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ABSTRACT

Following the recent advances in deep learning techniques, in
this paper, we present the application of special type of deep archi-
tecture — deep convex networks (DCNs) — for semantic utterance
classification (SUC). DCNs are shown to have several advantages
over deep belief networks (DBNs) including classification accuracy
and training scalability. However, adoption of DCNs for SUC comes
with non-trivial issues. Specifically, SUC has an extremely sparse
input feature space encompassing a very large number of lexical and
semantic features. This is about a few thousand times larger than the
feature space for acoustic modeling, yet with a much smaller number
of training samples. Experimental results we obtained on a domain
classification task for spoken language understanding demonstrate
the effectiveness of DCNs. The DCN-based method produces higher
SUC accuracy than the Boosting-based discriminative classifier with
word trigrams.

Index Terms— deep convex networks, spoken language under-
standing, domain detection, semantic utterance classification, deep
learning

1. INTRODUCTION AND MOTIVATION

Spoken language understanding (SLU) in human/machine spoken
dialog systems aims to automatically identify the domain and intent
of the user as expressed in natural language and to extract associated
arguments or slots [1] to achieve a goal.

Given an utterance, SLU in dialog systems extracts semantic in-
formation from the output of an automatic speech recognizer (ASR).
The dialog manager (DM) then determines the next machine ac-
tion given the SLU output. In the last decade, a variety of practi-
cal goal-oriented spoken dialog systems have been built for limited
domains. Three key tasks in such targeted dialog and understand-
ing applications are domain classification, intent determination and
slot filling [2]. Domain classification is often completed first in SLU
systems, serving as a top-level triage for subsequent processing.

Similar to intent determination, domain detection is often framed
as a semantic utterance classification (SUC) problem, where the tar-
get domain is a discrete set of semantic classes without structural re-
lationship among them. Usually, supervised classification methods
are used to estimate conditional probabilities, and a set of labeled ut-
terances is used in training. Such systems typically use established
classification algorithms, such as Boosting [3], support vector ma-
chines (SVMs) [4], or maximum entropy models [5].

It is only very recently that researchers have started experiment-
ing with deep belief networks (DBNs) for SUC (e.g., [6]). While
deep networks are shown to have better modeling capacity than most
established classifiers, they have not been popular until recently.
This is partly due to the problem of scalability with larger data sets

for complex tasks. In particular, DBNs [7] have recently gained
popularity in various areas of information processing applicaitons.
DBNs are stacks of Restricted Boltzmann Machines (RBMs) fol-
lowed by fine tuning. RBM is a two-layer network, which can be
trained reasonably efficiently in an unsupervised fashion. Following
the introduction of this RBM learning and layer-by-layer construc-
tion of deep architectures, DBNs have been successfully used for
numerous tasks in speech and language processing, including acous-
tic modeling [8, 9, 10] and intent determination [6].

Following the success of DBN, Deng and Yu have proposed the
use of Deep Convex Net (DCN), which directly attacks the scalabil-
ity issue of DBN-like deep learning techniques [11]. In this paper,
we present experimental results with this more recent deep learn-
ing technique for SUC. DCN is shown to be superior to DBN, not
only in terms of accuracy, but also in training scalability and effi-
ciency [11, 12]. DCN can also incorporate the strength of DBN by
training the weights at the lowest level using RBM. While DCN has
been applied to acoustic modeling successfully, SUC poses signif-
icant challenges for DCN. Two important issues are the size of the
input feature space, and the typically much smaller amounts of train-
ing data available. For example, typical acoustic models use 39 stan-
dard MFCC features, with millions of frames as training samples. In
our training data set with only 16,000 utterances, there are already
as many as 125,000 unique trigrams as potential features, forming
a very sparse space. In this paper, we present experimental results
using the DCN technique for domain detection, and present methods
that reduce the feature space by relying on a set of n-grams chosen
as weak learners by Boosting.

In the next section, we describe the task of semantic utterance
classification and the related work in more detail. Then in Section 3,
we briefly present the deep convex network learning technique and
present how DCNs are used for semantic classification. In Section 4
we show the experimental results before concluding in Section 5.

2. SEMANTIC UTTERANCE CLASSIFICATION

The semantic utterance classification (SUC) task aims at classify-
ing a given speech utterance Xr into one of M semantic classes,

Ĉr ∈ C = {C1, . . . , CM} (where r is the utterance index). Upon

the observation of Xr , Ĉr is chosen so that the class-posterior prob-
ability given Xr , P (Cr|Xr), is maximized. More formally,

Ĉr = arg max
Cr

P (Cr|Xr). (1)

Semantic classifiers need to allow significant utterance varia-
tions. A user may say “I want to fly from San Francisco to New York
next Sunday” and another user may express the same information by
saying “Show me weekend flights between JFK and SFO”. In spite
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of this variability, utterances in such applications have a clear struc-
ture that binds together the specific pieces of information. Not only
is there no a priori constraint on what the user can say, these systems
also need to generalize well from a tractably small amount of train-
ing data. For example, the phrase “Show all flights” and “I want
to fly” should be interpreted as variants of a single semantic class
“Flight.” On the other hand, the command “Show me the weekend
snow forecast” should be interpreted as an instance of another se-
mantic class, say, “Weather.” In order to do this, the selection of the
feature functions fi(C, W ) aims at capturing the relation between
the class C and word sequence W . Typically, binary or weighted
n-gram features, with n = 1, 2, 3, to capture the likelihood of the
n-grams, are generated to express the user intent for the semantic
class C [1]. As an example, binary bigram feature functions are in
the form of:

fBG
c,wxwy

(Cr, Wr) =

{
1, if c = Cr ∧ wxwy ∈ Wr,
0, otherwise.

(2)

That is, if two consecutive words, wxwy , appear in the word se-
quence W and if the class is one of interest, Cr , then the binary
feature function takes on a value of one; it is zero otherwise. Once
the features are extracted from the text, the task becomes a text clas-
sification problem. Traditional text categorization techniques devise
learning methods to maximize the probability of Cr , given the text
Wr; i.e., the class-posterior probability P (Cr|Wr).

Early work on spoken utterance classification has been done
mostly for call routing or intent determination system, such as the
AT&T How May I Help You? (HMIHY) system [13], relying on
salience phrases, or the Lucent Bell Labs vector space model [14].
With advances in machine learning, especially in discriminative clas-
sification techniques, in the last decade, researchers have been able
to apply off-the-shelf classification algorithms. Typically word n-
grams are used as features after preprocessing with generic entities,
such as dates, locations, or phone numbers. Because of the very
large dimensions of the input space, large margin classifiers such as
SVMs [4] or Boosting [3] were found to be very good candidates. In
this paper, instead, we explore the use of DCNs for this task.

3. DEEP CONVEX NETWORK FOR SEMANTIC
CLASSIFICATION

In this section, we first briefly describe the general DCN architecture
and then present how features are extracted to be fed to the DCN for
our SUC task.

3.1. General DCN architecture

A typical DCN architecture, shown in Fig.1, includes a variable
number of layered modules, wherein each module is a specialized
neural network consisting of a single hidden layer and two trainable
sets of weights. Specifically, the lowest module in the DCN com-
prises a first linear layer with a set of linear input units, a non-linear
layer with a set of non-linear hidden units, and a second linear layer
with a set of linear output units. In this paper, the input units are
associated with features computed from the input utterances.

The hidden layer of the lowest module of a DCN comprises a set
of non-linear units that are mapped to the input units by way of a first,
lower-layer weight matrix, which we denote by Wi , i = 1, 2, 3, 4 in
Fig. 3. For instance, the weight matrix may comprise a plurality of
randomly generated values between zero and one, or the weights of
a restricted Boltzmann machine (RBM) trained separately. The non-
linear units may be sigmoidal units that are configured to perform
non-linear operations on weighted outputs from the input units.

The second, linear layer in any module of a DCN includes a set
of output units that are representative of the targets of classification.
For instance, if the DCN is configured to perform digit recognition,
then the plurality of output units may be representative of the values
1, 2, 3, and so forth up to 10, with a 0-1 coding scheme. If the DCN
is configured to perform speech recognition, then the output units
may be representative of phones, the hidden Markov model (HMM)
states of phones, or the context-dependent HMM states of phones. In
this paper, the output units are the semantic classes associated with
the input utterances. The non-linear units in each module of the DCN
may be mapped to a set of the linear output units by way of a second,
upper-layer weight matrix, which we denote by Ui , i = 1, 2, 3, 4 in
Fig. 3. This second weight matrix can be learned by way of a batch
learning process, such that learning can be undertaken in parallel.
Convex optimization can be employed in connection with learning
Ui . For instance, Ui can be learned, based at least in part, on the
first weight matrix Wi , the values of the coded classification targets,
and the values of the input units.

The DCN includes a set of serially connected, overlapping, and
layered modules, wherein each module includes the aforementioned
three layers – a first linear layer that includes a set of linear input
units whose number equals the dimensionality of the input features,
a hidden layer that comprises a set of non-linear units whose num-
ber is a tunable hyper-parameter, and a second linear layer that com-
prises a plurality of linear output units whose number equals that of
the target classification classes. The modules are referred to herein
as being “layered” because the output units of a lower module are a
subset of the input units of an adjacent higher module in the DCN.
More specifically, in a second module that is directly above the low-
est module in the DCN, the input units can include the output units of
the lower module(s). The input units can additionally include the raw
training data. In other words, the output units of the lowest module
can be appended to the input units in the second module, such that
the input units of the second module also include the output units of
the lowest module.

The pattern discussed above can continue for many modules.
A resultant learned DCN may then be deployed in connection with
an automatic classification task such as frame-level speech phone or
state classification, as performed in [11], and classification of seman-
tic categories of input utterances, as is the focus of this paper.

3.2. Training Algorithm for DCN

The convex optimization technique discussed here applies to all lay-
ers of a DCN. Implementation of the technique differs for distinct
layers, mainly in ways of setting the weight matrices W, which
varies its dimensionality across layers before applying the technique
presented below.

We assume a supervised learning setting where both the train-
ing data X = [x1, . . . ,xi, . . . ,xN] and the corresponding labeled
target vectors T = [t1, . . . , ti, . . . , tN ], where each target ti =
[t1i, . . . , tji, . . . , tCi]

T , are available. We use the loss function of
mean square error to learn weight matrices U, assuming W is given.
That is, we aim to minimize the error of

E = Tr[(Y − T)(Y − T)T ], (3)

where Y = [y1, . . . ,yi, . . . ,yN ]. Importantly, if the weight matrix
W is determined already (e.g., via judicious initialization), then the
hidden layer values H = [h1, . . . ,hi, . . . ,hN ] are also determined.
Consequently, the weight matrix U can be determined by setting the
gradient

∂E

∂U
= 2H(UT H − T)T

(4)
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Fig. 1. A typical DCN architecture with four modules illustrated in
four separate colors.

to zero. This is a well established convex optimization problem
and has a straightforward closed-form solution, known as pseudo-
inverse:

U = (HHT )−1HTT . (5)

A further, batch-mode, parallelizable fine tuning algorithm improves
classification accuracy upon the basic algorithm described above. In
contrast to fine tuning for DBN of [7], our fine tuning adjusts the
weight matrices W and U layer by layer, not involving any global
fitting over the entire architecture. The essence of the DCN fine
tuning is to exploit the structural relationship between W and U in
each layer, as expressed in Eq.5, in computing the gradient of the
loss function with respect to the weight matrix W. Details of the fine
tuning algorithm can be found in [11]. Some additional regulariza-
tion is also developed and applied to handle the small training data
problem.

3.3. Feature Extraction for Semantic Classification

For domain detection, the input is a sequence of words uttered by the
user and as recognized by a speech recognizer. Then, typically word
n-grams are extracted as features for classification.

In earlier studies using deep networks for text categorization,
the curse of dimensionality is a very well known problem. These
networks are not designed for millions of dimensions. To this end,
for example, [15] tackled this problem by transforming the word n-
grams into lower dimensional spaces first. This is analogous to class-
based models, where similar words are clustered or latent semantic
indexing (LSI) or latent Dirichlet allocation (LDA) based methods.

In this paper, instead of feature transformation, we relied on fea-
ture selection. While there are a number of feature selection mech-
anisms proposed in the machine learning literature [16, among oth-
ers], we instead rely on the baseline Boosting classifier. For DCN,
the input feature space is shrunk using the n-grams selected by the
Boosting classifier. Boosting is an iterative algorithm; on each iter-
ation, t, a weak classifier, ht, is trained on a weighted training set,

No. Utt. Avg. No. Words

Training 16,000 7.60

Development 2,000 7.66

Test 1,902 7.58

Table 1. Data sets used in the experiments.

Layer Dev Test

Chance (Majority) 77.45% 76.71%

Baseline (Boosting) 13.15% 13.35%

1 15.30% 15.29%
2 14.05% 13.14%
3 13.45% 12.67%
4 14.25% 13.77%
5 15.10% 14.45%

Table 2. Semantic classification error rates using deep convex nets
with varying number of stacked DCN modules, compared to the
Boosting baseline. RBM is used to initialize lowest-level network
weights using the discriminative features selected by Boosting.

and at the end, the weak classifiers are combined into a single classi-
fier [17]. For example, for semantic categorization, one can use word
n-grams as features, and each weak classifier (e.g., decision stump,
which is a single node decision tree) can check the absence or pres-
ence of an n-gram. This feature selection technique corresponds to
selecting the most discriminative n-grams for the task. However,
the weights coming with the decision stump are ignored, only binary
features indicating absence or presence are used.

4. EXPERIMENTS AND RESULTS

In order to perform experiments with the DCNs, we compile a dataset
of utterances from the users of a spoken dialog system. Table 1
shows the properties of the data sets and the (relative) frequencies
of the two types of queries in each data set. Each of the utterances
in these data sets is manually labeled with one of 25 domain cate-
gories. The domains were chosen to cover specific target domains
such as restaurants, calendar, or movies, generic user intents such
as greeting or frustration, and an other category for the remaining
ones. Note that the other domain can include web-related utterances
as well, such as search for the inventor of kaleidescope. In this set,
the utterances were enforced to belong to a single domain in order to
avoid multi-labeling issues.

For evaluation, the error rate of the top scoring class is used.
The baseline performance is obtained using only word trigrams with
Boosting method of [3]. We did not experiment with other classifica-
tion algorithms, as Boosting has already been shown to give compa-
rable results [6, 18]. Table 2 summarizes the Boosting and DCN ex-
perimental results. This data contains about 125K word trigrams, so
we applied Boosting-based filtering as explained earlier, with 1,000
iterations, reducing the input feature space size to 917 unique salient
n-grams. These features are then fed to a single-hidden-layer RBM
to train weights for the lowest module of DCN. The optimal number
of epochs for RBM training is determined to be 60, using the de-
velopment set, empirically. No other RBM parameter is optimized
over the RBM training method used in [19, 20]. To initialize weights
for higher levels, fine-tuned weights from lower modules are used.
One behavior worth noting is that, while the error rates decrease as
the number of layers increase, over-fitting occurs, at layer 4, in this
case. This has been observed in earlier work on speech processing
as well [11].

Figure 2 shows learning curves for the semantic utterance clas-
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Fig. 2. Learning curves comparing Boosting with DCN with bottom
layer initialized with RBM using only the annotated vs. all data.

Model Dev Test

Baseline (Boosting) 10.70% 10.40%
DCN 11.50% 10.09%

Table 3. Semantic utterance classification error rates using optimal
number of features for the Boosting baseline system.

sification task, comparing the performance of Boosting with DCN
with varying amounts of manually annotated data. This figure justi-
fies the use of RBM for estimating the weights at the bottom layer
as it can use all the data in an unsupervised fashion. This difference
is best seen when there are only 1,000 or 2,000 manually annotated
samples.

In a further experiment, DCN was fed with the optimal number
of features (iterations) used for Boosting baseline system. This gives
a total of 4,809 features, which were learned over 10,000 iterations.
While the performance of DCN for the held-out set is lower, DCN
gives better performance for the test set, validating the effectiveness
of DCN’s regularization mechanisms.

5. CONCLUSIONS AND FUTURE WORK

We have presented promising experimental results on semantic ut-
terance classification using deep convex networks. Our results indi-
cate that, even without optimizing most of the network parameters,
this method already reached better performance than a non-trivial
baseline, established using a state of the art discriminative classifier,
Boosting, with word trigrams.

In the current work, we assume the input of the SUC system, or
a module of the SLU system, is a perfect speech script. However,
in real-world scenarios, the SUC or SLU module in the full SLU
system including an ASR module has to deal with input with ASR
errors. Therefore, joint optimization of the ASR module and the
SUC module, in similar ways to the schemes developed in [5, 21], is
desirable. In our previous work, we have shown that it is possible to
perform an end-to-end optimization where the model parameters in
all sub-systems are jointly learned via optimizing the objective func-
tion directly tied to the final performance measure defined by the full
system. We have demonstrated that such an end-to-end optimization
approach can give better results for complex information systems
such speech translation involoving multiple sub-systems working to-

gether [22, 23]. We expect in the future similar approach can be ap-
plied to improve the end-to-end performance of SLU when either the
SUC or the ASR module of the full system, or both, are constructed
using the DCN-like deep architecure as described in this paper.
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