Machine Assisted Thought

Michael J. Kurtz
Harvard-Smithsonian Center for Astrophysics
Collaborators

Alberto Accomazzi
Edwin Henneken
Jay Luker
Giovanni DiMilla
Carolyn Grant
Force11.org

Lee Dirks
Three Papers

• 2012arXiv1209.1318K
 – Finding and Recommending Scholarly Articles

• 2011ApSSP...1...23K
 – The Emerging Scholarly Brain

• 1993ASSL..182...21K
 – Advice from the Oracle: Really Intelligent Information Retrieval
Numbers
Today’s rapidly growing flood of big data represents immense opportunity for forward-thinking marketers. But to fully leverage the potential that exists within these massive streams of structured and unstructured data, organizations must quickly optimize ad delivery, evaluate campaign results, improve site selection and retarget ads. This is where the IBM Netezza® Factor comes into play, enabling a fluid analysis of complex data capable of unleashing a torrent of innovative, next-level ideas and results.

Driving Marketing Effectiveness by Managing

The Flood of Big Data

- **US$2.1 billion** spent on mobile ads in 2011
- **4.8 trillion** online ad impressions in 2011
- **US$83.2 billion** in mobile ad spend for 2012
- **294 billion** emails sent every day
- **100 terabytes** of data uploaded daily
- **230 million** tweets a day

Big Data = Big Opportunity
LHC: The Large Hadron Collider

CMS -- Le "Compact Muon Solenoid"
Cette image montre une collision simulée d'une collision du CMS. Le centre de l'image montre où les protons sont entrés en collision et l'énergie résultante d'annihilation produit des jets de nouvelles particules qui peuvent se déplacer dans le détecteur.

L'image est une de celles que nous espérons voir quand CMS sera en fonction: elle met en évidence le boson de Higgs, la particule qui confère une masse à toutes les autres particules et que le LHC devrait pouvoir détecter.
Conceive
Perceive
Words
THE LANGUAGE INSTINCT
HOW THE MIND CREATES LANGUAGE
STEVEN PINKER
AUTHOR OF THE STUFF OF THOUGHT
Super-organisms
...the highest level of the ant colony is the totality of its membership rather than a particular set of superordinate individuals who direct the activity of members at lower levels.

Hölldobler and Wilson (1990)
These are termites

WORKER
Actual size 1/4-inch

SOLDIER
Actual size 5/16-inch

QUEEN
Actual size 1/2-inch

High Society

Original Soundtrack

Bing Crosby Grace Kelly Frank Sinatra
Communication
The system of radiation which embraces the whole planet, and includes the million million brains of the race, becomes the physical basis of a racial self...

But chiefly the racial mind transcends the minds of groups and individuals in philosophical insight into the true nature of space and time, mind and its objects, cosmical striving and cosmical perfection.... For all the daily business of life, then, each of us is mentally a distinct individual, though his ordinary means of communication with others is “telepathic.” But frequently he wakes up to be a group-mind...

Of this obviously, I can tell you nothing, save that it differs from the lowlier state more radically than the infant mind differs from the mind of the individual adult, and that it consists of insight into many unsuspected and previously inconceivable features of the familiar world of men and things.
CPU Transistor Counts 1971-2008 & Moore's Law

Curve shows 'Moore's Law': transistor count doubling every two years
kurtz weak gravitational lensing
Show me:
the paper by
Dressler, et al. which was referenced in
the recent paper by
Kurtz, et al. on
weak gravitational lensing
udas labs
streamlined search

kurtz weak gravitational lensing

sort by
- most recent
- most relevant
- most cited
- most popular

explore the field
- what people are reading
- what experts are citing
- reviews and introductory papers

examples

myads

2012arXiv1210.0899L: Livermore, R. C.: Observational limits on the gas mass of a z=4.9 galaxy
2012arXiv1210.0905C: Crighton, N. H. M.: A high molecular fraction in a sub-damped absorber at z=0.56
2012arXiv1210.1203J: Johnston, R.: Reconstructing gravity beyond the local universe with peculiar velocities
2012arXiv1210.0972K: Koyama, Y.: Massive starburst galaxies in a z=2.16 proto-cluster unveiled by panoramic H-alpha mapping
2012arXiv1210.0900T: Tulin, S.: Resonant Dark Forces and Small Scale Structure
2012arXiv1211.151P: Paredes-Fortuny, X.: Optical photometric monitoring of gamma-ray binaries

f: search

kurtz@haford.edu - sign off

the ads is operated by the smithsonian astrophysical observatory under nasa grant nnx12ag54g
contact: ads at cfa.harvard.edu or through the feedback form.
Testing Weak-lensing Maps with Redshift Surveys: A Subaru Field
Kurtz, Michael J.; Geller, Margaret J.; Utsumi, Yousuke; Miyazaki, Satoshi; and 2 coauthors
Testing Weak-lensing Maps with Redshift Surveys: A Subaru Field

Kurtz, Michael J.; Geller, Margaret J.; Utsumi, Yousuke; Miyazaki, Satoshi; Dell'Antonio, Ian P.; Fabricant, Daniel G.

Published in May 2012
DOI: 10.1088/0004-637X/750/2/168

We use a dense redshift survey in the foreground of the Subaru GTO2deg2 weak-lensing field (centered at $a2000 = 18h04m44s; \delta2000 = 43^\circ11'24''$) to assess the completeness and comment on the purity of massive halo identification in the weak-lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak-lensing peaks with a signal-to-noise greater than 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. test of the Deep Lens Survey (DLS) field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. for removing some contaminated peaks from the weak-lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.

Keywords:
- Astronomy: cosmology; observations, galaxies: clusters: general, galaxies: distances and redshifts, gravitational lensing: weak, large-scale structure of Universe

References in article 2012ApJ...750..168K

3. 2011MNRAS.413.1145B Cited by 5 [EFSLDRCU] Optimal filtering of optical and weak lensing data to search for galaxy clusters: application to the COSMOS field Bellagamba, F.; Maturi, M.; Hamana, T.; Meneghetti, M.; and 2 coauthors

4. 2008MNRAS.385..695B Cited by 32 [EFXDRC] Combined analysis of weak lensing and X-ray blind surveys Bergé, Joel; Pacaud, Florian; Réfrégier, Alexandre; Massey, Richard; and 6 coauthors

5. 2000AJ....120.2747C Cited by 150 [EFXDRC] WFPC2 Observations of the Hubble Deep Field South Casertano, Stefano; de Mello, Duffia; Dickinson, Mark; Ferguson, Henry C.; and 13 coauthors

6. 2005NewA...10..676D Cited by 26 [ELXRC] Using weak lensing to find halo masses de Putter, Roland; White, Martin

8. 1999ApJS..122...51D Cited by 366 [EFXDRC] A Spectroscopic Catalog of 10 Distant Rich Clusters of Galaxies Dressler, Alan; Smail, Ian; Poggianti, Bianca M.; Butcher, Harvey; and 3 coauthors

9. 2005PASP..117.1411F Cited by 114 [EXRC] Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph
A Spectroscopic Catalog of 10 Distant Rich Clusters of Galaxies

Dressler, Alan; Smail, Ian; Poggianti, Bianca M.; Butcher, Harvey; Couch, Warrick J.; Ellis, Richard S.; Oemler, Augustus, Jr.

Published in May 1999
DOI: 10.1086/313213

We present spectroscopic observations of galaxies in the fields of 10 distant clusters for which we have previously presented deep imaging with WFCPC2 on board the Hubble Space Telescope. The clusters span the redshift range $z=0.37-0.56$ and are the subject of a detailed ground- and space-based study to investigate the evolution of galaxies as a function of environment and epoch. The data presented here include positions, photometry, redshifts, spectral line strengths, and classifications for 657 galaxies in the fields of the 10 clusters. The catalog is composed of 424 cluster members across the 10 clusters and 233 field galaxies, with detailed morphological information from our WFCPC2 images for 204 of the cluster galaxies and 71 in the field. We illustrate some basic properties of the catalog, including correlations between the morphological and spectral properties of our large sample of cluster galaxies. A direct comparison of the spectral properties of the high-redshift cluster and field populations suggests that the phenomenon of strong Balmer lines in otherwise passive galaxies (commonly called E+A but renamed here as the k-a class) shows an order-of-magnitude increase in the rich cluster environment compared with a more modest increase in the field population. This suggests that the process or processes involved in producing k+a galaxies are either substantially more effective in the cluster environment or that this environment prolongs the visibility of this phase. A more detailed analysis and modeling of these data is presented in Poggianti et al.

Keywords:
Astronomy: Galaxies: Clusters: General, Galaxies: Distances and Redshifts
A SPECTROSCOPIC CATALOG OF 10 DISTANT RICH CLUSTERS OF GALAXIES

ALAN DRESSLER,1,2,3 IAN SMALL,2,3,4 BIANCA M. POGGIANTI,5,6,7 HARRY BUTCHER,1
WARREN J. COUCH,8,9 RICHARD S. ELLEN,8,9 AND AUGUSTUS OMELER, JR.1

Received 1996 June 1; accepted 1996 December 31

ABSTRACT

We present spectroscopic observations of galaxies in the fields of 10 distant clusters for which we have previously presented deep imaging with WFPC2 onboard the Hubble Space Telescope. The clusters span the redshift range $z = 0.37$–0.56 and are subject of a detailed ground- and space-based study to investigate the evolution of galaxies as a function of environment and epoch. The data presented here include positions, photometry, redshifts, spectral line strengths, and classifications for 657 galaxies in the fields of the 10 clusters. The catalog is composed of 424 cluster members across the 10 clusters and 233 field galaxies, with detailed morphological information from our WFPC2 images for 204 of the cluster galaxies and 71 in the field. We illustrate some basic properties of the catalog, including correlations between the morphological and spectral properties of our large sample of cluster galaxies. A direct comparison of the spectral properties of the high-redshift galaxies shows that the phenomenon of strong Balmer lines in otherwise passive galaxies (commonly called E+A but renamed here as the $k + a$ class) shows an order-of-magnitude increase in the rich cluster environment compared with a more modest increase in the field population. This suggests that the process or processes involved in producing $k + a$ galaxies are either substantially more effective in the cluster environment or that this environment prolongs the visibility of this phase. A more detailed analysis and modeling of these data are presented in Poggianti et al.

Subject headings: galaxies: clusters: general — galaxies: distances and redshifts — galaxies: evolution — galaxies: photometry

I. INTRODUCTION

The change with redshift observed in the proportion of star-forming galaxies in the cores of rich clusters was uncovered over 20 years ago, by Butcher & Oemler (1978, 1984), but it remains one of the clearest and most striking examples of galaxy evolution. Considerable effort has gone into acquiring photometric information that would elucidate the physical processes active in distant clusters and their effects on the evolution of both the star-forming (Lavery & Henry 1994; Lubin 1996; Rakos & Schombert 1995; Rakos, Odell, & Schombert 1997) and passive galaxies (Aragon-Salamanca et al. 1993; Stanford, Eisenhardt, & Dickinson 1995, 1998; Small et al. 1998). Further impetus has been provided by observations of the recent transformation of the SO population of clusters (Dressler et al. 1997), which may allow a closer connection to be drawn between the galaxy populations of distant clusters and the evolutionary signatures found in their local universe counterparts (Caldwell & Rose 1997; Bothun & Gregg 1990).

However, it was the advent of spectroscopic surveys of the distant cluster populations (e.g., Dressler & Gunn 1983, 1992, hereafter DCG92; Couch & Sharples 1987, hereafter

1 The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101-1292.
2 Department of Physics, University of Durham, South Rd, Durham DH1 3LE, UK.
3 Visiting Research Associate at the Carnegie Observatories.
4 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK.
5 Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ, UK.
6 Observatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122 Padova, Italy.
7 NPEA, PO Box 2, NL-7900 AA Dwingeloo, The Netherlands.
8 School of Physics, University of New South Wales, Sydney 2052, Australia.

CS7; Barger et al. 1996; Abraham et al. 1996; Fisher et al. 1998) that uncovered the real breadth of the changes in galaxies in these environments, including several spectral signatures of evolutionary change, such as evidence for a strong decline in the star formation rates of many cluster galaxies in the recent past. The advent of high-spatial resolution imaging with the Hubble Space Telescope (HST) provided a further breakthrough, allowing morphological information on the galaxies in these distant clusters. This could be used to link the evolution of stellar populations in the galaxies with the evolution of their structure in order to understand how the various galaxy types we see in the local universe came to be. Pre- and post-refurbishment HST observations by two groups (Couch et al. 1994, 1998; Dressler et al. 1994; Oemler, Dressler, & Butcher 1997) were used in early attempts to correlate spectral evolution with morphological/structural data and to provide some insight into the mechanisms that might be driving the strong evolution in the cluster galaxy population. These two programs were extended from cycle 4 into the "MORPHS" project, which accumulated post-refurbishment WFPC2 images for 11 fields in 10 clusters at $z = 0.37$–0.56, viewed at a time some 2–4 h^{-1} billion yr before the present day. The photometric and morphological galaxy catalogs from these images were presented in Small et al. (1997a, hereafter S97), while the data have also been used to study the evolution of the early-type galaxies within the clusters, using both color (Ellis et al. 1997) and structural information (Barger et al. 1998), the evolution of the morphology-density relation of $k + a$.
weak gravitational lensing
weak gravitational lensing
weak gravitational lensing

Sort by
- Most recent
- Most relevant
- Most cited
- Most popular

Explore the field
- What people are reading
- What experts are citing
- Reviews and introductory papers

Return top 200 results.

2012arXiv1210.0543P: Pacucci, C.: The rise and fall of the star formation histories of blue galaxies at redshifts 0.2
2012arXiv1210.0566H: Husemann, B.: The properties of the extended warm ionised gas around low-redshift QSOs and the lack of extended high-velocity outflows
2012arXiv1210.0533P: Prinja, R. K.: Looking deep into the Cat's Eye: Structure and rotation in the fast wind of the PN central star of NGC6543
2012arXiv1210.0550L: LaMassa, S. M.: Finding Rare AGN: X-ray Number Counts of Chandra Sources in Stripe 82
weak gravitational lensing

Sort by
- Most recent
- Most relevant
- Most cited
- Most popular

Explore the field
- What people are reading
- What experts are citing
- Reviews and introductory papers

Return top 200 results.
weak gravitational lensing

Sort by
- Most recent
- Most relevant
- Most cited
- Most popular

Explore the field
- What people are reading
- What experts are citing
- Reviews and introductory papers

Return top 200 results.

The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Grant NNX12AG54G. Contact: ads at cfa.harvard.edu or through the feedback form.
weak gravitational lensing

Sort by
- Most recent
- Most relevant
- Most cited
- Most popular

Explore the field
- What people are reading
- What experts are citing
- Reviews and introductory papers

Examples
- 2012MNRAS.420.1384S: Spinelli, P. F.: Weak-lensing mass estimates of galaxy groups and the line-of-sight contamination
weak gravitational lensing - *Most recent*

Top 200 results

No filters applied

1. **2012MNRAS.426..566C** Cited by 4

 On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model

 Cacciato, M.; Lahav, O.; van den Bosch, F. C.; Hoekstra, H.; and 1 coauthors

 Matches in Abstract / Matches in preprint

2. **2012ApJ...758...68H** Cited by 2

 Weak-lensing Mass Measurements of Five Galaxy Clusters in the South Pole Telescope Survey Using Magellan/Megacam

 High, F. W.; Hoekstra, H.; Leethochawalit, N.; de Haan, T.; and 82 coauthors

 Matches in Abstract / Matches in fulltext

3. **2012A&A...546A..32R**

 Analytical shear and flexion of Einasto dark matter haloes

 Retana-Montenegro, E.; Frutos-Alfaro, F.; Baes, M.

 Matches in Abstract / Matches in fulltext

4. **2012PhRvD..86f3520D** Cited by 1

 CMB polarization impact on cosmological constraints

 Das, Sudeep; Linder, Eric V.

 Matches in Abstract / Matches in fulltext

5. **2012MNRAS.425.2287H** Cited by 2

 Scatter and bias in weak lensing selected clusters

 Hamana, Takashi; Oguri, Masamune; Shirasaki, Masato; Sato, Masanori

 Matches in Abstract / Matches in preprint

6. **2012MNRAS.425.1951R** Cited by 7

 Noise bias in weak lensing shape measurements

 Refregier, Alexandre; Kacprzak, Tomasz; Amara, Adam; Bridle, Sarah; and 1 coauthors

 Matches in Abstract / Matches in fulltext
<table>
<thead>
<tr>
<th>Rank</th>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Citations</th>
<th>Filter Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1998AJ...116.1009R</td>
<td>Cited by 6513</td>
<td>Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant</td>
<td>Hoekstra, H. (21)</td>
<td>EF X D RCSNU</td>
</tr>
<tr>
<td>2</td>
<td>2001PhR...340..291B</td>
<td>Cited by 742</td>
<td>Weak gravitational lensing</td>
<td>Broadhurst, T. (16)</td>
<td>E LX RCU</td>
</tr>
<tr>
<td>3</td>
<td>1993Natur.365..621A</td>
<td>Cited by 628</td>
<td>Possible gravitational microlensing of a star in the Large Magellanic Cloud</td>
<td>Refregier, A. (16)</td>
<td>E LX RCSNU</td>
</tr>
<tr>
<td>4</td>
<td>2010A&A...516A..63S</td>
<td>Cited by 126</td>
<td>Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS</td>
<td>Kneib, J. (16)</td>
<td>EF LXD RCSU</td>
</tr>
<tr>
<td>5</td>
<td>2011arXiv1110.3193L</td>
<td>Cited by 82</td>
<td>Euclid Definition Study Report</td>
<td>Riess, G. (21)</td>
<td>X RCU</td>
</tr>
<tr>
<td>6</td>
<td>2008A&A...479....9F</td>
<td>Cited by 237</td>
<td>Very weak lensing in the CFHTLS wide: cosmology from cosmic shear in the linear regime</td>
<td>M. (16)</td>
<td>EF X RCU</td>
</tr>
</tbody>
</table>
1. 1998AJ....116.1009R Cited by 6513 [EFXDRCN]
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
Riess, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; and 16 coauthors
Matches in Abstract / Matches in fulltext

2. 2001PhR...340..291B Cited by 742 [ELXRCU]
Weak gravitational lensing
Bartelmann, M.; Schneider, P.
Matches in Abstract / Matches in fulltext

3. 2002PhR...372....1C Cited by 652 [ELXRCU]
Halo models of large scale structure
Cooray, Asantha; Sheth, Ravi
Matches in Abstract / Matches in fulltext

4. 1993Natur.365..621A Cited by 628 [ELXRCN]
Possible gravitational microlensing of a star in the Large Magellanic Cloud
Alcock, C.; Akerlof, C. W.; Allsman, R. A.; Axelrod, T. S.; and 14 coauthors
Matches in Abstract / Matches in fulltext

A Direct Empirical Proof of the Existence of Dark Matter
Clowe, Douglas; Bradač, Maruša; Gonzalez, Anthony H.; Markevitch, Maxim; and 3 coauthors
Matches in Abstract / Matches in fulltext

6. 2000PhRvL..84.2778G Cited by 502 [ELXRCU]
Gravity in the Randall-Sundrum Brane World
Garriga, Jaume; Tanaka, Takahiro
1. 2012Natur.487..202D [E L XR S U]
A filament of dark matter between two clusters of galaxies
Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; and 3 coauthors
Matches in Abstract / Matches in preprint

2. 1998AJ....116.1009R Cited by 6513 [EF XD RC S NU]
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
Riess, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; and 16 coauthors
Matches in Abstract / Matches in fulltext

3. 2012arXiv1209.1391N [XR U]
The Density Profiles of Massive, Relaxed Galaxy Clusters: I. The Total Density Over 3 Decades in Radius
Newman, Andrew B.; Treu, Tommaso; Ellis, Richard S.; Sand, David J.; and 3 coauthors
Matches in Abstract / Matches in preprint

4. 2012arXiv1209.1392N [XR U]
The Density Profiles of Massive, Relaxed Galaxy Clusters: II. Separating Luminous and Dark Matter in Cluster Cores
Newman, Andrew B.; Treu, Tommaso; Ellis, Richard S.; Sand, David J.
Matches in Abstract / Matches in preprint

5. 2012PhRvD..86f3520D Cited by 1 [ELX RC U]
CMB polarization impact on cosmological constraints
Das, Sudeep; Linder, Eric V.
Matches in Abstract / Matches in fulltext

Observational Probes of Cosmic Acceleration
Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; and 2 coauthors
Matches in Abstract / Matches in fulltext
<table>
<thead>
<tr>
<th>Rank</th>
<th>Year</th>
<th>Citations</th>
<th>Title</th>
<th>Authors</th>
<th>Matches in Abstract / Matches in fulltext</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1995ApJ...449..460K</td>
<td>418</td>
<td>A Method for Weak Lensing Observations</td>
<td>Kaiser, Nick; Squires, Gordon; Broadhurst, Tom</td>
<td>Matches in Abstract / Matches in fulltext</td>
</tr>
<tr>
<td>2</td>
<td>2001PhR...340..291B</td>
<td>742</td>
<td>Weak gravitational lensing</td>
<td>Bartelmann, M.; Schneider, P.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1997ApJ...490..493N</td>
<td>3914</td>
<td>A Universal Density Profile from Hierarchical Clustering</td>
<td>Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1996A&AS..117..393B</td>
<td>3911</td>
<td>SEExtractor: Software for source extraction.</td>
<td>Berlin, E.; Arnouts, S.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2007MNRAS.376...13M</td>
<td>171</td>
<td>The Shear Testing Programme 2: Factors affecting high-precision weak-lensing analyses</td>
<td>Massey, Richard; Heymans, Catherine; Bergé, Joel; Bernstein, Gary; and 27 coauthors</td>
<td>Matches in Abstract / Matches in fulltext</td>
</tr>
<tr>
<td>6</td>
<td>2006MNRAS.368.1323H</td>
<td>197</td>
<td>The Shear Testing Programme - I. Weak lensing analysis of simulated ground-based observations</td>
<td>Heymans, Catherine; Van Waerbeke, Ludovic; Bacon, David; Berge, Joel; and 21 coauthors</td>
<td>Matches in Abstract / Matches in fulltext</td>
</tr>
</tbody>
</table>
weak gravitational lensing - Reviews and introductory papers

1. 2010CQGra..27w3001B Cited by 19 [E L RC U]
 TOPICAL REVIEW Gravitational lensing
 Bartelmann, Matthias
 Matches in Abstract / Matches in fulltext

2. 2008PhR...462...67M Cited by 124 [E LX RC U]
 Cosmology with weak lensing surveys
 Munshi, Dipak; Valageas, Patrick; van Waerbeke, Ludovic; Heavens, Alan
 Matches in Abstract / Matches in fulltext

3. 2010GReGr..42.2177H Cited by 23 [E LX RC U]
 Weak lensing, dark matter and dark energy
 Huterer, Dragan
 Matches in Abstract / Matches in fulltext

4. 2008ARNPS..58...99H Cited by 91 [E LX RC U]
 Weak Gravitational Lensing and Its Cosmological Applications
 Hoekstra, Henk; Jain, Bhuvnesh
 Matches in Abstract / Matches in preprint

5. 2010RPPPh...73h6901M Cited by 22 [E LX RC U]
 The dark matter of gravitational lensing
 Massey, Richard; Kitching, Thomas; Richard, Johan
 Matches in Abstract / Matches in preprint

6. 2011A&ARv..19...47K Cited by 7 [E X RCS U]
 Cluster lenses
 Kneib, Jean-Paul; Natarajan, Priyamvada
 Matches in Abstract / Matches in preprint

7. 2005astro.ph..9252S Cited by 12 [X RC U]
 Weak Gravitational Lensing
 Schneider, Peter
Search for "weak gravitational lensing".
weak gravitational lensing - *Most recent*

1. 2012MNRAS.426..566C Cited by 4 [EF LX RC U]
 On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model
 Cacciato, M.; Lahav, O.; van den Bosch, F. C.; Hoekstra, H.; and 1 coauthors
 Matches in Abstract / Matches in preprint

2. 2012ApJ...758...68H Cited by 2 [EF LX RC U]
 Weak-lensing Mass Measurements of Five Galaxy Clusters in the South Pole Telescope Survey Using Magellan/Megacam
 High, F. W.; Hoekstra, H.; Leethochawalit, N.; de Haan, T.; and 82 coauthors
 Matches in Abstract / Matches in fulltext

3. 2012A&A...546A..32R Cited by 1 [EF LX R U]
 Analytical shear and flexion of Einasto dark matter haloes
 Retana-Montenegro, E.; Frutos-Alfaro, F.; Baes, M.
 Matches in Abstract / Matches in fulltext

4. 2012PhRvD..86f3520D Cited by 1 [E LX RC U]
 CMB polarization impact on cosmological constraints
 Das, Sudeep; Linder, Eric V.
 Matches in Abstract / Matches in fulltext

5. 2012MNRAS.425.2287H Cited by 2 [EF LX RC U]
 Scatter and bias in weak lensing selected clusters
 Hamana, Takashi; Oguri, Masamune; Shirasaki, Masato; Sato, Masanori
 Matches in Abstract / Matches in preprint

6. 2012MNRAS.425.1951R Cited by 7 [EF LX RC U]
 Noise bias in weak lensing shape measurements
 Refregier, Alexandre; Kacprzak, Tomasz; Amara, Adam; Bridle, Sarah; and 1 coauthors
 Matches in Abstract / Matches in fulltext
weak gravitational lensing - Most recent

42. 2012ApJ...755...56U Cited by 5 [EF LXD RCS U]
CLASH: Mass Distribution in and around MACS J1206.2-0847 from a Full Cluster Lensing Analysis
Umetsu, Keiichi; Medezinski, Elinor; Nonino, Mario; Merten, Julian; and 44 coauthors
Matches in Abstract / Matches in fulltext

45. 2012ApJ...754..119M Cited by 12 [EF LXD RCS U]
LoCuSS: The Sunyaev-Zel'dovich Effect and Weak-lensing Mass Scaling Relation
Marrone, Daniel P.; Smith, Graham P.; Okabe, Nobuhiro; Bonamente, Massimiliano; and 21 coauthors
Matches in Abstract / Matches in fulltext

114. 2012ApJS..199...25P Cited by 51 [EF LXD RCS U]
The Cluster Lensing and Supernova Survey with Hubble: An Overview
Postman, Marc; Coe, Dan; Benítez, Narciso; Bradley, Larry; and 41 coauthors
Matches in Abstract / Matches in fulltext

145. 2012MNRAS.420.1621Z Cited by 4 [EF LXD RCS U]
Cluster-cluster lensing and the case of Abell 383
Zitrin, Adi; Rephaeli, Yoel; Sadeh, Sharon; Medezinski, Elinor; and 7 coauthors
Matches in Abstract / Matches in fulltext

173. 2012ApJ...744..159L Cited by 54 [EF LXD RCS U]
New Constraints on the Evolution of the Stellar-to-dark Matter Connection: A Combined Analysis of Galaxy-Galaxy Lensing, Clustering, and Stellar Mass Functions from z = 0.2 to z =1
Leauthaud, Alexie; Tinker, Jeremy; Bundy, Kevin; Behroozi, Peter S.; and 19 coauthors
Matches in Abstract / Matches in fulltext
1. 2012arXiv1209.1391N
The Density Profiles of Massive, Relaxed Galaxy Clusters: I. The Total Density Over 3 Decades in Radius
Newman, Andrew B.; Treu, Tommaso; Ellis, Richard S.; Sand, David J.; and 3 coauthors

2. 2012ApJ...757...22C Cited by 8
CLASH: Precise New Constraints on the Mass Profile of the Galaxy Cluster A2261
Coe, Dan; Umetsu, Keiichi; Zitrin, Adi; Donahue, Megan; and 42 coauthors

3. 2012arXiv1208.0597V Cited by 2
Weighing the Giants I: Weak Lensing Masses for 51 Massive Galaxy Clusters - Project Overview, Data Analysis Methods, and Cluster Images
von der Linden, Anja; Allen, Mark T.; Applegate, Douglas E.; Kelly, Patrick L.; and 9 coauthors

CLASH: Mass Distribution in and around MACS J1206.2-0847 from a Full Cluster Lensing Analysis
Umetsu, Keiichi; Medezinski, Elinor; Nonino, Mario; Merten, Julian; and 44 coauthors

5. 2012ApJ...754..119M Cited by 12
LoCuSS: The Sunyaev-Zel'dovich Effect and Weak-lensing Mass Scaling Relation
Marrone, Daniel P.; Smith, Graham P.; Okabe, Nobuhiro; Bonamente, Massimiliano; and 21 coauthors

6. 2012ApJS..199...25P Cited by 51
The Cluster Lensing and Supernova Survey with Hubble: An Overview
Postman, Marc; Coe, Dan; Benitez, Narciso; Bradley, Larry; and 41 coauthors

7. 2012ApJ...744..159L Cited by 54
New Constraints on the Evolution of the Stellar-to-dark Matter Connection: A Combined Analysis of Galaxy-Galaxy Lensing, Clustering, and Stellar Mass Functions from $z = 0.2$ to $z = 1$
CLASH: Precise New Constraints on the Mass Profile of the Galaxy Cluster A2261

Coe, Dan; Umetsu, Keiichi; Zitrin, Adi; Donahue, Megan; Medezinski, Elinor;
Postman, Marc; Carrasco, Mauricio; Anguita, Timo; Geller, Margaret J.;
Rines, Kenneth J.; and 36 coauthors

show affiliations

Published in Sep 2012
DOI: 10.1088/0004-637X/757/1/22

We precisely constrain the inner mass profile of A2261 (z = 0.225) for the first time and determine that this cluster is not "overconcentrated" as found previously, implying a formation time in agreement with ΛCDM expectations. These results are based on multiple strong-lensing analyses of new 16-band Hubble Space Telescope imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble. Combining this with revised weak-lensing analyses of Subaru wide-field imaging with five-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass $M_{\text{vir}} = (2.2 \pm 0.2) \times 10^{15} M_\odot$; $h^{-1} 70$ (within $r_{\text{vir}} \approx 3 \ Mpc$ $h^{-1} 70$) and concentration $c_{\text{vir}} = 6.2 \pm 0.3$ when assuming a spherical halo. This agrees broadly with average $c(M, z)$ predictions from recent ΛCDM simulations, which span 5 \sim langcang \sim 8. Our most significant systematic uncertainty is halo elongation along the line of sight (LOS). To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be \sim35% lower than our lensing-derived profile at $r = 2500 \sim 600 \ kpc$. Agreement can be achieved by a halo elongated with a $\sim 2:1$ axis ratio along our LOS. For this elongated halo model, we find $M_{\text{vir}} = (1.7 \pm 0.2) \times 10^{15} M_\odot$; $h^{-1} 70$ and $c_{\text{vir}} = 4.6 \pm 0.2$, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find that these tend to lower M_{vir} further by $\sim 7\%$ and...
We are creating the Lizard Brain of the new organism
Conceive

Perceive
The system of radiation which embraces the whole planet, and includes the million million brains of the race, becomes the physical basis of a racial self... But chiefly the racial mind transcends the minds of groups and individuals in philosophical insight into the true nature of space and time, mind and its objects, cosmical striving and cosmical perfection.... For all the daily business of life, then, each of us is mentally a distinct individual, though his ordinary means of communication with others is “telepathic.” But frequently he wakes up to be a group-mind.... Of this obviously, I can tell you nothing, save that it differs from the lowlier state more radically than the infant mind differs from the mind of the individual adult, and that it consists of insight into many unsuspected and previously inconceivable features of the familiar world of men and things.