
Exact Combinatorial Branch-and-Bound for Graph Bisection

Daniel Delling∗ Andrew V. Goldberg† Ilya Razenshteyn‡ Renato F. Werneck§

Abstract

We present a novel exact algorithm for the minimum
graph bisection problem, whose goal is to partition
a graph into two equally-sized cells while minimizing
the number of edges between them. Our algorithm
is based on the branch-and-bound framework and, un-
like most previous approaches, it is fully combinatorial.
We present stronger lower bounds, improved branching
rules, and a new decomposition technique that contracts
entire regions of the graph without losing optimality
guarantees. In practice, our algorithm works particu-
larly well on instances with relatively small minimum
bisections, solving large real-world graphs (with tens of
thousands to millions of vertices) to optimality.

1 Introduction

We consider the minimum graph bisection problem. Its
input is an undirected, unweighted graph G = (V,E),
and its goal is to partition V into two sets A and B such
that |A|, |B| ≤ d|V |/2e and the number of edges between
A and B (the cut size) is minimized. This fundamental
combinatorial optimization problem is a special case of
graph partitioning, which asks for arbitrarily many cells.
It has numerous applications, including image process-
ing [45, 51], computer vision [33], divide-and-conquer
algorithms [35], VLSI circuit layout [6], distributed com-
puting [36], and route planning [14]. Unfortunately, the
bisection problem is NP-hard [21] for general graphs,
with a best known approximation ratio of O(log n) [40].
Only some restricted graph classes, such as grids with-
out holes [18] and graphs with bounded treewidth [28],
have known polynomial-time solutions.

In practice, there are numerous general-purpose
heuristics for graph partitioning, such as METIS [31],
SCOTCH [12, 38], Jostle [50], and KaFFPaE [42].
Successful heuristics tailored to particular graph classes,
such as DibaP [37] (for meshes) and PUNCH [15] (for
road networks), are also available. These algorithms

∗Microsoft Research Silicon Valley. dadellin@microsoft.com
†Microsoft Research Silicon Valley. goldberg@microsoft.com
‡Lomonosov Moscow State University. ilyaraz@gmail.com.

This work was done while the author was at Microsoft Research

Silicon Valley.
§Microsoft Research Silicon Valley. renatow@microsoft.com

are quite fast (often running in near-linear time) and
can handle very large graphs, with tens of millions of
vertices. They cannot, however, prove optimality or
provide approximation guarantees. Moreover, most of
these algorithms only perform well if a certain degree of
imbalance is allowed.

There is also a vast literature on practical exact al-
gorithms for graph bisection (and partitioning), mostly
using the branch-and-bound framework [34]. Most of
these algorithms use sophisticated machinery to obtain
lower bounds, such as multicommodity flows [43, 44], or
linear [3, 7, 20], semidefinite [1, 3, 30], and quadratic
programming [25]. Computing such bounds is quite ex-
pensive, however, in terms of time and space. As a
result, even though the branch-and-bound trees can be
quite small for some graph classes, published algorithms
can only solve instances of moderate size (with hundreds
or a few thousand vertices) to optimality, even after a
few hours of processing. (See Armbruster [1] for a sur-
vey.) Combinatorial algorithms [19] can offer a different
tradeoff: they provide weaker lower bounds, but com-
pute them much faster (often in sublinear time). This
works well for random graphs with up to 100 vertices,
but does not scale to larger instances.

This paper introduces a new exact algorithm for
graph bisection. We use novel combinatorial lower
bounds that can be computed in near-linear time in

Figure 1: Example of a minimum bisection.



practice. Even so, these bounds are quite strong, and
can be used to find optimum solutions to real-world
graphs with remarkably many vertices (more than a
million for road networks, or tens of thousands for VLSI
and mesh instances). See Figure 1 for an example. To
the best of our knowledge, our method is the first to
find exact solutions for instances of such scale. In fact,
it turns out that the running time of our algorithm
depends more on the size of the bisection than on the
size of the graph.

Our paper has four main contributions. First, we
introduce (in Section 3) new and improved combinato-
rial lower bounds that significantly strengthen previous
bounds. Second, we propose (in Section 4) elaborate
branching rules that help to exploit the full potential of
our bound. Third, Section 5 introduces a new decompo-
sition technique that boosts performance substantially:
it finds the optimum solution to the input by solving a
small number of (usually much easier) subproblems in-
dependently. Finally, we present (in Section 6) a careful
experimental analysis of our techniques.

2 Preliminaries

We use G = (V,E) to denote the input graph, with
n = |V | vertices and m = |E| edges. Each vertex
v ∈ V may have an associated integral weight, denoted
by w(v), and each edge e ∈ E has an associated integral
cost c(e). Let W =

∑
v∈V w(v). A partition of G is

a partition of V , i.e., a set of subsets of V which are
disjoint and whose union is V . We say that each such
subset is a cell, whose weight is defined as the sum of
the weights of its vertices. The cost of a partition is the
sum of the costs of all edges whose endpoints belong
to different cells. A bisection is a partition into two
cells. A bisection is ε-balanced if each cell has weight
at most (1 + ε)dW/2e. If ε = 0, we say the partition
is perfectly balanced (or just balanced). The minimum
graph bisection problem is that of finding the minimum-
cost balanced bisection.

To simplify exposition, unless otherwise noted we
consider the unweighted, balanced version of the prob-
lem, where w(v) = 1 for all v ∈ V , c(e) = 1 for all e ∈ E,
and ε = 0. We must therefore partition G into two cells,
each with weight at most dn/2e, while minimizing the
number of edges between cells. (Section 3.4 shows how
we can handle less restrictive settings.)

A standard technique for finding exact solutions
to NP-hard problems is branch-and-bound [22, 34].
It performs an implicit enumeration by dividing the
original problem into two or more slightly simpler
subproblems, solving them recursively, and picking the
best solution found. Each node of the branch-and-
bound tree corresponds to a distinct subproblem. In

a minimization context, the algorithm keeps a global
upper bound U on the solution of the original problem,
which can be updated as the algorithm finds improved
solutions. To process a node in the tree, we first
compute a lower bound L on any solution to the
corresponding subproblem. If L ≥ U , we prune the
node: it cannot lead to a better solution. Otherwise,
we branch, creating two or more simpler subproblems.

In the concrete case of graph bisection, each node
of the branch-and-bound tree corresponds to a partial
assignment (A,B), where A,B ⊆ V and A∩B = ∅. We
say the vertices in A or B are assigned, and all others are
free (or unassigned). This node implicitly represents all
valid bisections (A+, B+) that are extensions of (A,B),
i.e., such that A ⊆ A+ and B ⊆ B+. In particular, the
root node, which represents all valid bisections, has the
form (A,B) = ({v}, ∅). (Note that the root can fix an
arbitrary node v to one cell to break symmetry.)

To process an arbitrary node (A,B), we must com-
pute a lower bound L(A,B) on the value of any ex-
tension (A+, B+) of (A,B). The fastest exact algo-
rithms [1, 3, 7, 20, 25, 30] usually apply mathematical
programming techniques to find lower bounds. In this
paper, we use only combinatorial bounds. In particu-
lar, our basic algorithm uses the well-known [9, 15] flow
bound : the minimum s–t cut between A and B. It is a
valid lower bound because any extension (A+, B+) must
separate A from B. If the minimum cut happens to be
balanced, we can prune (and update U , if possible).
Otherwise, we choose a free vertex v and branch on it,
generating subproblems (A ∪ {v}, B) and (A,B ∪ {v}).

Note that the flow lower bound can only work well
when A and B have similar sizes; even in this case,
the corresponding minimum cuts are often far from
balanced, with one side containing many more vertices
than the other. This makes the flow bound rather weak
by itself. To overcome these issues, we introduce a new
packing lower bound.

3 The Packing Lower Bound

Let (A,B) be a partial assignment. To make it a
balanced bisection, at least bn/2c − |A| free vertices
must be assigned to A, obtaining an extended set A+.
(A similar argument can be made for B.) Suppose that,
for each possible extension A+ of A, we could compute
the maximum flow f(A+) between B and A+. Let
f∗ be the minimum such flow value (over all possible
A+); f∗ is clearly a lower bound on the value of any
bisection consistent with (A,B). Finding f∗ exactly
seems expensive; instead, we propose a fast algorithm
to compute a lower bound for f∗.

It works as follows (see Figure 2). Let G′ = G\(A∪
B) be the subgraph of G induced by the vertices that are



Figure 2: The packing bound. Filled circles are vertices in B; their free neighbors (filled squares) form a set
R. Left: We first partition the free vertices into connected cells, each with at most one element of R. Middle:
Given any extension A+ (hollow circles), the number of nontrivial cells it touches (eight) is a lower bound on the
minimum (B,A+) cut. Right: The extension A+ that hits the fewest cells (three) is a lower bound on any valid
extension.

currently unassigned, and let R be the set of vertices of
G′ with at least one neighbor in B (in G). We partition
the vertices in G′ into connected cells, each containing
at most one element of R. (Any such partition is valid;
as we shall see, we get better lower bounds if the cells
containing elements in R are as large as possible and
have roughly the same size.) We say that a cell C is
nontrivial if it contains exactly one element from R; we
call this element the root of the cell and denote it by
r(C). Cells with no element from R are trivial.

Lemma 3.1. Let A+ be a valid extension of A, and let
c(A+) be the number of nontrivial cells hit by A+. Then
c(A+) is a lower bound on the maximum flow f(B,A+)
from B to A+.

Proof. We claim we can find c(A+) disjoint paths be-
tween A+ and B, each in a different nontrivial cell. Take
a nontrivial cell C containing an element v from A+. Be-
cause the cell is connected, there is a path P within C
between v and its root r(C). Because r(C) belongs to
R, there is an edge e (in the original graph G) between
r(C) and a vertex w in B. The concatenation of P and
e is a path from A+ to B. Since any valid extension
must contain at least one edge from each of the c(A+)
disjoint paths, the lemma follows.

Recall that we need a lower bound on any possible
extension A+ of A. We get one by finding the extension
for which Lemma 3.1 gives the lowest possible bound
(for a fixed partition into connected cells). We can
build this extension with a greedy packing algorithm.
First, pick all vertices in trivial cells; because we cannot
associate these cells with paths, they do not increase the
lower bound. From this point on, we must pick vertices
from nontrivial cells. Since the lower bound increases
by one regardless of the number of vertices picked in a
cell, it makes sense to pick entire cells at once (after one

vertex is picked, others in the cell are free—they do not
increase the bound). The optimal strategy is to pick
cells in decreasing order of size, stopping when the sum
of the sizes of all picked cells (trivial and nontrivial) is
at least bn/2c− |A|. We have thus shown the following:

Theorem 3.1. The greedy packing algorithm finds a
lower bound on the value of any bisection consistent with
(A,B).

3.1 Computing Packing Lower Bounds. Note
that the packing lower bound is valid for any partition,
but its quality depends strongly on which one we pick.
We should choose the partition that forces the worst-
case extension A+ to hit as many nontrivial cells as
possible. This means minimizing the total size of the
trivial cells, and ensuring all nontrivial cells have the
same number of vertices. This problem is hard [13, 11],
but we propose two heuristics that work well in practice.

The first heuristic is a constructive algorithm that
builds a reasonable initial partition from scratch. Start-
ing from |R| unit cells (each with one element of R), in
each step it adds a vertex to a cell whose current size is
minimum. This algorithm can be implemented in linear
time by keeping with each cell C a list E+(C) of poten-
tial expansion edges, i.e., edges (v, w) such that v ∈ C
and w 6∈ C. Vertices that are not reachable from R are
assigned to trivial cells. As the algorithm progresses,
some cells will run out of expansion edges, as all neigh-
boring vertices will already be taken. This may lead to
very unbalanced solutions.

To improve the partition, we use our second heuris-
tic: a local search routine that makes neighboring cells
more balanced by moving vertices between them. To
do so efficiently, it maintains a spanning tree for each
nontrivial cell C, rooted at r(C). Initially, this is the
tree built by the constructive algorithm.



r(C2)r(C1)
w

v

⇓
r(C2)r(C1)

w
vu∗

Figure 3: Packing local search. Left: The boundary
edge (v, w) determines a path between cells C1 and C2

(triangles are subtrees). Right: Splitting the path at a
different point leads to a more balanced partition.

The local search works by moving entire subtrees
between neighboring cells. It processes one boundary
edge at a time. Consider one such edge (v, w), with
v ∈ C1 and w ∈ C2. Without loss of generality, assume
cell C1 has more vertices than C2. To improve the
solution, we attempt to move an entire subtree from C1

to C2. We find the best subtree to switch by traversing
the path (in the spanning tree of C1, the largest cell)
from v to r(C1). (See Figure 3.) Each vertex u on the
path is associated with a possible move: removing the
subtree rooted at u from C1 and inserting it into C2.
Among these, let u∗ be the vertex corresponding to the
most balanced final state (in which the sizes of C1 and
C2 would be closest). If this is more balanced than the
current state, we switch.

The local search runs until a local optimum, when
no improving switch exists. To implement it efficiently,
we keep track of boundary edges and subtree sizes ex-
plicitly. This ensures the algorithm runs in polynomial
(but superlinear) worst-case time. In practice, however,
we reach a local optimum after very few moves, and the
local search is about as fast as the constructive algo-
rithm. (Note that theoretical improvements would be
possible using a dynamic-tree data structures [46], but
in practice they are quite costly for graphs of moderate
diameter [49], as in our case.)

3.2 Combining Packing and Flows. Although we
have two lower bounds, based on packing and flows, we
cannot simply add them to obtain a unified lower bound,
since they may interfere with one another. It is easy to
see why: each method finds (implicitly) a set of edge-
disjoint paths such that at least one edge from each such
path must be in the solution. (For the flow bound, these
are the paths in the flow decomposition.) Simply adding

the bounds would require the sets of paths found by
each algorithm to be mutually disjoint, which is usually
not the case. To combine the bounds properly, we must
first compute the flow bound, then a packing bound that
takes the flow into account.

More precisely, we first compute a flow bound f as
usual. We then remove all flow edges from G, obtaining
a new graph Gf . Finally, we compute the packing lower
bound p on Gf . Now f + p is a valid lower bound
on the cost of the best bisection extending the current
assignment (A,B), since there is no overlap between the
paths considered by each method (flow and packing).

This algorithm provides valid lower bounds regard-
less of the flow decomposition used, but its packing por-
tion is better if it has more edges to work with. We
therefore favor flow decompositions with as few edges
as possible: instead of using the standard push-relabel
approach [24], we prefer an augmenting-path algorithm
that greedily sends flows along shortest paths. Our im-
plementation uses a simplified version of the IBFS (in-
cremental breadth first search) algorithm [23], which is
about as fast as push-relabel on our test instances.

3.3 Forced Assignments. Assume we have already
computed the flow bound f followed by an additional
packing lower bound p (using the neighbors of B as
roots). For a free vertex v, let N(v) be its set of
neighbors in Gf (the graph without flow edges), let
degGf

(v) = |N(v)|, and let C be the cell (in the
packing partition) containing v. We can often use
logical implications to assign v to one of the sides (A
or B) without actually branching on it. The idea is
simple: if we can show that assigning v to one side
would increase the lower bound to at least match the
upper bound, we can safely assign v to the other side.

First, consider what would happen if v were added
to A. Let x(v), the expansion of v, be the number of
nontrivial cells (from the packing bound) that contain
vertices from N(v). Note that 0 ≤ x(v) ≤ degGf

(v).
Assigning v to A would create x(v) disjoint paths from
A to B, effectively increasing the flow bound to f ′ =
f+x(v). (See Figure 4.) Note, however, that f ′+p may
not be a valid lower bound, since the new paths may
interfere with the “pure” packing bound. Instead, we
compute a restricted packing lower bound p′, taking as
trivial the cells that intersect N(v) (we just assume they
belong to A+). If f ′+p′ is at least as high as the current
upper bound, we have proven that v must be assigned
to B. In general, this test will succeed only when the
cells are unevenly balanced (otherwise the increase in
flow is offset by a decrease in the packing bound).

Conversely, consider what would happen if v were
added to B: we could split C into degGf

(v) cells, one



v v v

Figure 4: Illustration of forced assignments. Left: State after initial bounds have been computed (with flow
edges already removed). Filled circles belong to B, and v is free. Middle: Assigning v to A would increase the
flow bound. Right: Assigning v to B can increase the packing bound by splitting a cell into several ones.

rooted at each neighbor of v. The size of each new
cell can be computed in constant time, since we know
the subtree sizes within the original spanning tree of
C.1 We then recompute the packing lower bound (using
the original cells, with C replaced by the newly-created
subcells) and add it to the original flow bound f . If
this at least matches the current upper bound, then
we have proven that v must actually be assigned to A.
This works particularly well for trivial cells (the packing
bound is unlikely to change for nontrivial ones).

Note that these forced assignments only work when
lower and upper bounds are very close. Their main ben-
efit is to eliminate vertices that are not good candidates
for branching. Since the tests are very fast, they are
still worth running.

3.4 Extensions. We can easily generalize the pack-
ing bound to handle ε-balanced partitions. In this case,
cells must have size at most M+ = b(1+ε)dn/2ec and at
least M− = n−M+; the packing bound must distribute
M− vertices instead of bn/2c. Dealing with weighted
vertices is also quite simple. The packing bound is the
minimum number of cells containing at least half of the
total weight. When creating the packing partition, we
should therefore strive to make cells balanced by weight
instead of number of vertices; this can easily be incor-
porated into the local search. To handle small integral
edge weights, we can simply use parallel edges. Addi-
tional extensions (such as arbitrary edge weights or par-
titions into more than two cells) are possible, but more
complicated.

4 Branching

If the lower bound for a given subproblem (A,B) is
not high enough to prune it, we must branch on an

1Note that, if the cell containing v is nontrivial, we could

split it into degGf
(v) + 1 cells by keeping the original root. For

simplicity and performance, our implementation does not do this.

unassigned vertex v, creating subproblems (A∪ {v}, B)
and (A,B∪{v}). Our experiments show that the choice
of branching vertices has a significant impact on the size
of the branch-and-bound tree (and the total running
time). Intuitively, we should branch on vertices that
lead to higher lower bounds on the child subproblems.
Given our lower-bounding algorithms, we can infer some
properties the branching vertex v should have.

First, the flow and packing bounds would both ben-
efit from having the assigned vertices evenly distributed
(on both sides of the optimum bisection). Since we do
not know what the bisection is, a reasonable strategy
is to spread vertices over the graph by branching on
vertices that are far from both A and B. (Note that
a single BFS can find the distances from A ∪ B to all
vertices.) We call this the distance criterion.

Second, we prefer to branch on vertices that appear
in large cells (from the packing bound). By branching
on a large cell, we allow it to be split, thus improving
the packing bound.

Finally, to help our flow bound, we would like to
send a large amount of flow from a branching vertex v
to A or B. This suggests branching on vertices that
are well-connected to the rest of the graph. A proxy for
connectivity is the degree of v, a trivial upper bound on
any flow out of v.

In practice, connectivity tends to be more impor-
tant than the other criteria, so we branch on the ver-
tex v that maximizes q(v) = dist(v) · csize(v) · conn(v)2,
where dist(v) indicates the distance from v to the closest
assigned vertex, csize(v) is the size of the cell containing
v, and conn(v) is the connectivity (degree) of v.

4.1 Filtering. For some graph classes (notably road
networks), high-degree vertices are often separated by a
small cut from the rest of the graph [15]. This makes
degrees poor proxies for connectivity. We could obtain
a more robust measure of connectivity by reusing the
packing algorithm described in Section 3. For each



vertex v, we can run the algorithm with A = ∅ and
B = {v} to find a partition of V \ {v} into deg(v)
cells. If v is well-connected, all cells should have roughly
the same size; if not, some cells will be much smaller
than others. Unfortunately, computing this bound for
every vertex in the graph would be quite expensive,
particularly for large road networks.

Instead of explicitly computing the packing bound
for every vertex in the graph, we propose a filtering
routine. Its goal is more modest: determine if some
of the most promising vertices (those with the highest
degrees) are actually well-connected to the rest of the
graph. This is done in two stages.

First, we determine whether each vertex is sepa-
rated by a cut with exactly one or two edges from the re-
mainder of the graph. We use the algorithm of Pritchard
and Thurimella [39] to find all 1-cuts and 2-cuts in the
graph in linear time. (These cuts are quite numerous in
road networks [15].) For a vertex v, define cut(v) = 1
if it is inside a 1-cut of size at most n/10. Otherwise,
if v is contained in a 2-cut of size at most n/10, let
cut(v) = 2. For all other vertices v, let cut(v) = deg(v).

The second stage of filtering computes the packing
bound for the set S containing the 2U vertices v with the
highest cut(v) values (recall that U is the best known
upper bound), with ties broken at random. Let pack(v)
be the corresponding values. Let δ be the floor of the
average value of pack(v) over all vertices v ∈ S. For all
vertices w 6∈ S, we set pack(w) = δ.

The branch-and-bound algorithm then uses the
standard criterion (dist(v) ·csize(v) ·conn(v)2) to choose
the next vertex to branch on, but using a modified
definition of connectivity: conn(v) = cut(v) · pack(v).

5 Contraction

Both lower bounds we consider depend crucially on
the degrees of the vertices already assigned. More
precisely, let DA and DB be the sum of the degrees of
all vertices already assigned to A and B, respectively,
with DA ≤ DB (without loss of generality). It is easy
to see that the flow bound cannot be larger than DA,
and that the packing bound is at most DB/2 (when
the regions are perfectly balanced). If the maximum
degree in the graph is a small constant (which is often
the case on meshes, VLSI instances, and road networks,
for example), our branch-and-bound algorithm cannot
prune anything until deep in the tree. Arguably, the
dependency on degrees should not be so strong. The
fact that increasing the degrees of only a few vertices
could make a large instance substantially easier to solve
is counter-intuitive.

A natural approach to deal with this is branching on
entire regions (connected subgraphs) at once. We would

like to pick a region and add all of its vertices to A in
one branch, and all to B in the other. Since the “degree”
of the region (i.e., the number of neighbors outside
the region) is substantially higher, lower bounds should
increase much faster as we traverse the branch-and-
bound tree. The obvious problem with this approach is
that the optimal bisection may actually split the region
in two. Assigning the entire region to A or to B does
not exhaust all possibilities.

One way to overcome this is to make the algorithm
probabilistic. Intuitively, if we contract a small number
of random edges, with reasonable probability none of
them will actually be cut in the minimum bisection. If
this is the case, the optimum solution to the contracted
problem is also the optimum solution to the original
graph. We can boost the probability of success by
repeating this entire procedure multiple times (with
multiple randomly selected contracted sets) and picking
the best result found. With high probability, it will be
the optimum.

Probabilistic contractions are a natural approach
for cut problems, and indeed known. For example, they
feature prominently in Karger and Stein’s randomized
global minimum-cut algorithm [29], which uses the fact
that contracting a random edge is unlikely to affect the
solution. This idea has been used for the minimum
bisection problem as well. Bui et al. [9] use contraction
within a polynomial-time method which, for any input
graph, either outputs the minimum bisection or halts
without output. They show the algorithm has good
average performance on the class of d-regular graphs
with small enough bisections.

Since our goal is to find provably optimum bi-
sections, probabilistic solutions are inadequate. In-
stead, we propose a contraction-based decomposition al-
gorithm, which is guaranteed to output the optimum so-
lution for any input. It is (of course) still exponential,
but for many inputs it has much better performance
than our standard branch-and-bound algorithm.

The algorithm is as follows. Let U be an upper
bound on the optimum bisection. First, partition E into
U+1 disjoint sets (E0, E1, . . . , EU ). For each subset Ei,
create a corresponding (weighted) graph Gi by taking
the input graph G and contracting all the edges in Ei.
Then, use our standard algorithm to find the optimum
bisection Ui of each graph Gi independently, and pick
the best.

Theorem 5.1. The decomposition algorithm finds the
minimum bisection of G.

Proof. Let U∗ ≤ U be the minimum bisection cost.
We must prove that min(Ui) = U∗. First, note that
Ui ≥ U∗ for every i, since any bisection of Gi can be



trivially converted into a valid bisection of G. Moreover,
we argue that the solution of at least one Gi will
correspond to the optimum solution of G itself. Let
E∗ be the set of cut edges in an optimum bisection of
G. (If there is more than one optimum bisection, pick
one arbitrarily.) Because |E∗| = U∗ and the Ei sets
are disjoint, E∗ ∩Ei can only be nonempty for at most
U∗ sets Ei. Therefore, there is at least one j such that
E∗ ∩ Ej = ∅. Contracting the edges in Ej does not
change the optimum bisection, proving our claim.

The decomposition algorithm solves U + 1 inde-
pendent subproblems, but the high-degree vertices in-
troduced by contraction should make each subproblem
much easier for our branch-and-bound routine. Besides,
the subproblems are not completely independent: they
can all share the same best upper bound. In fact, we
can think of the algorithm as a single branch-and-bound
tree with a special root node that has U + 1 children,
each responsible for a distinct contraction pattern. The
subproblems are not necessarily disjoint (the same par-
tial assignment may be reached in different branches),
but this does not affect correctness.

5.1 Finding a Decomposition. The decomposition
algorithm is correct regardless of how edges are parti-
tioned among subproblems, but its performance may
vary significantly. To make all subproblems have com-
parable degree of difficulty, our edge partitioning algo-
rithm should allocate roughly the same number of edges
to each subproblem. Moreover, the choice of which
edges to allocate to each subproblem Gi also matters.
The effect on the branch-and-bound algorithm is more
pronounced if we can create vertices with much higher
degree. We can achieve this by making sure the edges
assigned to Ei induce relatively large connected com-
ponents (or clumps) in G. (In contrast, if all edges in
Ei are disjoint, the degrees of the contracted vertices in
Gi will not be much higher that those of the remaining
vertices.) Finally, the shape of each clump matters: all
else being equal, we would like its expansion (number of
neighbors outside the clump) to be as large as possible.

To achieve these goals, we perform the decomposi-
tion in two stages: the clump generation partitions all
the edges in the graph into clumps, while the allocation
stage ensures that each subproblem is assigned a well-
spread subset of the clumps of comparable total size.

The goal of the generation routine is to build a set F
of clumps (initially empty) that partition all the edges in
the graph. It does so by maintaining a set C of candidate
clumps, which are not necessarily disjoint and may not
include all edges in the graph. The clumps in C are high-
expansion subpaths extracted from BFS trees grown
from random vertices. (Because they minimize the

number of internal edges, such paths tend to have high
expansion.) Once there are enough candidates in C, the
algorithm transfers a few clumps from C to the final set
F . The clumps are picked from C greedily, according
to their expansion, and observing the constraint that
clumps in F must be edge-disjoint. Once C no longer
has suitable clumps with high enough expansion (higher
than a certain threshold τ), a new iteration of the
algorithm starts: it repopulates C by growing new BFS
trees, then transfers some of the resulting candidate
clumps to F . This algorithm stops when F is complete,
i.e., when every edge in the graph belongs to a clump
in F . To ensure convergence, the algorithm gradually
decreases the threshold τ between iterations: initially
only clumps with very high expansion are added to
F , but eventually even single-edge clumps are allowed.
(The interested reader will find additional details in
Section A, in the appendix.)

The allocation phase distributes the clumps to the
U + 1 subproblems (E0, E1, . . . , EU ), which are initially
empty. It allocates clumps one at a time, in decreasing
order of expansion (high-expansion clumps are allocated
first). In each step, a clump c is assigned to the set
Ei whose distance to c is maximum, with ties broken
arbitrarily. The distance from Ei to c is defined as the
distance between their vertex sets, or infinity if Ei is
empty. (For efficiency, we keep the Voronoi diagram of
each Ei explicitly, updating it whenever a new clump
is added.) This ensures clumps are well spread in each
subproblem.

6 Experiments

We implemented our algorithms in C++ using Visual
Studio 2010. We ran most experiments on one core
of an Intel Core 2 Duo E8500 running Windows 7
Enterprise at 3.16 GHz with 4 GB of RAM. For a couple
of particularly hard instances (clearly marked), we ran
a distributed version of the code using the DryadOpt
framework [8]. DraydOpt is written in C#, and calls
our native C++ code to solve individual nodes of the
branch-and-bound tree. The distributed version was
run on a cluster where each machine has two 2.6 GHz
dual-core AMD Opteron processors, 16 GB of RAM,
and runs Windows Server 2003. We used 100 machines
only. We always report the total CPU time, the sum
of the times spent by our C++ code on all 402 cores
(400 on the cluster plus 2 on our standard machine).
Note that this excludes the communication overhead,
which is negligible. Unless otherwise mentioned, we find
perfectly balanced partitions (ε = 0).

6.1 Parameter Evaluation. We start by consider-
ing the effects of each improvement we propose on per-



input upper bound

ru
nn

in
g 

tim
e 

[s
]

0.
01

0.
1

1
10

10
0

0.
01

0.
1

1
10

10
0

10 15 20 25 30

●

+
x

packing bound (A)
+ local search (B)
+ forced assignment (C)
+ better branching (D)
+ filtering (E)
+ decomposition (F)
+ clumps (G)

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

+
+ +

+
+

+
+

+
+

+
+ +

+
+

+
+ +

+

x x
x

x
x

x
x

x

x x
x

x
x

x
x

x
x x

input upper bound

ru
nn

in
g 

tim
e 

[s
]

0.
01

0.
1

1
10

10
0

0.
01

0.
1

1
10

10
0

10 15 20 25 30 35 40 45 50 55 60

●

+
x

packing bound (A)
+ local search (B)
+ forced assignment (C)
+ better branching (D)
+ filtering (E)
+ decomposition (F)
+ clumps (G)

●

●

●

●

●

●

●

●

+

+

+

+

+

+

+

+

+

x
x

x

x

x

x

x

x

x

Figure 5: Running times of increasingly sophisticated versions of our algorithm as a function of the upper bound U
on the inputs alue5067 (left) and mannequin (right).

formance. For concreteness, we focus on two instances:
alue5067 is a VLSI instance (a grid graph with holes
used as a benchmark instance for the Steiner problem
in graphs [32]) with 3524 vertices, 5560 edges, and opti-
mum bisection opt = 30; mannequin is a mesh (triangu-
lation) used in computer graphics studies [41] with 689
vertices, 2043 edges, and opt = 61.

Figure 5 shows the running times of several versions
of our algorithm as the input bound U varies from 10
to opt + 1. (When U ≤ opt , our algorithm simply
proves that U is a valid lower bound.) Each version
builds on the previous one. Version A is the most basic:
it uses the flow bound, the packing bound (using only
the constructive algorithm to find cells), and branches
on random vertices. Version B improves the packing
partition using local search. Version C adds forced
assignments. Versions D and E improve the branching
criteria (from random): D uses distances, cell sizes,
and degrees, while E filters well-connected branching
vertices as well (as explained in Section 4.1). Versions
F and G decompose the problem into U+1 subproblems;
F partitions the edges at random, while G uses clumps.

For alue5067, each version of the algorithm is faster
than the previous one. The effect is minor for some fea-
tures, such as forced assignments and random decompo-
sition (since the subproblems it generates are not much
easier). Other improvements—notably local search, so-
phisticated branching, and decomposition by clumps—
clearly improve the asymptotic performance of the al-
gorithm. (Note that the vertical axis uses a logarith-
mic scale.) Finally, we note that the packing bound it-
self leads to huge speedups: using only the flow bound,
our algorithm would take more than 5 minutes for any
U ≥ 3—too slow to appear in the plot.

The results for mannequin are similar, although de-

composition is not as helpful (it even hurts if edges are
distributed at random), since mannequin has higher orig-
inal degrees and much fewer fixed edges per subproblem
(33) than alue5067 (179).

For both instances, Version G spends half the time
to process each node on the flow computation, with
the other half split roughly evenly among the remaining
routines: constructive, local search, forced assignments,
and branching. This indicates that processing a branch-
and-bound node takes essentially linear time. Recall
that filtering is done in a preprocessing stage (separately
for each subproblem), and for alue5067 (with U =
opt + 1) is almost as expensive as traversing the actual
branch-and-bound tree; for mannequin, it takes roughly
15% of the total time (but does not help as much).
For the remaining experiments, we usually do not use
filtering (except as noted, for large road networks).

Finally, we note that all versions of the algorithm
have exponential dependence on U . This suggests an
obvious algorithm for finding the optimum bisection
opt of an instance (in case it is not known). We can
simply run our algorithm repeatedly with increasing
values of U ; the algorithm will find the solution as
soon as it gets an input U > opt . Since the algorithm
is exponential in U , the total running time of this
approach is not much higher than running directly from
opt + 1. Since our focus is on lower bounds (and to
minimize fluctuations), we actually use U = opt + 1
for all remaining experiments, unless otherwise noted.
Section 6.5 will examine this issue in more detail.

6.2 Asymptotics. We now run our algorithm on
synthetic graphs to get a better understanding of its
asymptotic behavior. Here we test version D (without
decomposition) on three graph classes. The first one



number of nodes

ru
nn

in
g 

tim
e 

[s
]

0.
00

1
0.

01
0.

1
1

10
10

0

0.
00

1
0.

01
0.

1
1

10
10

0

0 200 400 600 800 1000 1200 1400

●

+
x

delaunay graphs
6−regular random graphs
planted bisection (30)

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

+
+

+

+

+

+

+

+

x
x x

x x x x x x x x x x x x

cut size

ru
nn

in
g 

tim
e 

[s
]

0.
00

1
0.

01
0.

1
1

10
10

0

0.
00

1
0.

01
0.

1
1

10
10

0

10 15 20 25 30 35 40 45 50

● planted bisection (1000 vertices)

● ●
●

● ● ●
●

● ●
● ● ●

●
● ●

●
●

●
● ●

●
●

● ●
● ●

●
●

●
●

●
●

●
●

●
● ●

● ●
● ●

Figure 6: Running times on various synthetic graph classes.

consists of Delaunay graphs, each representing the De-
launay triangulation of n points picked at random in
the unit square. The second class consists of 6-regular
random graphs, built as the union of 6 random perfect
matchings. Finally, we consider 6-regular graphs with
planted bisections of size 30 (we take the union of two
6-regular random graphs with n/2 vertices each and add
30 random edges between them). Note that these three
classes have roughly the same density (m = 3n), but
differ significantly on the expected minimum bisection
size: approximately 2

√
n for Delaunay, Θ(n) for random

graphs, and exactly 30 for planted bisections. Figure 6
(left) shows the average running times (over 10 runs) of
our algorithm as n varies. We always use U = opt + 1.

It is clear that running times depend more strongly
on the bisection than on graph size. Our method quickly
becomes impractical for random graphs (it takes more
than two minutes on graphs with 80 nodes), but is much
more practical for Delaunay triangulations. For random
graphs with small planted bisections, the running time
is essentially linear in n: all branch-and-bound trees
have roughly 1050 nodes (with small fluctuations).

Figure 6 (right) also considers 6-regular random
graphs with planted bisections, but now with n = 1000
and varying bisection size. As expected, running times
increase exponentially with the bisection size.

6.3 DIMACS Instances. This analysis indicates
our algorithm should be able to handle fairly large
real-world inputs, as long as their optimum bisection
is not too large. To test this, we consider instances
from the 10th DIMACS Implementation Challenge [4].
Since the challenge is meant to evaluate mainly heuris-
tics, most instances are quite large (up to hundreds of
millions of vertices) and have large bisections. Still,
our algorithm can solve a wide variety of (smaller) in-

stances to optimality. We consider instances from four
classes: clustering, Delaunay triangulations, road net-
works, and instances from Walshaw’s graph partition-
ing repository [48]. For clustering instances, which are
smaller, we use version D of our algorithm; for the three
remaining series (delaunay, streets, and walshaw), which
are larger and sparse, we also use decomposition by
clumps.

Table 1 shows the detailed performance of our
algorithm. For each instance, we show the number of
vertices (n), the number of edges (m), and the optimum
bisection value (opt), followed by the total number of
nodes in the branch-and-bound tree (bb) and the total
running time of our algorithm in seconds.

As expected, running times depend more heavily
on the size of the bisection than on the graph itself. In
particular, our algorithm could easily solve luxembourg
(a road network), even though it has more than 100
thousand vertices.

We can also find the minimum bisections of rea-
sonably large delaunay graphs, which are Delaunay tri-
angulations of random points on the plane. Note that
this version of the algorithm (with decomposition) is
actually asymptotically better than the one tested in
Figure 6 (without decomposition).

We can also deal with some inputs from the Wal-
shaw repository [48]. For every instance in the table,
we show (for the first time, to the best of our knowl-
edge) that the best previously known bisections—found
by heuristics [5, 10, 26, 27, 47]—are indeed optimal.

Our algorithm can also find exact solutions for
some small clustering graphs. For these instances, the
minimum bisection value is much larger relative to the
graph size.



Table 1: Instances from the 10th DIMACS Implementation Challenge with ε = 0; bb is the number of branch-
and-bound nodes and time is the total CPU time. All runs are sequential except for data, which uses DryadOpt.

class name n m opt bb time [s]

clustering karate 34 78 10 4 0.00
chesapeake 39 170 46 110 138 3.08
dolphins 62 159 15 110 0.01
lesmis 77 820 61 3 905 756 230.30
polbooks 105 441 19 8 0.00
football 115 613 61 7 301 1.08
power 4 941 6 594 12 94 0.21

delaunay delaunay n10 1 024 3 056 63 14 361 18.25
delaunay n11 2 048 6 127 86 65 080 175.73
delaunay n12 4 096 12 264 118 474 844 2 711.73
delaunay n13 8 192 24 547 156 3 122 845 37 615.97

streets luxembourg 114 599 119 666 17 786 91.17

walshaw data 2 851 15 093 189 495 569 759 5 750 387.82
3elt 4 720 13 722 90 12 707 82.10
uk 4 824 6 837 19 1 624 3.81
add32 4 960 9 462 11 225 2.80
whitaker3 9 800 28 989 127 7 044 133.04
fe 4elt2 11 143 32 818 130 10 391 224.26
4elt 15 606 45 878 139 25 912 769.35

Table 2: Performance on various large instances with ε = 0; bb is the number of branch-and-bound nodes, time
is the total CPU time. All runs are sequential except for dragon-043571, which uses DryadOpt.

class name n m opt bb time [s]
mesh dolphin 284 846 26 386 0.14

mannequin 689 2 043 61 41 702 31.34
venus-711 711 2 127 43 1 370 1.17
beethoven 2 521 7 545 72 18 779 57.77
venus 2 838 8 508 83 5 180 19.95
cow 2 903 8 706 79 19 911 66.58
fandisk 5 051 14 976 137 820 604 5 183.86
gargoyle 10 002 30 000 175 2 607 924 46 703.49
feline 20 629 61 893 148 146 973 4 564.73
dragon-043571 21 890 65 658 148 52 016 708 5 854 478.60

road ny 264 346 365 050 18 1 584 437.58
bay 321 270 397 415 18 1 702 555.41
col 435 666 521 200 29 2 604 1 583.80
fla 1 070 376 1 343 951 25 830 2 699.00
nw 1 207 945 1 410 387 18 264 1 563.08

vlsi alue5067 3 524 5 560 30 1 620 3.62
alue7065 34 046 54 841 80 18 485 504.08
alue7080 34 479 55 494 80 17 497 478.23



6.4 Assorted Large Instances. We now consider
some natural classes of large instances with relatively
small (but nontrivial) bisections. We take three classes
of inputs: meshes (triangulations) representing various
objects [41], road networks (from the 9th DIMACS
Implementation Challenge [17], on shortest paths), and
VLSI instances [32] (grid graphs with holes). The
performance of our algorithm is summarized in Table 2.
We use decomposition by clumps for all three classes,
and filtering for road (but not mesh or vlsi). Once again,
we use ε = 0 and U = opt + 1.

As Table 2 shows, the performance of our algorithm
again depends more strongly on the bisection than on
graph size. In particular, we can solve fla and nw, with
more than a million vertices, in less than an hour. These
and other road networks need surprisingly few branch-
and-bound nodes; for these instances, a large fraction of
the total time is usually taken by clump decomposition
and filtering. The other two classes considered (vlsi
and mesh) have larger bisections, and need substantially
more branch-and-bound nodes. Even so, we can handle
VLSI instances with tens of thousands of vertices, as
well as reasonably large meshes. As Figures 7 and 8 in
the appendix illustrate, these instances are by no means
trivial. In particular, to solve dragon-043571 (whose
optimal solution is illustrated in Figure 1), we had to
use our distributed implementation. In contrast, we can
solve feline, which has similar size and solution value but
is much more regular, in less than two CPU hours.

6.5 Comparison with Other Approaches. We
now compare our algorithm to the best mathematical
programming techniques we are aware of. Table 3
compares the running times of our algorithm (version
D) with the best results reported by Armbruster [1] and
Hager et al. [25] on a few publicly available [2] instances
from the literature, including meshes (mesh), VLSI
instances (gap, taq), and graphs derived from sparse
symmetric linear systems (KKT). For each instance we
use the most common value of ε in the literature (either
0.00 or 0.05). Some instances have edges with small
integral weights, which are converted into parallel edges
by our algorithm (this is accounted for in the value of
m reported in the table). Note that the algorithms
were run on different (but roughly comparable) Intel
machines: Pentium 4 540 (3.2 GHz) for Armbruster [1],
Xeon X5355 (2.66 GHz) for Hager et al. [25], and Core
2 Duo E8500 (3.16 GHz) for our algorithm. All runs are
sequential.

Besides running our algorithm with U = opt +1 (as
in our standard experiments), we also consider a version
in which no upper bound U is given. This version
repeats our basic algorithm with increasing values of
U : starting from U0 = 1, it sets Ui = d1.5Uie in each
step i and stops when it finds a bisection that is strictly
better than the current Ui.

The table shows that either version of our algorithm
can be faster (sometimes substantially so) than the
mathematical programming approaches for instances

Table 3: Comparison between the exact approaches of Armbruster [1] and Hager et al. [25] and two versions of
our method, with different input upper bounds U . Note that some results by Hager et al. [25] are not available.
Running times are in seconds.

U = opt + 1 no U given other algo.
name n m ε opt bb time bb time [Arm07] [HPZ11]
gap2669.6182.int 2 669 12 280 0.05 74 5 612 26.88 7 329 34.90 651.03 —
gap2669.24859.int 2 669 29 037 0.05 55 6 0.06 28 0.15 348.95 —
KKT lowt01 m2 82 260 0.05 13 26 0.02 110 0.03 0.19 —
KKT putt01 m2 115 433 0.05 28 4 161 0.31 10 704 0.81 1.67 1.51
mesh.35.54.int 35 54 0.00 3 10 0.02 20 0.02 0.00 —
mesh.69.112.int 69 112 0.00 4 20 0.02 36 0.02 0.03 0.36
mesh.70.120.int 70 120 0.00 7 17 0.02 27 0.02 0.54 —
mesh.74.129.int 74 129 0.00 8 39 0.02 232 0.05 1.41 0.49
mesh.137.231.int 137 231 0.00 7 43 0.03 62 0.03 2.67 5.35
mesh.274.231.int 137 231 0.00 8 56 0.03 268 0.07 2.63 7.88
mesh.138.232.int 138 232 0.00 8 75 0.03 508 0.10 10.22 6.91
mesh.148.265.int 148 265 0.00 7 21 0.02 34 0.02 0.77 4.30
mesh.274.469.int 274 469 0.00 7 37 0.03 50 0.03 8.52 24.62
taq170.424.int 170 4 317 0.05 55 4 807 2.67 5 291 3.00 28.68 —
taq228.692.int 228 5 759 0.05 63 519 0.41 1 072 0.82 4.20 —
taq278.396.int 278 5 158 0.05 37 714 0.38 1 050 0.57 1.56 —
taq1021.2253.int 1 021 4 510 0.05 118 78 862 125.92 83 286 134.61 169.65 —



with relatively small bisections. We stress, however,
that the algorithms based on mathematical program-
ming can handle graphs with large bisections (not shown
in the table) much better. Our algorithm is not compet-
itive in such cases. For example, Armbruster can solve
the instance alue6112.16896 in 80 minutes, whereas our
algorithm could not prove opt = 272 after a day, even
with U = opt + 1 given.

7 Final Remarks

We presented a novel branch-and-bound algorithm that
can find exact solutions to remarkably large real-world
instances, particularly those with small bisections. The
resulting algorithm is quite practical, and could con-
ceivably be used within graph partitioning heuristics,
which often need to find bisections of small subprob-
lems [12, 15, 31, 42]. It may be possible to obtain fur-
ther speedups: improved branching heuristics, primal
algorithms, and strengthened versions of the packing
bound (for weighted edges) should all help. A poten-
tial topic for future research is whether the techniques
we propose (particularly decomposition, but also the
packing lower bound) can be effectively integrated into
mathematical programming methods. A combination
of recent results [16, 28] suggests that the minimum bi-
section problem is fixed-parameter tractable (parame-
terized by minimum bisection size) for planar and al-
most planar graphs, such as road networks, VLSI, and
meshes. It would be interesting to know whether sim-
ilar ideas could give nontrivial performance guarantees
to some variant of our algorithm.

Acknowledgments. We thank Diego Nehab for
the benchmark meshes and visualization tools, Tony
Wirth for discussions on the hardness of various sub-
problems, and the referees for their helpful comments.

References

[1] M. Armbruster. Branch-and-Cut for a Semidefinite
Relaxation of Large-Scale Minimum Bisection Prob-
lems. PhD thesis, Technische Universität Chemnitz,
2007.

[2] M. Armbruster. Graph Bisection and Equipartition,
2007. www.tu-chemnitz.de/mathematik/discrete/

armbruster/diss/.
[3] M. Armbruster, M. Fügenschuh, C. Helmberg, and

A. Martin. A Comparative Study of Linear and
Semidefinite Branch-and-Cut Methods for Solving the
Minimum Graph Bisection Problem. In IPCO, LNCS
5035, pp. 112–124, 2008.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wag-
ner. 10th DIMACS Implementation Challenge – Graph
Partitioning and Graph Clustering, 2011. www.cc.

gatech.edu/dimacs10/index.shtml.

[5] S. T. Barnard and H. Simon. Fast Multilevel Im-
plementation of Recursive Spectral Bisection for Par-
titioning Unstructured Problems. Concurrency and
Computation: Practice and Experience, 6(2):101–117,
1994.

[6] S. N. Bhatt and F. T. Leighton. A Framework for
Solving VLSI Graph Layout Problems. Journal of
Computer and System Sciences, 28(2):300–343, 1984.

[7] L. Brunetta, M. Conforti, and G. Rinaldi. A Branch-
and-Cut Algorithm for the Equicut Problem. Mathe-
matical Programming, 78:243–263, 1997.

[8] M. Budiu, D. Delling, and R. F. Werneck. DryadOpt:
Branch-and-Bound on Distributed Data-Parallel Exe-
cution Engines. In IPDPS, pp. 1278–1289, 2011.

[9] T. N. Bui, S. Chaudhuri, F. Leighton, and M. Sipser.
Graph Bisection Algorithms with Good Average Case
Behavior. Combinatorica, 7(2):171–191, 1987.

[10] P. Chardaire, M. Barake, and G. P. McKeown. A
PROBE-Based Heuristic for Graph Partitioning. IEEE
Transactions on Computers, 56(12):1707–1720, 2007.

[11] F. Chataigner, L. B. Salgado, and Y. Wakabayashi.
Approximation and Inapproximability Results on Bal-
anced Connected Partitions of Graphs. Discrete Math-
ematics and Theoretical Computer Science, 9(1):177–
192, 2007.

[12] C. Chevalier and F. Pellegrini. PT-SCOTCH: A
Tool for Efficient Parallel Graph Ordering. Parallel
Computing, 34:318–331, 2008.

[13] J. Chleb́ıková. Approximating the Maximally Bal-
anced Connected Partition Problem in Graphs. In-
formation Processing Letters, 60(5):223–230, 1996.

[14] D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Customizable Route Planning. In SEA,
LNCS 6630, pp. 376–387. Springer, 2011.

[15] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F.
Werneck. Graph Partitioning with Natural Cuts. In
IPDPS, pp. 1135–1146. IEEE, 2011.

[16] E. D. Demaine, M. Hajiaghayi, and K. Kawarabayashi.
Contraction Decomposition in H-Minor-Free Graphs
and Algorithmic Applications. In STOC, pp. 441–450,
2011.

[17] C. Demetrescu, A. V. Goldberg, and D. S. Johnson,
editors. The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, DIMACS Book 74. Ameri-
can Mathematical Society, 2009.

[18] A. E. Feldmann and P. Widmayer. An O(n4) Time
Algorithm to Compute the Bisection Width of Solid
Grid Graphs. In ESA, LNCS 6942, pp. 143–154, 2011.

[19] A. Felner. Finding Optimal Solutions to the Graph
Partitioning Problem with Heuristic Search. Annals of
Mathematics and Artificial Intelligence, 45(3–4):293–
322, 2005.

[20] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weisman-
tel, and L. A. Wolsey. The Node Capacitated Graph
Partitioning Problem: A Computational Study. Math-
ematical Programming, 81:229–256, 1998.

[21] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer.
Some Simplified NP-Complete Graph Problems. The-



oretical Computer Science, 1:237–267, 1976.
[22] B. Gendron and T. G. Crainic. Parallel Branch-and-

Bound Algorithms: Survey and Synthesis. Operations
Research, 42(6):1042–1066, 1994.

[23] A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan,
and R. F. Werneck. Maximum Flows by Incremental
Breadth-First Search. In ESA, LNCS 6942, pp. 457–
468. Springer, 2011.

[24] A. V. Goldberg and R. E. Tarjan. A New Approach
to the Maximum-Flow Problem. Journal of the ACM,
35(4):921–940, 1988.

[25] W. W. Hager, D. T. Phan, and H. Zhang. An Exact
Algorithm for Graph Partitioning. Submitted for
publication. Available at www.math.ufl.edu/~hager/

papers/GP/cqb.pdf, 2011.
[26] M. Hein and T. Bühler. An Inverse Power Method

for Nonlinear Eigenproblems with Applications in 1-
Spectral Clustering and Sparse PCA. In NIPS, pp.
847–855, 2010.

[27] B. Hendrickson and R. Leland. A Multilevel Algorithm
for Partitioning Graphs. In SC, p. 28. ACM Press,
1995.

[28] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel.
Polynomial Time Approximation Schemes for MAX-
BISECTION on Planar and Geometric Graphs. SIAM
Journal on Computing, 35:110–119, 2005.

[29] D. R. Karger and C. Stein. A New Approach to the
Minimum Cut Problem. Journal the ACM, 43(4):601–
640, 1996.

[30] S. E. Karisch, F. Rendl, and J. Clausen. Solving Graph
Bisection Problems with Semidefinite Programming
INFORMS Journal on Computing, 12:177–191, 2000.

[31] G. Karypis and G. Kumar. A Fast and Highly Quality
Multilevel Scheme for Partitioning Irregular Graphs.
Journal on Scientific Computing, 20(1):359–392, 1999.

[32] T. Koch, A. Martin, and S. Voß. SteinLib: An
Updated Library on Steiner Tree Problems in Graphs.
TR 00-37, Konrad-Zuse-Zentrum Berlin, 2000.

[33] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut Textures: Image and Video Synthesis using
Graph Cuts. ACM Transactions on Graphics, 22:277–
286, 2003.

[34] A. H. Land and A. G. Doig. An Automatic Method of
Solving Discrete Programming Problems. Economet-
rica, 28(3):497–520, 1960.

[35] R. J. Lipton and R. Tarjan. Applications of a Planar
Separator Theorem. SIAM Journal on Computing,
9:615–627, 1980.

[36] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
System for Large-Scale Graph Processing. In PODC,
p. 6. ACM, 2009.

[37] H. Meyerhenke, B. Monien, and T. Sauerwald. A New
Diffusion-Based Multilevel Algorithm for Computing
Graph Partitions. Journal of Parallel and Distributed
Computing, 69(9):750–761, 2009.

[38] F. Pellegrini and J. Roman. SCOTCH: A Software
Package for Static Mapping by Dual Recursive Bipar-

titioning of Process and Architecture Graphs. In High-
Performance Computing and Networking, LNCS 1067,
pp. 493–498. Springer, 1996.

[39] D. Pritchard and R. Thurimella. Fast Computation of
Small Cuts via Cycle Space Sampling. ACM Transac-
tion on Algorithms, 7:46:1–46:30, 2011.

[40] H. Räcke. Optimal Hierarchical Decompositions for
Congestion Minimization in Networks. In STOC, pp.
255–263. ACM Press, 2008.

[41] P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe.
Efficient Traversal of Mesh Edges Using Adjacency
Primitives. ACM Transactions on Graphics, 27:144:1–
144:9, 2008.

[42] P. Sanders and C. Schulz. Distributed Evolutionary
Graph Partitioning. In ALENEX. SIAM, 2012.

[43] M. Sellmann, N. Sensen, and L. Timajev. Multicom-
modity Flow Approximation Used for Exact Graph
Partitioning. In ESA, LNCS 2832, pp. 752–764, 2003.

[44] N. Sensen. Lower Bounds and Exact Algorithms for
the Graph Partitioning Problem Using Multicommod-
ity Flows. In ESA, LNCS 2161, pp. 391–403, 2001.

[45] J. Shi and J. Malik. Normalized Cuts and Image
Segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

[46] D. D. Sleator and R. E. Tarjan. A Data Structure
for Dynamic Trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

[47] A. J. Soper, C. Walshaw, and M. Cross. A Combined
Evolutionary Search and Multilevel Optimisation Ap-
proach to Graph Partitioning. Journal of Global Opti-
mization, 29(2):225–241, 2004.

[48] A. J. Soper, C. Walshaw, and M. Cross. The Graph
Partitioning Archive, 2004. staffweb.cms.gre.ac.

uk/~c.walshaw/partition/.
[49] R. E. Tarjan and R. F. Werneck. Dynamic Trees in

Practice. ACM Journal of Experimental Algorithmics,
14:4.5:1–4.5:23, 2009.

[50] C. Walshaw and M. Cross. JOSTLE: Parallel Multi-
level Graph-Partitioning Software – An Overview. In
F. Magoulès, editor, Mesh Partitioning Techniques and
Domain Decomposition Techniques, pp. 27–58. Civil-
Comp Ltd., 2007.

[51] Z. Wu and R. Leahy. An Optimal Graph Theoretic Ap-
proach to Data Clustering: Theory and its Application
to Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(11):1101–1113,
1993.

A Creating a Decomposition: Detailed Version

We now discuss the clump generation routine (sketched
in Section 5.1) in more detail. Recall that the goal
of this routine is to build a set F of clumps, initially
empty, which partition all the edges in the graph. As
already mentioned, it does so by maintaining a set C
of candidate clumps (which may intersect and do not
necessarily contain all edges), and gradually transferring
clumps from C to F .



The basic algorithm works in iterations, each con-
sisting of two phases: generation and selection. Con-
sider iteration i, with a certain threshold τi. The gen-
eration phase creates new clumps to be added to the
candidate set C. It does so by growing BFS trees from
a constant number (5 in our implementation) of vertices
picked at random. From each tree T , we repeatedly ex-
tract a series of disjoint paths and add them to C. We
choose these paths greedily (from high to low expan-
sion), but restrict ourselves to paths that (1) have at
most s edges (where s is to be defined later) and (2)
contain no edge that is already in F . The selection
phase then extracts from C all clumps with expansion
at least τi, and does so in greedy order (from higher to
lower expansion). A clump c is added to F if no edge
in c is already in F ; otherwise, it is simply discarded. If
F is not complete by the end of the iteration, we start
iteration i+ 1 with τi+1 = b0.9τic.

This is the basic algorithm, but there are still some
details to specify.

First, we need to explain how the maximum clump
size s is chosen. We must balance two desired prop-
erties: clumps should not be much smaller than the
optimum cut size, and each subproblem should have
multiple clumps. For graphs with m edges and upper
bound U , we set s =

⌈
min

{
4U, m

10U

}⌉
. This works well

in practice, though individual instances could benefit
from additional tuning.

A second issue we must worry about is space. Note
that some low-expansion clumps (those with expansion

lower than τi) are kept in C between iterations, since
they may be useful once the threshold τ gets small
enough. To keep the size of C manageable, we go over
all clumps and discard those that have at least one edge
in F—they will never be used. Moreover, we also avoid
adding to C clumps that are too small to start with:
when extracting paths from a tree T , we only consider
those whose expansion is at least xT /4, where xT is the
highest-expansion path in T that is valid (i.e., has at
most s edges and no edge in common with F ).

A third detail is related to the running time of the
algorithm. For large graphs, growing full BFS trees can
be rather expensive. We therefore adjust the algorithm
to grow smaller trees as it progresses, and make sure
these trees are grown in regions of the graph that still
have unused edges. More precisely, we keep a set of
candidate roots R: these are vertices with at least one
incident unused edge (i.e., an edge that is not yet in
F ). We only grow trees from R. Moreover, each BFS
tree is only allowed to scan |R| vertices, ensuring tree
generation gets faster as the algorithm progresses.

A final detail we consider is how to break ties when
building the BFS trees. Whenever possible, we take
parent edges that are not in F . In addition, to improve
the quality of the paths we find, we pick as the parent
of v the node that maximizes the expansion of the path
up to v. (We can do so by looking at the adjacency lists
of v, its candidate parents, and their parents.)

Figure 7: Minimum bisection of alue7065.



Figure 8: Minimum bisections of feline, gargoyle, and cow. Note that one of the cells in feline is not connected.


