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ABSTRACT 
 
In this chapter we first introduce sequence data. We then discuss different approaches 
for mining of patterns from sequence data, studied in literature. Apriori based methods 
and the pattern growth methods are the earliest and the most influential methods for 
sequential pattern mining. There is also a vertical format based method which works on 
a dual representation of the sequence database. Work has also been done for mining 
patterns with constraints, mining closed patterns, mining patterns from multi-
dimensional databases, mining closed repetitive gapped subsequences, and other 
forms of sequential pattern mining. Some works also focus on mining incremental 
patterns and mining from stream data. We present at least one method of each of these 
types and discuss their advantages and disadvantages. We conclude with a summary 
of the work. 
 
INTRODUCTION 
 
What is Sequence Data? 
 
Sequence data is omnipresent. Customer shopping sequences, medical treatment data, 
and data related to natural disasters, science and engineering processes data, stocks 
and markets data, telephone calling patterns, weblog click streams, program execution 
sequences, DNA sequences and gene expression and structures data are some 
examples of sequence data. 
 
Notations and Terminology 
 
Let I = {i1, i2, i3 … in} be a set of items. An item-set X is a subset of items i.e. X ⊆ I. A 
sequence is an ordered list of item-sets (also called elements or events). Items within 
an element are unordered and we would list them alphabetically. An item can occur at 
most once in an element of a sequence, but can occur multiple times in different 
elements of a sequence. The number of instances of items in a sequence is called the 
length of the sequence. A sequence with length l is called an l-sequence. E.g., 
s=<a(ce)(bd)(bcde)f(dg)> is a sequence which consists of 7 distinct items and 6 
elements. Length of the sequence is 12.  
A group of sequences stored with their identifiers is called a sequence database. We 
say that a sequence s is a subsequence of t, if s is a “projection” of t, derived by 
deleting elements and/or items from t. E.g. <a(c)(bd)f> is a subsequence of s. Further, 
sequence s is a δ-distance subsequence of t if there exist integers j1 < j2 < … < jn such 
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that s1 ⊆ tj1, s2 ⊆ tj2 … sn ⊆ tjn and jk-jk-1 ≤ δ for each k = 2, 3 ... n. That is, occurrences of 
adjacent elements of s within t are not separated by more than δ elements. 
 
What is Sequential Pattern Mining? 
 
Given a pattern p, support of the sequence pattern p is the number of sequences in the 
database containing the pattern p. A pattern with support greater than the support 
threshold min_sup is called a frequent pattern or a frequent sequential pattern. A 
sequential pattern of length l is called an l-pattern. Sequential pattern mining is the 
task of finding the complete set of frequent subsequences given a set of sequences. A 
huge number of possible sequential patterns are hidden in databases.  
A sequential pattern mining algorithm should 
a. find the complete set of patterns, when possible, satisfying the minimum support 
(frequency) threshold, 
b. be highly efficient, scalable, involving only a small  number of database scans 
c. be able to incorporate various kinds of user-specific constraints. 
 
APPROACHES FOR SEQUENTIAL PATTERN MINING 
 
Apriori-Based Method (GSP: Generalized Sequential Patterns) (Srikant & Agrawal, 
1996) 
 
The Apriori property of sequences states that, if a sequence S is not frequent, then 
none of the super-sequences of S can be frequent. E.g, <hb> is infrequent implies that 
its super-sequences like <hab> and <(ah)b> would be infrequent too. 
 
The GSP algorithm finds all the length-1 candidates (using one database scan) and 
orders them with respect to their support ignoring ones for which support < min_sup. 
Then for each level (i.e., sequences of length-k), the algorithm scans database to collect 
support count for each candidate sequence and generates candidate length-(k+1) 
sequences from length-k frequent sequences using Apriori. This is repeated until no 
frequent sequence or no candidate can be found. 
 
Consider the database as shown in table 1. Our problem is to find all frequent 
sequences, given min_sup=2.  
 
Table 1. Database. 
 
Database Length-1 Patterns 
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Seq Id Sequence 

10 <(bd)cb(ac)> 
20 <(bf)(ce)b(fg)> 
30 <(ah)(bf)abf> 
40 <(be)(ce)d> 
50 <a(bd)bcb(ade)> 

 

 
Cand Seq 
<a> 3 
<b> 5 
<c> 4 
<d> 3 
<e> 3 
<f> 2 
<g> 1 
<h> 1 

 

 
 
Length-2 Candidates 
 
Table 2. Length-2 candidates 
 
 

 <a> <b> <c> <d> <e> <f> 
<a> <aa> <ab> <ac> <ad> <ae> <af> 
<b> <ba> <bb> <bc> <bd> <be> <bf> 
<c> <ca> <cb> <cc> <cd> <ce> <cf> 
<d> <da> <db> <dc> <dd> <de> <df> 
<e> <ea> <eb> <ec> <ed> <ee> <ef> 
<f> <fa> <fb> <fc> <fd> <fe> <ff> 

 <a> <b> <c> <d> <e> <f> 
<a>  <(ab)> <(ac)> <(ad)> <(ae)> <(af)> 
<b>   <(bc)> <(bd)> <(be)> <(bf)> 
<c>    <(cd)> <(ce)> <(cf)> 
<d>     <(de)> <(df)> 
<e>      <(ef)> 
<f>       

 

 
As shown in Table 2, using Apriori one needs to generate just 51 length-2 candidates, 
while without Apriori property, 8*8+8*7/2=92 candidates would need to be generated. 
For this example, Apriori would perform 5 database scans, pruning away candidates 
with support less than min_sup. Candidates that cannot pass support threshold are 
pruned. 
1st scan: 8 candidates. 6 length-1 sequence patterns. 
2nd scan: 51 candidates. 19 length-2 sequence patterns. 10 candidates not in DB at all 
3rd scan: 46 candidates. 19 length-3 sequence patterns. 20 candidates not in DB at all 
4th scan: 8 candidates. 6 length-4 sequence patterns.  
5th scan: 1 candidate. 1 length-5 sequence patterns.  
 
Some drawbacks of GSP are: a huge set of candidate sequences are generated, 
multiple scans of database are needed and it is inefficient for mining long sequential 
patterns (as it needs to generate a large number of small candidates). 
 
Apart from finding simple frequent patterns, GSP generalizes the problem by  

a. Allowing a user to specify time constraints (minimum and/or maximum time 
period between adjacent elements in a pattern) 

b. Relaxing the restriction that the items in an element of a sequential pattern must 
come from the same transaction, instead allowing the items to be present in a set 
of transactions whose transaction-times are within a user-specified time window.  
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c. Given a user-defined taxonomy (is-a hierarchy) on items, allowing sequential 
patterns to include items across all levels of the taxonomy. 

 
Vertical Format-Based Method (SPADE: Sequential PAttern Discovery using 
Equivalent Class) (Zaki, 2001) 
 
This is a vertical format sequential pattern mining method. SPADE first maps the 
sequence database to a vertical id-list database format which is a large set of items 
<SID (Sequence ID), EID (Event ID)>. Sequential pattern mining is performed by 
growing the subsequences (patterns) one item at a time by Apriori candidate 
generation. 
 
As shown in table 3 below, all frequent sequences can be enumerated via simple 
temporal joins (or intersections) on id-lists. They use a lattice-theoretic approach to 
decompose the original search space (lattice) into smaller pieces (sub-lattices) which 
can be processed independently in main-memory. 
 
Their approach usually requires three database scans, or only a single scan with some 
pre-processed information, thus minimizing the I/O costs. SPADE decouples the 
problem decomposition from the pattern search. Pattern search could be done in a BFS 
(breadth first search) or a DFS (depth first search) manner. The vertical id-list based 
approach is also insensitive to data-skew. It also has linear scalability with respect to 
the number of input-sequences, and a number of other database parameters. 
 
Table 3. Frequent sequences 
 

SID EID Items 
1 1 a 
1 2 abc 
1 3 ac 
1 4 d 
1 5 cf 
2 1 ad 
2 2 c 
2 3 bc 
2 4 ae 
3 1 ef 
3 2 ab 
3 3 df 
3 4 c 
3 5 b 

 

 
 
 
 

aba    
SID EID(a) EID(b) EID(a) 
1 1 2 3 

 

a  b  … 
SID EID SID EID … 
1 1 1 2  
1 2 2 3  
1 3 3 2  
2 1    
3 2    
ab   ba   … 
SID EID(a) EID(b) SID EID(b) EID(a) … 
1 1 2 1 2 3  
2 1 3     

 
 
Pattern Growth Based Methods 
 
FreeSpan (Han, Pei, Asl, Chen, Dayal, & Hsu, 2000) & PrefixSpan (Pei, et al., 2001) 
 
These methods help in avoiding the drawbacks of the Apriori based methods. 
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FreeSpan (Frequent pattern projected Sequential pattern mining) uses frequent 
items to recursively project sequence databases into a set of smaller projected 
databases and grows subsequence fragments in each projected database. This process 
partitions both the data and the set of frequent patterns to be tested, and confines each 
test being conducted to the corresponding smaller projected database.  
 
FreeSpan first scans the database, collects the support for each item, and finds the set 
of frequent items. Frequent items are listed in support descending order (in the form of 
item:support) E.g., flist=a:4, b:4, c:4, d:3, e:3, f:3. 
 
According to flist, the complete set of sequential patterns in S can be divided into 6 
disjoint subsets: (1) the ones containing only item ‘a’, (2) the ones containing item ‘b’, 
but containing no items after ‘b’ in flist, (3) the ones containing item ‘c’, but no items 
after ‘c’, in flist, and so on, and finally, (6) ones containing item ‘f’. 
 
The subsets of sequential patterns can be mined by constructing projected databases. 
Infrequent items, such as ‘g’ in this example, are removed from construction of 
projected databases. 
 
Note that {b}, {c}, {d}, {e}, {f}-projected databases are constructed simultaneously during 
one scan of the original sequence database. All sequential patterns containing only item 
‘a’ are also found in this pass. This process is performed recursively on projected 
databases. Since FreeSpan projects a large sequence database recursively into a set of 
small projected sequence databases based on the currently mined frequent sets, the 
subsequent mining is confined to each projected database relevant to a smaller set of 
candidates. 
 
The major cost of FreeSpan is to deal with projected databases. If a pattern appears in 
each sequence of a database, its projected database does not shrink (except for the 
removal of some infrequent items). Moreover, since a length-k subsequence may grow 
at any position, the search for length-(k+1) candidate sequence will need to check every 
possible combination, which is costly. 
 
PrefixSpan (Prefix-projected Sequential pattern mining) works similar to FreeSpan 
except that the partitioning is done using prefixes of sequences. E.g., for a sequence 
<(abc)(ac)d(cf)>, <ab> is a prefix which has <(_c)(ac)d(cf)> as the corresponding suffix 
(projection) as shown in Figure 1. 
 
Figure 1. PrefixSpan 
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Its general idea is to examine only the frequent prefix subsequences and project only 
their corresponding postfix subsequences into projected databases because any 
frequent subsequence can always be found by growing a frequent prefix. Thus the 
search space for our example will be partitioned into the following six subsets according 
to the six prefixes: (1) the ones having prefix <a> ... and (6) the ones having prefix <f>. 
In each projected database, sequential patterns are grown by exploring only local 
frequent patterns. The subsets of sequential patterns can be mined by constructing 
corresponding projected databases and mining each recursively.  
 
PrefixSpan first finds sequential patterns having prefix <a>. Recursively, all sequential 
having patterns prefix <a> can be partitioned into 6 subsets: (1) those having prefix 
<aa> (2) those having prefix <ab>… and finally, (6) those having prefix <af>. These 
subsets can be mined by constructing respective projected databases (only if the prefix 
is frequent) and mining each recursively. Similarly, we can find sequential patterns 
having prefix <b>, <c>, <d>, <e> and <f> respectively, by constructing <b>-, <c>-, <d>-, 
<e>- and <f>-projected databases and mining them respectively. 
 
No candidate sequence needs to be generated by PrefixSpan. Projected databases 
keep shrinking. The major cost of PrefixSpan is the construction of projected databases. 
To further improve mining efficiency, two kinds of database projections are explored: 
level-by-level projection and bi-level projection. Moreover, a main-memory-based 
pseudo-projection (using pointers rather than physically copying postfix sequences) 
technique is developed for saving the cost of projection and speeding up processing 
when the projected (sub)-database and its associated pseudo-projection processing 
structure can fit in main memory. PrefixSpan mines complete set of patterns much 
faster than both GSP and FreeSpan. 
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Constraint Based Methods 
 
Conventionally, users can specify only min_sup as a parameter to a sequential pattern 
mining algorithm. There are two major difficulties in sequential pattern mining: (1) 
effectiveness: the mining may return a huge number of patterns, many of which could 
be uninteresting to users, and (2) efficiency: it often takes substantial computational 
time and space for mining the complete set of sequential patterns in a large sequence 
database. To prevent these problems, users can use constraint based sequential 
pattern mining for focused mining of desired patterns. Constraints could be anti-
monotone, monotone, succinct, convertible or inconvertible. Anti-monotonicity means “if 
an item-set does not satisfy the rule constraint, then none of its supersets satisfy”. 
Monotonicity means “if an item-set satisfies the rule constraint, then all of its supersets 
satisfy”. Succinctness means “All and only those patterns guaranteed to satisfy the rule 
can be enumerated”. Convertible constraints are those which are not any of anti-
monotonic, monotonic, succinct but can be made anti-monotonic or monotonic 
constraints by changing order of elements in the set. Inconvertible constraints are the 
ones which are not convertible. 
 
In the context of constraint-based sequential pattern mining, (Srikant & Agrawal, 1996) 
generalized the scope of the Apriori-based sequential pattern mining to include time 
constraints, sliding time windows, and user-defined taxonomy. Mining frequent episodes 
in a sequence of events studied by (Mannila, Toivonen, & Verkamo, 1997) can also 
be viewed as a constrained mining problem, since episodes are essentially constraints 
on events in the form of acyclic graphs. The classical framework on frequent and 
sequential pattern mining is based on the anti-monotonic Apriori property of frequent 
patterns. A breadth-first, level-by-level search can be conducted to find the complete set 
of patterns. 
 
Performance of conventional constraint-based sequential pattern mining algorithms 
dramatically degrades in the case of mining long sequential patterns in dense 
databases or when using low minimum supports. In addition, the algorithms may reduce 
the number of patterns but unimportant patterns are still found in the result patterns.  
(Yun, 2008) uses weight constraints to reduce the number of unimportant patterns. 
During the mining process, they consider not only supports but also weights of patterns. 
Based on the framework, they present a weighted sequential pattern mining algorithm 
(WSpan).  
  
(Chen, Cao, Li, & Qian, 2008) incorporate user-defined tough aggregate constraints so 
that the discovered knowledge better meets user needs. They propose a novel 
algorithm called PTAC (sequential frequent Patterns mining with Tough Aggregate 
Constraints) to reduce the cost of using tough aggregate constraints by incorporating 
two effective strategies. One avoids checking data items one by one by utilizing the 
features of “promising-ness” exhibited by some other items and validity of the 
corresponding prefix. The other avoids constructing an unnecessary projected database 
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by effectively pruning those unpromising new patterns that may, otherwise, serve as 
new prefixes.  
 
(Masseglia, Poncelet, & Teisseire, 2003) propose an approach called GTC (Graph for 
Time Constraints) for mining time constraint based patterns (as defined in GSP 
algorithm) in very large databases. It is based on the idea that handling time constraints 
in the earlier stage of the data mining process can be highly beneficial. One of the most 
significant new features of their approach is that handling of time constraints can be 
easily taken into account in traditional level-wise approaches since it is carried out prior 
to and separately from the counting step of a data sequence. 
 
(Wang, Chirn, Marr, Shapiro, Shasha, & Zhang, 1994) looked at the problem of 
discovering approximate structural patterns from a genetic sequences database. 
Besides the minimum support threshold, their solution allows the users to specify: 1. the 
desired form of patterns as sequences of consecutive symbols separated by variable 
length don’t cares, 2. a lower bound on the length of the discovered patterns, and 3. an 
upper bound on the edit distance allowed between a mined pattern and the data 
sequence that contains it. Their algorithm uses a random sample of the input 
sequences to build a main memory data structure, termed generalized suffix tree, that is 
used to obtain an initial set of candidate pattern segments and screen out candidates 
that are unlikely to be frequent based on their occurrence counts in the sample. The 
entire database is then scanned and filtered to verify that the remaining candidates are 
indeed frequent answers to the user query. 
 
(Garofalakis, Rastogi, & Shim, 2002) propose regular expressions as constraints for 
sequential pattern mining and developed a family of SPIRIT (Sequential pattern 
mining with regular expression constraints) algorithms. Members in the family 
achieve various degrees of constraint enforcement. The algorithms use relaxed 
constraints with nice properties (like anti-monotonicity) to filter out some unpromising 
patterns/candidates in their early stage. A SPIRIT algorithm first identifies C’ as a 
constraint weaker than C. Then it obtains F1=frequent items in D that satisfy C’. Further, 
it iteratively generates candidates Ck using F and C’, prunes candidates in Ck that 
contain subsequences that satisfy C’ but are not in F, identifies Fk as the frequent 
sequences in Ck by scanning the database to count support and updates F to F∪Fk. 
Finally, sequences in F that satisfy the original condition C are output.  
 
General SPIRIT constrained mining framework can be specified as: 
PROCEDURE SPIRIT(D,C) 
Begin 

1. Let C’=a constraint weaker (i.e., less restrictive) than C. 
2. F=F1=frequent items in D that satisfy C’ 
3. K=2 
4. Repeat { 

a. //candidate generation 
b. Using C’ and F generate Ck={potentially frequent k-sequences that satify 

C’} 
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c. //candidate pruning 
d. Let P={s∊Ck: s has a subsequence t that satisfies C’ and t∉F} 
e. Ck=Ck-P 
f. //candidate counting 
g. Scan D counting the support for candidate k-sequences in Ck 
h. Fk-frequent sequences in Ck 
i. F=F∪Fk 
j. K=K+1 

5. }until TerminatingCondition(F < C’) holds 
6. //enforce the original (stronger) constraint C 
7. Output sequences in F that satisfy C 
8. End 

 
Given a user specified RE constraint C, the first SPIRIT algorithm SPIRIT(N) (“N” for 
“Naive”) only prunes candidate sequences containing elements that do not appear in C. 
The second one, SPIRIT(L) (“L” for “Legal”), requires every candidate sequence to be 
legal with respect to some state of automata A(C). The third, SPIRIT(V) (“V” for “Valid”), 
filters out candidate sequences that are not valid with respect to any state of A(C). The 
fourth, SPIRIT(R) (“R” for “Regular”), pushes C all the way inside the mining process by 
counting support only for valid candidate sequences. 
 
The above interesting studies handle a few scattered classes of constraints. However, 
two problems remain. First, many practical constraints have not been covered. Also 
there is a need for a systematic method to push various constraints into the mining 
process. Unfortunately, some commonly encountered sequence-based constraints, 
such as regular expression constraints, are neither monotonic, nor anti-monotonic, nor 
succinct. (Pei, Han, & Wang, 2007) mention seven categories of constraints:  
1. Item constraint: An item constraint specifies subset of items that should or should not 
be present in the patterns. 
2. Length constraint: A length constraint specifies the requirement on the length of the 
patterns, where the length can be either the number of occurrences of items or the 
number of transactions. 
3. Super-pattern constraint: Super-patterns are ones that contain at least one of a 
particular set of patterns as sub-patterns. 
4. Aggregate constraint: An aggregate constraint is the constraint on an aggregate of 
items in a pattern, where the aggregate function can be sum, avg, max, min, standard 
deviation, etc. 
5. Regular expression constraint: A regular expression constraint CRE is a constraint 
specified as a regular expression over the set of items using the established set of 
regular expression operators, such as disjunction and Kleene closure. 
6. Duration constraint: A duration constraint is defined only in sequence databases 
where each transaction in every sequence has a time-stamp. It requires that the 
sequential patterns in the sequence database must have the property such that the 
time-stamp difference between the first and the last transactions in a sequential pattern 
must be longer or shorter than a given period. 
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7. Gap constraint: A gap constraint set is defined only in sequence databases where 
each transaction in every sequence has a timestamp. It requires that the sequential 
patterns in the sequence database must have the property such that the timestamp 
difference between every two adjacent transactions must be longer or shorter than a 
given gap. 
 
A constraint Cpa is called prefix anti-monotonic if for each sequence ‘a’ satisfying the 
constraint, so does every prefix of ‘a’. A constraint Cpm is called prefix monotonic if for 
each sequence ‘a’ satisfying the constraint, so does every sequence having ‘a’ as a 
prefix. A constraint is called prefix-monotone if it is prefix anti-monotonic or prefix 
monotonic. 
 
The authors describe a pattern-growth (PG) method for Constraint-based 
sequential pattern mining which is based on a prefix-monotone property. They show 
that all the monotonic and anti-monotonic constraints, as well as regular expression 
constraints, are prefix-monotone, and can be pushed deep into a PG-based mining. 
Moreover, some tough aggregate constraints, such as those involving average or 
general sum, can also be pushed deep into a slightly revised PG mining process. In the 
recursive FP growth framework, the authors first compute all the length-1 frequent 
prefixes. Then they compute the corresponding projected databases. Each of the 
frequent prefixes of length (l+1) are further processed recursively only if they satisfy the 
constraint C. 
 
Closed Sequential Pattern Mining 
 
CloSpan (Yan, Han, & Afshar, 2003) is an algorithm for the mining of closed repetitive 
gapped subsequences (figure 2). A closed sequential pattern s is a sequence such that 
there exists no super-pattern s’, s ' ⊃ s, and s’ and s have the same support. E.g., given 
<abc>: 20, <abcd>:20, <abcde>: 15, we know that <abcd> is closed. If the database 
contains 1 long sequence with 100 elements and min support is 1, this sequence will 
generate 2^100 frequent subsequences, though there is only one of these which is 
closed. Mining of closed sequences reduces the number of (redundant) patterns but 
attains the same expressive power. Note that if s’ ⊃ s, s is closed iff two projected DBs 
have the same size. CloSpan uses backward sub-pattern and backward super-pattern 
pruning to prune redundant search space thereby preventing unnecessary 
computations. 
 
Figure 2. CloSpan 
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Backward super-pattern pruning Backward sub-pattern pruning 
 
CloSpan is basically similar to PrefixSpan with sub-pattern and super-pattern checks 
which involve checking and matching of the size of the databases. The authors show 
that CloSpan performs better than PrefixSpan in terms of execution time. 
 
Sequential Pattern Mining in Data Streams: SS-BE and SS-MB (Mendes, Ding, & 
Han, 2008) 
 
Data stream is an unbounded sequence in which new elements are generated 
continuously. Memory usage is limited and an algorithm is allowed to perform only a 
single scan over the database. Two effective methods for stream-based sequential 
pattern mining are SS-BE (Stream Sequence miner using Bounded Error) and SS-MB 
(Stream Sequence miner using Memory Bounds).  
 
SS-BE Method can be outlined as follows: 
a. Break the stream into fixed-sized batches. 
b. For each arriving batch, apply PrefixSpan. Insert each frequent sequence found into 

a tree. 
c. Periodically prune the tree (the number of batches seen is a multiple of the pruning 

period). 
d. Output all sequences corresponding to nodes having count >= (σ-∊)N. 
This method outputs no false negatives and true support of false positives is at least (σ-
∊). 
E.g., suppose σ = 0.75, ∊ = 0.5 and data stream D: <a,b,c>, <a,c>, <a,b>, <b,c>, 
<a,b,c,d>, <c,a,b>, <d,a,b>, <a,e,b>. Let the first batch B1 contain the first four 
sequences and the second batch B2 contain the next four. The algorithm first applies 
PrefixSpan to B1 with min_sup as 0.5. The frequent sequences found are: <a>:3, <b>:3, 
<c>:3, <a,b>:2, <a,c>:2, and <b,c>:2. A frequent pattern tree is created. Let the pruning 
period be two batches. So algorithm proceeds to batch B2. The frequent sequences 
found are: <a>:4, <b>:4, <c>:2, <d>:2, and <a,b>:4. The frequent pattern tree would 
look as shown in the figure below. Now SS-BE would prune the tree by identifying and 
removing all nodes guaranteed to have true support below ∊ = 0.5 during the time they 
were kept in the tree. Thus <d>:2, <ac>:2 and <bc>:2 are pruned away. 
 
Finally SS-BE outputs all sequences having count at least (σ-∊)N = (0.75 – 0.5)*8 = 2. 
Thus output is <a>: 7, <b>: 7, <c>: 5, <a, b>:6. Note that there are no false negatives 
and only one false positive: <c>. 
 
SS-MB  method is similar to SS-BE except that in step 3, rather than pruning the tree 
after a time period, the tree size is limited to ‘m’ nodes. Due to this, SS-MB can only 
guarantee no false negatives after execution. E.g. in the above example, assume that 
‘m’ is 7. Then after batch B2 is processed, the tree contains 8 nodes and hence the node 
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with minimum support <b,c> is removed (figure 3). Because of the specific ‘m’, SS-MB 
can control amount of memory used explicitly. 
 
Figure 3. SS-BE pruning tree 
 
 

 
 

 
The authors show that the two methods are effective solutions to the stream sequential 
pattern mining problem: running time scales linearly, maximum memory usage is limited 
and a very small number of false positives are generated. 
 
Mining Incremental Patterns: IncSpan (Incremental Mining of Sequential Patterns) 
(Cheng, Yan, & Han, 2004) 
 
Many real life sequence databases, such as customer shopping sequences, medical 
treatment sequences, etc., grow incrementally. It is undesirable to mine sequential 
patterns from scratch each time when a small set of sequences grow, or when some 
new sequences are added into the database. Incremental algorithm should be 
developed for sequential pattern mining so that mining can be adapted to frequent and 
incremental database updates, including both insertions and deletions. However, it is 
nontrivial to mine sequential patterns incrementally, especially when the existing 
sequences grow incrementally because such growth may lead to the generation of 
many new patterns due to the interactions of the growing subsequences with the 
original ones. There are two kinds of database updates in applications: (1) inserting new 
sequences (INSERT) and (2) appending new item-sets/items to the existing sequences 
(APPEND). Let DB be the old database, Δdb be the change and DB’ be the new 
database. Thus, DB' = DB ∪Δdb. 
 
It is easier to handle the first case: INSERT. An important property of INSERT is that a 
frequent sequence in DB' = DB ∪Δdb must be frequent in either DB or Δdb (or both). If 
a sequence is infrequent in both DB and Δdb, it cannot be frequent in DB'. Thus, only 
those patterns that are frequent in Δdb but infrequent in DB need to be searched in DB 
to find their occurrence count. (Zhang, Kao, Cheung, & Yip, 2002) propose another 
algorithm of incremental mining to handle the case of INSERT in sequential pattern 
mining. 
 



 13

For the second case, consider that new items only get appended. Suppose |DB|=1000 
and |Δdb|=20, min_sup=10%. Suppose a sequence ‘s’ is infrequent in DB with 99 
occurrences (sup = 9:9%). In addition, it is also infrequent in Δdb with only 1 occurrence 
(sup = 5%). Although ‘s’ is infrequent in both DB and Δdb, it becomes frequent in DB' 
with 100 occurrences. 
 
This problem complicates the incremental mining since one cannot ignore the infrequent 
sequences in Δdb, but there are an exponential number of infrequent sequences even 
in a small Δdb and checking them against the set of infrequent sequences in DB will be 
very costly.  (Parthasarathy, Zaki, Ogihara, & Dwarkadas, 1999) proposed an 
incremental mining algorithm, called ISM, based on SPADE by exploiting a concept 
called negative border. However, maintaining negative border is memory consuming 
and not well adapted for large databases.  (Masseglia, Poncelet, & Teisseire, Efficient 
mining of sequential patterns with time constraints: Reducing the combinations, 2009) 
developed another incremental mining algorithm using candidate generate-and-test 
approach, which is costly, especially when the sequences are long because it requires 
multiple scans of the whole database. 
 
For the third case, where the database is updated with both INSERT and APPEND, the 
problem becomes even more complicated. There are two approaches: (1) handling 
them separately by first performing APPEND then INSERT; (2) treat the inserted 
sequences as appending to empty sequences in DB: a special case of APPEND. Then 
this problem is reduced to APPEND. 
 
Given a minimum support threshold, min_sup, a sequence is frequent if its support 
>=min_sup; given a factor  µ<=1, a sequence is semi-frequent if its support<min_sup 
but  >µ*min_sup; a sequence is infrequent if its support<µ*min_sup. Let FS be the set 
of all frequent sequential patterns and SFS be the set of semi-frequent sequential 
patterns.  
 
Given a sequence database DB, min_sup, the set of frequent subsequences FS in DB, 
and an appended sequence database DB’ of D, the problem of incremental sequential 
pattern mining is to mine the set of frequent subsequences FS’ in DB’ based on FS 
instead of mining on DB’ from scratch. A simple algorithm, SimpleSpan, exploits the FS 
in the original database and incrementally mines new patterns. SimpleSpan updates the 
support of every frequent sequence in FS, adds it to FS’ and uses it as a prefix to 
project database. In addition, SimpleSpan scans the new database DB’ to discover new 
frequent single items and uses them as prefix to project database using PrefixSpan. 
One problem of SimpleSpan is that it makes a large number of database projections, 
which is costly. The drawback of SimpleSpan is that it has no information about 
infrequent sequences in the original database DB. But such information can enable us 
to reduce search space and find new frequent sequences efficiently. 
 
IncSpan uses the technique of buffering semi-frequent patterns by maintaining a set 
SFS in the original database DB. Since the sequences in SFS are “almost frequent”, 
most of the frequent subsequences in the appended database will either come from 
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SFS or they are already frequent in the original database. With a minor update to the 
original database, it is expected that only a small fraction of subsequences which were 
infrequent previously would become frequent. This is based on the assumption that 
updates to the original database have a uniform probability distribution on items. It is 
expected that most of the frequent subsequences introduced by the updated part of the 
database would come from the SFS. The SFS forms a kind of boundary (or “buffer 
zone”) between the frequent subsequences and infrequent subsequences. 
 
IncSpan algorithm can be outlined as follows. 

a. Scan Δdb for single items. If a new item or an infrequent item becomes frequent 
or semi-frequent, add it to FS’ or SFS’. For every item in FS’, use it as prefix to 
construct projected database and discover frequent sequences recursively. 

b. Check every pattern in FS and SFS in Δdb to adjust the support of those 
patterns. 

I. If a pattern becomes frequent, add it to FS’. Then check whether it meets 
the projection condition. If so, use it as prefix to project database. Discover 
frequent or semi-frequent patterns in the projected database. To improve 
the performance, shared projection can be used in this step. 

II. If a pattern is semi-frequent, add it to SFS’. 
The authors also mention two optimization techniques, reverse pattern matching and 
shared projection to improve the performance. 
 
Multidimensional Sequential Pattern Mining: UNISEQ (Pinto, Han, Pei, Wang, 
Chen, & Dayal, 2001) 
 
Consider pattern P1= {try a 100 hour free internet access package⇒subscribe to 15 
hours/month package⇒upgrade to 30 hours per month package⇒upgrade to unlimited 
package}. This pattern may hold for all customers below age of 35 (75% customers). 
But for other customers, pattern P2= {try a 100 hour free internet access package⇒ 
upgrade to 30 hours per month package} may hold. Clearly, if sequential pattern mining 
can be associated with customer category or other multi-dimensional information, it will 
be more effective since the classified patterns are often more useful. (Pinto, Han, Pei, 
Wang, Chen, & Dayal, 2001) propose two categories of methods: a. integration of 
efficient sequential pattern mining and multi-dimensional analysis methods (Seq-Dim 
and Dim-Seq). b. embedding multi-dimensional information into sequences and mine 
the whole set using a uniform sequential pattern mining method (Uni-Seq). 
 
A multi-dimensional sequence database has the schema (RID, A1, A2 … Am, S) where 
RID is the record identifier, A1 … Am are the attributes and S is the sequence. A multi-
dimensional pattern ‘p’ would match a tuple ‘t’ in the database, if the attribute values 
match (or the attribute value is *) and ‘s’ is a subsequence of the sequence stored in ‘t’. 
e.g. t=(10, business, Boston, middle, <(bd)cba>) 
 
UniSeq (Uniform Sequential): Multi-dimensional information in a tuple ‘t’ in multi-
dimensional DB can be embedded in the sequence by introducing a special element. 
E.g. ‘t’ can be rewritten as (10, <(business Boston middle)(bd)cba>). Let the database 
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containing such modified tuples be called MD-extension DB and denoted as SDB-MD. 
Now the problem is: Given, SDB-MD and min_sup, output the complete set of multi-
dimensional sequential patterns. UniSeq mines sequential patterns in SDB-MD using 
PrefixSpan. For each sequential pattern ‘p’ in SDB-MD, it outputs the corresponding 
multi-dimensional sequential pattern in SDB. As an alternative, instead of embedding 
the multi-dimensional information into the first element of each sequence, it can be 
attached as the last element. Both the alternatives have almost identical performance 
results. Thus, UniSeq reduces the problem to mining one extended sequence database 
and is therefore easy to implement. But, all dimension values are treated as sequential 
items. Hence, it cannot take advantage of efficient mining algorithms for multi-
dimensional non-sequential computational methods. Hence, cost of computing becomes 
high when data has large number of dimensions. 
 
A SDB-MD can be partitioned into two parts: dimensional information and sequence. 
So, we can first mine patterns about dimensional information (called multi-dimensional 
patterns or MD-patterns) and then find sequential patterns from projected sub-database 
(tuples containing the MD-pattern) or vice versa. Dim-Seq first finds MD-patterns and 
then for each MD-pattern, it forms MD-projected database and mines sequential 
patterns in projected databases. Seq-Dim first mines the sequential patterns. For each 
sequential pattern, it forms projected MD-database and then finds MD-patterns within 
projected databases. Seq-Dim is more efficient and scalable in general compared to 
Dim-Seq. 
 
Mining Closed Repetitive Gapped Subsequences (Ding, Lo, Han, & Khoo, 2009) 
 
Patterns often repeat multiple times in a sequence e.g., in program execution traces, 
sequences of words (text data), credit card usage histories. Given two sequences like 
S1 = AABCDABB,   S2 = ABCD, is pattern AB more frequent then CD? To answer this 
question, one needs to define a notion of repetitive support, sup(P) as max{|INS|: INS is 
a set of non-overlapping instances of P}. The aim is to maximize the size of the non-
overlapping instance set. Note that if P’ is a super-pattern of P, then sup(P’) ≤ sup(P). 
 
To solve this problem, the authors propose a greedy instance-growth algorithm. The 
intuition is to extend each instance to the nearest possible event. Consider a database 
of two sequences as shown in table 4: 
 
Table 4. Database of two sequences 
 

 1 2 3 4 5 6 7 8 9 
S1 A B C A C B D D B 
S2 A C D B A C A D D 

 

Support set  IA Support set  IAC Support set  IACB 
(1,<1>) (1,<1,3>) (1,<1,3,6>) 
(1,<4>) (1,<4,5>) (1,<4,5,9>) 
(2,<1>) (2,<1,2>) (2,<1,2,4>) 
(2,<5>) (2,<5,6>)  
(2,<7>)   
sup(A)=5 sup(AC)=4 sup(ACB)=3 
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The algorithm uses a procedure INSgrow(P, INS, e) which does the following. Given a 
leftmost support set INS of P, with |INS| = sup(P), and event e,  it extends each instance 
in INS to the nearest possible event e and returns a support set INS+ of pattern P○e (P 
concatenated with e). Thus, using this method, one can find all the frequent patterns by 
doing DFS in the pattern space. 
 
Further, they define pattern extension as set of patterns with one more event. E.g., if P 
=e1e2 …em , PExtension(P, e) = {ee1e2…em, e1ee2…em, …, e1e2…eme}. Pattern P is not 
closed iff sup(P) = sup(Q) for some Q ∈ Extension(P, e). Also note that it is possible that 
AB is not closed but ABAC is closed. To prune the search space, they propose the 
following instance-border checking principle. Pattern P is prunable if there exists Q ∈ 
Extension(P, e) for some e such that sup(P) = sup(Q) (P is not closed) and for each (i, 
<k1, k2, …, k|P|>) ∈ INSP and (i, <k1’, k2’, …, k|Q|’>) ∈ INSQ:  k|Q|’ ≤ k|P| where INSP and 
INSQ are (leftmost) support sets of P and Q respectively.  
 
OTHER SEQUENTIAL PATTERN MINING METHODS 
 
(Kum, Chang, & Wang, Sequential Pattern Mining in Multi-Databases via Multiple 
Alignment, 2006) proposed a new sequential pattern mining method based on multiple 
alignment (rather than the usual support-based approach) for mining multiple 
databases. Multiple databases are mined and summarized at the local level, and only 
the summarized patterns are used in the global mining process. For summarization, 
they propose the theme of approximate sequential pattern mining roughly defined as 
identifying patterns approximately shared by many sequences. They propose an 
algorithm, ApproxMAP, to mine approximate sequential patterns, called consensus 
patterns, from large sequence databases in two steps. First, sequences are clustered 
by similarity. Then, consensus patterns are mined directly from each cluster through 
multiple alignment. 
 
Further,  (Kum, Chang, & Wang, Benchmarking the effectiveness of sequential 
pattern mining methods, 2007) benchmarked the effectiveness of sequential pattern 
mining methods by comparing a support-based sequential pattern model with an 
approximate pattern model based on sequence alignment using a metric that evaluates 
how well a mining method finds known common patterns in synthetic data. Their 
comparison study suggests that the alignment model will give a good summary of the 
sequential data in the form of a set of common patterns in the data. In contrast, the 
support model generates massive amounts of frequent patterns with much redundancy. 
This suggests that the results of the support model require more post processing before 
it can be of actual use in real applications. 
 
(Laur, Symphor, Nock, & Poncelet, 2007) introduced statistical supports to maximize 
mining precision and improve the computational efficiency of the incremental mining 
process. As only a part of the stream can be stored, mining data streams for sequential 
patterns and updating previously found frequent patterns need to cope with uncertainty. 
They introduce a new statistical approach which biases the initial support for sequential 
patterns. This approach holds the advantage to maximize either the precision or the 
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recall, as chosen by the user, and limit the degradation of the other criterion. Moreover, 
these statistical supports help building statistical borders which are the relevant sets of 
frequent patterns to use into an incremental mining process.  
 
(Lin, Chen, Hao, Chueh, & Chang, 2008) introduced the notion of positive and 
negative sequential patterns, where positive patterns include the presence of an item-
set of a pattern, and negative patterns are the ones with the absence of an item-set.  
 
Items sold in a store can usually be organized into a concept hierarchy according to 
some taxonomy. Based on the hierarchy, sequential patterns can be found not only at 
the leaf nodes (individual items) of the hierarchy, but also at higher levels of the 
hierarchy; this is called multiple-level sequential pattern mining. In previous research, 
taxonomies had crisp relationships between the categories in one level and the 
categories in another level. In real life, however, crisp taxonomies cannot handle the 
uncertainties and fuzziness inherent in the relationships among items and categories. 
For example, the book Alice’s Adventures in Wonderland can be classified into the 
Children’s Literature category, but can also be related to the Action & Adventure 
category. To deal with the fuzzy nature of taxonomy, (Chen & Huang, A novel 
knowledge discovering model for mining fuzzy multi-level sequential patterns in 
sequence databases, 2008) apply fuzzy set techniques to concept taxonomies so that 
the relationships from one level to another can be represented by a value between 0 
and 1.  They propose a fuzzy multiple- level mining algorithm (FMSM) to extract fuzzy 
multiple-level sequential patterns from databases. In addition, another algorithm, named 
the CROSS-FMSM algorithm, is developed to discover fuzzy cross-level sequential 
patterns. 
 
(Kuo, Chao, & Liu, 2009) use K-means algorithm to achieve better computational 
efficiency for fuzzy sequential pattern mining. 
 
Many methods only focus on the concept of frequency because of the assumption that 
sequences’ behaviors do not change over time. The environment from which the data is 
generated is often dynamic; the sequences’ behaviors may change over time. To adapt 
the discovered patterns to these changes, (Chen & Hu, Constraint-based sequential 
pattern mining: the consideration of recency and compactness, 2006) introduce 
two new concepts, recency and compactness and incorporate them into traditional 
sequential pattern mining. The concept of recency causes patterns to quickly adapt to 
the latest behaviors in sequence databases, while the concept of compactness ensures 
reasonable time spans for the discovered patterns.  An efficient method is presented to 
find CFR-patterns (compactness, frequency, and recency). 
 
CONCLUSION 
 
We discussed basics of sequential pattern mining. We presented an exhaustive survey 
of different sequential pattern mining methods proposed in the literature. Sequential 
pattern mining methods have been used to analyze this data and identify patterns. Such 
patterns have been used to implement efficient systems that can recommend based on 
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previously observed patterns, help in making predictions, improve usability of systems, 
detect events and in general help in making strategic product decisions. We envision 
that the power of sequential mining methods has not yet been fully exploited. We hope 
to see many more strong applications of these methods in a variety of domains in the 
years to come. Apart from this, new sequential pattern mining methods may also be 
developed to handle special scenarios of colossal patterns, approximate sequential 
patterns and other kinds of sequential patterns specific to the applications. 
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