From Paxos to CORFU: A Flash-Speed Shared Log
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Introduction

In a 2006 talk [11], Jim Gray predicted that “flash is the new
disk”; five years later, indeed, flash is making headway into
data centers, but it is usually disguised as standard block
storage. We posit that new abstractions are required to ex-
ploit the potential of large-scale flash clusters. It has been
observed that each individual flash drive is best utilized in
a log-structured manner due to the intrinsic properties of
flash [6]. Further to that, in order to harness the aggregate
bandwidth of a cluster of flash units, we propose to orga-
nize the entire cluster as a single shared log. CORFU! is
a new storage system for flash clusters which demonstrates
the feasibility of this approach. The key idea in CORFU
is to expose a cluster of network-attached flash devices as a
single, shared log to clients running within the data center.
Applications running on the clients can append data to this
log or read entries from its middle.

Internally, the CORFU shared log is implemented as a dis-
tributed log spread over the flash cluster. Each log entry
is projected onto a fixed set of flash pages (see Figure 1).
The cluster as a whole is balanced for parallel I/O and
even wear by projecting different entries onto distinct page
sets, rotating across the cluster. In this design, CORFU
completely adopts the vision behind log-structured storage
systems like Zebra [12], which balance update load in a

workload-oblivious manner. The difference is that the CORFU

log is global and is shared by all clients. Flash makes this
design plausible, because it facilitates random reads from
the middle of the log with no ‘seek’ penalty.

CORFU is not a ‘from scratch’ invention; it builds on a
vast knowledge in reliability methods. Yet we found that
applying those directly would not yield the high-throughput
store that we aimed for. We drew foundational lessons from

LCORFU stands for Clusters of Raw Flash Units, and also
for an island near Paxos in Greece.
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essentially every step of the CORFU construction. Whereas
the full design of CORFU is given elsewhere [3], the rest
of this paper aims to highlight the principled innovation in
CORFU over previous clustered storage systems.
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Figure 1: CORFU architecture

Going beyond Paxos

In this section, we briefly overview several prevailing ap-
proaches and explain their limitations in our settings, thus
motivating the need for a new scheme.

The State Machine Replication (SMR) approach [16] builds
a reliable service out of failure-prone components. The ap-
proach works as follows. We build a single-machine ser-
vice as a state machine whose transitions are determinis-
tic. We instantiate multiple replicas of the service which
all start with the same initial state, and deliver all state-
manipulating commands to them in a unique sequence. Repli-
cas process commands in the same order and since all repli-
cas execute all commands we can lose all but one without
compromising the service state.

The core of SMR is realized by implementing a total-ordering



(TO) engine which has two roles: One, it forms agreement
on a sequence of commands to be delivered to replicas. Two,
it stores information persistently about the commands and
their order until they are applied to replicas with sufficient
redundancy against possible failures. Once a certain pre-
fix of commands has been processed by all replicas — and at
least F'+1 are needed for F-tolerance — they may be evicted
from the TO’s store for garbage collection purposes.

With TO, building a replicated service is a breeze: Each
replica can be oblivious to being replicated and acts au-
tonomously on its local state. Hence, much attention has
been put into the consensus algorithm which processes com-
mand proposals by the clients in a stream and produces
a sequence of agreement decisions as output. Indeed, the
renowned Paxos framework [14] and many group communi-
cation works [8] address this challenge. These frameworks
use 2F' + 1 participants which are necessary to solve consen-
sus with up to F' failures.

The naive way to employ a consensus-based framework is
to deploy 2F + 1 machines (acceptors) as a TO-cluster, and
another set of F'+ 1 machines (learners) as service replicas.
In the context of a flash cluster, this would work as follows.
We would have clients send store requests to the TO-cluster
of 2F + 1 machines. The TO engine would process requests,
form a total order on store commands and keep them in
persistent storage, and output an ordered sequence of store-
commands to F' 4 1 replicated flash units.

Since in this setting, the store commands contain the stored
data itself, we waste both network and storage resources in
funneling commands through a separate TO cluster; can we
use the F' + 1 flash units to also act as the acceptors in the
TO-cluster? This requires additional effort, first, because we
deploy only F'+1 units for F-tolerance; second, because stor-
age units should not need to initiate communication among
themselves as Paxos acceptors would. Previously, agreement
in a model where participants are passive storage entities has
been addressed in Disk Paxos [10, 7]. Unfortunately, the ap-
proach taken in these works is to let clients contend for the
contents of each entry. This unnecessarily consumes storage
space which is reserved for clients to propose their inputs,
as well as network bandwidth on lost attempts. These so-
lutions also deploy 2F + 1 storage replicas, which is rather
expensive.

Another limitation of previous approaches is load distribu-
tion. In order to allow concurrent client updates and reads
to/from the cluster, and also to address load distribution,
existing cluster stores partition data (according to some at-
tribute). Several large-scale web services build off of such
a partitioned infrastructure, e.g., Amazon’s Dynamo [9],
Facebook’s Cassandra [13], and others. Unfortunately, with
data partitioning, we lose cross-partition consistency. More-
over, we also introduce load imbalance against dynamic and
spiked loads.

Summary of CORFU Design

The CORFU design differs from the above in profound ways.
As noted in the introduction, it is beyond the scope of this
paper to provide a full description of the CORFU design,
which is described in detail elsewhere [3]. Here, we briefly

outline the design in order to point out the salient departures
from conventional methods.

The task of implementing a shared log over a cluster of flash
units involves three distinct pieces of functionality:

1. Mapping: Each position in the shared log is mapped
to a replica set of physical flash pages residing on different
flash units. To read or write a log position, a client first maps
it to its corresponding set of flash pages. In CORFU, this
mapping — called a projection — is stored compactly at the
clients to allow for fast lookups, as a deterministic function
over a membership view of the flash cluster.

2. Tail-finding: To append data to the log, a client has
to determine the current tail of the log. In CORFU, this is
done via a dedicated sequencer node — essentially, a counter
that can be accessed over the network — which allows clients
to determine and reserve the next available position in the
log. Importantly, the sequencer is just an optimization for
finding the tail quickly and avoiding append contention with
other clients through reservations.

3. Replication: When a client determines the set of flash
pages mapped to a particular log position, it then uses a
replication protocol to read or write data at those pages.
By default, CORFU uses client-driven chain replication; the
client writes to each of the flash pages in some deterministic
order, waiting for each flash unit to acknowledge the write
before proceeding to the next one. Reads are directed to the
end of the chain, but can also be served by replicas in the
middle of the chain if the write is known to be completed.

Accordingly, to read data at a particular log position, the
client maps the position to the replica set of flash pages, and
then uses the replication protocol to read from this set. To
append data to the log, the client first finds and reserves
the tail position of the log using the sequencer, maps it to
the replica set of flash pages, and then writes data to them
using the replication protocol.

The projection at each client maps log positions to flash
pages by dividing the cluster of flash units into replica sets
and then going round-robin over these sets. For example, if
the cluster contains six flash units, F1 to F6, the projection
organizes these into three replica sets of two units each (F1
and F2 forming a replica set, for instance). It then maps
log positions in a circular manner onto pairs: position 1 to
flash page F1l:page-1 and F2:page-1; position 2 to F3:page-1
and F4:page-1, and so on, wrapping around by mapping 4
to Fl:page-2 and F2:page-2. In this manner, CORFU im-
plements a shared log design over a cluster of flash units,
ensuring that reads to the log are completely parallelized
while appends are limited only by the speed at which the
sequencer can hand out tokens. Figure 2 depicts this map-

ping.

When a flash drive fails in the cluster, or when a flash unit
fills up, clients in the system use an auxiliary to uniquely
carve a new segment of the infinite sequence and project it
onto a new set of drives. The auxiliary is only involved in
these relatively low-frequency reconfigurations. For more
common failures, we bypass the auxiliary: Once the se-



quencer allocates a particular offset to a client, there must
be a way to claim back the ‘hole’ which a failed client would
leave behind. We make use of our chain replication protocol
to complete a partially filled offset efficiently, thus minimiz-
ing the disruption to the stream of log updates.

Filled / Filled Filled / Filled
3 5 6

Offset 5:
F3, page 2
F4, page 2

Offset 9:
F5, page 3
F6, page 3

oo e oo

Storage cluster (3 pairs, 1-tolerance each)

Figure 2: CORFU projection

How far is CORFU from Paxos?

There are several foundational lessons drawn from building
CORFU. Obviously, forming a globally-ordered sequence of
updates constitutes a classical manifestation of state-machine-
replication (SMR). But in order to build CORFU effectively,
we needed to weave multiple methods and also to introduce
novel mechanisms. The resulting design deviates from ex-
isting replicated systems with respect to each component
highlighted in the previous section.

With respect to mapping, we employ an auxiliary in order
to splice together individual log-segments into one global
sequence. The use of an auxiliary to manage dynamic con-
figurations of flash drives is explained in a recent tutorial [5]
and has roots in the Vertical Paxos scheme [15], adapted to
our passive-server settings. Internally, each entry in a seg-
ment is replicated for robustness on a set of pages using a
chained replication protocol which borrows from Chain
Replication [17]. The sequencer is quite a unique role. It
is effectively a network counter and serves as a performance
enhancer, arbitrating between clients which attempt to ap-
pend to the tail of the log concurrently. However, it has
no bearing on consistency, hence it does not need to keep
any persistent information, and is not constrained by storage
throughput.

This design differs from standard SMR in two crucial facets:

Time-slicing: Classical cluster replication based on SMR
puts the responsibility over every update on the entire
cluster, which caps throughput at roughly twice the I/O
capacity of individual servers. The only way around this
limitation is through partitioning. Traditionally, we par-
tition a replicated storage system by some attribute of

the data objects, essentially splitting the stream of up-
dates into multiple independent streams. We lose atom-
icity and load balancing across partitions in this manner.
In contrast, CORFU partitions the responsibility across
log-offsets. That is, we map each offset in the global log
onto a separate set of flash drives, thus allowing paral-
lel IO across the cluster. The advantage is that we obtain
cluster-wide consistency guarantees and, at the same time,
global load balancing. Though in itself, this idea is not
new, we are aware of no previous system which employs
this scheme.

Decoupling sequencing from I/0: Most SMR schemes
use one of the replicas as a leader/primary that injects
a pipeline of proposals, with the unfortunate result that
this bounds the pipeline throughput at the 1/O capacity
of the leader. In contrast, we separate the control role of
the sequencer from that of the storage replicas, and as a
result, SMR throughput is bounded only by the speed at
which 64-bit tokens can be handed out to clients.

Other departures from conventional Paxos stem from CORFU’s
unique hardware constraints. CORFU is designed to oper-
ate over network-attached flash units: simple, inexpensive
and low-powered controllers that provide networked access
to raw flash. Accordingly, storage devices are not allowed
to initiate communication, be aware of each other, or par-
ticipate actively in fault-tolerance protocols. The result is a
client-centric protocol stack, where most of the functional-
ity for ensuring the consistency of the shared log abstraction
resides at the clients.

Another key implementation difference results from the more
powerful interface offered by a shared log. In conventional
SMR, clients can only receive the next command in the se-
quence; learning about older commands is typically imple-
mented via state transfer between clients. In contrast, the
shared log allows clients to query the contents of older slots
in the sequence for perpetuity (or until the application calls a
garbage-collection primitive). To implement this, CORFU
carves the log address space into disjoint ranges, each of
which can be handled by a different cluster of storage de-
vices. When the tail of the log moves past a particular range,
the storage devices managing that range will stop receiving
writes but continue to serve reads.

An additional desirable feature is that our replica sets con-
sist of F' + 1 flash units for F-tolerance. The reason we
can form consensus decisions with fewer than 2F + 1 repli-
cas is that we use an auxiliary for handling failures. Our
adaptation of the auxiliary-based reconfiguration approach
to client-centric settings is novel, as is our common-failure
hole-filling procedure.

CORFU as a Distributed SSD

Thus far, we have described CORFU as a shared log ab-
straction. Alternatively, CORFU can be viewed as a net-
worked, distributed SSD. A conventional SSD implements a
linear address space over a collection of flash chips. Such
SSDs typically use a log-structured design under the hood
to provide good performance and even wear-out in the face
of arbitrary workloads.



In this context, CORFU plays a similar role over a dis-
tributed cluster of flash chips; it uses a log-structured design
at distributed scale to provide good performance and con-
trolled wear-out to a cluster of flash. In contrast to conven-
tional SSDs, CORFU exposes the log directly to applications
instead of a linear address space. However, such an address
space can be layered over the shared log, allowing CORFU
to act as a conventional block drive with a fixed-size address
space.

Importantly, the CORFU logging design allows for distributed
wear-leveling. Current designs for flash clusters partition
data according to some key across storage devices. As a re-
sult, devices can wear out at different rates, depending on
the write workload experienced by individual keys. A cluster
with non-uniform wear-out can result in unpredictable per-
formance and reliability; for example, in a database, certain
tables may become slower or less reliable than others over
time. In contrast, CORFU enables distributed wear-leveling
by implementing a single log across devices, ensuring that
all devices see even wear-out even for highly skewed write
workloads.

CORFU’s architecture borrows heavily from the FAWN sys-
tem [1], which first argued for clusters of low-power flash
units. While FAWN showed that such clusters could effi-
ciently support parallelizable workloads, the shared log ab-
straction we implemented extends the benefit of such an
architecture to strongly consistent applications. The other
benefit is described above, namely, aggregate wear leveling
and load balance across the entire cluster.

Applications

Another key deviation of CORFU from SMR is that the log
is the store itself, rather than a transient queue of updates.
That is, whereas in SMR we think of the total-ordering
engine as transient and the service state as permanent, in
CORFU, we envision the log as storing information persis-
tently, whereas everything else can be maintained as soft
state.

A flash-based shared log enables a new class of high through-
put transactional applications. The key vision here is to per-
sist everything onto the global log, and maintain metadata
in-memory for fast access and manipulation. We describe
in [3] a key-value store built on top of CORFU that sup-
ports a number of properties that are difficult to achieve on
partitioned stores, including atomic multi-key puts and gets,
distributed snapshots, geo-distribution and distributed roll-
back/replay. A map-service (which can be replicated) main-
tains a mapping from keys to shared log offsets; below, we
further elaborate on that.

Another instance of this class, Hyder [4], is a recently pro-
posed high-performance database designed around a flash-
based shared log, where servers speculatively execute trans-
actions by appending them to the shared log and then use
the log to decide commit/abort status. The Hyder paper
included a design outline of a flash-based shared log that
was simulated but not implemented. In fact, the design re-
quirements for CORFU emerged from discussions with the
Hyder authors on adding fault-tolerance and scalability to
their proposal [2], and the full Hyder system is currently

being implemented over our code base.

A shared log can also be used as a consensus engine, pro-
viding functionality identical to consensus protocols such as
Paxos (a fact hinted at by the name of our system). Used in
this manner, CORFU provides a fast, fault-tolerant service
for imposing and durably storing a total order on events in
a distributed system. From this perspective, CORFU can
be used as a Paxos implementation, leveraging flash storage
to provide better performance that conventional disk-based
implementations.

Building a Name-Space

Using a shared log as a the store creates a need to locate
information in the log. That is, if one client updates a data
object D by appending an update-entry to the log at position
p, and later, another client queries the value of D, the second
client should find log entry p. Required is a service which
finds data in the log quickly. This service is itself a CORFU
client. It reads the log in order to maintain a directory of
locations of data in the log. For atomicity, the service needs
to point to the most recent state of each data item.

A centralized name server which provides atomicity guar-
antees is relatively easy to build, because all requests are
serialized through it. The order in which the centralized
map-server handles updates/queries becomes the abstract
linearization which conforms with the clients view of the ex-
ecution. In particular, note that a client query returns the
last updated entry in this linearization.

A centralized design does not present a single point of failure,
because on failure, a new server is easily reconstructible from
the log. Indeed, our entire vision is that a shared log enables
this type of fast, in-memory applications which are free from
the need to persist any information. However, a centralized
design could be a performance bottleneck, and hence we
discuss a distributed name space next.

A distributed name service allows clients to access distinct
name-servers concurrently, with the goal of enhancing over-
all throughput. One potential design puts a name-server on
each client machine, as a component of the CORFU client-
side library; another design deploys a service-layer of dedi-
cated name servers, which are spread over the network.

An obvious way to distribute the name service is via par-
titioning, but this has the same limitation as partitioning
the log itself: no cross-partition consistency or load-sharing.
To drive multiple name servers without such partitioning,
each individual name server needs to guarantee freshness by
playing the log forward. This is challenging for two reasons.
The name server needs to somehow determine the current
tail of the log. Second, it must then wait until it can read
every offset until the end of the tail, and it might be delayed
due to holes. We are currently investigating complementary
ways to achieve freshness which alleviates some of this stress.
Alternatives include a combination of techniques involving
gossiping among clients about log updates; querying the se-
quencer for the tail of the log and doing a bulk-read; and
many others.



Summary

CORFU organizes a cluster of flash devices as a single, shared
log that can be accessed concurrently by multiple clients
over the network. The CORFU shared log makes it easy
to build distributed applications that require strong consis-
tency at high speeds, such as databases, transactional key-
value stores, replicated state machines, and metadata ser-
vices. A key design point is to use time-slicing in order to
distribute load and parallelize I/O across a cluster of flash
units. This exploits flash storage to alter the trade-off be-
tween performance and consistency, supporting applications
such as fully replicated databases at wire speed.

1. REFERENCES

[1] D. G. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. Fawn: a
fast array of wimpy nodes. In SOSP 2009.

[2] M. Balakrishnan, P. Bernstein, D. Malkhi,

V. Prabhakaran, and C. Reid. Brief announcement:
Flash-log — a high throughput log. In 24th
International Symposium on Distributed Computing
(DISC 2010), September 2010.

[3] M. Balakrishnan, D. Malkhi, V. Prabhakaran,

T. Wobber, M. Wei, and J. Davis. Corfu: A shared log
design for flash clusters. Technical Report
MSR-TR~2011-119, Microsoft, September 2011.

[4] P. Bernstein, C. Reid, and S. Das. Hyder U a
transactional record manager for shared flash. In
CIDR 2011, pages 9-20, 2011.

[5] K. Birman, D. Malkhi, and R. V. Renesse. Virtually
synchronous methodology for dynamic service
replication. Technical Report MSR-TR~2010-151,
Microsoft, November 2010.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A
design for high-performance flash disks. Operating
Systems Review, 41(2):88093, 2007.

[7] G. Chockler and D. Malkhi. Active disk paxos with
infinitely many processes. In PODC ’02: Proceedings
of the twenty-first annual symposium on Principles of
distributed computing, pages 78-87, New York, NY,
USA, 2002. ACM.

[8] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: a comprehensive study.
ACM Comput. Surv., 33, December 2001.

[9] G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of the 21st Symposium on Operating
Systems Principles (SOSP’07), 2007.

[10] E. Gafni and L. Lamport. Disk paxos. In DISC ’00:
Proceedings of the 14th International Conference on
Distributed Computing, pages 330-344, London, UK,
2000. Springer-Verlag.

[11] J. Grey. Tape is dead, disk is tape, flash is disk, ram
locality is king. Storage Guru Gong Show, Redmond,
WA, 2006.

[12] J. Hartman and J. Ousterhout. The zebra striped
network file system. ACM TOCS, 13(3):274-310, 1995.

[13] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44:35-40, April 2010.

[14] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16:133-169, May 1998.

[15] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos
and primary-backup replication. In PODC' 2009, pages
312-313. ACM, 2009.

[16] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: a tutorial. ACM
Comput. Surv., 22(4):299-319, 1990.

[17] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In
OSDI 2004.



