distinct queries (in the sense
of Lemma 4.1) to the threshold oracle so that privacy
remains ensured. The correctness argument is identi-
cal. �

5 First Application: Data Release for
Conjunctions

With Theorems 3.1 and 4.1 in hand, we can obtain new
data release algorithms “automatically” from learning
algorithms that satisfy the properties required by the
theorem. In this section we present such data release
algorithms for conjunction counting queries using learn-
ing algorithms (which require only random examples
and work under any distribution) based on polynomial
threshold functions.

Throughout this section we fix the query class under
consideration to be monotone conjunctions, i.e. we take
U = Q = {0, 1}d and P (q, u) = 1−

∨
i : ui=0 qi.

The learning results given later in this section,
together with Theorem 4.1, immediately yield:

Theorem 5.1. (Releasing conjunction queries)

1. There is an ε-differentially private algorithm for
releasing the class of monotone Boolean conjunc-
tion queries over GQ = {all probability distribu-
tions over Q} which is (α, β, γ)-accurate and has
runtime poly(n) for databases of size n provided
that

n > d
O
(
d1/3 log( d

α )
2/3

)
· Õ

(
log (1/β)

3

εαγ2

)
.

2. There is an ε-differentially private algorithm for re-
leasing the class of monotone Boolean conjunction
queries over GQk = {all probability distributions

over Q supported on Bk = {q ∈ Q : q1 + · · ·+ qd 6
k}} which is (α, β, γ)-accurate and has runtime
poly(n) for databases of size n provided that

n > d
O

(√
k log( k log d

α )
)
· Õ

(
log (1/β)

3

εαγ2

)
.

These algorithms are distribution-free, and so we
can apply the boosting machinery of [DRV10] to get
accurate answers to all of the k-way conjunctions with
similar database size bounds. See the discussion and
Corollary 1.1 in the introduction.

In Section 5.1 we establish structural results show-
ing that certain types of thresholded real-valued func-
tions can be expressed as low-degree polynomial thresh-
old functions. In Section 5.2 we state some learning
results (for learning under arbitrary distributions) that
follow from these representational results. Theorem 5.1
above follows immediately from combining the learning
results of Section 5.2 with Theorem 4.1.

5.1 Polynomial threshold function representa-
tions

Definition 8. Let X ⊆ Q = {0, 1}d and let f be a
Boolean function f : X → {0, 1}. We say that f has a
polynomial threshold function (PTF) of degree a over
X if there is a real polynomial A(q1, . . . , qd) of degree a
such that

f(q) = sign(A(q)) for all q ∈ X

where the sign function is sign(z) = 1 if z > 0,
sign(z) = 0 if z < 0.

Note that the polynomial A may be assumed without
loss of generality to be multilinear since X is a subset
of {0, 1}d.

5.1.1 Low-degree PTFs over sparse inputs Let
Bk ⊂ {0, 1}d denote the collection of all points with
Hamming weight at most k, i.e. Bk = {q ∈ {0, 1}d :
q1 + · · · + qd 6 k}. The main result of this subsection
is a proof that for any t ∈ [0, 1] the function fD

t has a
low-degree polynomial threshold function over Bk.

Lemma 5.1. Fix t ∈ [0, 1]. For any database D of size
n, the function fD

t has a polynomial threshold function
of degree O

(√
k log n

)
over the domain Bk.

To prove Lemma 5.1 we will use the following claim:

Claim 3. Fix k > 0 to be a positive integer and
ε > 0. There is a univariate polynomial s of degree

O
(√

k log(1/ε)
)
which is such that



1. s(k) = 1; and

2. |s(j)| 6 ε for all integers 0 6 j 6 k − 1.

Proof. This claim was proved by Buhrman et al.
[BCdWZ99], who gave a quantum algorithm which
implies the existence of the claimed polynomial (see
also Section 1.2 of [She09]). Here we give a self-
contained construction of a polynomial s with the
claimed properties that satisfies the slightly weaker
degree bound deg(s) = O(

√
k log(1/ε)). We will use

the univariate Chebyshev polynomial Cr of degree r =
⌈
√
k⌉. Consider the polynomial

(5.14) s(j) =

(
Cr

(
j
k

(
1 + 1

k

))
Cr

(
1 + 1

k

) )⌈log(1/ε)⌉
.

It is clear that if j = k then s(j) = 1 as desired, so
suppose that j is an integer 0 6 j 6 k− 1. This implies
that (j/k)(1 + 1/k) < 1. Now well-known properties
of the Chebychev polynomial (see e.g. [Che66]) imply
that |Cr((j/k)(1 + 1/k))| 6 1 and Cr(1 + 1/k) > 2.
This gives the O(

√
k log(1/ε)) degree bound. �

Recall that the predicate function for a data item
u ∈ {0, 1}d is denoted by

pu(q) = 1−
∨

i : ui=0

qi .

As an easy corollary of Claim 3 we get:

Corollary 5.1. Fix ε > 0. For every u ∈
{0, 1}d, there is a d-variable polynomial Au of degree

O
(√

k log(1/ε)
)
which is such that for every q ∈ Bk,

1. If pu(q) = 1 then Au(q) = 1;

2. If pu(q) = 0 then |Au(q)| 6 ε.

Proof. Consider the linear function L(q) =
k −

∑
i : ui=0 qi. For q ∈ Bk we have that L(q) is

an integer in {0, . . . , k}, and we have L(q) = k if
and only if pu(q) = 1. The desired polynomial is
Au(q) = s(L(q)). �

Proof.[Proof of Lemma 5.1] Consider the polynomial

A(q) =
∑
u∈D

Au(q)

where for each data item u, ru is the polynomial from
Corollary 5.1 with its “ε” parameter set to ε = 1/(3n).
We will show that A(q) − (⌈tn⌉ − 1/2) is the desired
polynomial which gives a PTF for fD

t over Bk.

First, consider any fixed q ∈ Bk for which fD
t (q) =

1. Such a q must satisfy fD(q) = j/n > t for some
integer j, and hence j > ⌈tn⌉. Corollary 5.1 now gives
that A(q) > ⌈tn⌉ − 1/3.

Next, consider any fixed q ∈ Bk for which
fD
t (q) = 0. Such a q must satisfy fD(q) = j/n < t for
some integer j, and hence j 6 ⌈tn⌉ − 1. Corollary 5.1
now gives that A(q) 6 ⌈tn⌉ − 2/3. This proves the
lemma. �

5.1.2 Low-degree PTFs over the entire hyper-
cube Taking k = d in the previous subsection, the re-
sults there imply that fD

t can be represented by a poly-
nomial threshold function of degree O

(√
d logn

)
over

the entire Boolean hypercube {0, 1}d. In this section we
improve the degree to O

(
d1/3(log n)2/3

)
. This result is

very similar to Theorem 8 of [KOS04] (which is closely
based on the main construction and result of [KS04])
but with a few differences: first, we use Claim 3 to ob-
tain slightly improved bounds. Second, we need to use
the following notion in place of the notion of the “size
of a conjunction” that was used in the earlier results:

Definition 9. The width of a data item u ∈ D is
defined as the number of coordinates i such that ui = 0.
The width of D is defined as the maximum width of any
data item u ∈ D.

We use the following lemma:

Lemma 5.2. Fix any t ∈ [0, 1] and suppose that n-
element database D has width w. Then fD

t has a
polynomial threshold function of degree O

(√
w log n

)
over the domain {0, 1}d.

Proof. The proof follows the constructions and argu-
ments of the previous subsection, but with “w” in place
of “k” throughout (in particular the linear function
L(q) is now defined to be L(q) = w −

∑
i : ui=0 qi). �

Lemma 5.3. Fix any value r ∈ {1, . . . , d}. The function
fD
t (q1, . . . , qd) can be expressed as a decision tree T in
which

1. each internal node of the tree contains a variable
qi;

2. each leaf of T contains a function of the form fD′

t

where D′ ⊆ D has width at most r;

3. the tree T has rank at most (2d/r) lnn+ 1.



Proof.[Proof sketch.] The result follows directly from
the proof of Lemma 10 in [KS04], except that we
use the notion of width from Definition 9 in place
of the notion of the size of a conjunction that is
used in [KS04]. To see that this works, observe that
since pu(q) = 1 − ∨i : ui=0qi, fixing qi = 1 will fix all
predicates pu with ui = 0 to be zero. Thus the analysis
of [KS04] goes through unchanged, replacing “terms of
f that have size at least r” with “data items in D that
have width at least r” throughout. �

Lemma 5.4. The function fD
t can be represented

as a polynomial threshold function of degree
O(d1/3(log n)2/3).

Proof. The proof is nearly identical to the proof of
Theorem 2 in [KS04] but with a few small changes.
We take r in Lemma 5.3 to be d2/3(log n)1/3 and now
apply Lemma 5.2 to each width-r database D′ at a leaf
of the resulting decision tree. Arguing precisely as in
Theorem 2 of [KS04] we get that fD

t has a polynomial
threshold function of degree

max
{

2d
r lnn+ 1, O

(√
r log n

)}
= O

(√
r log n

)
= O

(
d1/3(log n)2/3

)
.

�

5.2 Learning thresholds of conjunction queries
under arbitrary distributions It is well known that
using learning algorithms based on polynomial-time
linear programming, having low-degree PTFs for a class
of functions implies efficient PAC learning algorithms
for that class under any distribution using random
examples only (see e.g. [KS04, HS07]). Thus the
representational results of Section 5.1 immediately give
learning results for the class of threshold functions over
sums of data items. We state these learning results using
the terminology of our reduction below.

Theorem 5.2. Let

– U denote the data universe {0, 1}d;

– Q denote the set of query descriptions {0, 1}d;

– P (q, u) = 1 −
∨

i : ui=0 qi denote the monotone
conjunction predicate;

– GQ denote the set of all probability distributions
over Q; and

– GQk denote the set of all probability distributions
over Q that are supported on Bk = {q ∈ {0, 1}d :
q1 + · · ·+ qd 6 k}.

Then,

1. 1. (Learning thresholds of conjunction queries over
all inputs) There is an algorithm L that (γ, β)
learns thresholds over (Q,GQ, {pu : u ∈ U}) us-

ing b(n, γ, β) = dO(d1/3(logn)2/3) · Õ(1/γ) · log(1/β)
queries to an approximate distribution-restricted
evaluation oracle for the target n-threshold function
(in fact L only uses sampling access to labeled ex-
amples). The running time of L is poly(b(n, γ, β)).

2. 2. (Learning thresholds of conjunction queries over
sparse inputs) There is an algorithm L that (γ, β)
learns thresholds over (Q,GQk, {pu : u ∈ U}) using
b(n, γ, β) = dO((k logn)1/2) ·Õ(1/γ) · log(1/β) queries
to an approximate distribution-restricted evaluation
oracle for the target n-threshold function (in fact L
only uses sampling access to labeled examples). The
running time of L is poly(b(n, γ, β)).

Recall from the discussion at the beginning of
Section 5 that these learning results, together with our
reduction, give the private data release results stated at
the beginning of the section.

6 Second Application: Data Release via
Fourier-Based Learning

Our main result in this section is a data release algo-
rithm for AC0 counting queries. We obtain this al-
gorithm via an instantiation of our reduction (Theo-
rem 3.1), with a Fourier-based algorithm from the com-
putational learning theory literature [JKS02]. We note
that this algorithm requires the more general reduction
of Theorem 3.1, rather than the simpler version of The-
orem 1.1, because the underlying learning algorithm is
not distribution free.

We begin by describing an algorithm for releasing
parity counting queries in Section 6.1. The algorithm
is base on our reduction, instantiated with Jackson’s
Harmonic Sieve algorithm [Jac97]. A simpler data re-
lease algorithm for parity counting queries, with better
runtime and error bounds, was pointed out by an anony-
mous referee (see more details below). Our primary pur-
pose in presenting this algorithm is for exposition, and
as a warmup for the AC0 counting query data release
algorithm, which follows in Section 6.2.

6.1 Parity counting queries using the Harmonic
Sieve [Jac97] In this subsection we fix the query class
under consideration to be the class of parity queries,



i.e. we take U = {0, 1}d and Q = {0, 1}d and we take
P (q, u) =

∑
i:ui=1 qi (mod 2) to be the parity predicate.

An anonymous referee suggested an algorithm for
parity query data release over the uniform distribution.
We begin by sketching this algorithm: release, using
the histogram algorithm of [DMNS06], a noisy list L
of items that appear frequently in the input database
(say more than d times), and their (noisy) frequencies
in the database. Let n′ be the number of items in
the database that are not in this list. For a parity
q ∈ {0, 1}d, compute the answer with respect to L, add
n′/2, and release the sum. For databases of size poly(d),
this algorithm will release poly(d)-accurate answers to
all but a poly(1/d) fraction of the parity queries.

An alternative algorithm, which instantiates the re-
duction of Theorem 4.1 with Jackson’s Harmonic Sieve
algorithm follows. We note that the runtime and error
guarantees obtained are inferior to the (significantly)
simpler algorithm above. Our main purpose in present-
ing this algorithm is for exposition, and to serve as a
warm-up for the subsequent algorithm for releasing AC0

counting queries.

Theorem 6.1. (Releasing parity queries) There
is an ε-differentially private algorithm for releasing
the class of parity queries over the uniform dis-
tribution on Q which is (α, β, γ)-accurate and has
runtime poly(n) for databases of size n, provided that

n > poly(d,1/α,1/γ,log(1/β))
ε .

This theorem is an immediate consequence of our
main reduction, Theorem 3.1, and the following learning
result:

Theorem 6.2. Let

– U denote the data universe {0, 1}d;

– Q denote the set of query descriptions {0, 1}d;

– P (q, u) =
∑

i:ui=1 qi (mod 2) denote the parity
predicate; and

– GQ contains only the uniform distribution over Q.

Then there is an algorithm L that (γ, β) learns thresh-
olds over (Q,GQ′, {pu : u ∈ U}) where GQ′ is the (2/γ)-
smooth extension of GQ. Algorithm L uses b(n, γ, β) =
poly(d, n, 1/γ) · log(1/β) queries to an approximate G-
restricted evaluation oracle for the target n-threshold
function when it is learning with respect to a distribution
G ∈ GQ′. The running time of L is poly(b(n, γ, β)).

Proof. The claimed algorithm L is essentially Jackson’s
Harmonic Sieve algorithm [Jac97] for learning Majority

of Parities; however, a bit of additional analysis of the
algorithm is needed as we now explain.

When Jackson’s results on the Harmonic Sieve are
expressed in our terminology, they give Theorem 6.2
exactly as stated above except for one issue which we
now describe. Let G′ be any distribution in the (2/γ)-
smooth extension GQ′ of the uniform distribution. In
Jackson’s analysis, when it is learning a target function
f under distribution G′, the Harmonic Sieve is given
black-box oracle access to f , sampling access to the
distribution G′, and access to a c-approximation to an
evaluation oracle for G′, in the following sense: there
is some fixed constant c ∈ [1/3, 3] such that when the
oracle is queried on q ∈ Q, it outputs c ·G′[q]. This is a
formally more powerful type of access to the underlying
distribution G′ than is allowed in Theorem 6.2 since
Theorem 6.2 only gives L access to an approximate
G′-restricted evaluation oracle for the target function
(recall Definition 6). To be more precise, the only
difference is that with the Sieve’s black-box oracle access
to the target function f it is a priori possible for a
learning algorithm to query f even on points where
the distribution G′ puts zero probability mass, whereas
such queries are not allowed for L. Thus to prove
Theorem 6.2 it suffices to argue that the Harmonic
Sieve algorithm, when it is run under distribution G′,
never needs to make queries on points q ∈ Q that have
G′[q] = 0.

Fortunately, this is an easy consequence of the way
the Harmonic Sieve algorithm works. Instead of actu-
ally using black-box oracle queries for f , the algorithm
actually only ever makes oracle queries to the function
g(q) = 2d · f(q) · D′[q], where D′ is a c-approximation
to an evaluation oracle for a distribution G′′ which
is a smooth extension of G′. (See the discussion in
Sections 4.1 and 4.2 of [Jac97], in particular Steps 16-18
of the HS algorithm of Figure 4 and Steps 3 and 5 of
the WDNF algorithm of Figure 3.) By the definition of
a smooth extension, if q is such that G′[q] = 0 then
G′′[q] also equals 0, and consequently g(q) = 0 as well.
Thus it is straightforward to run the Harmonic Sieve
using access to an approximate G′-restricted evaluation
oracle: if G′[q] returns 0 then “0” is the correct value
of g(q), and otherwise the oracle provides precisely the
information that would be available for the Sieve in
Jackson’s original formulation. �

6.2 AC0 queries using [JKS02] Fix U = {0, 1}d
and Q = {0, 1}d. In this subsection we show that our
reduction enables us to do efficient private data release
for quite a broad class of queries, namely any query
computed by a constant-depth circuit.



In more detail, let P (q, u) : {0, 1}d×{0, 1}d → {0, 1}
be any predicate that is computed by a circuit of
depth ℓ = O(1) and size poly(d). Our data release result
for such queries is the following:

Theorem 6.3. (Releasing AC0 queries) Let GQ be
the set containing the uniform distribution and let
U ,Q, P be as described above. There is an ε-
differentially (U ,Q,GQ, P ) data release algorithm that
is (α, β, γ)-accurate and has runtime poly(n) for
databases of size n, provided that

n > dO(log
ℓ( d

αγ )) · Õ

(
log (1/β)

3

εα2γ

)
.

See the introduction for a discussion of this result.
We observe that given any fixed P as described above,
for any given u ∈ U = {0, 1}d the function pu(q) is
computed by a circuit of depth ℓ and size poly(d) over
the input bits q1, . . . , qd. Hence Theorem 6.3 is an im-
mediate consequence of Theorem 3.1 and the following
learning result, which describes the performance guar-
antee of the quasipolynomial-time algorithm of Jackson
et al. [JKS02] for learning Majority-of-Parity in our
language:

Theorem 6.4. (Theorem 9 of [JKS02]) Let

– U denote the data universe {0, 1}d;

– Q denote the set of query descriptions {0, 1}d;

– P (q, u) be any fixed predicate computed by an
AND/OR/NOT circuit of depth ℓ = O(1) and size
poly(d);

– GQ contains only the uniform distribution over Q;
and

– F be the set of all AND/OR/NOT circuits of
depth ℓ and size poly(d).

Then there is an algorithm L that (γ, β) learns n-
thresholds over (Q,GQ′,F) where GQ′ is the (2/γ)-
smooth extension of GQ. Algorithm L uses approximate
distribution restricted oracle access to the function, uses

b(n, γ, β) = dO(logℓ(nd/γ)) · log(1/β) samples and calls
to the evaluation oracle, and runs in time t(n, γ, β) =

dO(logℓ(nd/γ)) · log(1/β).

We note that Theorem 9 of [JKS02], as stated in
that paper, only deals with learning majority-of-AC0

circuits under the uniform distribution: it says that an
n-way Majority of depth-ℓ, size-poly(d) circuits over
{0, 1}d can be learned to accuracy γ and confidence

β under the uniform distribution, using random exam-

ples only, in time dO(logℓ(nd/γ)) · log(1/β). However, the
boosting-based algorithm of [JKS02] is identical in its
high-level structure to Jackson’s Harmonic Sieve; the
only difference is that the [JKS02] weak learner sim-
ply performs an exhaustive search over all low-weight
parity functions to find a weak hypothesis that has
non-negligible correlation with the target, whereas the
Harmonic Sieve uses a more sophisticated membership-
query algorithm (that is an extension of the algorithm
of Kushilevitz and Mansour [KM93]). Arguments iden-
tical to the ones Jackson gives for the Harmonic Sieve
(in Section 7.1 of [Jac97]) can be applied unchanged to
the [JKS02] algorithm, to show that it extends, just like
the Harmonic Sieve, to learning under smooth distri-
butions if it is provided with an approximate evaluation
oracle for the smooth distribution. In more detail, these
arguments show that for any C-smooth distribution G′,
given sampling access to labeled examples by (G′, f)
(where f is the target n-way Majority of depth-ℓ, size-
poly(d) circuits) and approximate evaluation access to
G′, the [JKS02] algorithm learns f to accuracy γ and

confidence β under G′ in time dO(logℓ(Cnd/γ)) · log(1/β)
This is the result that is restated in our data privacy
language above (note that the smoothness parameter
there is C = 2/γ).

7 Conclusion and open problems

This work put forward a new reduction from privacy-
preserving data analysis to learning thresholds. Instan-
tiating this reduction with various different learning al-
gorithms, we obtained new data release algorithms for
a variety of query classes. One notable improvement
was for the database size (or error) in distribution-free
release of conjunctions and k-way conjunctions. Given
these new results, we see no known obstacles for even
more dramatic improvements on this central question.
In particular, we conclude with the following open ques-
tion.

Open Question 1. Is there a differentially private
distribution-free data release algorithm (with constant
error, e.g., α = 1/100) for conjunctions or k-way con-
junctions that works for databases of size poly(d) and
runs in time poly(n) (or poly(n, dk) for the case of k-
way conjunctions)?

Note that such an algorithm for k-way conjunctions
would also imply, via boosting [DRV10], that we can pri-
vately release all k-way conjunctions in time poly(n, dk),
provided that |D| > poly(d).
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