This document is the supplemental material to the ECML-PKDD'12 submission.

A Exponential Integral

Suppose that x is a random variable with Gaussian distribution, i.e., $p(x):=$ $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$, we present the derivations of the expectation for the $\exp (x)$ w.r.t. x as follows:

$$
\begin{aligned}
& E_{x \sim p(x)}(\exp (x))=\int_{x} \frac{\exp (x)}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right) \int_{x} \exp \left(-\frac{x^{2}-2 x\left(\mu+\sigma^{2}\right)}{2 \sigma^{2}}\right) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\mu+\frac{\sigma^{2}}{2}\right) \int_{x} \exp \left(-\frac{\left(x-\left(\mu+\sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\mu+\frac{\sigma^{2}}{2}\right) \sqrt{2 \pi \sigma^{2}} \\
& =\exp \left(\mu+\sigma^{2} / 2\right) .
\end{aligned}
$$

B Log Gaussian Integral

Suppose x is a random variable with Gaussian distribution $p(x): \mathcal{N} \sim\left(\mu, \sigma^{2}\right)$ and $q(x)$ is a Gaussian, $\mathcal{N} \sim\left(\mu_{1}, \sigma_{1}^{2}\right)$, let us show how to derive the expectation of $\log q(x)$ w.r.t. x as follows:

$$
\begin{aligned}
& E_{x \sim p(x)}(\log q(x))=E_{x \sim p(x)}\left(\log \left(\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left(-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right)\right)\right) \\
& =-\frac{1}{2} \log \left(2 \pi \sigma_{1}^{2}\right)-\frac{1}{2 \sigma_{1}^{2}} E_{x \sim p(x)}\left(x-\mu_{1}\right)^{2} \\
& =-\frac{1}{2} \log \left(2 \pi \sigma_{1}^{2}\right)-\frac{1}{2 \sigma_{1}^{2}}\left(E_{x \sim p(x)}\left(x^{2}\right)-2 \mu_{1} \mu+\mu_{1}^{2}\right) \\
& =-\frac{1}{2} \log \left(2 \pi \sigma_{1}^{2}\right)-\frac{1}{2 \sigma_{1}^{2}}\left(\sigma^{2}+\mu^{2}-2 \mu_{1} \mu+\mu_{1}^{2}\right) .
\end{aligned}
$$

C Solution to (19)

First note that (19) is equivalent to

$$
\frac{1}{2\left(1+\sigma^{2} \exp (\kappa)\right)}-\exp (\kappa)=\frac{\kappa-\mu}{\sigma^{2}}-s_{i},
$$

By setting $z=\exp (\kappa)$ and $\frac{\kappa-\mu}{\sigma^{2}}-s_{i}=A$, we can convert (19) into a quadratic equation with respect to z

$$
2 \sigma^{2} z^{2}+2\left(A \sigma^{2}+1\right) z+2 A-1=0
$$

with its positive root given by

$$
\begin{equation*}
z=\frac{-\left(A \sigma^{2}+1\right)+\sqrt{\left(A \sigma^{2}-1\right)^{2}+2 \sigma^{2}}}{2 \sigma^{2}} \tag{25}
\end{equation*}
$$

Note that we choose the positive root because $\exp (\cdot)$ cannot be negative. Given $\frac{\kappa-\mu}{\sigma^{2}}-$ $s_{i}=A$ and (25), we have

$$
\begin{equation*}
z=\frac{\mu+s_{i} \sigma^{2}-1-\kappa+\sqrt{\left(\kappa-\mu-s_{i} \sigma^{2}-1\right)^{2}+2 \sigma^{2}}}{2 \sigma^{2}} \tag{26}
\end{equation*}
$$

We plug $\exp (\kappa)=z$ into (26), and get

$$
\begin{equation*}
\kappa=\log \left(\frac{\mu+s_{i} \sigma^{2}-1-\kappa+\sqrt{\left(\kappa-\mu-s_{i} \sigma^{2}-1\right)^{2}+2 \sigma^{2}}}{2 \sigma^{2}}\right) \tag{27}
\end{equation*}
$$

