Approaches for Pattern Discovery Using Sequential Data Mining

Manish Gupta
University of lllinois at Urbana-Champaign, USA

Jiawei Han
University of lllinois at Urbana-Champaign, USA

ABSTRACT

In this chapter we first introduce sequence data. We then discuss different approaches
for mining of patterns from sequence data, studied in literature. Apriori based methods
and the pattern growth methods are the earliest and the most influential methods for
sequential pattern mining. There is also a vertical format based method which works on
a dual representation of the sequence database. Work has also been done for mining
patterns with constraints, mining closed patterns, mining patterns from multi-
dimensional databases, mining closed repetitive gapped subsequences, and other
forms of sequential pattern mining. Some works also focus on mining incremental
patterns and mining from stream data. We present at least one method of each of these
types and discuss their advantages and disadvantages. We conclude with a summary
of the work.

INTRODUCTION

What is Sequence Data?

Sequence data is omnipresent. Customer shopping sequences, medical treatment data,
and data related to natural disasters, science and engineering processes data, stocks
and markets data, telephone calling patterns, weblog click streams, program execution
sequences, DNA sequences and gene expression and structures data are some
examples of sequence data.

Notations and Terminology

Let | = {iy, i, i3 ... in} be a set of items. An item-set X is a subset of items i.e. X c I. A
sequence is an ordered list of item-sets (also called elements or events). ltems within
an element are unordered and we would list them alphabetically. An item can occur at
most once in an element of a sequence, but can occur multiple times in different
elements of a sequence. The number of instances of items in a sequence is called the
length of the sequence. A sequence with length | is called an l-sequence. E.g.,
s=<a(ce)(bd)(bcde)f(dg)> is a sequence which consists of 7 distinct items and 6
elements. Length of the sequence is 12.

A group of sequences stored with their identifiers is called a sequence database. We
say that a sequence s is a subsequence of t, if s is a “projection” of t, derived by
deleting elements and/or items from t. E.g. <a(c)(bd)f> is a subsequence of s. Further,
sequence s is a &-distance subsequence of t if there exist integers j1<j2< ... <j, such

that sq c tj1, sac t2 ... snc tjn and jk-jk.1 < & foreach k = 2, 3 ... n. That is, occurrences of
adjacent elements of s within t are not separated by more than & elements.

What is Sequential Pattern Mining?

Given a pattern p, support of the sequence pattern p is the number of sequences in the
database containing the pattern p. A pattern with support greater than the support
threshold min_sup is called a frequent pattern or a frequent sequential pattern. A
sequential pattern of length | is called an I-pattern. Sequential pattern mining is the
task of finding the complete set of frequent subsequences given a set of sequences. A
huge number of possible sequential patterns are hidden in databases.

A sequential pattern mining algorithm should

a. find the complete set of patterns, when possible, satisfying the minimum support
(frequency) threshold,

b. be highly efficient, scalable, involving only a small number of database scans

c. be able to incorporate various kinds of user-specific constraints.

APPROACHES FOR SEQUENTIAL PATTERN MINING

Apriori-Based Method (GSP: Generalized Sequential Patterns) (Srikant & Agrawal,
1996)

The Apriori property of sequences states that, if a sequence S is not frequent, then
none of the super-sequences of S can be frequent. E.g, <hb> is infrequent implies that
its super-sequences like <hab> and <(ah)b> would be infrequent too.

The GSP algorithm finds all the length-1 candidates (using one database scan) and
orders them with respect to their support ignoring ones for which support < min_sup.
Then for each level (i.e., sequences of length-k), the algorithm scans database to collect
support count for each candidate sequence and generates candidate length-(k+1)
sequences from length-k frequent sequences using Apriori. This is repeated until no
frequent sequence or no candidate can be found.

Consider the database as shown in table 1. Our problem is to find all frequent
sequences, given min_sup=2.

Table 1. Database.

Database Length-1 Patterns

Seq Ild | Sequence Cand | Seq

<a> 3
10 <(bd)cb(ac)> 5
20 <(bf)(ce)b(fg)> r—
30 <(ah)(bf)abf> <d> 3
40 <(be)(ce)d> <e> 3
50 <a(bd)bcb(ade)> <> 2

<g> 1

<h> 1
Length-2 Candidates
Table 2. Length-2 candidates

<a> <c> <d> <e> <f> <a> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af> <a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
 <ba> <bb> <bc> <bd> <be> <bf> <(bc)> <(bd)> <(be)> <(bf)>
<¢c> <ca> <cb> <cc> <cd> <ce> <cf> <c> <(cd)> <(ce)> <(cf)>
<d> <da> <db> <dc> <dd> <de> <df> <d> <(de)> <(df)>
<e> <ea> <eb> <ec> <ed> <ee> <ef> <e> <(ef)>
<f> <fa> <fb> <fc> <fd> <fe> <ff> <f>

As shown in Table 2, using Apriori one needs to generate just 51 length-2 candidates,
while without Apriori property, 8*8+8*7/2=92 candidates would need to be generated.
For this example, Apriori would perform 5 database scans, pruning away candidates
with support less than min_sup. Candidates that cannot pass support threshold are
pruned.

1% scan: 8 candidates. 6 length-1 sequence patterns.

2" scan: 51 candidates. 19 length-2 sequence patterns. 10 candidates not in DB at all
3" scan: 46 candidates. 19 length-3 sequence patterns. 20 candidates not in DB at all
4™ scan: 8 candidates. 6 length-4 sequence patterns.

5" scan: 1 candidate. 1 length-5 sequence patterns.

Some drawbacks of GSP are: a huge set of candidate sequences are generated,
multiple scans of database are needed and it is inefficient for mining long sequential
patterns (as it needs to generate a large number of small candidates).

Apart from finding simple frequent patterns, GSP generalizes the problem by
a. Allowing a user to specify time constraints (minimum and/or maximum time
period between adjacent elements in a pattern)
b. Relaxing the restriction that the items in an element of a sequential pattern must
come from the same transaction, instead allowing the items to be present in a set
of transactions whose transaction-times are within a user-specified time window.

c. Given a user-defined taxonomy (is-a hierarchy) on items, allowing sequential
patterns to include items across all levels of the taxonomy.

Vertical Format-Based Method (SPADE: Sequential PAttern Discovery using
Equivalent Class) (Zaki, 2001)

This is a vertical format sequential pattern mining method. SPADE first maps the
sequence database to a vertical id-list database format which is a large set of items
<SID (Sequence ID), EID (Event ID)>. Sequential pattern mining is performed by
growing the subsequences (patterns) one item at a time by Apriori candidate
generation.

As shown in table 3 below, all frequent sequences can be enumerated via simple
temporal joins (or intersections) on id-lists. They use a lattice-theoretic approach to
decompose the original search space (lattice) into smaller pieces (sub-lattices) which
can be processed independently in main-memory.

Their approach usually requires three database scans, or only a single scan with some
pre-processed information, thus minimizing the 1/0 costs. SPADE decouples the
problem decomposition from the pattern search. Pattern search could be done in a BFS
(breadth first search) or a DFS (depth first search) manner. The vertical id-list based
approach is also insensitive to data-skew. It also has linear scalability with respect to
the number of input-sequences, and a number of other database parameters.

Table 3. Frequent sequences

SID EID Iltems

1 7 a SID_EID_SID__EID

1 2 abc 1 1 1 2

1 3 ac 1 2 2 3

1 7 q 13 3 2

1 5 cf 2 1

2 1 ad 3 2

2 2 c ab ba

2 3 be SID_EID(a) EID(b) SID_EID(b) EID(a)

3 1 ef 2 1 3

3 2 ab

g 2 df SID EID(a) EID(b) EID(a)
C

3 z -~ 11 2 3

Pattern Growth Based Methods
FreeSpan (Han, Pei, Asl, Chen, Dayal, & Hsu, 2000) & PrefixSpan (Pei, et al., 2001)

These methods help in avoiding the drawbacks of the Apriori based methods.

FreeSpan (Frequent pattern projected Sequential pattern mining) uses frequent
items to recursively project sequence databases into a set of smaller projected
databases and grows subsequence fragments in each projected database. This process
partitions both the data and the set of frequent patterns to be tested, and confines each
test being conducted to the corresponding smaller projected database.

FreeSpan first scans the database, collects the support for each item, and finds the set
of frequent items. Frequent items are listed in support descending order (in the form of
item:support) E.g., flist=a:4, b:4, c:4, d:3, e:3, f:3.

According to flist, the complete set of sequential patterns in S can be divided into 6
disjoint subsets: (1) the ones containing only item ‘a’, (2) the ones containing item ‘b’,
but containing no items after ‘b’ in flist, (3) the ones containing item ‘c’, but no items
after ‘c’, in flist, and so on, and finally, (6) ones containing item ‘f’.

The subsets of sequential patterns can be mined by constructing projected databases.
Infrequent items, such as ‘g’ in this example, are removed from construction of
projected databases.

Note that {b}, {c}, {d}, {e}, {f}-projected databases are constructed simultaneously during
one scan of the original sequence database. All sequential patterns containing only item
‘a’ are also found in this pass. This process is performed recursively on projected
databases. Since FreeSpan projects a large sequence database recursively into a set of
small projected sequence databases based on the currently mined frequent sets, the
subsequent mining is confined to each projected database relevant to a smaller set of
candidates.

The major cost of FreeSpan is to deal with projected databases. If a pattern appears in
each sequence of a database, its projected database does not shrink (except for the
removal of some infrequent items). Moreover, since a length-k subsequence may grow
at any position, the search for length-(k+1) candidate sequence will need to check every
possible combination, which is costly.

PrefixSpan (Prefix-projected Sequential pattern mining) works similar to FreeSpan
except that the partitioning is done using prefixes of sequences. E.g., for a sequence
<(abc)(ac)d(cf)>, <ab> is a prefix which has <(_c)(ac)d(cf)> as the corresponding suffix
(projection) as shown in Figure 1.

Figure 1. PrefixSpan

SDB

D Swumnce Length-1 sequential patterns
10 <al(abc)(ac)d(cf)> b d f
<a>, , <c>, <d>, <e>, <f>

20 <(ad)e(bc)(ae)>
30 | <(eh(ab)(dficb>
40 <eg(afjcbe>
Having prefix <a> Having prefix <c>, ..., <f>
) Having prefix
<a>-projected database -projected database
<(abc)(ac)d(cf)> Length-2 sequential
<(_d)c(bc)(ae)> patterns
<(_b)(df)cb> <aa>, <ab>, <(ab)>,
<(_f)cbc> <ac>, <ad>, <af>
Having% ‘*"aaw&ﬁx <af>
<aa>-proj. db | .. | <af>-proj. db

Its general idea is to examine only the frequent prefix subsequences and project only
their corresponding postfix subsequences into projected databases because any
frequent subsequence can always be found by growing a frequent prefix. Thus the
search space for our example will be partitioned into the following six subsets according
to the six prefixes: (1) the ones having prefix <a> ... and (6) the ones having prefix <f>.
In each projected database, sequential patterns are grown by exploring only local
frequent patterns. The subsets of sequential patterns can be mined by constructing
corresponding projected databases and mining each recursively.

PrefixSpan first finds sequential patterns having prefix <a>. Recursively, all sequential
having patterns prefix <a> can be partitioned into 6 subsets: (1) those having prefix
<aa> (2) those having prefix <ab>... and finally, (6) those having prefix <af>. These
subsets can be mined by constructing respective projected databases (only if the prefix
is frequent) and mining each recursively. Similarly, we can find sequential patterns
having prefix , <c>, <d>, <e> and <f> respectively, by constructing -, <c>-, <d>-,
<e>- and <f>-projected databases and mining them respectively.

No candidate sequence needs to be generated by PrefixSpan. Projected databases
keep shrinking. The major cost of PrefixSpan is the construction of projected databases.
To further improve mining efficiency, two kinds of database projections are explored:
level-by-level projection and bi-level projection. Moreover, a main-memory-based
pseudo-projection (using pointers rather than physically copying postfix sequences)
technique is developed for saving the cost of projection and speeding up processing
when the projected (sub)-database and its associated pseudo-projection processing
structure can fit in main memory. PrefixSpan mines complete set of patterns much
faster than both GSP and FreeSpan.

Constraint Based Methods

Conventionally, users can specify only min_sup as a parameter to a sequential pattern
mining algorithm. There are two major difficulties in sequential pattern mining: (1)
effectiveness: the mining may return a huge number of patterns, many of which could
be uninteresting to users, and (2) efficiency: it often takes substantial computational
time and space for mining the complete set of sequential patterns in a large sequence
database. To prevent these problems, users can use constraint based sequential
pattern mining for focused mining of desired patterns. Constraints could be anti-
monotone, monotone, succinct, convertible or inconvertible. Anti-monotonicity means “if
an item-set does not satisfy the rule constraint, then none of its supersets satisfy”.
Monotonicity means “if an item-set satisfies the rule constraint, then all of its supersets
satisfy”. Succinctness means “All and only those patterns guaranteed to satisfy the rule
can be enumerated”. Convertible constraints are those which are not any of anti-
monotonic, monotonic, succinct but can be made anti-monotonic or monotonic
constraints by changing order of elements in the set. Inconvertible constraints are the
ones which are not convertible.

In the context of constraint-based sequential pattern mining, (Srikant & Agrawal, 1996)
generalized the scope of the Apriori-based sequential pattern mining to include time
constraints, sliding time windows, and user-defined taxonomy. Mining frequent episodes
in a sequence of events studied by (Mannila, Toivonen, & Verkamo, 1997) can also
be viewed as a constrained mining problem, since episodes are essentially constraints
on events in the form of acyclic graphs. The classical framework on frequent and
sequential pattern mining is based on the anti-monotonic Apriori property of frequent
patterns. A breadth-first, level-by-level search can be conducted to find the complete set
of patterns.

Performance of conventional constraint-based sequential pattern mining algorithms
dramatically degrades in the case of mining long sequential patterns in dense
databases or when using low minimum supports. In addition, the algorithms may reduce
the number of patterns but unimportant patterns are still found in the result patterns.
(Yun, 2008) uses weight constraints to reduce the number of unimportant patterns.
During the mining process, they consider not only supports but also weights of patterns.
Based on the framework, they present a weighted sequential pattern mining algorithm
(WSpan).

(Chen, Cao, Li, & Qian, 2008) incorporate user-defined tough aggregate constraints so
that the discovered knowledge better meets user needs. They propose a novel
algorithm called PTAC (sequential frequent Patterns mining with Tough Aggregate
Constraints) to reduce the cost of using tough aggregate constraints by incorporating
two effective strategies. One avoids checking data items one by one by utilizing the
features of “promising-ness” exhibited by some other items and validity of the
corresponding prefix. The other avoids constructing an unnecessary projected database

by effectively pruning those unpromising new patterns that may, otherwise, serve as
new prefixes.

(Masseglia, Poncelet, & Teisseire, 2003) propose an approach called GTC (Graph for
Time Constraints) for mining time constraint based patterns (as defined in GSP
algorithm) in very large databases. It is based on the idea that handling time constraints
in the earlier stage of the data mining process can be highly beneficial. One of the most
significant new features of their approach is that handling of time constraints can be
easily taken into account in traditional level-wise approaches since it is carried out prior
to and separately from the counting step of a data sequence.

(Wang, Chirn, Marr, Shapiro, Shasha, & Zhang, 1994) looked at the problem of
discovering approximate structural patterns from a genetic sequences database.
Besides the minimum support threshold, their solution allows the users to specify: 1. the
desired form of patterns as sequences of consecutive symbols separated by variable
length don’t cares, 2. a lower bound on the length of the discovered patterns, and 3. an
upper bound on the edit distance allowed between a mined pattern and the data
sequence that contains it. Their algorithm uses a random sample of the input
sequences to build a main memory data structure, termed generalized suffix tree, that is
used to obtain an initial set of candidate pattern segments and screen out candidates
that are unlikely to be frequent based on their occurrence counts in the sample. The
entire database is then scanned and filtered to verify that the remaining candidates are
indeed frequent answers to the user query.

(Garofalakis, Rastogi, & Shim, 2002) propose regular expressions as constraints for
sequential pattern mining and developed a family of SPIRIT (Sequential pattern
mining with regular expression constraints) algorithms. Members in the family
achieve various degrees of constraint enforcement. The algorithms use relaxed
constraints with nice properties (like anti-monotonicity) to filter out some unpromising
patterns/candidates in their early stage. A SPIRIT algorithm first identifies C’ as a
constraint weaker than C. Then it obtains Fi=frequent items in D that satisfy C’. Further,
it iteratively generates candidates Cy using F and C’, prunes candidates in Cy that
contain subsequences that satisfy C’ but are not in F, identifies Fx as the frequent
sequences in Cy by scanning the database to count support and updates F to F UFy.
Finally, sequences in F that satisfy the original condition C are output.

General SPIRIT constrained mining framework can be specified as:
PROCEDURE SPIRIT(D,C)
Begin
1. Let C’=a constraint weaker (i.e., less restrictive) than C.
2. F=Fq=frequent items in D that satisfy C’
3. K=2
4. Repeat {
a. //candidate generation
b. Using C’ and F generate Cy={potentially frequent k-sequences that satify
C}

//lcandidate pruning
Let P={seCy: s has a subsequence t that satisfies C’ and t¢F}
Ck=Ck-P
//lcandidate counting
Scan D counting the support for candidate k-sequences in Cg
Fy-frequent sequences in Cg
F=F UFg
j. K=K+1
tuntil TerminatingCondition(F < C’) holds
/lenforce the original (stronger) constraint C
Output sequences in F that satisfy C
End

T S@ ™o a0

®No O

Given a user specified RE constraint C, the first SPIRIT algorithm SPIRIT(N) (“N” for
“Naive”) only prunes candidate sequences containing elements that do not appear in C.
The second one, SPIRIT(L) (“L” for “Legal”), requires every candidate sequence to be
legal with respect to some state of automata A(C). The third, SPIRIT(V) (“V” for “Valid”),
filters out candidate sequences that are not valid with respect to any state of A(C). The
fourth, SPIRIT(R) (“R” for “Regular”), pushes C all the way inside the mining process by
counting support only for valid candidate sequences.

The above interesting studies handle a few scattered classes of constraints. However,
two problems remain. First, many practical constraints have not been covered. Also
there is a need for a systematic method to push various constraints into the mining
process. Unfortunately, some commonly encountered sequence-based constraints,
such as regular expression constraints, are neither monotonic, nor anti-monotonic, nor
succinct. (Pei, Han, & Wang, 2007) mention seven categories of constraints:

1. ltem constraint: An item constraint specifies subset of items that should or should not
be present in the patterns.

2. Length constraint: A length constraint specifies the requirement on the length of the
patterns, where the length can be either the number of occurrences of items or the
number of transactions.

3. Super-pattern constraint: Super-patterns are ones that contain at least one of a
particular set of patterns as sub-patterns.

4. Aggregate constraint: An aggregate constraint is the constraint on an aggregate of
items in a pattern, where the aggregate function can be sum, avg, max, min, standard
deviation, etc.

5. Regular expression constraint: A regular expression constraint CRE is a constraint
specified as a regular expression over the set of items using the established set of
regular expression operators, such as disjunction and Kleene closure.

6. Duration constraint: A duration constraint is defined only in sequence databases
where each transaction in every sequence has a time-stamp. It requires that the
sequential patterns in the sequence database must have the property such that the
time-stamp difference between the first and the last transactions in a sequential pattern
must be longer or shorter than a given period.

10

7. Gap constraint: A gap constraint set is defined only in sequence databases where
each transaction in every sequence has a timestamp. It requires that the sequential
patterns in the sequence database must have the property such that the timestamp
difference between every two adjacent transactions must be longer or shorter than a
given gap.

A constraint Cy, is called prefix anti-monotonic if for each sequence ‘a’ satisfying the
constraint, so does every prefix of ‘a@’. A constraint C,n is called prefix monotonic if for
each sequence ‘a’ satisfying the constraint, so does every sequence having ‘a’ as a
prefix. A constraint is called prefix-monotone if it is prefix anti-monotonic or prefix
monotonic.

The authors describe a pattern-growth (PG) method for Constraint-based
sequential pattern mining which is based on a prefix-monotone property. They show
that all the monotonic and anti-monotonic constraints, as well as regular expression
constraints, are prefix-monotone, and can be pushed deep into a PG-based mining.
Moreover, some tough aggregate constraints, such as those involving average or
general sum, can also be pushed deep into a slightly revised PG mining process. In the
recursive FP growth framework, the authors first compute all the length-1 frequent
prefixes. Then they compute the corresponding projected databases. Each of the
frequent prefixes of length (I+1) are further processed recursively only if they satisfy the
constraint C.

Closed Sequential Pattern Mining

CloSpan (Yan, Han, & Afshar, 2003) is an algorithm for the mining of closed repetitive
gapped subsequences (figure 2). A closed sequential pattern s is a sequence such that
there exists no super-pattern s’, s 'O s, and s’ and s have the same support. E.g., given
<abc>: 20, <abcd>:20, <abcde>: 15, we know that <abcd> is closed. If the database
contains 1 long sequence with 100 elements and min support is 1, this sequence will
generate 2"100 frequent subsequences, though there is only one of these which is
closed. Mining of closed sequences reduces the number of (redundant) patterns but
attains the same expressive power. Note that if s’ O s, s is closed iff two projected DBs
have the same size. CloSpan uses backward sub-pattern and backward super-pattern
pruning to prune redundant search space thereby preventing unnecessary
computations.

Figure 2. CloSpan

11

Backward super-pattern pruning Backward sub-pattern pruning

CloSpan is basically similar to PrefixSpan with sub-pattern and super-pattern checks
which involve checking and matching of the size of the databases. The authors show
that CloSpan performs better than PrefixSpan in terms of execution time.

Sequential Pattern Mining in Data Streams: SS-BE and SS-MB (Mendes, Ding, &
Han, 2008)

Data stream is an unbounded sequence in which new elements are generated
continuously. Memory usage is limited and an algorithm is allowed to perform only a
single scan over the database. Two effective methods for stream-based sequential
pattern mining are SS-BE (Stream Sequence miner using Bounded Error) and SS-MB
(Stream Sequence miner using Memory Bounds).

SS-BE Method can be outlined as follows:

a. Break the stream into fixed-sized batches.

b. For each arriving batch, apply PrefixSpan. Insert each frequent sequence found into
a tree.

c. Periodically prune the tree (the number of batches seen is a multiple of the pruning
period).

d. Output all sequences corresponding to nodes having count >= (o-€)N.

This method outputs no false negatives and true support of false positives is at least (o-

€).

E.g., suppose o = 0.75, € = 0.5 and data stream D: <a,b,c>, <a,c>, <a,b>, <b,c>,

<a,b,c,d>, <c,a,b>, <d,a,b>, <a,e,b> Let the first batch B; contain the first four

sequences and the second batch B, contain the next four. The algorithm first applies

PrefixSpan to B4 with min_sup as 0.5. The frequent sequences found are: <a>:3, :3,

<c>:3, <a,b>:2, <a,c>:2, and <b,c>:2. A frequent pattern tree is created. Let the pruning

period be two batches. So algorithm proceeds to batch B,. The frequent sequences

found are: <a>:4, :4, <c>:2, <d>:2, and <a,b>:4. The frequent pattern tree would

look as shown in the figure below. Now SS-BE would prune the tree by identifying and

removing all nodes guaranteed to have true support below € = 0.5 during the time they

were kept in the tree. Thus <d>:2, <ac>:2 and <bc>:2 are pruned away.

Finally SS-BE outputs all sequences having count at least (o-€)N = (0.75 - 0.5)*8 = 2.
Thus output is <a>: 7, : 7, <c>: 5, <a, b>:6. Note that there are no false negatives
and only one false positive: <c>.

SS-MB method is similar to SS-BE except that in step 3, rather than pruning the tree
after a time period, the tree size is limited to ‘m’ nodes. Due to this, SS-MB can only
guarantee no false negatives after execution. E.g. in the above example, assume that
‘m’is 7. Then after batch B, is processed, the tree contains 8 nodes and hence the node

12

with minimum support <b,c> is removed (figure 3). Because of the specific ‘m’, SS-MB
can control amount of memory used explicitly.

Figure 3. SS-BE pruning tree

%
(bo;

The authors show that the two methods are effective solutions to the stream sequential
pattern mining problem: running time scales linearly, maximum memory usage is limited
and a very small number of false positives are generated.

Mining Incremental Patterns: IncSpan (Incremental Mining of Sequential Patterns)
(Cheng, Yan, & Han, 2004)

Many real life sequence databases, such as customer shopping sequences, medical
treatment sequences, etc., grow incrementally. It is undesirable to mine sequential
patterns from scratch each time when a small set of sequences grow, or when some
new sequences are added into the database. Incremental algorithm should be
developed for sequential pattern mining so that mining can be adapted to frequent and
incremental database updates, including both insertions and deletions. However, it is
nontrivial to mine sequential patterns incrementally, especially when the existing
sequences grow incrementally because such growth may lead to the generation of
many new patterns due to the interactions of the growing subsequences with the
original ones. There are two kinds of database updates in applications: (1) inserting new
sequences (INSERT) and (2) appending new item-sets/items to the existing sequences
(APPEND). Let DB be the old database, Adb be the change and DB’ be the new
database. Thus, DB' = DB UAdb.

It is easier to handle the first case: INSERT. An important property of INSERT is that a
frequent sequence in DB' = DB U Adb must be frequent in either DB or Adb (or both). If
a sequence is infrequent in both DB and Adb, it cannot be frequent in DB'. Thus, only
those patterns that are frequent in Adb but infrequent in DB need to be searched in DB
to find their occurrence count. (Zhang, Kao, Cheung, & Yip, 2002) propose another
algorithm of incremental mining to handle the case of INSERT in sequential pattern
mining.

13

For the second case, consider that new items only get appended. Suppose |DB|=1000
and |Adb|=20, min_sup=10%. Suppose a sequence ‘s’ is infrequent in DB with 99
occurrences (sup = 9:9%). In addition, it is also infrequent in Adb with only 1 occurrence
(sup = 5%). Although ‘s’ is infrequent in both DB and Adb, it becomes frequent in DB’
with 100 occurrences.

This problem complicates the incremental mining since one cannot ignore the infrequent
sequences in Adb, but there are an exponential number of infrequent sequences even
in a small Adb and checking them against the set of infrequent sequences in DB will be
very costly. (Parthasarathy, Zaki, Ogihara, & Dwarkadas, 1999) proposed an
incremental mining algorithm, called ISM, based on SPADE by exploiting a concept
called negative border. However, maintaining negative border is memory consuming
and not well adapted for large databases. (Masseglia, Poncelet, & Teisseire, Efficient
mining of sequential patterns with time constraints: Reducing the combinations, 2009)
developed another incremental mining algorithm using candidate generate-and-test
approach, which is costly, especially when the sequences are long because it requires
multiple scans of the whole database.

For the third case, where the database is updated with both INSERT and APPEND, the
problem becomes even more complicated. There are two approaches: (1) handling
them separately by first performing APPEND then INSERT; (2) treat the inserted
sequences as appending to empty sequences in DB: a special case of APPEND. Then
this problem is reduced to APPEND.

Given a minimum support threshold, min_sup, a sequence is frequent if its support
>=min_sup; given a factor u<=1, a sequence is semi-frequent if its support<min_sup
but >u*min_sup; a sequence is infrequent if its support<u*min_sup. Let FS be the set
of all frequent sequential patterns and SFS be the set of semi-frequent sequential
patterns.

Given a sequence database DB, min_sup, the set of frequent subsequences FS in DB,
and an appended sequence database DB’ of D, the problem of incremental sequential
pattern mining is to mine the set of frequent subsequences FS’ in DB’ based on FS
instead of mining on DB’ from scratch. A simple algorithm, SimpleSpan, exploits the FS
in the original database and incrementally mines new patterns. SimpleSpan updates the
support of every frequent sequence in FS, adds it to FS’ and uses it as a prefix to
project database. In addition, SimpleSpan scans the new database DB’ to discover new
frequent single items and uses them as prefix to project database using PrefixSpan.
One problem of SimpleSpan is that it makes a large number of database projections,
which is costly. The drawback of SimpleSpan is that it has no information about
infrequent sequences in the original database DB. But such information can enable us
to reduce search space and find new frequent sequences efficiently.

IncSpan uses the technique of buffering semi-frequent patterns by maintaining a set
SFS in the original database DB. Since the sequences in SFS are “almost frequent”,
most of the frequent subsequences in the appended database will either come from

14

SFS or they are already frequent in the original database. With a minor update to the
original database, it is expected that only a small fraction of subsequences which were
infrequent previously would become frequent. This is based on the assumption that
updates to the original database have a uniform probability distribution on items. It is
expected that most of the frequent subsequences introduced by the updated part of the
database would come from the SFS. The SFS forms a kind of boundary (or “buffer
zone”) between the frequent subsequences and infrequent subsequences.

IncSpan algorithm can be outlined as follows.

a. Scan Adb for single items. If a new item or an infrequent item becomes frequent
or semi-frequent, add it to FS’ or SFS’. For every item in FS’, use it as prefix to
construct projected database and discover frequent sequences recursively.

b. Check every pattern in FS and SFS in Adb to adjust the support of those
patterns.

|. If a pattern becomes frequent, add it to FS’. Then check whether it meets
the projection condition. If so, use it as prefix to project database. Discover
frequent or semi-frequent patterns in the projected database. To improve
the performance, shared projection can be used in this step.
II. If a pattern is semi-frequent, add it to SFS’.
The authors also mention two optimization techniques, reverse pattern matching and
shared projection to improve the performance.

Multidimensional Sequential Pattern Mining: UNISEQ (Pinto, Han, Pei, Wang,
Chen, & Dayal, 2001)

Consider pattern P1= {try a 100 hour free internet access package=>subscribe to 15
hours/month package=upgrade to 30 hours per month package=upgrade to unlimited
package}. This pattern may hold for all customers below age of 35 (75% customers).
But for other customers, pattern P2= {try a 100 hour free internet access package=
upgrade to 30 hours per month package} may hold. Clearly, if sequential pattern mining
can be associated with customer category or other multi-dimensional information, it will
be more effective since the classified patterns are often more useful. (Pinto, Han, Pei,
Wang, Chen, & Dayal, 2001) propose two categories of methods: a. integration of
efficient sequential pattern mining and multi-dimensional analysis methods (Seg-Dim
and Dim-Seq). b. embedding multi-dimensional information into sequences and mine
the whole set using a uniform sequential pattern mining method (Uni-Seq).

A multi-dimensional sequence database has the schema (RID, A4, Ay ... An, S) where
RID is the record identifier, A1 ... Ay are the attributes and S is the sequence. A multi-
dimensional pattern ‘p’ would match a tuple ‘4’ in the database, if the attribute values
match (or the attribute value is *) and ‘s’ is a subsequence of the sequence stored in ‘t’.
e.g. t=(10, business, Boston, middle, <(bd)cba>)

UniSeq (Uniform Sequential): Multi-dimensional information in a tuple ‘t' in multi-
dimensional DB can be embedded in the sequence by introducing a special element.
E.g. 't can be rewritten as (10, <(business Boston middle)(bd)cba>). Let the database

15

containing such modified tuples be called MD-extension DB and denoted as SDB-MD.
Now the problem is: Given, SDB-MD and min_sup, output the complete set of multi-
dimensional sequential patterns. UniSeq mines sequential patterns in SDB-MD using
PrefixSpan. For each sequential pattern ‘p’ in SDB-MD, it outputs the corresponding
multi-dimensional sequential pattern in SDB. As an alternative, instead of embedding
the multi-dimensional information into the first element of each sequence, it can be
attached as the last element. Both the alternatives have almost identical performance
results. Thus, UniSeq reduces the problem to mining one extended sequence database
and is therefore easy to implement. But, all dimension values are treated as sequential
items. Hence, it cannot take advantage of efficient mining algorithms for multi-
dimensional non-sequential computational methods. Hence, cost of computing becomes
high when data has large number of dimensions.

A SDB-MD can be partitioned into two parts: dimensional information and sequence.
So, we can first mine patterns about dimensional information (called multi-dimensional
patterns or MD-patterns) and then find sequential patterns from projected sub-database
(tuples containing the MD-pattern) or vice versa. Dim-Seq first finds MD-patterns and
then for each MD-pattern, it forms MD-projected database and mines sequential
patterns in projected databases. Seq-Dim first mines the sequential patterns. For each
sequential pattern, it forms projected MD-database and then finds MD-patterns within
projected databases. Seg-Dim is more efficient and scalable in general compared to
Dim-Seq.

Mining Closed Repetitive Gapped Subsequences (Ding, Lo, Han, & Khoo, 2009)

Patterns often repeat multiple times in a sequence e.g., in program execution traces,
sequences of words (text data), credit card usage histories. Given two sequences like
S1 = AABCDABB, S, = ABCD, is pattern AB more frequent then CD? To answer this
question, one needs to define a notion of repetitive support, sup(P) as max{|INS|: INS is
a set of non-overlapping instances of P}. The aim is to maximize the size of the non-
overlapping instance set. Note that if P’ is a super-pattern of P, then sup(P’) < sup(P).

To solve this problem, the authors propose a greedy instance-growth algorithm. The
intuition is to extend each instance to the nearest possible event. Consider a database
of two sequences as shown in table 4:

Table 4. Database of two sequences

11213]als5|e|718]|9 Support set I* Support set 1** Support set 1*“®
s1|A|B|c|A|[c|B|D|[D]|B (1,<1>) (1,<1,3>) (1,<1,3,6>)
s2{Alc|p|B|Afc|A]D]|D (1,<4>) (1,<4,5>) (1,<4,5,9>)
(2,<1>) (2,<1,2>) (2,<1,2,4>)
(2,<5>) (2,<5,6>)
(2,<7>)
sup(A)=5 sup(AC)=4 sup(ACB)=3

16

The algorithm uses a procedure INSgrow(P, INS, e) which does the following. Given a
leftmost support set INS of P, with |INS| = sup(P), and event e, it extends each instance
in INS to the nearest possible event e and returns a support set INS* of pattern Poe (P
concatenated with e). Thus, using this method, one can find all the frequent patterns by
doing DFS in the pattern space.

Further, they define pattern extension as set of patterns with one more event. E.g., if P
=eq€e ...em, PExtension(P, e) = {eeqe;...en, €1€€y...€n, ..., €1€2...ene}. Pattern P is not
closed iff sup(P) = sup(Q) for some Q € Extension(P, €). Also note that it is possible that
AB is not closed but ABAC is closed. To prune the search space, they propose the
following instance-border checking principle. Pattern P is prunable if there exists Q €
Extension(P, e) for some e such that sup(P) = sup(Q) (P is not closed) and for each (i,
<k1, k2, ..., kp>) € INS and (i, <k¢, k2, ..., kig>) € INS¥ kg < kjp| where INS” and
INS®are (leftmost) support sets of P and Q respectively.

OTHER SEQUENTIAL PATTERN MINING METHODS

(Kum, Chang, & Wang, Sequential Pattern Mining in Multi-Databases via Multiple
Alignment, 2006) proposed a new sequential pattern mining method based on multiple
alignment (rather than the usual support-based approach) for mining multiple
databases. Multiple databases are mined and summarized at the local level, and only
the summarized patterns are used in the global mining process. For summarization,
they propose the theme of approximate sequential pattern mining roughly defined as
identifying patterns approximately shared by many sequences. They propose an
algorithm, ApproxMAP, to mine approximate sequential patterns, called consensus
patterns, from large sequence databases in two steps. First, sequences are clustered
by similarity. Then, consensus patterns are mined directly from each cluster through
multiple alignment.

Further, (Kum, Chang, & Wang, Benchmarking the effectiveness of sequential
pattern mining methods, 2007) benchmarked the effectiveness of sequential pattern
mining methods by comparing a support-based sequential pattern model with an
approximate pattern model based on sequence alignment using a metric that evaluates
how well a mining method finds known common patterns in synthetic data. Their
comparison study suggests that the alignment model will give a good summary of the
sequential data in the form of a set of common patterns in the data. In contrast, the
support model generates massive amounts of frequent patterns with much redundancy.
This suggests that the results of the support model require more post processing before
it can be of actual use in real applications.

(Laur, Symphor, Nock, & Poncelet, 2007) introduced statistical supports to maximize
mining precision and improve the computational efficiency of the incremental mining
process. As only a part of the stream can be stored, mining data streams for sequential
patterns and updating previously found frequent patterns need to cope with uncertainty.
They introduce a new statistical approach which biases the initial support for sequential
patterns. This approach holds the advantage to maximize either the precision or the

17

recall, as chosen by the user, and limit the degradation of the other criterion. Moreover,
these statistical supports help building statistical borders which are the relevant sets of
frequent patterns to use into an incremental mining process.

(Lin, Chen, Hao, Chueh, & Chang, 2008) introduced the notion of positive and
negative sequential patterns, where positive patterns include the presence of an item-
set of a pattern, and negative patterns are the ones with the absence of an item-set.

ltems sold in a store can usually be organized into a concept hierarchy according to
some taxonomy. Based on the hierarchy, sequential patterns can be found not only at
the leaf nodes (individual items) of the hierarchy, but also at higher levels of the
hierarchy; this is called multiple-level sequential pattern mining. In previous research,
taxonomies had crisp relationships between the categories in one level and the
categories in another level. In real life, however, crisp taxonomies cannot handle the
uncertainties and fuzziness inherent in the relationships among items and categories.
For example, the book Alice’s Adventures in Wonderland can be classified into the
Children’s Literature category, but can also be related to the Action & Adventure
category. To deal with the fuzzy nature of taxonomy, (Chen & Huang, A novel
knowledge discovering model for mining fuzzy multi-level sequential patterns in
sequence databases, 2008) apply fuzzy set techniques to concept taxonomies so that
the relationships from one level to another can be represented by a value between 0
and 1. They propose a fuzzy multiple- level mining algorithm (FMSM) to extract fuzzy
multiple-level sequential patterns from databases. In addition, another algorithm, named
the CROSS-FMSM algorithm, is developed to discover fuzzy cross-level sequential
patterns.

(Kuo, Chao, & Liu, 2009) use K-means algorithm to achieve better computational
efficiency for fuzzy sequential pattern mining.

Many methods only focus on the concept of frequency because of the assumption that
sequences’ behaviors do not change over time. The environment from which the data is
generated is often dynamic; the sequences’ behaviors may change over time. To adapt
the discovered patterns to these changes, (Chen & Hu, Constraint-based sequential
pattern mining: the consideration of recency and compactness, 2006) introduce
two new concepts, recency and compactness and incorporate them into traditional
sequential pattern mining. The concept of recency causes patterns to quickly adapt to
the latest behaviors in sequence databases, while the concept of compactness ensures
reasonable time spans for the discovered patterns. An efficient method is presented to
find CFR-patterns (compactness, frequency, and recency).

CONCLUSION

We discussed basics of sequential pattern mining. We presented an exhaustive survey
of different sequential pattern mining methods proposed in the literature. Sequential
pattern mining methods have been used to analyze this data and identify patterns. Such
patterns have been used to implement efficient systems that can recommend based on

18

previously observed patterns, help in making predictions, improve usability of systems,
detect events and in general help in making strategic product decisions. We envision
that the power of sequential mining methods has not yet been fully exploited. We hope
to see many more strong applications of these methods in a variety of domains in the
years to come. Apart from this, new sequential pattern mining methods may also be
developed to handle special scenarios of colossal patterns, approximate sequential
patterns and other kinds of sequential patterns specific to the applications.

REFERENCES

Chen, E., Cao, H., Li, Q., & Qian, T. (2008). Efficient strategies for tough aggregate
constraint-based sequential pattern mining. Inf. Sci., 178(6), 1498-1518.

Chen, Y.-L., & Hu, Y.-H. (2006). Constraint-based sequential pattern mining: The
consideration of recency and compactness. Decis. Support Syst., 42(2), 1203-1215.
Chen, Y.-L., & Huang, T. C.-K. (2008). A novel knowledge discovering model for mining
fuzzy multi-level sequential patterns in sequence databases. Data Knowl. Eng., 66(3),
349-367.

Cheng, H., Yan, X., & Han, J. (2004). IncSpan: Incremental mining of sequential
patterns in large database. KDD '04: Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, (pp. 527-532).
Ding, B., Lo, D., Han, J., & Khoo, S.-C. (2009). Efficient mining of closed repetitive
gapped subsequences from a sequence database. ICDE 09.

Exarchos, T. P., Tsipouras, M. G., Papaloukas, C., & Fotiadis, D. I. (2008). A two-stage
methodology for sequence classification based on sequential pattern mining and
optimization. Data Knowl. Eng., 66(3), 467-487.

Garofalakis, M., Rastogi, R., & Shim, K. (2002). Mining sequential patterns with regular
expression constraints. IEEE Trans. on Knowl. and Data Eng., 14(3), 530-552.

Han, J., Pei, J., Asl, B. M., Chen, Q., Dayal, U., & Hsu, M. C. (2000). FreeSpan:
Frequent pattern-projected sequential pattern mining. KDD '00: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp.
355-359). Boston, MA: ACM.

Kum, H.-C., Chang, J. H., & Wang, W. (2007). Benchmarking the effectiveness of
sequential pattern mining methods. Data Knowl. Eng., 60(1), 30-50.

Kum, H.-C., Chang, J. H., & Wang, W. (2006). Sequential pattern mining in multi-
databases via multiple alignment. Data Min. Knowl. Discov., 12(2-3), 151-180.

Kuo, R. J., Chao, C. M., & Liu, C. Y. (2009). Integration of K-means algorithm and
AprioriSome algorithm for fuzzy sequential pattern mining. Appl. Soft Comput., 9(1), 85-
93.

Laur, P.-A., Symphor, J.-E., Nock, R., & Poncelet, P. (2007). Statistical supports for
mining sequential patterns and improving the incremental update process on data
streams. Intell. Data Anal., 11(1), 29-47.

Lin, N. P., Chen, H.-J., Hao, W.-H., Chueh, H.-E., & Chang, C.-I. (2008). Mining strong
positive and negative sequential patterns. W. Trans. on Comp., 7(3), 119-124.

Mannila, H., Toivonen, H., & Verkamo, |. (1997). Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3), 259-289.

19

Masseglia, F., Poncelet, P., & Teisseire, M. (2009). Efficient mining of sequential
patterns with time constraints: Reducing the combinations. Expert Syst. Appl., 36(3),
2677-2690.

Masseglia, F., Poncelet, P., & Teisseire, M. (2003). Incremental mining of sequential
patterns in large databases. Data Knowl. Eng., 46(1), 97-121.

Mendes, L. F., Ding, B., & Han, J. (2008). Stream sequential pattern mining with precise
error bounds. Proc. 2008 Int. Conf. on Data Mining (ICDM'08), Pisa, Italy, Dec. 2008.
Parthasarathy, S., Zaki, M., Ogihara, M., & Dwarkadas, S. (1999). Incremental and
interactive sequence mining. In Proc. of the 8th Int. Conf. on Information and
Knowledge Management (CIKM’99).

Pei, J., Han, J., & Wang, W. (2007). Constraint-based sequential pattern mining: The
pattern-growth methods. J. Intell. Inf. Syst., 28(2), 133-160.

Pei, J., Han, J., Asl, M. B., Pinto, H., Chen, Q., Dayal, U., et al. (2001). PrefixSpan
mining sequential patterns efficiently by prefix projected pattern growth. Proc.17th Int
Conf. on Data Eng., (pp. 215-226).

Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., & Dayal, U. (2001). Multi-dimensional
sequential pattern mining. CIKM '01: Proceedings of the Tenth International Conference
on Information and Knowledge Management (pp. 81-88). New York, NY: ACM.

Seno, M., & Karypis, G. (2002). SLPMiner: An algorithm for finding frequent sequential
patterns using length-decreasing support constraint. In Proceedings of the 2nd IEEE
International Conference on Data Mining (ICDM), (pp. 418-425).

Srikant, R., & Agrawal, R. (1996). Advances in database technology EDBT '96., (pp. 3-
17).

Wang, J. L., Chirn, G., Marr, T., Shapiro, B., Shasha, D., & Zhang, K. (1994).
Combinatorial pattern discovery for scientific data: Some preliminary results. Proc. ACM
SIGMOD Intl Conf. Management of Data, (pp. 115-125).

Xing, Z., Pei, J., & Keogh, E. (2010). A brief survey on sequence classification. SIGKDD
Explorations Newsletter, 12(1), 40-48.

Yan, X., Han, J., & Afshar, R. (2003). CloSpan: Mining closed sequential patterns in
large datasets. Proceedings of SDM, (pp. 166-177).

Yun, U. (2008). A new framework for detecting weighted sequential patterns in large
sequence databases. Know.-Based Syst., 21(2), 110-122.

Zaki, M. J. (2000). Sequence mining in categorical domains: Incorporating constraints.
CIKM '00: Proceedings of the Ninth International Conference on Information and
Knowledge Management (pp. 422-429). New York, NY: ACM.

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 42(1-2), 31-60.

Zhang, M., Kao, B., Cheung, D., & Yip, C. (2002). Efficient algorithms for incremental
updates of frequent sequences., In Proc. of the 6th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’02).

ADDITIONAL READING

Adamo, J.-M. (2001). Data Mining for Association Rules and Sequential Patterns:
Sequential and Parallel Algorithms. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

20

Alves, R., Rodriguez-Baena, D. S., Aguilar-Ruiz, & S., J. (2009). Gene association
analysis: a survey of frequent pattern mining from gene expression data. Briefings in
Bioinformatics , 210-224.

Fradkin, D., & Moerchen, F. (2010). Margin-closed frequent sequential pattern mining.
UP '10: Proceedings of the ACM SIGKDD Workshop on Useful Patterns (pp. 45-54).
New York, NY, USA: ACM.

Garofalakis, M., Rastogi, R., & Shim, K. (2002). Mining Sequential Patterns with
Regular Expression Constraints. IEEE Trans. on Knowl. and Data Eng. , 530-552.

Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques, Second edition.
Morgan Kaufmann Publishers.

Joshi, M. V., Karypis, G., & Kumar, V. (2000). Parallel Algorithms for Mining Sequential
Associations: Issues and Challenges (2000).

Li, T.-R., Xu, Y., Ruan, D., & Pan, W.-m. Sequential pattern mining. In R. Da, G. Chen,
E. E. Kerre, & G. Wets, Intelligent data mining: techniques and applications (pp. 103-
122). Springer.

Lin, M.-Y., Hsueh, S.-C., & Chan, C.-C. (2009). Incremental Discovery of Sequential
Patterns Using a Backward Mining Approach. Proceedings of the 2009 International
Conference on Computational Science and Engineering (pp. 64-70). Washington, DC,
USA: IEEE Computer Society.

Lu, J., Adjei, O., Chen, W., Hussain, F., & Enachescu, C. (n.d.). Sequential Patterns
Mining.

Masseglia, F., Cathala, F., & Poncelet, P. The PSP approach for mining sequential
patterns. Springer.

Shintani, T., & Kitsuregawa, M. (1998). Mining Algorithms for Sequential Patterns in
Parallel: Hash Based Approach. Proceedings of the Second Pacific—-Asia Conference
on Knowledge Discovery and Data mining, (pp. 283-294).

Srinivasa, R. N. (2005). Data mining in e-commerce: A survey. Sadhana , 275-2809.
Teisseire, M., Poncelet, P., Scientifique, P., Besse, G., Masseglia, F., Masseglia, F., et
al. (2005). Sequential pattern mining: A survey on issues and approaches.
Encyclopedia of Data Warehousing and Mining, nformation Science Publishing (pp. 3-
29). Oxford University Press.

Tzvetkov, P., Yan, X., & Han, J. (2005). TSP: Mining top-k closed sequential patterns.
KNOWLEDGE AND INFORMATION SYSTEMS , 438-457.

Wang, W., & Yang, J. (2005). Mining Sequential Patterns from Large Data Sets
(Advances in Database Systems). Secaucus, NJ, USA: Springer-Verlag New York, Inc.
Yang, L. (2003). Visualizing frequent itemsets, association rules, and sequential
patterns in parallel coordinates. ICCSA'03: Proceedings of the 2003 international
conference on Computational science and its applications (pp. 21-30). Montreal,
Canada: Springer-Verlag.

Zhao, Q., & Bhowmick, S. S. (2003). Sequential Pattern Matching: A Survey.

