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ABSTRACT

In many entity extraction applications, the entities to be
recognized are constrained to be from a list of “target en-
tities”. In many cases, these target entities are (i) ad-hoc,
i.e., do not exist in a knowledge base and (ii) homogeneous
(e.g., all the entities are IT companies). We study the fol-
lowing novel disambiguation problem in this unique setting:
given the candidate mentions of all the target entities, deter-
mine which ones are true mentions of a target entity. Prior
techniques only consider target entities present in a knowl-
edge base and/or having a rich set of attributes. In this pa-
per, we develop novel techniques that require no knowledge
about the entities except their names. Our main insight is to
leverage the homogeneity constraint and disambiguate the
candidate mentions collectively across all documents. We
propose a graph-based model, called MentionRank, for that
purpose. Furthermore, if additional knowledge is available
for some or all of the entities, our model can leverage it to
further improve quality. Our experiments demonstrate the
effectiveness of our model. To the best of our knowledge,
this is the first work on targeted entity disambiguation for
ad-hoc entities.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—
Data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval

Keywords

Named Entity Disambiguation, Entity Extraction, Targeted
Disambiguation, Ad-hoc Entity Identification, MentionRank

1. INTRODUCTION
Many applications need to identify mentions of named

entities in text documents. Consider the Voice of the Cus-
tomer (VoC) application. Here, the enterprise is typically
interested in mining customer sentiment of its own and its
competitor’s products. It maintains a list of entities and re-
quires identification of mentions of only these entities in the
web documents. We refer to them as target entities. These
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Entity 

Id

Entity 

Name

e1 Microsoft

e2 Apple

e3 HP

Microsoft and Apple are the developers of 

three of the most popular operating systems

Apple trees take four to five years to produce 

their first fruit…

Microsoft’s new operating system, Windows 8, 

is a PC operating system for the tablet age …

CEO Meg Whitman said that HP is focusing 

on Windows 8 for its tablet strategy 

Audi is offering a racing version of its hottest 

TT model: a 380 HP, front-wheel …

Candidate mentions of target 

entities in documents

Target entities

d1

d2

d3

d4

d5

Figure 1: Targeted disambiguation problem. Candidate

mentions are shown using arrows; true mentions shown

using thick arrows.

target entities have two unique characteristics:
• Ad-hoc: All or many of the target entities are ad-hoc,
i.e., they do not exist in a knowledge base such as DBpe-
dia, Freebase or YAGO. Consider a VoC application mining
sentiment of various brands of shoes: there are more than
900 different active brands 1 but only 82 exist in Wikipedia.
This issue is much more pronounced for entities from “tail”
domains. For such entities, all we have are their names.
• Homogeneous: Many applications perform analyses for
one homogeneous group of entities at a time; for example,
a VoC application typically mines the sentiment for shoe
brands separately from that for shirt brands. Supposing the
target entities are present in an “is-a” ontology like YAGO,
we deem the target entities to be homogeneous if their least
common ancestor (LCA) is far from the root. The LCA of
the target entities in the is-a ontology is referred to as the
“target domain”. Note that we do not require the entities to
belong to any existing ontology; we use this notion just to
introduce the concept of homogeneity.

Names (surface forms) of entities are often ambiguous and
can have many different meanings. So, the name of a target
entity appearing in a document does not necessarily mean
it refers to the target entity. Consider the target entities of
the domain “IT companies” in Figure 1. The string “Apple”
appears in documents d2 and d3 but only d2 refers to the
IT company Apple. We refer to the former as “candidate
mentions” of the target entity and the latter as its “true

1According to shoes.com



mentions”. Identifying the true mentions amongst all the
candidate mentions is crucial for many applications.

We study the following novel disambiguation problem in
this unique setting: given the candidate mentions of all the
target entities, determine which ones are true mentions of
the target domain. We refer to it as targeted entity dis-
ambiguation (TED). In Figure 1, TED should output the
candidate mentions in d1, d2 and d4 as true mentions and
those in d3 and d5 as false mentions. In this paper, when
we refer to disambiguation, we imply TED.
Prior work and limitations: Previous “entity linking”
techniques mostly focus on entities present in a knowledge
base like DBpedia or YAGO [5, 9, 17, 18, 8, 15, 14, 12].
The main idea is to consider the “context” (i.e., surrounding
words) of the candidate mention and compare it, by some
similarity measure, to text metadata associated with the en-
tity in the knowledge base. We refer to this general approach
as ContentMatch approach in this paper.

The above approaches have the following limitations. First,
they are not effective when some or all the entities are ad-
hoc; this is confirmed by our experiments. Second, even if
all the entities are present in a knowledge base, these ap-
proaches are biased towards pages that are similar to the
entity metadata in the knowledge base (e.g., content of their
Wikipedia page). For short and informal documents (e.g.,
tweets, forum postings) this may result in poor quality.
Main insights and contributions: A good solution to
TED should (i) require no knowledge about the entities ex-
cept the names of the entities and (ii) be able to leverage
additional knowledge (e.g., Wikipedia page, rich set of at-
tributes) to improve the quality if it is available for some or
all of the entities. We ask the question: although the adhoc-
ness makes the problem more challenging, can we leverage
the homogeneity constraint to solve this problem? Our main
insight is to leverage the homogeneity contraint of the enti-
ties in the following three ways.
• Context similarity : The true mentions across all the en-
tities across all the documents will have more similar con-
texts than the false mentions of different entities. This is
because the true mentions refer to entities in the same do-
main while the false mentions point to things in disparate
domains. For example, in Figure 1, the mention of e1 in
d1 (denoted by (e1, d1)) and mentions (e1, d2) and (e2, d2)
(true mentions) have similar contexts (e.g., common words:
“operating”, “system”). On the other hand, the false men-
tions (e2, d3) and (e3, d5) do not have context similar with
each other or with the true mentions. A crucial point is that
the false mentions for any individual entity can have similar
contexts among them (e.g., among the mentions of the fruit
“Apple”) but it does not span across entities (e.g., between
the mentions of the fruit “Apple” and the mentions of power
unit HP).
• Co-mention: If multiple target entities are co-mentioned
in a document, they are likely to be true mentions. For ex-
ample, d2 co-mentions Microsoft and Apple, hence they are
very likely to be true mentions of those entities. Note that
our insight on co-mention is different from that of coherence
used in [15, 14]; they require the entities to exist in a knowl-
edge base to compute the coherence whereas we do not.
• Cross-document, cross-entity interdependence: If one or
more mentions among the ones with similar context is deemed
likely to be a true mention (based on some evidence), they
are all likely to be true mentions. For example, since (e1, d2)

and (e2, d2) are deemed likely to be a true mention due to
co-mention, (e1, d1) is also likely to be a true mention as
its context is similar to the former’s. Consequently, (e3, d4)
is likely to be a true mention as it is similar to (e1, d1) in
terms of context.

This gives rise to several technical challenges. How do we
leverage the above insights? Is it possible to unify them?
If additional knowledge is available for some of the entities,
how can we leverage it in conjunction with these insights?

Our main contributions can be summarized as follows:
• We propose a novel graph-based model, called Mention-
Rank, that unifies the above three insights and disambiguates
all the mentions across all the documents collectively. It
can perform targeted disambiguation without any knowledge
about the entities besides their names. To the best of our
knowledge, our approach is the first with this ability.
• If additional knowledge is available for some or all the en-
tities (e.g., reference page for the entity from a knowledge
base), we can incorporate it into our MentionRank model.
Due to cross-document, cross-entity interdependence, au-
thentic documents not only improve disambiguation of the
entities they correspond to but also other target entities.
• We perform extensive experiments on three real-life entity
sets and a random sample of the web documents. Our ex-
periments demonstrate (i) without any authentic document
for any entity, MentionRank can achieve similar quality as
ContentMatch that must use authentic documents and (ii)
with authentic documents for some entities, MentionRank
outperforms ContentMatch techniques.

2. TARGETED DISAMBIGUATION PROB-

LEM
In our problem setting, we take (i) a set of entity names,

(ii) a collection of documents, and (iii) candidate mentions
of the given entities in the given documents as input, and
determine which ones are true mentions. The uniqueness of
this problem is that the entities are all in the same domain
(referred to as the target domain). Note that we do not
require the user to specify what the domain is.

Candidate mentions are obtained by a separate compo-
nent that identifies occurrences of the entity names in the
documents. An entity name can appear in a document mul-
tiple times. Following standard practice [10], we assume
that all occurrences of a name inside a document refer to
the same entity (e.g., occurrences of the string “Apple” in
a single document either all refer to the IT company or all
refer to the fruit). So we perform disambiguation for each
entity-document pair where the entity name has occurred,
rather than disambiguating each single occurrence of the en-
tity name. From now on, we use mention to refer to such
a entity-document coupling, and occurrence to refer to a
specific occurrence.

The same entity can have multiple name variants, like HP
and Hewlett-Packard. If the variants are known (e.g., using
a entity synonym module [7]), the candidate mention iden-
tification component will identify more candidate mentions
of each entity. However, this is orthogonal to our problem
because our problem takes the candidate mentions as input.

For purpose of flexibility, the system produces a score be-
tween 0 and 1 for each candidate mention to indicate the
likelihood of it being a true mention. The scores are globally
comparable across all entities. The first benefit is a user can



Entity Name Reference page

e1 Microsoft a1

e2 Apple N/A

… … …

d1

d2

Candidate mention (e1, d1)

d3

(a) Input

Entity d1 d2 d3 ….

e1 0.9 1 …

e2 0.9 0.3 …

… … … …

The company Apple is mentioned 

by d2 and d3 with confidence 0.9 

and 0.3 respectively

(b) Output

Figure 2: Examples for the input and output.

decide the cut-off value for tradeoff between precision and
recall. Second, users can retrieve top-k mentions per entity
or per collection. For example, enterprise users may want to
get a sufficient number of reviews for every product. On the
other hand, a trader may want to get a few highly precise
news about financial corporations in general (not necessar-
ily for every financial company) in order to predict trading
trends.

Formally we have the following problem definition.

Definition 1 (Targeted Entity Disambiguation).
Given input of a target entity set E = {e1, . . . , en}, a doc-
ument set D = {d1, . . . , dm} and candidate mentions R =
{(ei, dj)|ei ∈ E, dj ∈ D}, output score rij ∈ [0, 1] for every
candidate mention (ei, dj) ∈ R.

Note that TED disambiguates at the target domain level
and not at the target entity level. If the names of target en-
tities are all distinct, the two are identical. Otherwise (e.g.,
two IT companies in the list named “Apple”), TED does
not disambiguate among them. One can separate them in
target domains of finer granularity, or apply existing tech-
niques [16, 19] on the results of TED.

In an extended setting of TED in Section 4, we allow ad-
ditional prior knowledge from users as input such as entity
attributes and reference pages for some entities. A well-
engineered system should work well even when the addi-
tional knowledge is incomplete or unavailable, and work bet-
ter when it is available.

Example 1. Figure 2 illustrates a running example of
TED. Two entities, e1 = Microsoft, e2 = Apple and 3
documents containing them are shown, where R = {(e1, d1),
(e1, d2), (e2, d2), (e2, d3), . . .}. The reference page for e1 is
available, while the reference page for e2 is unavailable. The
output implies that (e1, d1), (e1, d2), (e2, d2) are highly prob-
able true mentions (indicated by high scores 0.9, 1.0 and
0.9 respectively), while the candidate mention (e2, d3) is not
(indicated by low score 0.3).

3. OUR APPROACH

3.1 Hypotheses
One unique property of our problem is that we aim to find

the entity mentions in the same, albeit unknown, target do-
main. This has three different implications: the context
between true mentions are similar within an entity as well

Apple

IT Corp.

fruit

HP

IT Corp.

horsepower

others

Sun

IT Corp.

Sunday

Surname

newspaper

Figure 3: An illustration of context similarity hypoth-

esis. Orange solid part is the similar context shared by

mentions of the three IT companies; other parts are dif-

ferent domain-external meanings with different context.

as across different entities; the context of false mentions are
not similar with true mentions; the context of false men-
tions can be similar among themselves within an entity, but
dissimilar across different entities. The first two are easy
to understand, as we assume the target entities are homo-
geneous. The last one is due to the observation that the
meanings of false mentions (referred to as domain-external
meanings) are usually not in the same domain. For example,
“Apple”, “HP”, “Sun”all have meanings outside IT company
domain – the fruit apple, the power unit HP(horse power),
and many different meanings of Sun. The context of their
domain-external meanings are dissimilar. This hypothesis is
illustrated in Figure 3, and summarized as:

Hypothesis 1 (Context Similarity). The context be-
tween two true mentions is more similar than between two
false mentions across two distinct entities, as well as between
a true mention and a false mention.

The second hypothesis is about the entity co-mention in
one document.

Hypothesis 2 (Co-mention). If multiple entity names
in the given list are mentioned in the same document, the
chance for them to refer to the entities in the target domain
is higher.

Finally, we have the hypothesis about the interdependency
of disambiguation of different mentions.

Hypothesis 3 (Interdependency). If a mention has
similar context with many true mentions, it is likely a true
mention.

This resembles the philosophy of PageRank — one page that
many popular pages point to may also be popular.

3.2 Graph-based model
To leverage the interdependencies of mention score, we

model this problem with a graph-based ranking method.
The disambiguation is performed by solving the ranking
problem holistically.

Inspired by existing graph-based ranking methods such as
PageRank, we build amention graph and perform a PageRank-
like ranking algorithm on it. We show an example in Fig-
ure 4(a). Each node represents a candidate mention (ei, dj).
It is associated with a ranking score rij , as well as a prior
estimation of the ranking score πij . Each edge links two
interdependent mentions (ei, dj) and (ei′ , dj′), and has a
weight µij,i′j′ , indicating how close the two ranking score
rij and ri′j′ should be. r is an unknown vector, while πππ and
µµµ are defined based on our hypotheses.
Context similarity as edge weight µµµ. According to the
interdependency hypothesis, if two mentions have more sim-
ilar context, the ranking score should be propagated in a
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Figure 4: An illustration of the graph-based ranking

model.

larger extent to each other. The edge weight is thus defined
to be a similarity measure between the context of the two
mentions. How the similarity is computed is described in
Section 3.2.1.
Co-mention as prior πππ. Due to the co-mention hypoth-
esis, we define the prior estimation based on the degree of
co-mentions. Several variations of it are described in Sec-
tion 3.2.2.

The final score of each mention is decided by its prior esti-
mation as well as the score of other correlated mentions. We
use a parameter λ ∈ [0, 1] to control the relative importance
of the two parts.

rij = λpij + (1− λ)
∑

i′,j′

wij,i′j′ri′j′ (1)

where w is directed propagation weight obtained from the
undirected edge weight µµµ, and p is the normalized prior es-
timation obtained from πππ such that

∑

i,j
pij = 1. We will

discuss the exact definition of w and p in following subsec-
tions. All hypotheses we discussed above have been organ-
ically integrated – the co-mention prior by p, the context
similarity by w, and the interdependency by the product of
w and r. We refer to our model as MentionRank.

3.2.1 Context Similarity

We discuss how we compute the context similarity be-
tween two candidate mentions. Recall that a candidate men-
tion is a (ei, dj) pair. Let si be the name of ei. There can
be multiple occurrences of si in dj . The context similarity
between two mentions can manifest itself in any pair of oc-
currences. So we compute similarity between all pairs and
aggregate them, as shown in Figure 4(b). We define the con-
text similarity between (ei, dj) and (ei′ , dj′) as the average
of the similarity between the context of every occurrence of
si in dj and si′ in dj′ .

µij,i′j′ = average
x,y

θijx,i′j′y (2)

where θijx,i′j′y denotes the similarity between the context
cijx of x-th occurrence of si in document dj and the context
ci′j′y of y-th occurrence of si′ in document dj′ ; we refer to it
as occurrence similarity. Alternative choices of context sim-
ilarity are min, max, median or a mixture of these functions
over the occurrence similarity. We found that the average is
equal or slightly better than the others in most cases.

Now we define occurrence similarity. Following the prac-
tice of previous study [5, 9], we define the context cijx as a

short snippet of l words before and l words after the x-th
occurrence of si in document dj . We use a simple but ef-
fective measure, tf-idf cosine similarity [11], as the basis of
comparing two pieces of context. Other features and alter-
native similarity measures, like those summarized in [2], can
also be used in our model.

We explore several variants of tf-idf vectors. For cosine
similarity computation, we normalize each vector to have
length 1, so that we only need to do dot product when com-
puting similarity. To filter out noisy and undiscriminative
words on the Web, we remove the words with very low fre-
quency or very high document frequency in the corpus. We
can either do the filtering first or do the normalization first.
We empirically found that doing filtering after normalization
is better.

3.2.2 Prior

Recall that we estimate the prior score for a candidate
mention based on the co-mention degree with other input
entities. The question is what to be considered as a “co-
mention”. We can consider the whole document as the text
window to search for co-mentioned entities or restrict the
co-mention to be within a short window. We explored the
following two ways to define πij .
• number of unique names of target entities occurred in di.
• number of unique names of target entities occurred in the
context of si in dj , i.e.,

⋃

x
cijx.

We found that the first way leads to better results. This
may imply the long-range interaction of entities should be
respected.

Once πππ is computed, the normalized prior ppp can be easily
obtained: pij = πij/

∑

i,j
πij .

3.2.3 Propagation Weight

We cannot directly use µµµ as propagation weight because it
is unnormalized raw similarity. Moreover, we need to design
the propagation weight properly to address a “false-boost”
issue discussed below.

Recall that we model the interdependency hypothesis with
the weighted propagation along edges in the hope that a
group of similar true mentions boost the ranking score of
each other. One concern is that a group of similar false
mentions will also boost their ranking score. This can hap-
pen when an entity has many domain-external mentions
with similar context. For example, 99% of the Web pages
mentioning “Michael Jordan” are referred to the basketball
player, and the total number of pages is also dominating
compared to that of any computer scientist.

Our remedy is the hypothesis that although false men-
tions for an individual entity can be similar to each other,
the false mentions across distinct entities belong to more
heterogeneous domain than true mentions. Therefore, it is
more reliable for a mention to be deemed true if it has sim-
ilar context with mentions of many different entities than
with many mentions of the same entity name. Our solu-
tion is to limit the propagation in an appropriate extent via
i) unlinking – disallow the propagation between candidate
mentions of the same entity and ii) normalization – restrict
the total contribution from mentions of an individual entity.

Along with the normalization, another issue is how to
smooth the raw similarity-based weight. Since we select only
a short text window for context similarity computation, the
similarity score between many pairs of candidate mentions



could be zero or close to zero. We smooth the propagation
weight by adding a smoothing term.

Formally, we define:

wi′j′,ij =
zij

k
, if i = i′ (3)

=
µi′j′,ij

ViZ
+

zij

k
, otherwise (4)

zij = 1−

∑
i′ 6=i

∑
j′ µi′j′,ij

ViZ
(5)

Z = max
i,j

∑
i′ 6=i

∑
j′ µi′j′,ij

Vi

(6)

where Vi is the number of documents that have candidate
mentions of ei in the collection, and k is the total number
of candidate mentions: Vi = |{dj |(ei, dj) ∈ R}|, k = |R|.

Each of the new weight, which is asymmetric, consists of
two parts, the normalized context similarity and the smooth-
ing term. For two candidate mentions of the same entity,
the first part is zero, as shown in Equation 3. With the de-
nominator Vi in Equation 4, we confine the total score that
propagates out of candidate mentions of any single entity.

zij and Z are constants used for smoothing. zij controls
the weight of smoothing term 1

k
. It is negatively correlated

with the overall context similarity of (ei, dj) and other men-
tions. Z is a constant that represents the maximum over-
all context similarity of one mention with other mentions.
If the overall context similarity of one mention with other
mentions is high (close to Z), the smoothing term should
be small in order to avoid deviating the final weight from
the similarity score significantly. Equation 5 and 6 ensures
zij ≥ 0.

3.3 Solution
We can prove that MentionRank can be rewritten as r =

Mr where r is the ranking score vector and M is a Markov
matrix that is stochastic, irreducible, and aperiodic. There-
fore, a power method is guaranteed to converge akin PageR-
ank [4, 1].

MentionRank is different from standard PageRank and
its variation on weighted and undirected graph in many as-
pects. First of all, the mentions can be grouped by the
entities corresponding to the mention, e.g., the two men-
tions of Microsoft shaded in Figure 4(a). It has a series of
consequences in the modeling.
• Unlinking: PageRank uses links of two vertices to propa-
gate the ranking score; in MentionRank, the score is prop-
agated between candidate mentions for different entities,
while the mentions for the same entity are “unlinked” in
the mention graph as shown in Figure 4(a).
• Normalization: Regarding the normalization for the propa-
gation weight from a source vertex to a target vertex, PageR-
ank and its variation uses the (weighted) out-degree of the
source vertex as the denominator; in MentionRank, we nor-
malize the weight according to i) the number of mention-
ing documents of the source entity, or entity degree; and ii)
the maximum overall context similarity of one mention with
other mentions.
• Smoothing: PageRank adds random jump 1

k
to those

nodes without any outgoing edges; MentionRank decays the
smoothing term of every mention with regard to its overall
context similarity with other mentions.

The solution to Equation 1 is a vector with length k, com-
posed of the ranking scores rij . The scores are globally

comparable across different entities. We use an example to
show that MentionRank produces better results than stan-
dard PageRank.

Example 2. We alter the example in Figure 2 a little.
Assume (e1, d1) and (e2, d3) are false mentions and the other
2 mentions in d2 are true; the context similarity between true
mentions are 0.8 and all others 0.2. When λ = 0 (no entity
co-mention prior is used), Equation 1 becomes:
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The solution is (r11, r12, r22, r23) = (0.4, 1.0, 1.0, 0.4). Here
we have normalized the scores so that the largest score is 1.
The PageRank solution with the same setting is (0.5, 1.0, 1.0, 0.5).
True mentions are better separated from false mentions in
MentionRank, although the ranking order is the same. Fur-
thermore, if we change the three unnormalized weight µij,11

from 0.2 to 0.5 and maintain all the other weight, PageRank
retains the same solution because the first column remains
the same after its normalization; MentionRank can respond
to the fact that r22 and r23 should get more credits propa-
gated from r11, and produce higher score for them.

4. LEVERAGING ADDITIONAL KNOWL-

EDGE
The basic MentionRank model does not require any addi-

tional knowledge about the entities beyond their names. In
this section, we discuss how to leverage three sorts of prior
knowledge: entity similarity, entity attributes and reference
pages.

4.1 Entity Similarity
In TED problem, the target entities are homogeneous.

However, the degree of homogeneity among subsets of them
could vary slightly. Intuitively, if two entities belong to the
same subcategory or have similar attributes, they are more
similar to each other than other pairs of target entities. The
degree of ranking score interdependency of two candidate
mentions should be lower if the corresponding target entities
are less similar. Hence, if a user has additional knowledge
about the entity similarity, e.g., based on their categorical
or numerical attributes, we can use the product of entity
similarity and context similarity as the unnormalized link
weight instead of context similarity alone.

4.2 Entity Attributes and Reference Pages
In certain cases, users can find representative pages for

the target entities from an external knowledge base like
Wikipedia. In some other cases, target entities are records
stored in a database and have a rich set of attributes. For ex-
ample, books have authors, publishers and number of pages
as their attributes. When the attributes are textual, the
occurrence of these attribute names or values in a docu-
ment near a mention indicates reference to a target entity.
Therefore, one can concatenate these attribute names and
values to create a pseudo “representative document” [6]. We
refer to both the reference pages from the knowledge base
and the pseudo representative documents as authentic doc-
uments. The TED problem can be extended to allow an
authentic document set {ai|1 ≤ i ≤ n} as additional input,
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where ai is the authentic document for entity ei. For sim-
plicity, we assume one authentic document per entity; our
solution, as we will present below, can be easily extended to
support multiple authentic documents per entity.

In this extended setting, we can rank candidate mentions
using the ContentMatch approaches [8, 6]. However, it has
the following issues.
Incomplete set of authentic documents. It is often
the case that only a small fraction of entities have authentic
documents. In this case, ContentMatch approaches cannot
disambiguate mentions of other entities. For those mentions,
one rescue solution is to compute the average context sim-
ilarity with the given authentic documents as the ranking
score.
Varying domain-representativeness. Some authentic
documents are representative of all the input entities in the
domain while some are representative for only the corre-
sponding entity. The above rescue solution does not work
well unless the authentic documents are highly domain rep-
resentative.

To address these issues, we extend our MentionRank model.
The authentic documents provide an opportunity for lever-
aging the interdependency hypothesis, as they can be re-
garded as confident true mentions. Therefore, we add a
virtual node in the mention graph for every authentic doc-
ument and assign a very high prior π0. Figure 5 shows the
new mention graph extended from Figure 4(a) when the au-
thentic document a1 for e1 is provided, and the virtual node
is marked with double rings. Though we do not need to
actually rank the authentic document mention (e1, a1), we
maintain the score r10 so as to propagate evidence from this
confident true mention to unknown candidate mentions. We
link the virtual node with all the actual candidate mentions.
For candidate mentions of the entity corresponding to the
virtual node, the link weight is set to the context similarity.
For other entities, we introduce a decay factor β ∈ [0, 1] to
capture the domain representativeness, and define the link
weight as the product of context similarity and β.

This extension resolves both issues we discussed above.
First, the candidate mentions of the entity corresponding
to the virtual node having high context similarity with the
authentic document will receive high credits. Then, these
mentions will propagate the score further to similar men-
tions through the network, including to those entities with-
out authentic documents. Second, our model can adapt to
varying domain representativeness of authentic documents.
β should be set high only when authentic documents are
representative across entities; in such cases, the authentic
documents will propagate scores directly to mentions of all
entities.

The extended model is consistent with the original Men-

tionRank, and we name it MentionRank+VirtualNode. The
same iterative algorithm applies. Eventually, the ranking
score of all the mentions is determined by the interaction
of three parts — context similarity to authentic documents,
context similarity with other mentions and entity co-mention
degree.

5. EXPERIMENTAL EVALUATION
We conduct a series of experiments to evaluate the effec-

tiveness of our method.

5.1 Implementation
Our approach has two phases.

Mention graph building. We build the mention graph
from the input entity list, documents and candidate men-
tions. We compute the context similarity, prior estimation
and propagation weight. We add virtual nodes and links to
the graph if additional authentic documents are given.
MentionRank computation. We implement the power
iteration method [1], starting with an initial score 1.0 for
every rij , and apply Equation 1 iteratively until the score
change is smaller than a threshold ǫ.

Both steps can be expensive when we have many candi-
date mentions. We can leverage distributed computational
framework for both steps to scale to large datasets. In this
paper, we focus on quality and consider single machine im-
plementation.

We use the following settings for MentionRank and Men-
tionRank+VirtualNode unless otherwise specified: λ = 0.5,
pij = |{x|(ex, dj) ∈ R}| , π0 = 1000, β = 0. During the tf-
idf similarity computation, we discard terms with frequency
lower than 10, or with document frequency higher than 0.8.

5.2 Datasets
There is no benchmark dataset for our problem: the tar-

geted disambiguation task with ad-hoc homogeneous sets
of named entities. We thus create three datasets in 3 differ-
ent target domains for evaluation: Programming Languages,
Science Fiction Books and Sloan Fellows. We chose these
domains because (i) many applications require entity ex-
traction in these domains and (ii) there is ambiguity in the
entity names. For each domain, we start by obtaining the
ad-hoc list of entity names.2

• Programming Languages (PL). We collect the language
names from two subcategories of Objected-oriented program-
ming category of Wikipedia, namely Class-based program-
ming languages and Prototype-based programming . The for-
mer contains 31 languages including Java, Python and Ruby.
The latter contains 23 languages including Perl and R. In
total there are 54 entities.
• Science Fiction Books (Book). We collect the book names
from the first page of 4 subcategories from an online Science
Fiction Book Club 3: Aliens, Alternate History, Military,
and Near Future. Each contains 10 book names and in total
40. Some examples are A Pleasure to Burn, Golden Reflec-
tions and Pathfinder.

2Often, enterprise provides a small set of entities (50 or 100).
For example, a shoe company might be interested in mining the
sentiment of its own brand and a few competing brands. Hence,
performing well for entity sets of such sizes is critical. We plan
to experiment with a larger number of entities in future work.
3
http://www.sfbc.com/science-fiction-books/
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Figure 6: Scenario 1 – only entity names are provided.

Table 1: Summary of evaluation datasets

n k #Edge #Comention %Positive

PL 54 3,543 1.84M 4,873 43.5
Book 40 3,614 2.06M 978 47.5
Sloan 60 3,651 2.04M 77 82.5

n=# Entity, k=# Mention, #Edge - in mention graph

• Sloan Fellowships (Sloan). We randomly select 60 Sloan
fellows in 6 fields in 2010, 10 from each field. The list in-
cludes computer scientists Jonathan Kelner, Ben Taskar and
Luis Ceze.

After we obtained the entity list, the candidate mention
identification component identifies exact occurrences of the
entity names in Web pages. From Web pages with candidate
mentions, we sample 1% for first two domains and 10% for
the third domain. For each dataset we manually label more
than 3500 mentions, 50-100 for each entity. These sampled
web pages are of a variety of types: commercial sites, news
articles, blogs, forum posts and so on.

Naturally, the hardness of disambiguation on top of these
datasets is different due to the different extent of ambiguity,
page sanity and domain specialty. For example, the fraction
of true mentions in all the candidate mentions is one char-
acterization of the ambiguity; the expected performance of
random guess is another. We summarize the characteris-
tics of the three datasets in Table 1. Sloan dataset has the
largest fraction of positive labels, but fewest co-mentions.
The other two datasets are similar in terms of ambiguity,
with no more than half of the candidate mentions inside
the target domain. Surprisingly, the density of the mention
graph is similar across the three domains.

5.3 Experimental Results

5.3.1 Scenario 1 – Entity Name Only

In the most challenging setting, only entity names are pro-
vided as input. None of the ContentMatch methods relying
on external knowledge bases can be applied. We evaluate the
performance of MentionRank in this challenging case, and
decompose its elements to see their relative importance.
• Context is a simple solution relying on context similar-
ity only. It computes the average context similarity of each

mention with all the other mentions and rank them accord-
ingly.
• CoMention only relies on the co-mention prior to rank all
the mentions.
• Context+CoMention uses a linear combination of them.
• PageRank refers to the direct application of PageRank on
the weighted undirected mention graph.

MentionRank, PageRank and Context+CoMention cap-
ture both co-mention and context similarity. While Men-
tionRank and PageRank capture the interdependency by
propagating the ranking scores (albeit in different ways),
Context+CoMention does not perform the propagation and
does not capture the interdependency.

Different users have different preference to precision and
recall, so we evaluate the performance in average cases with
the mean average precision (MAP) measure. Since we per-
form collective disambiguation, the performance is depen-
dent on the size of the collection. Hence, we fix the num-
ber ne of entities each entity is co-disambiguated with and
measure MAP. We vary ne and plot the MAP for each value
of ne in Figure 6.

The performance of different algorithms all grow when
more entities are co-disambiguated, but MentionRank signif-
icantly outperforms other methods. We achieve more than
80% MAP in all three datasets when 20 or more entities
are provided. Of the two simplest solution with a single
component, CoMention has in general better performance
than Context. Neither can go over 70% MAP in Book while
MentionRank reaches as high as 90%. Embracing both com-
ponents is a more promising strategy. However, the simple
combination of them Context+CoMention does not give sat-
isfactory results. The two graph-based models have ranking
results of much better quality, of which MentionRank out-
performs PageRank in most cases, with largest margin in
PL dataset (25%). As one particular example, the book
How Firm a Foundation has only one true mention in the
56 sampled pages. MentionRank ranks it higher than all the
remaining 55 false mentions; PageRank ranks it 2nd place,
after a mention referring to a Mormon song; Context ranks
it after 6 false mentions about the song.

To summarize, MentionRank leverages all the 3 hypothe-
ses, namely context similarity, co-mention and interdepen-
dency and removal of any one will degrade the performance.
It is also a better model compared with standard PageRank.
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Figure 7: Scenario 2 – entity names and attributes are provided.
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Figure 8: Scenario 3 – entity names and authentic pages are provided.

5.3.2 Scenario 2 - Entity Name + Attributes

We extract the following attributes for the three datasets
we created.
• PL (from Wikipedia). Paradigm; Developed by; Typing
discipline; Platform.
• Book (from Amazon catalog). Author; Hardcover/ paper-
back; #Pages; Publisher; Language; ISBN; Product Dimen-
sions; Shipping Weight.
• Sloan. Affiliation; Position; Research Areas; Email.

The attribute names and values are concatenated into a
pseudo representative document for every entity.

For this extended TED problem, we compare with the
following approaches as baseline:
• ContentMatch [6], using the average occurrence similarity
with the pseudo document as the ranking score of every
mention;
• ContentMatch +CoMention [14], using a weighted linear
combination of the ContentMatch score and the co-mention
prior.

We show the same kind of plot as scenario 1 in Fig-
ure 7. In all cases, MentionRank + VirtualNode outper-
forms the two baseline methods. Without using any en-
tity attributes, MentionRank achieves comparable quality
as methods relying on attributes, especially when the num-
ber of co-disambiguated entities is large. That validates the
power of collective disambiguation in our model.

5.3.3 Scenario 3 - Entity Name + Authentic Pages

This scenario is akin scenario 2, except that we now have

real authentic pages than pseudo ones comprised of entity
attributes. We use Wikipedia pages for PL dataset, prod-
uct pages on sfbc.com for Book, and researcher homepages
for Sloan. We made the baseline stronger by removing the
entity name itself from the context of a mention before the
computation of the ContentMatch score. That reduces the
spurious high context similarities caused by many occur-
rences of the entity name in the context of a false mention.

MentionRank with virtual node still performs the best,
with 89%, 96% and 85% MAP on the three datasets. Com-
paring Figure 8 and Figure 7, we find that the quality of the
authentic pages is higher than that of the attributes, and
boost the performance of ContentMatch-based methods in
the first two datasets. For Sloan dataset, the homepages are
not very representative and do not help much.

5.3.4 Scenario 4 - Entity Name + Incomplete Set of
Authentic Pages

A user may be able to obtain authentic pages for a small
fraction of entities (say, the ones present in a knowledge
base) but not all the entities. We evaluate the performance
of MentionRank+VirtualNode in dealing with the incom-
plete set of authentic pages. The disambiguation is per-
formed for all input entities together, and the fraction of
entities with authentic pages is varied.

As shown in Figure 9, our method without parameter tun-
ing outperforms baseline with a significant margin in most
cases, especially when the fraction of entities with authentic
pages is small. When only 2-5% such pages are available,
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Figure 9: Scenario 4 – entity names and part of authentic pages are provided.

Figure 10: Precision-recall curve for MentionRank with

entity name as input.

the MAP margin with ContentMatch + CoMention is more
than 25% for Book and Sloan datasets.

Based on Figure 9 and Figure 6, we find that MentionRank
works considerably well when none of the authentic pages
are provided, compared with the case even when a complete
set of authentic pages are given. The difference of MAP in
those two extreme cases is smaller than 5% in the three test
datasets, implying our method can save significant amount
of user effort without losing much accuracy in practice.

5.3.5 Thresholding

We discuss how to retrieve relevant mentions from the
ranking results to trade off precision and recall. In general
one has the following strategies:
• retrieve top-t or top-f% (ei, dj) mentions;
• retrieve mentions with ranking score larger than t, while
the score is normalized such that the largest score is 1;
• retrieve top mentions with the sum of ranking scores larger
than t, while the score is normalized such that the sum of
all scores is 1.

For each strategy, one can refer to mixed ranking for all
mentions or per-entity ranking, depending on the applica-
tion. We show the precision-recall curve for the mixed rank-
ing (for MentionRank with entity name only) in Figure 10 to
give an idea what precision and recall to expect with differ-
ent thresholding. We first observe that the precision remains
over 0.95 (resp. 0.9) in order to obtain a recall of 0.4 (resp.
0.6). That implies if extracting half of the true mentions is

(a) PL (b) Book

Figure 11: Examples of β’s effect.

sufficient for the application, a very high precision can be
obtained. Next, we check the break-even point where preci-
sion is equal to recall, and find it is around 0.8 in PL and
Book, and around 0.9 in Sloan. Referring back to the posi-
tive ratio of each dataset, we know that when retrieving top
40-50% mentions from PL or Book, one expects 0.8 for both
precision and recall; when retrieving top 80% mentions from
Sloan, one expects 0.9 for both precision and recall.

5.3.6 Parameter Selection

For selection of the three parameters λ ∈ [0, 1], π0 ∈ [0,+∞),
and β ∈ [0, 1], we discuss their effect one by one. λ is the
only parameter in MentionRank without virtual node, and
controls the weight between prior and propagated score from
other mentions. MentionRank is insensitive to this param-
eter when λ is varied from 0.2 to 0.8. We do not show the
curves as they overlapped with each other.

π0 determines overall how much we trust the authentic
documents; it should be set according to the confidence on
the authentic document quality. For example, for PL when
the Wikipedia pages are available, π0 ∈ [1K, 10K] is good;
while for Sloan where author pages are used as authentic
documents, π0 ∈ [10, 100] is better.

β only matters when authentic documents for every entity
are not available, and should be set depending on the do-
main representativeness of authentic documents. Figure 11
shows the effect of β, and the comparison with a simpler so-
lution MentionRank–, for which we do not use virtual node
but simply change the prior of a mention in MentionRank
into its ContentMatch+CoMention score (average similarity



with all authentic documents is used if its own authentic doc-
ument is unavailable). When authentic documents are do-
main representative, like in PL, higher β is preferred; when
each of them has high quality but is not representative across
entities, like in Book, lower β is preferred; when they have
low quality, like in Sloan, the performance is insensitive to
β as π0 is small. The simpler solution MentionRank– works
well only in the first case (where domain representativeness
is high), and MentionRank+VirtualNode outperforms it by
around 10% otherwise.

6. RELATED WORK
Named entity disambiguation has been extensively stud-

ied in the literature [5, 9, 17, 18, 8, 15, 14, 12, 13]. The prior
work can be classified into two broad categories:
• Independent mention disambiguation where each mention
is mapped to a knowledge base entity independently. The
main idea is to compare the context of the mention with the
text metadata associated with the entity in the knowledge
base [5, 9, 17, 8]. They differ in the features used (e.g.,
bag of words vs. Wikipedia categories) and the comparison
technique (cosine similarity vs. classifier). The main draw-
back is that they do not consider interdependence between
disambiguation decisions.
• Intra-document collective mention disambiguation which
observe that a document typically refers to topically coher-
ent entities. They consider interdependence between dis-
ambiguation decisions within a document [18, 15, 14, 12].
They perform collective assignment of candidate mentions
in a document to entities and selects an assignment that
not only maximizes the mention context-to-entity similar-
ity but also the coherence among the assigned entities [15,
14]. Coherence between a pair of entities is computed using
the knowledge base, e.g., based on the number of common
Wikipedia pages that link to Wiki pages of these two enti-
ties [15]. While some approaches model the interdependence
as sum of their pair-wise dependencies [18, 15], more recent
techniques model the global interdependence [14, 12].

These studies consider only entities present in a knowledge
base; we focus on ad-hoc entities. The EROCS system iden-
tifies mentions of entities in an enterprise database from text
documents; it relies on a rich set of attributes in the database
and disambiguates based on the similarity between the at-
tribute values and the context of the mention [6]. However,
it does not consider coherence among entities.

To the opposite of targeted entity disambiguation, the un-
targeted disambiguation problem aims to partition the men-
tions of different entities with the same name. Researchers
solve it by clustering the candidate mentions such that the
mentions in a cluster refer to the same entity [16, 19]. The
main idea is to extract features from the context of each
mention and cluster them based on those features (e.g., us-
ing agglomerative clustering or graph partitioning). The
solution cannot be directly applied to TED.

Entity resolution is related to the problem of named en-
tity disambiguation: the goal is to identify the entities ref-
erenced in database records as opposed to text documents.
Recently collective algorithms to exploit interdependencies
among references in this setting have been proposed [3].

7. CONCLUSIONS
In this paper, we study the novel problem of targeted dis-

ambiguation of ad-hoc, homogeneous sets of entities. We
develop a novel graph-based model MentionRank to address
the challenge posed by adhoc-ness via leveraging the homo-
geneity constraint. Our experiments show that without any
additional knowledge about the entities, our model achieves
similar quality as previous approaches that rely on addi-
tional knowledge; with additional knowledge incorporated,
it outperforms those previous approaches.

Our work can be extended in multiple directions. In terms
of quality, it is worth exploring more advanced features for
measuring similarity between contexts (e.g., according to the
nature of the documents). One can refine the co-mention
prior by considering the distance of co-mentions and cap-
ture the entity homogeneity more precisely with the help of
ontology. In terms of scalability, it is promising to explore
approximation of our model for speedup, e.g., with graph
sparsification or clustering techniques.
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