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Abstract

The Glasgow Haskell Compiler is an optimizing compiler that ex-
presses and manipulates first-class equality proofs in its intermedi-
ate language. We describe a simple, elegant technique that exploits
these equality proofs to support deferred type errors. The technique
requires us to treat equality proofs as possibly-divergent terms; we
show how to do so without losing either soundness or the zero-
overhead cost model that the programmer expects.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Abstract data types; F.3.3 [Studies of Program
Constructs]: Type structure

General Terms Design, Languages

Keywords Type equalities, Deferred type errors, System FC

1. Introduction

In a compiler, a typed intermediate language provides a firm place
to stand, free from the design trade-offs of a complex source lan-
guage. Moreover, type-checking the intermediate language pro-
vides a simple and powerful consistency check on the earlier stages
of type inference and other optimizing program transformations.
The Glasgow Haskell Compiler (GHC) has just such an interme-
diate language. This intermediate language has evolved in the last
few years from System F to System FC (Sulzmann et al. 2007;
Weirich et al. 2011) to accommodate the source-language features
of GADTs (Cheney and Hinze 2003; Peyton Jones et al. 2006;
Sheard and Pasalic 2004) and type families (Chakravarty et al.
2005; Kiselyov et al. 2010); and from System FC to System F↑C, a
calculus now fully equipped with kind polymorphism and datatype
promotion (Yorgey et al. 2012).

The principal difference between System F and System F↑C is that,
together with type information, System F↑C carries equality proofs:
evidence that type equality constraints are satisfied. Such proofs
are generated during the type inference process and are useful for
type checking System F↑C programs. However, once type checking
of the F↑C program is done, proofs – very much like types – can be
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completely (and statically) erased, so that they induce no runtime
execution or allocation overhead.

Proof assistants and dependently typed languages (Bove et al. 2009;
Norell 2007; The Coq Team) adopt a similar design with statically
erasable proofs, including ones that go beyond equality to more
complex program properties. However, there is one important dif-
ference: in proof assistants the proof language is the computation
language, always a side-effect free and terminating language that
guarantees logical consistency of the proofs. On the other hand,
in System F↑C the computation language includes partial functions
and divergent terms. To ensure logical consistency, F↑C keeps the
equality proof language as a syntactically separate, consistent-by-
construction set of equality proof combinators.

In this paper we investigate the opportunities and challenges of
blurring the rigid proof/computation boundary, without threatening
soundness, by allowing “proof-like” first-class values to be returned
from ordinary (even divergent or partial) computation terms. We
make the following contributions:

• The proofs-as-values approach opens up an entirely new pos-
sibility, that of deferring type errors to runtime. A common
objection to static type systems is that the programmer wants
to be able to run a program even though it may contain some
type errors; after all, the execution might not encounter the er-
ror. Recent related work (Bayne et al. 2011) makes a convincing
case that during prototyping or software evolution programmers
wish to focus on getting part of their code right, without first
having to get all of it type-correct. Deferring type errors seems
to be just the right mechanism to achieve this. Our new ap-
proach gives a principled (and simple compared to Bayne et al.
(2011)) way in which such erroneous programs can be run with
complete type safety (Sections 3 and 5).

• The key to the almost effortless shift to proofs-as-values is
based on a simple observation: System F↑C, with the recent addi-
tion of kind polymorphism (Yorgey et al. 2012), already allows
us to define within the system an ordinary first-class type for
type equality (Section 4). As such, we can have ordinary val-
ues of that type, that are passed to or returned from arbitrary
(even partial or divergent) terms. Moreover, deferring type er-
rors aside, there are other compelling advantages of proofs-as-
values in an evidence-passing compiler, as we outline in Sec-
tion 6.

• Programmers think of types as static objects, with zero run-
time overhead, and they expect the same of proofs about types.
Treating type equality proofs as values seriously undermines
this expectation. In Section 7 we address this challenge and
show how the optimizer of GHC, with no changes whatsoever,
can already eliminate the cost of equality proofs – except in
corner cases where it would be wrong to do so.
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Everything we describe is fully implemented. As far as we know,
GHC is the first, and only, widely-used optimizing compiler that
manipulates first-class proofs. We describe this paper as a “pearl”
because it shows a simple and elegant way in which the apparently-
esoteric notion of a “proof object” can be deployed to solve a very
practical problem.

2. The opportunity: deferring type errors

Suppose you type this Haskell term into the interactive read-eval-
print prompt in GHCi:

ghci> fst (True, ’a’ && False)

This term does not “go wrong” when evaluated: you might expect
to just get back the result True from projecting the first component
of the pair. But in a statically typed language like Haskell you get
the type error:

Couldn’t match ‘Bool’ with ‘Char’
In the first argument of ‘(&&)’, namely ’a’

This behaviour is fine for programs that are (allegedly) finished, but
some programmers would much prefer the term to evaluate to True
when doing exploratory programming. After all, if the error is in
a bit of the program that is not executed, it is doing no harm! In
particular, when refactoring a large program it is often useful to be
able to run parts of the completed program, but type errors prevent
that. What we want is to defer type errors until they matter. We have
more to say about motivation and related work in Section 8.

As we shall see, System F↑C allows us to offer precisely this be-
haviour, without giving up type safety. Here is an interactive session
with ghci -fdefer-type-errors:

ghci> let foo = (True, ’a’ && False)
Warning: Couldn’t match ‘Bool’ with ‘Char’
ghci> :type foo
(Bool, Bool)
ghci> fst foo
True
ghci> snd foo
Runtime error: Couldn’t match ‘Bool’ with ‘Char’

Notice that:

• The definition of foo produced a warning (rather than an error),
but succeeds in producing an executable binding for foo.

• Since type checking of foo succeeded it has a type, which can
be queried with :type to display its type, (Bool,Bool).

• The term fst foo typechecks fine, and also runs fine, returning
True.

• The term snd foo also typechecks fine, and runs; however the
evaluation aborts with a runtime error giving exactly the same
error as the original warning.

That is, the error message is produced lazily, at runtime, when and
only when the requirement for Char and Bool to be the same type
is encountered.

2.1 How deferring type errors works, informally

GHC’s type inference algorithm works in two stages: first we gen-
erate type constraints, and then we solve them (Vytiniotis et al.
2011). In addition, inference elaborates the Haskell source term to
an explicitly typed F↑C term, that includes the types and proofs (“ev-
idence” in GHC jargon) computed by the constraint solver.

In the previous example, during type inference for the sub-term
’a’ && False we generate a type equality constraint, written
Char ∼ Bool. Usually the constraint solver would immediately re-
ject such a constraint as insoluble, but with -fdefer-type-errors
we take a different course: we generate “evidence” for Char ∼
Bool, but ensure that if the (bogus) evidence is ever evaluated it
brings the program to a graceful halt. More concretely, here is the
F↑C term that we generate for foo:

foo = let (c : Char ∼ Bool) = error "Couldn’t..."
in (True,(cast ’a’ c) && False)

The elaborated foo contains a lazy binding of an evidence variable
c of type Char ∼ Bool to a call to error. The latter is a built-in
Haskell constant, of type ∀a . String→ a, that prints its argument
string and brings execution to a halt.

When we evaluate fst foo the result is True; but if we evaluate
snd foo, we must evaluate the result of (&&), which in turn evalu-
ates its first argument, cast ’a’ c. The cast forces evaluation of c,
and hence triggers the runtime error. Note that the exact placement
of coercions, and thus which errors get deferred, depends on the in-
ternals of the type inference process; we discuss this in more detail
in Section 5.4.

There is something puzzling about binding variable c with the type
Char ∼ Bool. The evidence variable c is supposed to be bound
to a proof witnessing that Char and Bool are equal types, but is
nevertheless bound to just a term, and in fact a crashing term,
namely error! How can we then ensure soundness, and how can we
get statically erasable proofs? It turns out that the type Char∼ Bool
is almost but not quite the type of a proof object. To explain how
this works, we move on to present some more details on GHC’s
typed intermediate language, System F↑C.

3. The F↑C language

System F↑C is a polymorphic and explicitly typed language, whose
syntax is given in Figure 1. Our presentation closely follows the
most recent work on F↑C Yorgey et al. (2012), and we will not repeat
operational semantics and type soundness results; instead, we refer
the reader to Yorgey et al. (2012) for the details.

A quick glance at Figure 1 will confirm that the term language e
is mostly conventional, explicitly-typed, lambda calculus, with let-
bindings, literals (l), data constructors (K), and case expressions.
In addition, the language includes type and kind polymorphism:
type (Λa:η.e) and kind (Λχ.e) abstractions, and type (e ϕ) and
kind (e κ) applications, respectively. Some motivation for kind
abstractions and applications comes from previous work but, as we
shall see in Section 6.2, kind polymorphism will play a key role
here as well.

The distinctive feature of F↑C is the use of coercions, γ . A coercion γ

of type τ ∼# ϕ is nothing more than a proof of type equality between
the types ϕ and τ . Contrary to the notation used in Section 2.1 and
in previous presentations of System F↑C notice that we use symbol
∼# instead of ∼ for coercion types, and Constraint# rather than
Constraint for their kind – this is for a good reason that will become
evident in Section 4.2.

The term (e . γ) is a cast that converts a term e of type τ to one of
type ϕ , when γ : τ ∼# ϕ . Once again, this is deliberately different
than the cast term that appeared in Section 2.1, as we discuss in
Section 4.2. The only other place where a coercion γ may appear
in the term language is in an application (e γ), so coercions are not
first-class values. Dually, one can abstract over such coercions with
a coercion abstraction λ (c:τ ∼# ϕ) . e.
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Terms
e,u ::= x | l | λx:σ.e | e u

| Λa:η.e | e ϕ | Λχ.e | e κ Type/kind polymorphism
| λc:τ.e | e γ Coercion abs/app
| K | case e of p→ u
| let x:τ = e in u
| e . γ Cast

p ::= K c:τ x:τ Patterns

Types
ϕ,σ ,τ,υ ::= a Variables

| H Constants
| F Type functions
| ϕ1 ϕ2 Application
| ϕ κ Kind application
| ∀a:η.ϕ Polymorphic types
| ∀χ.τ Kind-polymorphic types

Type constants
H ::= T Datatypes

| (→) Arrow
| (∼#) Primitive equality type

Kinds
κ,η ::= χ | ? | κ → κ

| ∀χ.κ Polymorphic kinds
| Constraint# Kind of static proofs

Coercion values
γ,δ ::= c Variables

| γ1 γ2 Application
| 〈ϕ〉 Reflexivity
| γ1 ; γ2 Transitivity
| symγ Symmetry
| . . . Other coercion forms

Environments
Γ,∆ ::= · | Γ,bnd
bnd ::= χ Kind variable

| a : η Type variable
| c : σ ∼# ϕ Coercion variable
| x : σ Term variable
| T : ∀χ.κ → ? Data type
| K : ∀χ (a:ηa).τ → T χ a Data constructor
| . . . Type families etc.

Notation
T κ τ ≡ T κ1 . . .κm τ1 . . .τn
α → α ≡ α1→ . . .→ αn→ α

for α either κ or τ

Γ0 ≡ initial (closed) environment
3 (∼#) : ∀χ.χ → χ →Constraint#

Figure 1: Syntax of System FC (excerpt)

The syntax of coercions themselves (γ in Figure 1) includes coer-
cion variables, constructors for reflexivity, transitivity, and symme-
try, as well as other constructors (such as lifting type equalities over
data constructors) that we do not need to discuss in this paper.

The well-formedness judgement for terms appears in Figure 2
and is mostly conventional. In particular, the rules for coercion
abstraction and application (ECABS and ECAPP) mirror those for
terms (EABS and EAPP). The rule for case expressions (ECASE) is
also standard but notice that it allows us to bind coercion variables,
as well as term variables, in a pattern.

3.1 Types, kinds, and kind polymorphism

The type language of System F↑C includes variables and constants,
type and kind application, as well as the type of type-polymorphic

Γ `tm e : τ

(x:τ) ∈ Γ

EVAR
Γ `tm x : τ

(K:σ) ∈ Γ0
ECON

Γ `tm K : σ

Γ,(x:σ) `tm e : τ

Γ `ty σ : ? EABS
Γ `tm λx:σ.e : σ → τ

Γ `tm e : σ → τ

Γ `tm u : σ EAPP
Γ `tm e u : τ

Γ,(c:σ) `tm e : τ

Γ `ty σ : Constraint# ECABS
Γ `tm λc:σ.e : σ → τ

Γ `tm e : (σ1 ∼# σ2)→ τ

Γ `co γ : σ1 ∼# σ2 ECAPP
Γ `tm e γ : τ

Γ `k η

Γ,(a:η) `tm e : τ ETABS
Γ `tm Λa:η.e : ∀a:η.τ

Γ `tm e : ∀a:η.τ

Γ `ty ϕ : η ETAPP
Γ `tm e ϕ : τ[ϕ/a]

Γ,χ `tm e : τ EKABS
Γ `tm Λχ.e : ∀χ.τ

Γ `tm e : ∀χ.τ

Γ `k κ EKAPP
Γ `tm e κ : τ[κ/χ]

Γ,(x:σ) `tm u : σ

Γ,(x:σ) `tm e : τ ELET
Γ `tm let x:σ = u in e : τ

Γ `tm e : τ

Γ `co γ : τ ∼# ϕ ECAST
Γ `tm e . γ : ϕ

Γ `tm e : T κ σ

For each branch K x:τ → u
(K:∀χ (a:ηa).σ1 ∼# σ2→ τ → T χ a) ∈ Γ0
ϕi = τi[κ/χ][σ/a]
ϕ1i = σ1i[κ/χ][σ/a]
ϕ2i = σ2i[κ/χ][σ/a] Γ,c:ϕ1 ∼ ϕ2 x:ϕ `tm u : σ

ECASE
Γ `tm case e of K (c:σ1 ∼# σ2) (x:τ)→ u : σ

Figure 2: Well-formed terms

values (∀a:η.ϕ) and the type of kind-polymorphic values (∀χ.τ).
The type constants H include data constructors (T ), and the func-
tion constructor (→) as well as the equality constructor (∼#). The
well-formedness judgement for types appears in Figure 3.

What should the kind of ∼# be? We mentioned previously that we
would like to classify any type τ ∼# σ as having kind Constraint#,
but the kind of τ and σ can be any kind whatsoever. This indicates
that ∼# should be given the polymorphic kind:

∀χ.χ → χ →Constraint#

This kind, made valid because the syntax of kinds κ includes kind
polymorphism, is recorded in the initial environment Γ0 (bottom of
Figure 1). Well-formedness of kinds (Γ `k κ), for this presentation,
amounts to well-scoping, so we omit the details from Figure 3. As
a convention, we write τ ∼# ϕ to mean (∼#) κ τ ϕ in the rest of
this paper, where the kind κ of τ and ϕ is clear from the context.

Finally, notice that well-formed arrow types1 are allowed to accept
an argument which is either Constraint# or ?, to account for coer-
cion or term abstraction, but may only return ?, hence disallowing
any functions to return a value of type τ ∼# ϕ . However, as we will

1 For simplicity of presentation we do not include a binding for (→) in
the initial environment Γ0, hence only allowing fully applied arrow types,
unlike Haskell.
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Γ `ty τ : κ

(a : η) ∈ Γ

TVAR
Γ `ty a : η

(T : κ) ∈ Γ

TDATA
Γ `ty T : κ

Γ `ty τ1 : κ1 Γ `ty τ2 : ?
κ1 ∈ {?,Constraint#}

TARR
Γ `ty τ1→ τ2 : ?

Γ `ty τ1 : κ1→ κ2
Γ `ty τ2 : κ1

TAPP
Γ `ty τ1 τ2 : κ2

Γ `ty τ : ∀χ.κ

Γ `k η
TKAPP

Γ `ty τ η : κ[η/χ]

Γ,(a:η) `ty τ : ?
Γ `k η

TALL
Γ `ty ∀a:η.τ : ?

Γ,χ `ty τ : ?
TKALL

Γ `ty ∀χ.τ : ?

Γ `co γ : σ1 ∼# σ2

. . .

Γ `k κ

. . .

Figure 3: Well-formed types and coercions

see in Section 4, a function can well return terms that contain such
coercions.

3.2 F↑C datatypes with coercions

In F↑C, coercions can appear as arguments to data constructors,
a feature that is particularly useful for representing generalized
algebraic datatypes (GADTs) (Peyton Jones et al. 2006). Consider
this source Haskell program which defines and uses a GADT:

data T a where
T1 :: Int→ T Int
T2 :: a → T a

f :: T a→ [a ]
f (T1 x) = [x+1]
f (T2 v) = [ ]

main = f (T1 4)

In F↑C, we regard the GADT data constructor T1 as having the type:

T1 : ∀a . (a∼# Int)→ Int→ T a

So T1 takes three arguments: a type argument to instantiate a, a
coercion witnessing the equality between a and Int, and a value of
type Int. Here is the F↑C version of main:

main = f Int (T1 Int 〈Int〉 4)

The coercion argument has kind Int ∼# Int, for which the evidence
is just 〈Int〉 (reflexivity). Similarly, pattern-matching on T1 binds
two variables: a coercion variable, and a term variable. Here is the
F↑C elaboration of function f :

f = Λ(a : ?) . λ (x : T a) .
case x of

T1 (c : a∼# Int) (n : Int)
→ (Cons (n+1) Nil) . sym [c]

T2 v→ Nil

The cast converts the type of the result from [Int ] to [a]2. The
coercion sym [c] is evidence for (or a proof of) the equality of these
types, lifting c (of type a∼# Int) over lists ([c ], of type [a ]∼# [Int ]),
before applying symmetry. We urge the reader to consult Sulzmann
et al. (2007) and Weirich et al. (2011) for more examples and
intuition.

A final remark: we will be presenting and discussing a number of
F↑C programs in the rest of the paper. For readability purposes we
will sometimes omit type or kind applications in F↑C terms when
these types or kinds are obvious from the context, making the
syntax appear less verbose.

4. Two forms of equality

In Section 2 we sketched how to use type-equality evidence to sup-
port deferred type errors, using σ ∼ τ as the type of equality evi-
dence. Then in Section 3 we introduced our intermediate language,
System F↑C, in which explicit coercions of type σ ∼# τ represent ev-
idence for the equality of two types. The distinction between (∼)
and (∼#) is crucial: it allows us to to marry a sound, erasable lan-
guage of proofs with the potentially-unsound ability to have terms
that compute proofs, as we discuss in this section.

4.1 The tension

Types have a very valuable property that programmers take for
granted: they give strong static guarantees, but they carry no run-
time overhead. This zero-overhead guarantee is formally justified
by an erasure property: we can erase all the types before running
the program, without changing the result.

Can we offer a similar guarantee for coercions? Yes, we can. Sys-
tem F↑C is carefully designed so that coercion abstractions, coercion
applications, and casts, are all statically erasable, just like type ab-
stractions and applications.

But this statement is manifestly in tension with our approach to
deferred type errors. Consider once more the F↑C term

let (c : Char ∼ Bool) = error "Couldn’t match..."

in snd (True,(cast ’a’ c) && False)

Obviously we cannot erase the binding of c and the cast, leaving
snd (True,’a’&& False), because the latter will crash. So it seems
that insisting on complete erasure of equalities kills the idea of
deferring type errors stone dead!

4.2 The two equalities

We now present our resolution of this tension. We have carefully
maintained a distinction between

• (∼#), the type of primitive coercions γ in F↑C, which are fully
erasable, and

• (∼), type of evidence generated by the type inference engine,
which cannot be erased.

However (∼) is not some magical built-in device. Rather, we can
define it as a perfectly ordinary GADT (like the one we have
already seen in Section 3.2), thus:

data a∼ b where
Eq# :: (a∼# b)→ a∼ b

2 We informally use Haskell’s notation [τ ] for the type list of τ , and Cons
and Nil as its constructors.
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This definition introduces a new algebraic data type constructor
(∼), belonging in the T syntactic category of Figure 1. It has
exactly one data constructor Eq#, whose (important) argument is
a static equality proof. Readers familiar with proof assistants or
type theory will immediately recognize in the definition of (∼) the
type used traditionally in such systems to internalize definitional
equality as a type (e.g. refl_equal in Coq).

Like (∼#), the data type (∼) is polymorphically kinded:

∼ : ∀χ . χ → χ → ?
Eq# : ∀χ . ∀(a : χ) (b : χ) . (a∼# b)→ (a∼ b)

As with τ ∼# σ we usually omit the kind application in τ ∼ σ as a
syntactic convenience.

The key point is that if γ : σ ∼# τ , then a value Eq# γ is an
ordinary term, built with the data constructor Eq#, and having type
σ ∼ τ . Given the GADT (∼) we can define the function cast that
takes such a term-level equality witness and casts a value between
equivalent types:

cast : ∀(a b : ?) . a→ (a∼ b)→ b
cast = Λ(a b : ?) . λ (x : a) . λ (eq : a∼ b) .

case eq of Eq# (c : a∼# b)→ x . c

Each use of cast forces evaluation of the coercion, via the case
expression and, in the case of a deferred type error, that is what
triggers the runtime failure.

Just as cast is a lifted version of ., we can lift all the coercion
combinators from the (∼#) type to (∼). For example:

mkRefl ::∀χ . ∀(a : χ) . a∼ a
mkRefl = Λχ . Λ(a : χ) . Eq# χ a a 〈a〉
mkSym ::∀χ . ∀(a b : χ) . (a∼ b)→ (b∼ a)
mkSym = Λχ . Λ(a b : χ) . λ (c : a∼ b) .

case c of Eq# c→ Eq# χ b a (sym c)

The relationship between (∼) and (∼#) is closely analogous to that
between Int and Int#, described twenty years ago in our implemen-
tation of arithmetic in GHC (Peyton Jones and Launchbury 1991).
Concretely, here is GHC’s implementation of addition on Int:

data Int = I# Int#
plusInt :: Int→ Int→ Int
plusInt x y = case x of I# x′→

case y of I# y′→ I# (x′ +# y′)

An Int is an ordinary algebraic data type with a single constructor
I# (the ‘#’ is not special; it is just part of the constructor name). This
constructor has a single argument, of type Int#, which is the type
of unboxed integers, a honest-to-goodness 32-bit integer value just
like C’s int. Finally (+#) is the machine 32-bit addition instruction.
We may summarise the relationships thus:

• A value of type Int, or σ ∼ τ , is always heap-allocated; it is
always represented by a pointer to the heap-allocated object;
and the object can be a thunk.

• A value of type Int#, or σ ∼# τ is never heap-allocated; and it
cannot be a thunk. There is no bottom value of type Int#, or
σ ∼# τ; we say that they are unlifted types.

• The plusInt function lifts the primitive addition +# from Int#
to Int, by explicitly evaluating and unboxing its arguments; and
the function mkSym works in just the same way.

The main difference between Int# and a ∼# b is that the fomer
is represented by a 32-bit unboxed value, whereas the latter has
a structure that is irrelevant for the execution of a program, and can
be represented by a zero-bit value, or entirely erased — it comes to
the same thing in the end.

5. Type inference and deferral of type errors

With F↑C in hand we can now explain in more detail the mechanism
of deferring type errors. We begin by sketching a little more about
the type inference process.

5.1 Type inference by constraint generation

GHC’s type inference algorithm works in two stages (Vytiniotis
et al. 2011):

• Step 1: traverse the syntax tree of the input Haskell term, gen-
erating type constraints together with an elaborated term3 in
System F↑C.

• Step 2: solve the constraints, creating F↑C bindings that give
evidence for the solution.

For example, consider the term show xs, where xs : [Int ], and
show : ∀a . Show a⇒ a→ String. In Step 1 we generate:

Elaborated term: show [Int ] d6 xs
Constraint: d6 : Show [Int ]

The elaborated term looks much like the original except that show
is now applied to a type argument [Int ] (corresponding to the “∀a”
in show’s type) and an evidence argument d6 (corresponding to the
“Show a ⇒” in its type). The constraint is given a fresh name,
d6 in this example, which is mentioned in the elaborated term.
Afficionados of Haskell’s type-class system will recognise d6 as
show’s dictionary argument: it is simply a tuple of functions, the
methods of the Show class.

When Step 1 is complete, the constraint solver solves the generated
constraints, producing evidence bindings:

d6 : Show [Int ] = $dShowList Int $dShowInt

Here the solver has constructed a dictionary for Show [Int ], using
the dictionary-construction functions that arise from the instance
declarations of the class Show:

$dShowInt : Show Int
$dShowList : ∀a . Show a→ Show [a]

Finally, the evidence bindings are wrapped around the term in a let
to make an executable term:

let d6 = $dShowList Int $dShowInt
in show [Int ] d6 xs

5.2 Equality constraints

This is all quite conventional. Somewhat less conventionally (but
following the French school of type inference (Pottier and Rémy
2005)) GHC generates equality constraints as well as type-class
constraints. We simplified the show example; in reality GHC gen-
erates the following:

Elaborated term: show α d6 (cast xs c5)
Constraints: d6 : Show α

c5 : [Int ]∼ α

When instantiating show’s type in Step 1, the constraint generator
does not yet know that it will be applied to the type [Int ], so
instead it creates a fresh unification variable α , and uses that to
instantiate show’s type. Later, when checking show’s argument x, it
must ensure that show’s argument type α is equal to the actual type
of xs, namely [Int ]. It ensures this (eventual) equality by generating

3 In reality we first generate an elaborated term by decorating the Haskell
source term, and then desugar it, but we will ignore that extra step here.
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an equality constraint c5 : [Int ] ∼ α , again with an arbitrary fresh
name c5 which names the evidence for the equality. Lastly, in
the elaborated term, we use the cast term cast xs c5 to convert
xs into a term of type α . Notice that c5’s type [Int ] ∼ α uses
the boxed equality (∼) rather than the primitive F↑C equality (∼#)
(Section 4.2).

In Step 2, the constraint solver has a little extra work to do: as well
as solving the constraints and giving bindings for the evidence vari-
ables, it must also produce bindings for the unification variables. In
our running example, the solution to the constraints looks like this:

α = [Int ]
c5 : [Int ]∼ α = mkRefl [Int ]

d6 : Show [Int ] = $dShowList Int $dShowInt

The solver decided to eliminate α by substituting [Int ] for α ,
the first of the above bindings. The equality c5 now witnesses
the vacuous equality [Int ] ∼ [Int ], but it must still be given a
binding, here mkRefl [Int ]. (Recall that mkRefl was introduced in
Section 4.2.)

Actually, as a matter of efficiency, in our real implementation the
constraint generator solves many simple and immediately-soluble
equalities (such as α ∼ [Int ]) “on the fly” using a standard unifica-
tion algorithm, rather than generating an equality constraint to be
solved later. But that is a mere implementation matter; the imple-
mentation remains faithful to the semantics of generate-and-solve.
Moreover, it certainly cannot solve all equalities in this way, be-
cause of GADTs and type families (Vytiniotis et al. 2011).

5.3 Deferring type errors made easy

In a system generating equality proofs using the (∼) datatype,
which has values that can be inhabited by ordinary terms, it is de-
lightfully easy to support deferred type errors. During constraint
generation, we generate a type-equality constraint even for unifica-
tions that are manifestly insoluble. During constraint solving, in-
stead of emitting an error message when we encounter an insolu-
ble constraint, we emit a warning, and create a value binding for
the constraint variable, which binds it to a call to error, applied to
the error message string that would otherwise have been emitted at
compile time. And that’s all there is to it.

It is worth noting several features of this implementation technique:

• Each F↑C term given above is a well-typed F↑C term, even though
some are generated from a type-incorrect Haskell term. Of
course it can fail at run-time, but it does so in a civilized way,
by raising an exception, not by causing a segmentation fault,
or performing (&&) of a character and a boolean. You might
consider that a program that fails at runtime in this way is not
well-typed, in Milner’s sense of “well typed programs do not
go wrong”. But Haskell programs can already “go wrong” in
this way — consider (head [ ]) for example — so matters are
certainly no worse than in the base language.

In short, we have merely deferred the type errors to runtime; we
have not ignored them!

• Deferring type errors is not restricted to interpreted expressions
typed at the interactive GHCi prompt. You can compile any
module with -fdefer-type-errors and GHC will produce
a compiled binary, which can be linked and run.

• There is no reflection involved, nor run-time type checking.
Indeed there is no runtime overhead whatsoever: the program
runs at full speed unless it reaches the point where a runtime
error is signalled, in which case it halts. (This claim assumes
the optimisations described in Section 7.)

• The technique makes elegant use of laziness. In a call-by-value
language, a strict binding of c in Section 2.1 would be evaluated
by the call fst foo, or even when foo is bound, and it would ob-
viate the entire exercise if that evaluation triggered the runtime
error! Nevertheless, the idea can readily be adapted for call-by-
value, by simply making (∼) into a sum type:

data a∼ b where
Eq# :: (a∼# b)→ a∼ b
Error :: String → a∼ b

Now, the “evidence” for an erroneous type constraint would be
an Error value, and evaluating that is fine. We simply need to
adjust cast to deal with the Error case:

cast = Λ(a b : ?) . λ (x : a) . λ (eq : a∼ b) .
case eq of

Eq# (c : a∼# b)→ x . c
Error s→ error s

• The technique works uniformly for all type constraints, not
only for equality ones. For example, in Section 5.1, suppose
there was no instance for Show [Int ]. Then the constraint d6 :
Show [Int ] would be insoluble, so again we can simply emit a
warning and bind d6 to an error thunk. Any program that needs
the evidence for d6 will now fail; those that don’t, won’t.

• We can defer all type errors in terms, but not kind errors in
types. For example, consider

data T = MkT (Int Int)
f (MkT x) = x

The type Int Int simply does not make sense – applying Int to
Int is a kind error, and we do not have a convenient way to defer
kind errors, only type errors.

5.4 The placement of errors

Since many different parts of a program may contribute to a type
error, there may be some non-determinism about how delayed a
deferred type error will be. Suppose that upper : [Char ]→ [Char ],
and consider the term:

upper [True,’a’]

There are two type incompatibilities here. First, the boolean True
and character ’a’ cannot be in the same list. Second, the function
upper expects a list of characters but is given a list with a boolean
in it. Here is one possible elaboration:

Elaborated term: upper [cast True c7 ,’a’]
Constraints: c7 : Bool∼ Char

But the program could also be elaborated in another way:

Elaborated term: upper (cast [True,cast ’a’ c8 ] c9)
Constraints: c8 : Char ∼ Bool

c9 : [Bool ]∼ [Char ]

In this case, type inference has cast ’a’ to Bool using c8, so that it
can join True to form a list of Bool; and then cast the list [Bool ]
to [Char ] using c9 to make it compatible with upper. The two
elaborated programs have slightly different runtime behaviour. If
the term is bound to tm, then head (tail tm) will run successfully
(returning ’A’) in the first elaboration, but fail with a runtime error
in the second.

We might hope that the type inference engine inserts as few casts as
possible, and that it does so as near to the usage site as possible. In
fact this turns out to be the case, because the type inference engine
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uses the (known) type of upper to type-check its argument, expect-
ing the result to be of type [Char ]. This idea of “pushing down” the
expected type into an expression, sometimes called bidirectional
or local type inference (Pierce and Turner 2000), is already im-
plemented in GHC to improve the quality of error messages; see
Peyton Jones et al. (2007, Section 5.4) for details. Although it is a
heuristic, and not a formal guarantee, the mechanism localises the
casts very nicely in practice.

Nevertheless, the bottom line is that the dynamic semantics of a
type-incorrect program depends on hard-to-specify implementation
details of the type inference algorithm. That sounds bad! But we
feel quite relaxed about it:

• The issue arises only for programs that contain errors. Type
correct programs have their usually fully-specified semantics.

• Regardless of the precise placement of coercions, the elaborated
program is type correct. This is not a soundness issue.

• The imprecision of dynamic semantics is no greater a short-
coming than the lack of a formal specification of the precise
type error message(s) produced by a conventional type infer-
ence engine for a type-incorrect program. And yet no compiler
or paper known to us gives a formal specification of what type
errors are produced for a type-incorrect program.

That said, it is interesting to reflect on approaches that might tighten
up the specification, and we do so in Section 9.

5.5 Summary

There are many reasons why evidence-based type elaboration, us-
ing constraint generation and subsequent constraint solving, is de-
sirable (Vytiniotis et al. 2011):

• It is expressive, readily accommodating Haskell’s type classes,
implicit parameters, and type families.

• It is modular. The constraint generator accepts a very large in-
put language (all of Haskell), so it has many cases, but each
case is very simple. In contrast, the constraint solver accepts a
very small input language (the syntax of constraints) but em-
bodies a complex solving algorithm. Keeping the two separate
is incredibly wonderful.

• It is robust: for example it does not matter whether the con-
straint generator traverses the term left-to-right or right-to-left:
the resulting constraint is the same either way.

• Neither the constraint generator nor the solver need be trusted; a
very simple, independent checker can type-check the elaborated
F↑C term.

To this list we can now add a completely new merit: it is dead easy
to implement deferred type errors, a feature that is desired by many
Haskell programmers.

6. Discussion

Now that we have discussed type inference in more detail, we pause
to reflect on our design choices.

6.1 Evidence uniformity

We’ve seen that deferring type errors provides a good motivation
for treating coercions as term-level constructs. But there is another
way in which treating coercions as values turns out to be very
convenient. In the Haskell source language, equality constraints

are treated uniformly with type-class constraints and implicit-
parameter constraints; anywhere a class constraint can appear,
an equality constraint can appear, and vice versa. Class constraints
and implicit-parameter constraints definitely cannot be erased: by
design their evidence carries a runtime value. Treating some con-
straints as non-erasable values and others (the equalities) as type-
like, erasable constructs, led to many annoying special cases in the
type inference and source-to-F↑C elaboration of Haskell programs.
The most troublesome example of this non-uniformity arises when
treating Haskell’s superclasses. Consider the declaration

class (a∼ F b,Eq a)⇒ C a b where . . .

Here Eq a is a superclass of C a b, meaning that from evidence for
C a b one can extract evidence for Eq a. Concretely this extraction
is witnessed by a field selector:

sc2 : C a b→ Eq a

which takes a dictionary (i.e. record of values) for C a b and picks
out the Eq a field. In just the same way one should be able to extract
evidence for a∼ F b, which suggests a selector function with type

sc1 : C a b→ (a∼ F b)

Before we distinguished (∼) and (∼#) we could not write this
function because there simply is no such function in F↑C; indeed
the type C a b→ (a ∼# F b) is not even well kinded in Figure 3.
There is a good reason for this: dictionaries can be recursively
defined and can diverge (Lämmel and Peyton Jones 2005), so the
selector function may diverge when evaluating its arguments – but
the type a∼# F b cannot represent divergence, because that would
be unsound.
The tension is readily resolved by (∼); the type of sc1 is well
formed and its definition looks something like this:

sc1 = Λab . λ (d : C a b) .
case d of

MkC (c : a∼# F b) (eq : Eq a) . . .→ Eq# c

This accumulation of infelicities led us to the two-equality plan,
and in fact we had fully implemented this design even before we
ever thought of deferring type errors. Now, we get the ability to
defer errors regarding type unification, missing class constraints,
and implicit parameters, all in one go.

6.2 Why kind polymorphism is important

We have mentioned that both equalities (∼#) and (∼) are kind-
polymorphic, but we have not yet said why. Right from the begin-
ning Haskell has featured kinds other than ?, such as ?→ ?. During
type inference, when unifying, say, α β ∼Maybe Int, the inference
engine — or, more precisely, the constraint solver — must decom-
pose the equality to give α ∼Maybe and β ∼ Int. The former equal-
ity is at kind ?→ ?, so it follows that the (∼) type constructor itself
must be either (a) magically built in or (b) poly-kinded. And simi-
larly (∼#).
Solution (a) is entirely possible: we could add σ ∼ τ and σ ∼# τ to
the syntax of types, and give them their own kinding rules. But there
are unpleasant knock-on effects. The optimizer would need to be
taught how to optimize terms involving (∼). Worse, it turns out that
we need equalities between equalities, thus (σ1 ∼ τ1)∼ (σ2 ∼ τ2),
which in turn leads to the need for new coercion combinators to
decompose such types.
Happily there are many other reasons for wanting kind polymor-
phism in F↑C (Yorgey et al. 2012), and once we have kind polymor-
phism we can readily make the equality type constructors kind-
polymorphic.
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6.3 What the Haskell programmer sees

A salient feature of Haskell’s qualified types (type classes, implicit
parameters, equality constraints) is that the type inference engine
fills in the missing evidence parameters. So if f has type

f :: (Num b,a∼ F b)⇒ a→ b→ b

then given a source-language call (f e1 e2), the type inference will
generate the elaborated call (f σ τ d c e1 e2), where σ and τ are the
types that instantiate a and b, and d and c are evidence terms that
witness that Num τ holds and that σ ∼ F τ , respectively.

One might wonder whether one can (in Haskell) also write

g :: (a∼# F b)⇒ a→ b→ b

and have the above evidence-generation behaviour. No, you cannot.
The whole point of the (∼) type is that it can be treated uniformly
with other evidence (bound in letrec, returned as a result of a call),
whereas (∼#) cannot. So in the source language σ ∼# τ is not a type
constraint you can write before the “⇒” in a Haskell type, and have
it participate in constraint solving. The entire constraint generation
and solving process works exclusively with well-behaved, uniform,
boxed constraints. Only when constraint solving is complete does
(∼#) enter the picture, as we discuss next.

7. Optimizing equalities

We now have a correct implementation, but it looks worryingly
expensive. After all, the constraint generation/solving process may
generate a program littered with coercion bindings and casts, all
of which are invisible to the programmer, have no operational
significance, and merely ensure that “well typed programs don’t
go wrong”. Yet each will generate a heap-allocated Eq# box, ready
to be evaluated by cast. Happily, almost all of these boxes are
eliminated by existing optimizations within GHC, as this section
describes.

7.1 Eliminating redundant boxing and unboxing

The fact that we have defined (∼) as an ordinary GADT means
that is fully exposed to GHC’s optimizer. Consider a Haskell 98
program that turns out to be well typed. The constraint generator
will produce many constraints that are ultimately solved by reflex-
ivity, because the two types really are equal. Here is a typical case
of an elaborated term:

let (c : Char ∼ Char) = mkRefl Char
in . . .(cast e c) . . .

(Recall that mkRefl and cast were defined in Section 4.2.) As it
stands, the let will heap-allocate a thunk which, when evaluated by
the cast, will turn out to be an Eq# constructor wrapping a reflexive
coercion 〈Char〉. All this is wasted work. But GHC’s optimizer can
inline the definitions of mkRefl and cast from Section 4.2 to get

let (c : Char ∼ Char) = Eq# ? Char Char 〈Char〉
in . . .(case c of Eq# c′→ e . c′) . . .

Now it can inline c at its use site, and eliminate the case expression,
giving

. . .(e . 〈Char〉) . . .
Remembering that primitive casts (.) can be erased, we have elim-
inated the overhead. Moreover, the optimizations involved have all
been in GHC for years; there is no new special purpose magic.

What happens when a deferred type error means that a cast cannot,
and should not, be erased? Consider once more the F↑C term

let (c : Char ∼ Bool) = error "Couldn’t match..."

in snd (True,(cast ’a’ c) && False)

Now, simply by inlining cast and c, the optimizer can transform to

snd (True,(case error "..." of {Eq# c→ ’a’ . c})
&& False)

After inlining (&&), and simplifying case-of-error to just a call of
error, both standard transformations in GHC’s optimizer) we get

snd (True,error "...")

Even erroneous programs are optimized by removing their dead
code! The point is this: by exposing the evaluation of coercions, we
allow the existing optimizer transformations to work their magic.

7.2 Equalities and GADTs

Let us reconsider the GADT example given in Section 3.2:

data T a where
T1 :: Int→ T Int
T2 :: a → T a

There we said that the constructor T1 is typed thus:

T1 : ∀a . (a∼# Int)→ Int→ T a

That is true in System F↑C. But the Haskell programmer, who knows
only of the type σ ∼ τ , considers T1 to have this type:

T1 ::∀a . (a∼ Int)→ Int→ T a

It would be perfectly sound to adopt the latter type for T1 in
the elaborated program; for example, function f from Section 3.2
would be elaborated thus:

f = Λa . λ (x : T a) .
case x of

T1 (c : a∼ Int) (n : Int)
→ cast (Cons (n+1) Nil) (mkSym [c])

T2 v→ Nil

Since an argument of type a ∼ Int has a lifted type with a boxed
representation, it would take up a whole word in every T1 object.
Moreover, since c is bound by the pattern match, the case expres-
sion in mkSym will not cancel with an Eq# box in the binding for c.
This is not good! What has become of our zero-overhead solution?

The solution is simple: we desugar GADTs to contain unlifted,
rather than lifted, equalities. We can do this in such a way that
the Haskell programmer still sees only the nice well-behaved (∼)
types, as follows. First, in the elaborated program the type of T1 is:

T1 : ∀a . (a∼# Int)→ Int→ T a

However, the elaborator replaces every source-language call of T1
with a call of a constructor wrapper function, T1wrap, defined like
this:

T1wrap : ∀a . (a∼ Int)→ Int→ T a
T1wrap = Λ(a : ?) . λ (c : a∼ Int) . λ (n : Int) .

case c of Eq# c1→ T1 c1 n

The wrapper deconstructs the evidence and puts the payload into
T1 where, since it is erasable, it takes no space.

Dually, a source-program pattern match is elaborated into a F↑C
pattern match together with code to re-box the coercion. So our
function f is elaborated thus:

f = Λa . λ (x : T a) .
case x of

T1 (c1 : a∼# Int) (n : Int)
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→ let c = Eq# c1 -- Re-boxing
in cast (Cons (n+1) Nil) (mkSym [c])

T2 v→ Nil

Now the earlier optimizations will get rid of all the boxing and un-
boxing and we are back to nice, efficient code. The technique of un-
boxing strict arguments on construction, and re-boxing on pattern
matching (in the expectation that the re-boxing will be optimized
away) is precisely what GHC’s UNPACK pragma on constructor ar-
guments does. So, once more, coercions can hitch a free ride on
some existing machinery.

7.3 How much is optimized away?

We have argued that the boxing and unboxing, introduced in the
elaborated program by the type checker, will largely be eliminated
by standard optimizations. But not always! Indeed that is the point:
the main reason for going to all of this trouble is to handle smoothly
the cases (deferred type errors, recursive dictionaries) when equal-
ities cannot, and should not, be erased. But still, one might reason-
ably ask, can we offer any guarantees at all?
Consider a type-correct Haskell program that contains (a) no equal-
ity superclasses, and (b) no functions that take or return a value
of type σ ∼ τ , apart from GADT constructors. This includes all
Haskell 98 programs, and all GADT programs. After typechecking
and elaboration to F↑C, suppose that we inline every use of mkRefl,
mkSym, etc, and the GADT constructor wrappers. Then

• Every use of a variable of type σ ∼ τ will be a case expression
that scrutinises that variable, namely the unboxing case expres-
sions in mkRefl, mkSym, etc, and GADT constructor wrappers.

• Every binding of an evidence variable of type σ ∼ τ will be a
let whose right hand side returns a statically-visible Eq# box.

By inlining these let-bound evidence variables at their use sites, we
can cancel the case with the Eq# constructors, thereby eliminating
all boxing and unboxing. To illustrate, consider once more the
elaboration of function f at the end of the previous subsection. If
we inline mkSym and cast we obtain:

f = Λa . λ (x : T a) .
case x of

T1 (c1 : a∼# Int) (n : Int)
→ let c = Eq# c1 in -- Re-boxing

let c2 = case c of Eq# c′→ Eq# (sym [c′ ])
in case c2 of

Eq# c′2→ Cons (n+1) Nil . c′2
T2 v→ Nil

The right hand side of c2 comes from inlining mkSym, while the
“case c2 . . .” comes from inlining cast. Now we can inline c in
“case c . . .”, and c2 in “case c2 . . .”, after which the cancellation
of boxing and unboxing is immediate.
When does this not work? Consider exception (b) above, where a
programmer writes a function that is explicitly abstracted over an
equality:

f : ∀a . F a∼ Int⇒ [F a ]→ Int
f x = head x+1

The elaborated form will look like this:

f : ∀a . F a∼ Int→ [F a ]→ Int
f = Λa . λ (c : F a∼ Int) . λ (x : [F a ]) .

head (cast x c)+1

Since c is lambda-bound, there is no Eq# box for the cast to cancel
with. However we can perform the same worker/wrapper split to
this user-defined function that we did for constructors, thus

f : ∀a . F a∼ Int→ [F a ]→ Int
f = Λa . λ (c : F a∼ Int) . λ (x : [F a ]) .

case c of Eq# c′→ fwrk c′ x
fwrk : ∀a . F a∼# Int→ [F a ]→ Int
fwrk = Λa . λ (c′ : F a∼# Int) . λ (x : [F a ]) .

let c = Eq# c′ in head (cast x c)+1

Now in fwrk the boxing and unboxing cancels; and dually we are
free to inline the wrapper function f at its call sites, where the
unboxing will cancel with the construction. This worker/wrapper
mechanism is precisely what GHC already implements to eliminate
boxing overheads on strict function arguments (Peyton Jones and
Santos 1998), so it too comes for free. There is a small price to pay,
however: the transformation makes the function strict in its equality
evidence, and that in turn might trigger a deferred error message
slightly earlier than strictly necessary. In our view this is a trade-off
worth making. In our current implementation the worker/wrapper
transform on equalities is only applied when the function really
is strict in the equality; we have not yet added the refinement of
making it strict in all equalities.

7.4 Summary

In short, although we do not give a formal theorem (which would
involve formalizing GHC’s optimizer) we have solid grounds,
backed by observation of optimized code, for stating that the uni-
form representation of equality evidence can be successfully opti-
mized away in all but the cases in which it cannot and should not be
eliminated, namely for deferred type errors and functions that must
accept or return term-level equalities (such as selectors for equality
superclasses). Of course, introducing and then eliminating all these
boxes does mean a lot more work for the compiler, but this has not
proved to be a problem in practice.

8. Related work

8.1 Relation to gradual and hybrid type systems

There is a very large body of work on gradual and hybrid typing
that addresses the problem of deferring unprovable goals at compile
time as static runtime checks, with a particular emphasis on refine-
ment types and blame assignment, and interoperation between stat-
ically and dynamically typed parts of a language (Flanagan 2006;
Siek and Taha 2006; Siek and Vachharajani 2008; Tobin-Hochstadt
and Felleisen 2006).

Our treatment of coercions does not replace static type errors by
runtime checks, but rather delays triggering a static error until the
offending part of the program is evaluated, at runtime. For instance,
consider the following program, which contains a static error but is
compiled with -fdefer-type-errors:

f ::∀a . a→ a→ a
f x y = x && y

There is a static error in this program because f is supposed to
be polymorphic in the type of its arguments x and y, which are
nevertheless treated as having type Bool. At runtime, even if we
evaluate the application of f on arguments of type Bool, such as
f True False we will get a type error “Couldn’t match type a with
Bool”, despite the fact that the arguments of f are of type Bool at
runtime. In contrast, a truly dynamic type-check would not trigger
a runtime error.

In the context of GHC, there is no straightforward way to incorpo-
rate runtime checks instead of error triggers at runtime, unless dy-
namic type information is passed along with polymorphic types. It

9



may be possible to do something along these lines, following previ-
ous work that incorporates polymorphism with hybrid type check-
ing via dynamic types (Ahmed et al. 2011).
Finally, as we have seen in Section 5.3, there exists some non-
determinism in the dynamic placement of the type error and “blame
assignment”. Previous work (Haack and Wells 2004) has focused
on identifying parts of a program that contribute to a type error
and would be potentially useful for reducing this non-determinism
both for static error messages or for better specifying the dynamic
behaviour of an erroneous program.

8.2 Deferring type errors

DuctileJ is a plugin to the Java compiler that converts a normal Java
program to one in which type checking is deferred until runtime
(Bayne et al. 2011). The authors provide an extensive discussion of
the software engineering advantages of deferring type errors, under
two main headings.

• During prototyping, programmers often comment out partly
written or temporarily out-of-date code, while prototyping
some new part. Commenting out is tiresome because one must
do it consistently: if you comment out f you must comment out
everything that calls f , and so on. Deferring type errors is a kind
of lazy commenting-out process.

• During software evolution of a working system it can be burden-
some to maintain global static type correctness. It may be more
productive to explore a refactoring, or change of data represen-
tation, in part of a software system, and test that part, without
committing to propagating the change globally.

We urge the reader to consult this excellent paper for a full exposi-
tion, and a good evaluation of the practical utility of deferring type
errors both during prototyping and for software evolution.
Note however that although our motivations are similar, our imple-
mentation differs radically from that in DuctileJ. The latter works
by a “de-typing” transformation that uses Java’s runtime type infor-
mation and reflection mechanisms to support runtime type checks.
This imposes a significant runtime cost – the paper reports a slow-
down between 1.1 and 7.8 times. In contrast, our implementation
performs no runtime reflection and runs at full speed until the type
error itself is encountered. The DuctileJ de-typing transformation is
also not entirely faithful to the original semantics — unsurprisingly,
the differences involve reflection — whereas ours is fully faithful,
even for programs that involve Haskell’s equivalent of reflection,
the Typeable and Data classes.
Deferring type errors is also a valuable tool in the context of IDE
development. In an IDE it is essential to provide feedback to the
programmer even if the program has errors. The Visual Basic IDE
uses a hierarchy of analysis to provide gradually more functionality
depending on the type of errors present (Gertz 2005). For instance,
if there are type errors, but no parse errors, smart indentation and
automatic code pretty-printing can already be applied. However,
more complicated refactorings require type information to be avail-
able. Some IDEs use error-correcting parsers to be able to provide
some functionality in the presence of parsing errors, but a type error
will require a correction by the user before the IDE can offer func-
tionality that depends on the availability of types. Deferring type
errors allows the compiler to complete type checking without fix-
ing the type errors, allowing for a Haskell IDE to remain functional
even for programs that do not type-check.

8.3 Proof erasure

Coq (The Coq Team) uses a sort-based erasure process by introduc-
ing a special universe for propositions, Prop, which is analogous to

our Constraint# kind. Terms whose type lives in Prop are erased
even when they are applications of functions (lemmas) to computa-
tional terms. This is sound in Coq, since the computation language
is also strongly normalizing. Extending the computation language
of F↑C proofs or finding a way to restrict the ordinary computation
language of F↑C using kinds in order to allow it to construct prim-
itive equalities is an interesting direction towards true dependent
types for Haskell.

Irrelevance-based erasure is another methodology proposed in the
context of pure type systems and type theory. In the context of Epi-
gram, Brady et al. (2003) presented an erasure technique where
term-level indices of inductive types can be erased even when they
are deconstructed inside the body of a function, since values of the
indexed inductive datatype will be simultaneously deconstructed
and hence the indices are irrelevant for the computation. In the
Agda language (Norell 2007) there exist plans to adopt a similar
irrelevance-based erasure strategy. Other related work (Abel 2011;
Mishra-Linger and Sheard 2008) proposes erasure in the context
of PTSs guided with lightweight programmer annotations. There
also exist approaches that lie in between sort-based erasure and
irrelevance-based erasure: for instance, in implicit calculus of con-
structions (Miquel 2001) explicitly marked static information (not
necessarily Prop-bound) does not affect computation and can be
erased (Barras and Bernardo 2008). In F↑C the result of a computa-
tion cannot depend on the structure of an equality proof, by con-
struction: there is no mechanism to decompose the structure of a
coercion at all at the term-level. Hence a coercion value needs no
structure (since it cannot be decomposed), which allows us to per-
form full erasure without any form of irrelevance analysis.

This idea – of separating the “computational part” of a proof-like
object, which always has to run before we get to a zero-cost “log-
ical part” – is reminiscent of a similar separation that A-normal
forms introduce in refinement type systems, for instance (Bengt-
son et al. 2008) or the more recent work on value-dependent
types (Borgstrom et al. 2011; Swamy et al. 2011). This line of work
seems the closest in spirit to ours, with similar erasure concerns,
and there is rapidly growing evidence of the real-world potential
of these ideas – see for instance the discussion and applications
reported by Swamy et al. (2011).

9. Future work and conclusions

Error coercion placement This paper has been about an imple-
mentation technique that uses first-class proof-like objects to al-
low for deferred type errors with very low overhead. A natural next
step would be towards a declarative specification of the “elabora-
tion” process from source to a target language which specifies the
placement of the deferred error messages on potentially erroneous
sub-terms. Recent related work on coercion placement in the con-
text of coercive subtyping is the work of Luo (2008) and Swamy
et al. (2009); these would certainly be good starting points for in-
vestigations on a declarative specification of deferring type errors.
The canonical reference for coercion placement in a calculus with
type-dynamic is the work of Henglein (1994), but it seems some-
what disconnected from our problem as we do not have currently
any way of dynamically passing type information or executing pro-
grams that contain static errors but are safe dynamically.

In general, this problem seems very hard to tackle without ex-
posing some of the operation of the underlying constraint solver.
In the other direction, a principled approach to deferring type er-
rors might actually provide guidance on the order in which con-
straints should be solved. For instance, when solving the constraints
C1∪C2∪C3 arising from the expressions e1, e2, and e3 in the term
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if e1 then e2 else e3, we might want to prioritise solving the con-
straint C1. In this way, if an error is caused by the interaction of the
expressions e2 or e3 with e1, we would still be able to execute the
condition of the branch e1 before we emit a deferred type error for
e2 or e3. Otherwise we run the danger of the term e2 or e3 forcing
some unification that makes constraint C1 insoluble, giving rise to
an earlier error message (during evaluation of the condition term
e1). However, it is not clear what should happen when C2 and C3
have a common unification variable, and there is freedom in de-
ferring either one, for instance. Therefore this problem is certainly
worth further investigation.

The equality type Internalizing definitional equality (∼#) as a
type (∼) is pretty standard in languages with dependent types (Li-
cata and Harper 2005). For example, programming with first-class
equality witnesses is sometimes convenient to avoid shortcomings
of implementations of dependent pattern matching.

Recent work on higher-dimensional type theory (Licata and Harper
2012) goes one step further to show that the (∼) datatype can be
extended with yet another constructor for term-level isomorphisms
between types. Interestingly the usual definitional equality infer-
ence rules apply for this extended equality type. Moreover they
show that the term language can be equipped with an equational
theory that is rich enough, so that types enjoy canonical forms. Of
course the language they address is simpler in some respects (no
partiality or divergence, no polymorphism), nor is there a reduction
semantics. In a real compiler, being able to extend the (∼) datatype
with true computational isomorphisms and maintain soundness and
providing a transparent treatment of these isomorphisms with min-
imal programmer intervention is an interesting direction for future
research.

Conclusions In this paper we have proposed a simple and light-
weight mechanism for deferring type errors, in a type-safe way that
requires no program rewriting, and preserves the semantics of the
program until execution reaches the part that contains a type error.
We have shown that this can be done in an entirely safe way in the
context of a typed intermediate language, and in fact without re-
quiring any modifications to System F↑C or the compiler optimizer.
This work is fully implemented in GHC, where it has in addition
greatly simplified the implementation of type inference and elabo-
ration of Haskell to F↑C.
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