
Regularized Mapping to Latent Structures and Its Application

to Web Search

Wei Wu, Zhengdong Lu, Hang Li

May 21, 2012

Abstract

Projection to Latent Structures (PLS), also known as Partial Least Squares, is a method for
matching objects from two heterogeneous domains. Although PLS is empirically verified effective
for matching queries and documents, its scalability becomes a major hurdle for its application in
real-world web search. In this paper, we study a general framework for matching heterogeneous
objects, which renders a rich family of matching models when different regularization are enforced,
with PLS as a special case. Particularly, with ℓ1 and ℓ2 type of regularization on the mapping
functions, we obtain the model called Regularized Mapping to Latent Structures (RMLS). RMLS
enjoys many advantages over PLS, including lower time complexity and easy parallelization. As
another contribution, we give a generalization analysis of this matching framework, and apply it
to both PLS and RMLS. In experiments, we compare the effectiveness and efficiency of RMLS and
PLS on large scale web search problems. The results show that RMLS can achieve equally good
performance as PLS for relevance ranking, while significantly speeding up the learning process.

1 Introduction

Many tasks in machine learning and data mining can be formalized as matching between objects
from two spaces. For example, in web search, the retrieved documents are ordered according to their
relevance to the given query, where the relevance is determined by the matching scores between the
query and the documents. It is therefore crucial to accurately calculate the matching score for any
(query, document) pair. Similarly, matching between heterogeneous data sources can be found in
collaborative filtering, image annotation, drug design, etc.

Canonical Correlation Analysis (CCA) [cf., 12] and Projection to Latent Structures (PLS), also
known as Partial Least Squares [cf., 21] are well-known methods for matching objects from two different
spaces using a shared latent space. More specifically, in CCA and PLS, the objects in the two spaces
are mapped into the same latent space through two projections. The matching degree of these two
objects is then measured as the cosine or the dot product of their images in the latent space. Among
the two, PLS is usually preferred for large scale problems, mostly because CCA requires calculating
the inverse of matrices and therefore is prohibitively expensive when the dimension of data is very
large [12].

Previous work has shown the efficacy of PLS in web search [26] as a relevance model, for solving
the term mismatch problem, one of the major challenges in search. For example, if the query is “NY”
and the document only contains “New York”, then the query and document will not match based on
their terms. Conventional relevance models (matching models) such as Vector Space Model (VSM)
[22], BM25 [20], and Language Models for Information Retrieval (LMIR) [19, 28] do not function in
such cases. PLS provides a solution to deal with the problem, by mapping queries and documents into
a latent space with a much lower dimensionality, and carrying out the matching in this space. It is
quite natural to assume that queries and documents are heterogeneous, because they are very different
in nature, e.g., queries are short while documents are much longer, among other things.

Despite the success of PLS in solving the term mismatch problem, two issues prevent us from
applying this latent space idea to matching heterogenous data in real world:

1

• Scalability PLS requires Singular Value Decomposition (SVD), which has high time complexity
[18] and hard to parallelize, and therefore does not scale up to massive data sets seen in web
search;

• Generalization Analysis We do not theoretically understand how well this type of matching
model behave on unseen data, due to the lack of generalization analysis on matching models.
Moreover, in web search, the usual assumption that pairs of objects from the two spaces are i.i.d.
no long holds [6], which calls for new insight into understanding the generalization ability.

This paper attempts to address both problems. More specifically, we first propose a general frame-
work for learning to match objects from two heterogeneous spaces by mapping them into a latent space.
The type of mappings can be further specified by a set of constraints. By limiting the mapping to be
a projection1, we recover the PLS. More interestingly, when replacing this constraint with regulariza-
tion constraints based on ℓ1 and ℓ2 norms, we get a new learning to match model, called Regularized
Mapping to Latent Structures (RMLS). This model allows easy parallelization for learning, and fast
computation in testing due to the induced sparsity in the mapping matrices. To further understand
this framework, we give a generalization analysis of it under a hierarchical sampling assumption which
is natural in the matching problems met in web search. Our results indicate that to obtain a good
generalization ability, it is necessary to use a large number of instances for each type of objects.

Our contributions are three-folds: 1) proposal of a new method named RMLS for matching between
heterogeneous data, which is scalable and efficient; 2) generalization analysis of framework for matching
and application of it to RMLS and PLS; 3) empirical verification of the efficacy and the efficiency of
RMLS on real-world large scale web search data.

2 A Framework For Matching Objects From Two Spaces

We take one step back from PLS and give a more general framework for learning to match objects
from two heterogeneous spaces. Later in this section we will show that this framework subsumes PLS
as its special cases, and relates to Latent Semantic Index (LSI) in information retrieval.

Suppose that there are two spaces X ⊂ Rdx and Y ⊂ Rdy . For any x ∈ X and y ∈ Y, there is
a response r

.
= r(x, y) > 0 in space R, indicating the actual correlation between object x and object

y. For web search, the objects are queries and documents, and the response can be judgment from
human labelers or click number from user logs.

We first describe the hierarchical sampling process for generating any sample triple (xi, yij , rij).

Assumption 1. First, xi is sampled according to P (x). Then yij is sampled according to P (y|xi).
After that, there is a response rij = r(xi, yij) associated with pair (xi, yij).

We argue that this is an appropriate sampling assumption for web search [6], since the selected
yij (in this case, retrieved document) depends heavily on xi (in this case, query). This dependence is
largely rendered by several factors of a particular search engine, including the indexed pages and the
ranking algorithms. Under Assumption 1, we have a sample set S = {(xi, yij , rij)}, with 1 6 i 6 nx,

and for any given i, 1 6 j 6 ny
i . Here {xi}n

x

i=1 are i.i.d. sampled and for a given xi, {yij}
ny
i

j=1 are i.i.d.
samples conditioned on xi. Relying on this sampling assumption, we will give the learning to match
framework, and later carry out the generalization analysis.

2.1 Model

We intend to find a mapping pair (Lx, Ly), so that the corresponding images L⊤
x x and L⊤

y y are in the
same d-dimensional latent space L (with d ≪ min{dx, dy}), and the degree of matching between x and
y can be reduced to the dot product in L

matchLx,Ly (x, y) = x⊤LxLyy
⊤.

1In this paper, by projection, we mean a linear mapping specified by a matrix P , with P⊤P = I.

2

Dot product is a popular form of matching in applications like search. In fact, traditional relevance
models in search such as VSM, BM25, and LMIR are all dot products of a query vector and a document
vector, as pointed out in [27]. We hope the score defined this way can reflect the actual response. More
specifically, we would like to maximize the following expected alignment between this matching score
and the response

(L∗
x, L

∗
y) = argmax

Lx,Ly

Ex,y{r(x, y) · matchLx,Ly (x, y)} = argmax
Lx,Ly

ExEy|x{r(x, y)x⊤LxLyy
⊤},

which is in the same spirit as the technique used in [9] for kernel learning2. This expectation defined
above can be estimated from S as follows

1

nx

nx∑
i=1

1

ny
i

ny
i∑

j=1

rijx
⊤
i LxL

⊤
y yij

The learning problem hence boils down to

argmax
Lx,Ly

1

nx

nx∑
i=1

1

ny
i

ny
i∑

j=1

rijx
⊤
i LxL

⊤
y yij , s.t. Lx ∈ Hx, Ly ∈ Hy, (1)

where Hx and Hy are hypothesis spaces for Lx and Ly respectively.

2.2 Special Cases

The matching framework in (1) defines a rather rich family of matching models, with different choices
of Hx and Hy. Most importantly, if both Lx and Ly are confined to be matrices with orthonormal
columns, or more formally Hx = {Lx | L⊤

x Lx = Id×d} and Hy = {Ly | L⊤
y Ly = Id×d} (where Id×d

stands for the d×d identity matrix), the program in (1) becomes PLS [21, 23]. This can be easily seen
if we re-write (1) as

argmax
Lx,Ly

1

nx

nx∑
i=1

x⊤
i LxL

⊤
y y

′
i = trace(L⊤

y (
1

nx

nx∑
i=1

y′ix
⊤
i)Lx)

s.t. L⊤
x Lx = Id×d, L

⊤
y Ly = Id×d,

where y′i =
1
ny
i

∑ny
i

j=1 rijyij . The program is exactly the formulation of PLS as formulated in [23]3.

Also interestingly, our framework in (1) also subsumes the Latent Semantic Index (LSI) [18] used
in information retrieval. Specifically, suppose that X represents document space and Y represents
term space. Response r represents the tf-idf weight of a term y in a document x. Let x and y be the
indicator vectors of the queries and documents, i.e., there is only non-zero element one in x and y at
the location indexing the corresponding query or document. The objective function in (1) becomes

trace
(
L⊤
y (

∑nx

i=1

∑ny
i

j=1 rijyijx
⊤
i)Lx

)
after ignoring nx and ny

i , which is exactly the objective for the

SVD in LSI assuming the same orthonormal Hx and Hy defined for PLS.
The orthonormal constraints in PLS, although theoretically sound and empirically effective [26],

requires SVD of large matrices, rendering it impractical for web scale applications (e.g., millions of
objects with millions of features in basic settings). In next section we will consider other choices of
Hx and Hy for more scalable alternatives.

2We do not take a cosine as in [9] since the scale problem will be automatically considered in the regularization of
the mappings.

3We can assume that x and y′ are centered.

3

3 Regularized Mapping to Latent Structures

Heading towards a more scalable matching model, we drop the orthonormal constraints in PLS, and
replace them with ℓ1 norm and ℓ2 norm based constraints on Lx and Ly. More specifically, we define
the following hypothesis spaces

Hx = {Lx| |lxu| 6 λx, ∥lxu∥ 6 θx, u = 1, . . . , dx}
Hy = {Ly| |lyv| 6 λy, ∥lyv∥ 6 θy, v = 1, . . . , dy}

where | · | and ∥ · ∥ are respectively the ℓ1-norm and ℓ2-norm, lxu and lyv are respectively the uth and
vth row of Lx and Ly, {λx, θx, λy, θy} are parameters. Here the ℓ1-norm based constraints will induce
row-wise sparsity in Lx and Ly. The ℓ2-norm on rows, in addition to posing further regularization,
avoids degenerative solutions (see supplementary material for details). The row-wise sparsity in Lx

and Ly in turn yields sparse images in L with sparse x and y. Indeed, for any x = [x(1) . . . x(dx)]⊤,

its image in L is L⊤
x x =

∑dx

u=1 x
(u)lxu. When both x and lxu are sparse, L⊤

x x is the sum of a few
sparse vectors, and therefore likely to be sparse itself. Similar thing holds for y. In web search, it is
usually the case that both x and y are extremely sparse. Sparse mapping matrices and sparse images
in latent structures will mitigate the memory pressure and enhance efficiency in both training and
testing. With Hx and Hy defined above, we have the following program:

argmax
Lx,Ly

1

nx

nx∑
i=1

1

ny
i

ny
i∑

j=1

rijx
⊤
i LxL

⊤
y yij (2)

s.t. |lxu| 6 λx, ∥lxu∥ 6 θx, 1 6 u 6 dx

|lyv| 6 λy, ∥lyv∥ 6 θy, 1 6 v 6 dy.

The matching model defined in (2) is called Regularized Mapping to Latent Structures (RMLS).

3.1 Optimization

In practice, we solve instead the following penalized variant of (2) for easier optimization

argmin
Lx,Ly

−1

nx

nx∑
i=1

ny
i∑

j=1

1

ny
i

rijx
⊤
i LxL

⊤
y yij + β

dx∑
u=1

|lxu|+ γ

dy∑
v=1

|lyv| (3)

s.t. ∥lxu∥ 6 θx, ∥lyv∥ 6 θy, 1 6 u 6 dx, 1 6 v 6 dy,

where β > 0 and γ > 0 control the trade-off between the objective and the penalty. We employ the
coordinate descent technique to solve problem (3). Since the objective in (3) is not convex, there is no
guarantee for convergence to a global minimum.

Specifically, for a fixed Ly, the objective function of problem (3) can be re-written as

dx∑
u=1

−(
nx∑
i=1

ny
i∑

j=1

1

nxny
i

x
(u)
i rijL

⊤
y yij)

⊤lxu + β|lxu|

 .

Representing the d-dimensional
∑nx

i=1

∑ny
i

j=1
1

nxny
i
x
(u)
i rijL

⊤
y yij as ωu = [ω

(1)
u , ω

(2)
u , . . . , ω

(d)
u]⊤, the opti-

mal lxu is given by

l(z)xu

∗
= Cu ·

(
max(|ω(z)

u | − β, 0)sign(ω(z)
u)

)
, 1 6 z 6 d, (4)

where l
(z)
xu represents the zth element of lxu. sign(ω

(z)
u) returns 1 if ω

(z)
u > 0, returns 0 if ω

(z)
u = 0, and

returns −1 if ω
(z)
u < 0. Cu is a constant that makes ∥l∗xu∥ = θx if there are nonzero elements in l∗xu,

otherwise Cu = 0.

4

Algorithm 1 Preprocessing

1: Input: S = {(xi, yij , rij)}, 1 6 i 6 nx, and 1 6 j 6 ny
i .

2: for u = 1 : dx
wxu ← 0

for v = 1 : dy
wyv ← 0

3: for u = 1 : dx, i = 1 : nx, j = 1 : ny
i

wxu ← wxu + 1
nxn

y
i
x
(u)
i rijyij

4: for v = 1 : dy, i = 1 : nx, j = 1 : ny
i

wyv ← wyv + 1
nxn

y
i
y
(v)
ij rijxi

5: Output: {wxu}dxu=1, {wyv}dyv=1.

Algorithm 2 RMLS

1: Input: {wxu}dxu=1, {wyv}dyv=1, d, β, γ, θx, θy.
2: Initialization: randomly set Lx and Ly as L0

x and L0
y, t← 0.

3: While not converged and t 6 T
for u = 1 : dx

calculate ωu by Lt
y
⊤
wxu.

calculate lxu
∗ using Equation (4).

update Lt+1
x .

for v = 1 : dy

calculate ηv by Lt+1
x

⊤
wyv.

calculate lyv
∗ using Equation (5).

update Lt+1
y , t← t+ 1

4: Output: Lt
x and Lt

y.

Similarly, for a fixed Lx, the objective function of problem (3) can be re-written as

dy∑
v=1

−(

nx∑
i=1

ny
i∑

j=1

1

nxny
i

y
(v)
ij rijL

⊤
x xi)

⊤lyv + γ|lyv|

 .

Writing
∑nx

i=1

∑ny
i

j=1
1

nxny
i
y
(v)
ij rijL

⊤
x xi as ηv=[η

(1)
v , . . . , η

(d)
v]⊤, the optimal lyv is given by

l(z)yv

∗
= Cv ·

(
max(|η(z)v | − γ, 0)sign(η(z)v)

)
, 1 6 z 6 d, (5)

where l
(z)
yv represents the zth element of lyv. Cv is a constant that makes ||l∗yv|| = θyv if there are

nonzero elements in l∗yv, otherwise Cv = 0. Note that
∑nx

i=1

∑ny
i

j=1
1

nxny
i
x
(u)
i rijL

⊤
y yij = L⊤

y wxu, where

wxu =
∑nx

i=1

∑ny
i

j=1
1

nxny
i
x(u)rijyij does not rely on the update of Lx and Ly and can be pre-calculated

to save time. Similarly we pre-calculate wyv =
∑nx

i=1

∑ny
i

j=1
1

nxny
i
y
(v)
ij rijxi.

The preprocessing is described in Algorithm 1, whose time complexity is O(dxNxñ
ycy+dyNyñ

xcx),
where Nx stands for the average number of nonzeros in all x samples per dimension, Ny is the average
number of nonzeros in all y samples per dimension, ñx is the average number of related x samples per
y, ñy is the mean of ny

i , cx is the average number of nonzeros in each x sample, and cy is the average
number of nonzeros in each y sample.

After preprocessing, we take {wxu}dx
i=1 and {wyv}

dy

i=1 as input and iteratively optimize Lx and Ly,
as described in Algorithm 2. Suppose that each wxu has on average Wx nonzeros and each wyv has on
average Wy nonzeros, then the average time complexity of Algorithm 2 is O(dxWxd+ dyWyd).

In web search, it is usually the case that queries (x here) and documents (y here) are of high
dimension (e.g., > 106) but extremely sparse. In other words, both cx and cy are small despite large
dx and dy. Moreover, it is quite common that for each x, there are only a few y that have response

5

with it and vice versa, rendering quite small ñy and ñx. This situation is easy to understand in the
context of web search, since for each query only a small number of documents are retrieved and viewed,
and each document can only be retrieved with a few queries and get viewed. Finally, we observed that
in practice, Nx and Ny are also small. For example, in web search, with the features extracted from
content of queries and documents, each word only relates to a few queries and documents. In Algorithm

2, when input vectors are sparse, {wxu}dx
u=1 and {wyv}

dy

v=1 are also sparse, which makes Wx and Wy

small. In summary, under sparse input as we often see in web search, RMLS can be implemented fairly
efficiently.

3.2 Parallelization

The learning process of RMLS are still quite expensive for web scale data due to high dimensionality of
x and y. Parallelization can greatly improve the speed of learning in RMLS, making it scalable enough
for massive data sets. The key reason is that in the hypothesis spaces of RMLS, we adopt ℓ1-norm and
ℓ2-norm based constraints on rows of the mapping matrices, which removes the dependency among
different rows. That is in contrast to PLS, where the columns of mapping matrices are forced to be
orthogonal to each other, which impedes the concurrent optimization.

The key in parallelizing Algorithm 1 and Algorithm 2 is that the calculation of different parame-
ters can be executed concurrently. In Algorithm 1 there is no dependency among the calculation of
different wxu and wyv, therefore, they can be calculated by multiple processors or multiple computers
simultaneously. Similar thing can be said in the update of Lx and Ly in Algorithm 2, since different
rows are updated independently. We implement a multicore version for both Algorithm 1 and Algo-
rithm 2. Specifically, suppose that we have K processors. we randomly partition {1, 2, . . . , dx} and
{1, 2, . . . , dy} into K subsets. In Algorithm 1, different processors share S and calculate {wxu} and
{wyv} with indices in their own partition simultaneously. In Algorithm 2, when updating Lx, different
processors share the same input and Ly. Rows of Lx with indices in different partitions are updated
simultaneously. The same parallelization strategy is used when updating Ly.

4 Generalization Analysis

We will first give a generalization bound for the matching framework in (1), which relies on the
complexity of hypothesis spaces Hx and Hy. After that, we analyze the complexity of Hx and Hy

for both RMLS and PLS, and give their specific bounds. The proofs of the theorems are given in our
supplementary material.

We formally define D(S) as the gap between the expected objective and the empirical objective
over all Lx and Ly

sup
Lx,Ly

| 1
nx

nx∑
i=1

1

ny
i

ny
i∑

j=1

rijx
⊤
i LxL

⊤
y yij − Ex,y

(
r(x, y)x⊤LxL

⊤
y y

)
|,

and bound it. With this bound, given a solution (L̂x, L̂y), we can estimate its performance on unseen

data (i.e., Ex,y

(
r(x, y)x⊤L̂xL̂

⊤
y y

)
) based on its performance on observed samples. For notational

simplicity, we define fLx,Ly (x, y)
.
= r(x, y)x⊤LxL

⊤
y y, and further assume

∥x∥ 6 1, ∥y∥ 6 1, r(x, y) > 0, supx,y r(x, y) 6 R.

To characterize the sparsity of inputs, we suppose that the numbers of nonzeros in x and y are bounded
by mx and my.

Under Assumption 1, we divide D(S) into two parts:

1. supLx,Ly
| 1
nx

∑nx

i=1

(
1
ny
i

∑ny
i

j=1 fLx,Ly (xi, yij)− Ey|{xi}fLx,Ly (xi, y)
)
|, denoted as D1(S),

2. supLx,Ly
| 1
nx

∑nx

i=1 Ey|{xi}fLx,Ly (xi, y)− Ex,yfLx,Ly (x, y)|, denoted as D2({xi}n
x

i=1).

6

Clearly D(S) 6 D1(S) +D2({xi}n
x

i=1), thus we separately bound D1(S) and D2({xi}n
x

i=1), and finally
obtain the bound for D(S).

We first bound D1(S). Suppose supx,y,Lx,Ly
∥L⊤

x x∥ ∥L⊤
y y∥ 6 B, and supLx,Ly

∥vec(LxL
⊤
y)∥ 6 C,

where B and C are constants and vec(·) is the vectorization of a matrix. We have
Theorem 4.1. Given an arbitrary small positive number δ, with probability at least 1−δ, the following
inequality holds:

D1(S) 6
2CR√
nxny

+
RB

√
2 log 1

δ√
nxny

,

where ny represents the harmonic mean of {ny
i }n

x

i=1.
Using the similar techniques in the analysis of the bound of D1(S), we can obtain the bound for

D2({xi}n
x

i=1):

Theorem 4.2. Given an arbitrary small positive number δ, with probability at least 1−δ, the following
inequality holds:

D2({xi}n
x

i=1) 6
2CR√
nx

+
RB

√
2 log 1

δ√
nx

.

Combining Theorem 4.1 & 4.2, we are able to bound D(S):
Theorem 4.3. Given an arbitrary small positive number δ, with probability at least 1−2δ, the following
inequality holds:

D(S) 6 (2CR+RB

√
2 log

1

δ
)(

1√
nxny

+
1√
nx

). (6)

Equation (6) gives a general generalization bound for framework (1). Since ny = nx∑nx

i=1 1/ny
i

, the

bound tells us that to make the gap between the empirical objective and the expected objective small
enough, we not only need large nx, but also need large ny

i for each xi, which is consistent with our
intuition. The two constants B and C are dependent on the hypothesis spaces Hx and Hy. Below we
will analyze B and C for PLS and RMLS, and give their specific bounds based on (6).

The following two theorems give B and C for PLS and RMLS, and give their specific bounds:
Theorem 4.4. Suppose that Hx = {Lx | L⊤

x Lx = Id×d} and Hy = {Ly | L⊤
y Ly = Id×d}, then B = 1

and C =
√
d. Thus, the generalization bound for PLS is given by

D(S) 6 (2
√
dR+R

√
2 log

1

δ
)(

1√
nxny

+
1√
nx

). (7)

Theorem 4.5. Suppose that Hx = {Lx | |lxu| 6 λx, ||lxu|| 6 θx, 1 6 u 6 dx} and Hy = {Ly | |lyv| 6
λy, ||lyv|| 6 θy, 1 6 v 6 dy}. If we suppose that the numbers of nonzero elements in x and y are respec-
tively bounded by mx and my, then B =

√
mxmy min (dλxλy, θxθy) and C =

√
dxdy min (λxλy, θxθy).

Thus, the generalization bound for RMLS is given by

D(S) 6 (
1√
nxny

+
1√
nx

)× (2
√
dxdy min(λxλy, θxθy)R+

√
mxmy min(dλxλy, θxθy)R

√
2 log

1

δ
). (8)

Note thatB and C given in Theorem 4.4 and Theorem 4.5 are tight bounds for supx,y,Lx,Ly
||L⊤

x x||||L⊤
y y||

and supLx,Ly
||vec(LxL

⊤
y)||. To see this, let us consider an extreme case: Lx = θxexl

⊤ and Ly =

θyeyl
⊤, where l is a d dimensional vector that satisfies ||l|| = 1 and |l| = 1, ex and ey are re-

spectively dx and dy dimensional vectors consisting of all ones. We suppose that θx 6 λx. x =
1√
mx

gx and y = 1√
my

gy, where gx and gy are respectively dx and dy dimensional vectors consist-

ing only mx and my nonzero elements as ones. Then, we know ||L⊤
x x||2 = ||θxle⊤x gx 1√

mx
||2 =

mxθ
2
x and ||L⊤

y y||2 = ||θyle⊤y gy 1√
my

||2 = myθ
2
y. Thus, supx,y,Lx,Ly

||L⊤
x x|| ||L⊤

y y|| =
√
mxmyθxθy.

||vec(LxL
⊤
y)||2 = trace(θ2xθ

2
yeyl

⊤le⊤x exl
⊤le⊤y) = dxdyθ

2
xθ

2
y, thus supLx,Ly

||vec(LxL
⊤
y)|| =

√
dxdyθxθy.

On the other hand, in PLS, since L⊤
x Lx = Id×d and L⊤

y Ly = Id×d, ||vec(LxL
⊤
y)|| =

√
d, for all Lx, Ly

(see our proof in supplementary material). Given an Lx and an Ly with sparse columns, if we let x be
a column of Lx and y be a column of Ly, then ||L⊤

x x|| ||L⊤
y y|| = 1 and supx,y,Lx,Ly

||L⊤
x x|| ||L⊤

y y|| = 1.

7

5 Experiment

We apply RMLS to a relevance ranking task in web search. In this case, X and Y are respectively the
query space and the document space. Given a query x and a document y, we treat user click number
as the response r. The matching model learned by RMLS is used as a relevance model. We conduct
experiments on a small data set and a large data set with millions of queries and documents.

5.1 Experiment Setup

We collected one week click-through data and half year click-through data in two different time period
from a commercial web search engine. To filter out noise, we discarded the query-document pairs with
click frequency ≤ 3. After that, there are 94, 022 queries and 111, 631 documents in the one week data
set, and 6, 372, 254 queries and 4, 599, 849 documents in the half year data set. On average, each query
has 1.74 clicked documents (i.e., ñy) and each document is clicked for 1.46 queries (i.e., ñx) in the one
week data set. In the half year data set, each query has on average 2.92 clicked documents and each
document on average is clicked for 4.04 queries.

We extract features from two sources. First, we took the words in queries and the words in URLs
and titles of documents as features. After stemming and removing stop words, queries and documents
are represented as tf-idf vectors [22] in a word space. There are respectively 101, 904 and 271, 561
unique words in one week data and half year data. Then we followed [3] and took the numbers of
clicks of documents as features of queries, and the numbers of clicks of queries as features of documents.
We concatenated the features from word and those from click to create a long vector. The resulted
query space and document space are of high dimensions but very sparse. Table 1 gives the statistics
on query and document features. Note that the notations in the table are the same as in Section 3.

dx dy cx cy Nx Ny

one week 2.1 · 105 2.0 · 105 4.0 5.9 1.7 3.4

half year 4.9 · 106 6.6 · 106 5.5 8.6 7.2 5.9

Table 1: Statistics on query and document features

For baseline methods, we chose BM25 [20] which is a classic relevance model in information retrieval.
We also compared RMLS with PLS, LSI and random walk on click-through bipartite [8] (“RW” for
short). We implemented two versions of LSI in this paper: 1) LSI [10] on a document-term matrix was
implemented, denoted as LSIdt, and 2) LSI on a query-document matrix with each element representing
the click number, denoted as LSIqd. In LSIqd and random walk, the information from word space is
not taken into account, to make a fair comparison, we also linearly combine them with BM25.

We obtained relevance data consisting of judged query-document pairs from the search engine in a
different time period with the click-through data. There are five level judgments, including “Perfect”,
“Excellent”, “Good”, “Fair”, and “Bad”. For one week data, we obtained 4, 445 judged queries and
each query has on average 11.34 judged documents. For half year data, more judged data was collected.
There are 57, 514 judged queries and each query has on average 13.84 judged documents. We randomly
split each judged data set and used half of them for tuning model parameters and the other half for
model evaluation. In summary, for both data sets, we learned models on the whole click-through data,
tuned model parameters on the validation set of relevance data, and evaluated model performances on
the held-out test set.

In BM25, the default setting is used. In PLS, LSIdt, and LSIqd, the parameter is d, the dimen-
sionality of latent space. We set d in the range of {100, 200, . . . , 1000} for all methods. In random
walk, we followed the conclusion in [8] and fixed the self-transition probability as 0.9. We chose the
number of transition steps from {1, . . . , 10}. We also treated the combination weights in the linear
combination models as parameters and tuned them within {0.1, 0.2, . . . , 0.9}. In RMLS, we checked
d in the same range as PLS, LSIdt, and LSIqd. We fixed θx and θy as 1, and tuned β and γ from
{0.001, 0.005, 0.1, 0.5, 1, 5, 10}.

8

MAP NDCG@1 NDCG@3 NDCG@5

RMLS 0.554 0.686 0.732 0.729
PLS 0.552 0.676 0.728 0.736
RW 0.484 0.655 0.704 0.704
RW+BM25 0.497 0.671 0.718 0.716
LSIqd 0.449 0.588 0.665 0.676
LSIqd+BM25 0.481 0.649 0.705 0.706
LSIdt 0.460 0.616 0.675 0.680
BM25 0.462 0.637 0.690 0.690

Table 2: Relevance ranking result on one week data

To evaluate the performances of different methods, we employ Mean Average Precision (MAP) [2]
and Normalized Discounted Cumulative Gain (NDCG) [14] at positions of 1, 3, and 5 as evaluation
measures.

5.2 Results on One Week Data

We conducted experiments on a workstation with 24 AMD Opteron 6172 processors and 96 GB RAM.
After parameter tuning on the validation set, we chose 1000 as the value of d for PLS, LSIdt, and
LSIqd, and 5 as the number of transition steps for random walk. We set combination models as
0.8RW+ 0.2BM25 and 0.8LSIqd + 0.2BM25. For RMLS, we chose 1000 as the value of d and 0.1 as
the value of β and γ. We first compared the performance of different methods, with results summarized
in Table 2. We can see that RMLS performs comparably well with PLS, and both of them significantly
outperform all other baselines (p < 0.01 from sign test).

We also tested the efficiency of RMLS and compared it with PLS. In PLS, the linear mappings are
learned through SVD. For a fair comparison, we tried to use the most efficient implementation of SVD.
More specifically, we implemented the power method in [25] with C++, and further optimized the data
structure for our tasks. This SVD implementation can handle large data set on which state-of-the-art
SVD tools like SVDLIBC 4 fails. Since the efficiency of algorithms is influenced by implementation
strategies, e.g. different numbers of iterations or termination criteria, to make a fair comparison, we
only report the time cost in the learning of the best performing models.

RMLS significantly improves the efficiency of PLS. On a single processor, it took RMLS 1, 380
seconds to train the model, while the training of PLS needs 945, 382 seconds. The reason is that PLS
requires SVD and has complexity at least O(dcdxdy + d2 max(dx, dy)), where c represents the density
of the matrix for SVD. Even with a small c, the high dimensionality of input space (i.e., large dx and
dy) still makes SVD quite expensive. For RMLS, Wx and Wy are quite small with a sparse input
(Wx=24.82 Wy= 27.05), and hence the time complexity is nearly linear to d ·max(dx, dy). Therefore,
RMLS is significantly more efficient than PLS with high dimensional but sparse inputs.

Finally, we examined the time cost of parallelized RMLS on multiple processors, as summarized
by Figure 1. Clearly the running time decreases with with the number of threads. The improvement
becomes slow after 10 threads. With 20 threads, RMLS only takes 277 seconds to achieve a comparable
performance with PLS.

5.3 Results on Half Year Data

We further tested the performance of RMLS on a half year data set with millions of queries and
documents. On such a large scale, SVD-based methods and random walk become almost infeasible
(e.g., taking months to run). We therefore only compared RMLS with BM25 and PLS with word
features. With only word features (dx = dy = 271, 561), PLS is slow but still feasible. We tuned
parameters in the same way as in one week data.

4http://tedlab.mit.edu/~dr/SVDLIBC/

9

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ti
m

e
(s

e
co

n
d

s)

thread number

Figure 1: Time cost trend of RMLS under multiple processors.

MAP NDCG@1 NDCG@3 NDCG@5

RMLS 0.578 0.717 0.743 0.753
PLS (word) 0.474 0.638 0.666 0.677
BM25 0.441 0.643 0.663 0.670

Table 3: Relevance ranking result on half year data

From Table 3, RMLS can leverage high dimensional features to outperform all the baselines (p <
0.01 from sign test). We hypothesize that the performance of PLS with full features can achieve results
comparable with RMLS, but PLS its high computation complexity prevented us from testing it. With
RMLS, it took 20, 523 seconds to achieve the result using 20 threads. For PLS, although it only uses
word features, it took 1, 121, 440 seconds to finish learning. In other words, parallelized RMLS can be
used to tackle web search problem of real-world scale.

6 Related Work

Matching heterogeneous data from two spaces is well studied in statistics. Projection to Latent Struc-
tures, a.k.a. Partial Least Squares (PLS) [cf., 21, 23], and Canonical Correlation Analysis (CCA) [cf.,
12] are classic tools in statistics for studying the relation between two or more sets of data. The
underlying idea in PLS and CCA is to model collinearity between different data sets. In PLS, the
collinearity is modeled by covariance (i.e., dot product), while in CCA, it is modeled by correlation
(i.e., cosine). Both PLS and CCA can be viewed as models for matching heterogeneous data via
common latent structures. However they require solving an eigenvalue problem, and are prohibitively
expensive for web scale applications. Our work provides a rather flexible framework, allowing rather
scalable implementations.

Matching pairs of objects with a similarity function defined as dot product is not new. When the
pair of objects are from the same space, the similarity function becomes positive semi-definite, and
the matching problem is essentially finding a good kernel [cf., 9, 15, 7]. Recently, the learning of a
similarity function for object pairs from two different spaces has also emerged as a hot research topic
[11, 1]. Our model belongs to the latter category, but is tailored for web search and tries to solve
problems central to that, e.g., scalability.

Our model, when applied to web search, is also obviously related to the effort on learning to rank
[16, 17]. However, we focus on learning to match queries and documents, while learning to rank are
more concerned with optimizing the ranking model. Clearly the matching score learned with our
method can be integrated as a feature for a particular learning to rank model, and therefore our model

10

is in a sense feature learning.
In web search, Bai et al. [4, 5] recently propose learning a low rank model for ranking documents,

which is also in a sense matching queries and documents. On the other hand, there are also stark
differences between our work and theirs. For example, their work requires a pair-wise input supervision
and learn a ranking model using hinge loss, while we employ a point-wise input and learn a matching
model using alignment.

The matching problem is also widely studied in collaborative filtering (CF) whose goal can be
viewed as matching users and items [13, 24, 1]. The characteristics of the problems CF attempts
to solve, e.g. the sampling assumption and the nature of “ratings”, are different from the matching
problems in web search. We leave it as an open question on whether our work can be applied to CF
problems.

7 Conclusion and Future Work

We have proposed a framework for learning to match heterogeneous data via shared latent struc-
tures, and studied its generalization ability under a hierarchical sampling assumption for web search.
Moreover, we devised an algorithm called Regularized Mapping to Latent Structures as a special case,
which can achieve comparable performance as PLS but much more scalable. For future work, we
consider studying other objective functions such as square loss and hinge loss, as well as other forms
of regularization on large scale problems.

References

[1] J. Abernethy, F. Bach, T. Evgeniou, and J.P. Vert. A new approach to collaborative filtering: Operator
estimation with spectral regularization. JMLR ’09, 10:803–826, 2009.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[3] R. Baeza-Yates and A. Tiberi. Extracting semantic relations from query logs. In SIGKDD, pages 76–85,
2007.

[4] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi, O. Chapelle, and K. Weinberger.
Supervised semantic indexing. In CIKM’09, pages 187–196, 2009.

[5] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi, C. Cortes, and M. Mohri. Polynomial
semantic indexing. NIPS’09, 22:64–72, 2009.

[6] W. Chen, T.Y. Liu, and Z. Ma. Two-layer generalization analysis for ranking using rademacher average.
NIPS, 23:370–378, 2010.

[7] C. Cortes. Invited talk: Can learning kernels help performance? In ICML’09, page 161, 2009.

[8] N. Craswell and M. Szummer. Random walks on the click graph. In SIGIR, pages 239–246, 2007.

[9] N. Cristianini, J. Shawe-taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In NIPS’01,
2001.

[10] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent semantic
analysis. JASIS, 41:391–407, 1990.

[11] D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text queries. IEEE
transactions on PAMI, 30(8):1371–1384, 2008.

[12] D.R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with
application to learning methods. Neural Computation, 16(12):2639–2664, 2004.

[13] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22:89–115, 2004.

11

[14] K. Jarvelin and J. Kekalainen. Ir evaluation methods for retrieving highly relevant documents. In SI-
GIR’00, pages 41–48, 2000.

[15] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix
with semi-definite programming. In ICML’02, pages 323–330, 2002.

[16] H. Li. Learning to rank for information retrieval and natural language processing. Synthesis Lectures on
Human Language Technologies, 4(1):1–113, 2011.

[17] T.Y. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[18] C.H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent semantic indexing: A probabilistic
analysis. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 159–168. ACM, 1998.

[19] J.M. Ponte and W.B. Croft. A language modeling approach to information retrieval. In SIGIR’98, pages
275–281, 1998.

[20] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3. In TREC,
1994.

[21] R. Rosipal and N. Krämer. Overview and recent advances in partial least squares. Subspace, Latent
Structure and Feature Selection, pages 34–51, 2006.

[22] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York,
NY, USA, 1986.

[23] P.J. Schreier. A unifying discussion of correlation analysis for complex random vectors. Signal Processing,
IEEE Transactions on, 56(4):1327–1336, 2008.

[24] N. Srebro, J.D.M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. NIPS’05, pages
1329–1336, 2005.

[25] J.A. Wegelin. A survey of partial least squares (pls) methods, with emphasis on the two-block case.
Technical Report, No.371, Seattle: Department of Statistics, Univ. of Wash., 2000.

[26] W. Wu, H. Li, and J. Xu. Learning query and document similarities from click-through bipartite graph
with metadata. Microsoft Research Technical Report, MSR-TR-2011-126, 2011.

[27] J. Xu, H. Li, and Z.L. Zhong. Relevance ranking using kernels. In AIRS ’10, 2010.

[28] C.X. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information
retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

12

