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Abstract

In network classification, a typical assump-
tion is knowledge of all edges when comput-
ing the joint distribution of the instances in
the network. That is, for an instance in the
network, the neighbors of the instance and
their attributes are known. Such settings in-
clude social networks such as Facebook where
a person’s friends are known, allowing for
prediction of an attribute of the person given
the description of their friends. However, in
other domains, relationship information may
not be available for all nodes in the network
due to privacy or legal restrictions or because
a cost is associated with determining the con-
nections of a node. For example, it is unrea-
sonable to expect to be able to access the
phone records of the entire population when
attempting to identify a handful of individu-
als involved in illegal or fraudulent activities.

We refer to this problem domain as Active
Sampling, a domain where instances’ labels
and edges are acquired through an itera-
tive process in order to identify a handful
of instances in a network. In this work, we
develop this problem domain formally and
present methods estimating the probability
of an instance being positively labeled using
only the previously acquired samples. Fur-
thermore, we extend our methods to allow
for collective inference and learned priors and
demonstrate the robustness of the techniques
on two synthetic and two real-world datasets.
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1. Introduction

A common assumption when classifying instances in a
relational domain is that the relationships between the
instances are readily observable. In many domains this
is a reasonable approach; for example, friends and fol-
lowers on social networks such as Facebook or Twitter
are usually publicly available. This information is used
to classify the instances collectively by estimating the
labels of instances given their neighbors (Taskar et al.,
2007; Neville & Jensen, 2007).

In other domains, the assumption of publicly avail-
able relationship information is not appropriate. Such
a situation occurs when identifying students involved
in academic dishonesty at a large universiy; given a
single student caught cheating, it would be unethi-
cal to have access to emails between all students at
the university when there is no evidence to support
most of the students being involved. Similarly, in the
case of investigating securities fraud it would be use-
ful to have phone records for guilty parties (Neville
et al., 2005); however, collecting all phone records for
all traders could take a considerable amount of time in
addition to violating brokers privacy. Furthermore, in
some networks determining the relational linkage may
come only at a cost. For example, in the AddHealth
dataset (Harris & Udry, 2009), students from various
schools were interviewed to find their friendships, as
well as attributes such as smoking, drinking, and tru-
ancy. However, extensive interviewing is costly, and
when applied to a real-world scenario such as identify-
ing students in a school who are likely to be smoking in
order to intervene, we may wish to minimize the cost
while identifying all students in need of intervention.

While the majority of links in these domains are un-
available, there may remain a number of linkages that
can be used for classification. Specifically, it is ex-
pected that during the investigation of a cheating stu-
dent or a possibly offending broker the linkages for that
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instance become available. Thus, after an instance has
been investigated, not only have we gained its label,
we have also gained its neighbors. Likewise, in the
AddHealth case, after committing to interview a can-
didate, we can determine both if the student was a
heavy smoker and their friendships.

We refer to this class of problems as Active Sampling,
where the goal is to iteratively draw samples from the
network that have high probability of having a specific
label. It is distinct from active labeling in that both
the value of that label as well as the structure informa-
tion of linkage are acquired. Once we have acquired an
instance’s label we can use the new information to up-
date our classifier and utilize the new linkages to help
improve our overall view of the network, either adding
a node with no known linkages into the known graph
or by giving more links to known (but unlabeled) in-
stances in the network. These additional linkages can
help reduce our uncertainty about the instances when
estimating their labels.

When estimating the labels of instances in a network, a
useful approach is the use of collective inference to in-
fer the joint probability distribution over the labelings.
This stems from the notion of correlation, a statisti-
cal dependency between the instances that is found
in nearly all networks (Neville & Jensen, 2007; Bilgic
& Getoor, 2008; Taskar et al., 2007; Gallagher et al.,
2008). A key assumption of most collective inference
methods is that of Markov Independence, i.e., the in-
stances are conditionally independent of the rest of the
network given its neighbors. Such an assumption fails
to help the problem of active sampling as only linkages
known at a given iteration are between previously la-
beled instances and their neighbors, meaning linkages
between two unlabeled instances are not known. To
allow for collective inference when estimating the la-
bels of the unlabeled instances, we follow the work of
(Gallagher et al., 2008) and utilize the 2-hop paths in
the known network. As unlabeled instances in the net-
work can be 2-hops away from one another, this allows
for joint inference of the labelings.

In this work we assume there are no other known at-
tributes of the instances aside from the label we are
predicting, meaning the predictors only have relational
information available. A natural classifier in this set-
ting is the weighted-vote relational neighbor algorithm
(wvRN), which has been shown to perform well in net-
works with correlation between instances despite its
apparent simplicity (Macskassy & Provost, 2007). Fur-
thermore, as we iteratively search for instances in the
network that are likely to be positive we can estimate
a conjugate prior over the unlabeled instances, which

when combined with the wvRN likelihood has a poste-
rior which is easily computed. Utilizing this estimate
we can efficiently account for the uncertainty over the
unlabeled instances in the network.

The contributions of this work can be summarized as:

• Introduction of a new problem setting (Active
Sampling);

• Extension of wvRN to allow for collective classifi-
cation during Active Sampling;

• Priors for handling uncertainty with unlabeled in-
stances;

• Empirical analysis of models on two synthetic net-
works as well as two schools in the AddHealth
dataset, identifying instances which are charac-
terized as ‘Heavy Smokers’.

The rest of the paper is summarized as follows. We
discuss related work in Section 2 and formally define
the problem and domain in Section 3. Next, we discuss
the 2-step collective classification in Section 4 while
giving details on the various priors in Section 5. Lastly,
we give examples over two networks in Section 6 and
give conclusions in Section 7.

2. Related Work

Recently, work in relational learning has explored ac-
tive labeling for both learning and collective infer-
ence. In that scenario, research focused on acquir-
ing labels that will improve the accuracy of collec-
tive inference by considering properties of the entire
network structure (Kuwadekar & Neville, 2011; Bil-
gic & Getoor, 2008; Macskassy, 2009). However, this
diverges strongly from the notion of active sampling,
where we are examining how to acquire nodes while
only having part of the network.

Another related technique is progressive sampling,
which is centered around determining the optimal
sample size to use in order to balance between com-
putational costs and accuracy (Provost et al., 1999;
Parthasarathy, 2002; Gu et al., 2001). Progressive
sampling first uses a small sample in order to learn an
initial model and then uses progressively larger and
larger samples as model accuracy improves. In active
sampling, we do update the model as samples are ac-
quired; however, we cannot sample the ‘ideal’ amount
from an overall population as we can only utilize the
instances and edges already acquired. In addition, it
is believed that label and structure acquisition is likely
to be considerably more time consuming than updates
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Figure 1. A partially observed network. Black instances
known, blue instances have at least one connection to the
labeled instances, while white represents separated nodes.
Solid lines are known edges, while dashed are unknown.

to the model, as interviewing students concerning their
smoking habits and friendships could take several days.

Finally, (Namata et al., 2012) defines on the notion
of active surveying. In this work, the authors have a
given subset of nodes whose labelings are desired, but
cannot directly query their labelings. However, the
labelings of other nodes in the network can be queried
for a cost. The authors then focus on determining
which of these nodes should be queried in order to
give useful information about the desired subset. This
differs from our work as at the start we do not know
which nodes we want to have labeled, simply that we
wish to discover nodes having a particular label.

3. Problem Formulation

Consider a domain with a graph G = (V,E), where
v ∈ V represents the instances, or people, and e ∈ E
is the edges, or relationships, between the instances.
For our model we assume there are no attributes other
than yi for a node vi, where yi is the label we are trying
to predict. Thus, our estimation must come solely
from the correlations with other known instances in
the domain. The neighbors of an instance are denoted
N (vi).

Next, we assume the existence of a sampling mecha-
nism acquire(vi). We can use acquire to obtain infor-
mation about a node vi, specifically, acquire procures
the corresponding label yi as well as the corresponding
relationships ei∗ = {ejk : (j = i ∨ k = i) ∧ ejk ∈ E}.
The acquisition method is simple to define mathe-
matically, but corresponds with a real-world opera-
tion which is likely complex and time-consuming. For
the criminal investigation example such a mechanism
would need to obtain search warrants to determine the
labeling and procure the phone records. This indicates
that calling acquire more than necessary is undesir-
able.

The nodes V present in the network can be formally
divided into three disjoint sets: Labeled (IL), Bor-
der (IB) and Separate(IS). The Labeled instances
are somewhat self-explanatory - if vi ∈ IL the label yi
and edges ei∗ are known. These instances are either
given to us at the onset of the problem or obtained
iteratively through the acquire mechanism. In Figure
1, the darkened nodes in the center are those which
belong to the labeled set; note that all of the edges
from any node in the labeled set are known regardless
of whether the neighbor is in the Labeled set.

The Border instances are those which have at least one
known linkage to a labeled instance, that is, if vi ∈ IB
then ∃ vj ∈ IL : eij ∈ ej∗. These instances are known
to have some sort of relationship with nodes which
were previously investigated; for example, if a labeled
node was found to be participating in illegal activities
it raises the likelihood that its neighbors were as well.
The known neighbors of a node vi are denoted:

NK(vi) = {vj : (vi∈ IL∨vj ∈ IL)∧ (eij ∈E∨ eji∈E)}

For clarity later, we define EK = ∀i,j{eij : (vi ∈
IL ∨ vj ∈ IL) ∧ eij ∈ E}, or the set of edges which
have at least 1 node in the labeled set (and are there-
fore known). Observe that Border instances cannot
be directly connected to one another. In Figure 1 the
Border nodes are those which are labeled with letters
a-e. The dashed lines indicate edges which are present
in the true graph structure, but are unavailable for use.
The edges between the Border nodes and the Labeled
nodes are known, due to the edges of the Labeled in-
stances having been returned by the acquire method.

In contrast, the set of Separate nodes IS indicates
those which have no known connection to the labeled
ones, meaning if vi ∈ IS then NK(vi) = ∅. These
nodes are denoted with the open circles in Figure 1.
Note that the only types of edges these can have are
unobserved edges, possibly to the Border nodes or pos-
sibly to other Separate nodes.

General Active Sampling Procedure The algo-
rithm used by a general active sampling algorithm can
be seen in Algorithm 1. ActiveSample chooses one
sample to acquire; recursively calling itself until the
total number of samples desired have been obtained:
line 25 is the recursive call, while lines 2-4 handle the
base case. Once a set of probabilities for the unlabeled
instances has been computed (lines 7-8), the maximum
of those probabilities is then picked for inclusion in the
labeled set (lines 12-17). The acquire method is then
called to obtain the labeling and the node is inserted
in the labeled set (line 20). Lastly, the sets of Border
and Separate nodes as well as the set of known edges
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Algorithm 1
ActiveSample(G, IL, IB , IS , EK , ns)

1: # When all samples are acquired
2: if |IL| = ns then
3: return IL
4: end if
5:

6: # Compute Probs for all Unlabeled Instances
7: bprobs = CompBorderProbs(IL, IB , EK)
8: sprob = CompSepProb(IL)
9:

10: # Choose maximum from Border probabilities;
11: # compare with probability of Separate instances
12: maxbprob = max(bprobs)
13: if maxbprob < sprob then
14: maxnode = RandomChoice(IS)
15: else
16: maxnode = CorrespondingNode(maxbprob)
17: end if
18:

19: # Acquire the node
20: IL = IL ∪ acquire(maxnode)
21:

22: # Compute new IB , IS , EK

23: [IB , IS , EK ] = ComputeKnownGraph(G, IL)
24:

25: return ActiveSample(G, IL, IB , IS , EK , ns)

are updated, and the recursive call is made.

The accuracy of the method thus hinges on lines 7-8:
lines which estimate the labelings for both the bor-
der instances and separate instances. Next, we discuss
several methods for accurately estimating those prob-
abilities, beginning with the weighted vote relational
neighbor model for relational classification (Macskassy
& Provost, 2007), then extending into more advanced
methods such as how to utilize collective inference as
well as estimation of priors for each iteration.

4. Weighted Vote and Collective
Classification

The key portion of this work is the choice of which
node to sample next from the pool of unlabeled in-
stances. Our domain lacks attribute information,
meaning we must rely on the known labels of previ-
ous samples in order to determine which instance to
sample next. A simple and appropriate classifier for
this domain is the Weighted Vote Relational Neighbor
(wvRN) classifier, defined by (Macskassy & Provost,
2007). The wvRN makes the Markov assumption,
meaning the variable yi is conditionally independent

of the rest of the graph G, given the neighbors N (vi),
that is P (yi|G) = P (yi|N (vi)). Building on this, the
wvRN defines a simple probability distribution over
the neighbors of vi, defined as:

P (yi|N (vi)) =
1

Z

∑
vj∈N (vi)

wij · P (yi|yj)

As our domain works only within the known edges,
our distribution becomes:

P (yi|NK(vi)) =
1

Z

∑
vj∈NK(vi)

wij · P (yi|yj) (1)

We assign the straightforward pdf:

P (yi = c|yj) =

{
1 if yj = c

0 otherwise

Assuming binary labels and all weights equal to 1,
equation 2 reduces to:

P (yi|NK(vi)) =
1

|NK(vi)|
∑

vj∈NK(vi)

yj (2)

4.1. Collective Classification

As discussed in several works, the usage of collective
classification in relational domains can greatly increase
the accuracy of estimates for each node (Neville &
Jensen, 2007; Taskar et al., 2007). As pointed out ear-
lier, the border instances we are trying to classify are
conditionally independent of each other given the la-
beled instances due to the Markov assumption of the
wvRN. However, if we follow the intuition given by
(Gallagher et al., 2008) we can used the 2-hop paths
to establish connections between the border instances.

We therefore have the set E2 consisting of the 2-hop
edges, where e2ij ∈ E2 is defined as:

e2ij =

|V |⋃
k=1

I [(eik ∩ ekj) ∈ E]

Where I[b] returns 1 or 0 depending on if b is true
or not true, so e2ij is simply whether a 2-hop path

between vi and vj exists. E2
L is defined similarly, only

including the edges that are connected to a labeled
instance.The known 2-hop neighbors are then denoted
N 2

K(vi), defined as:

N 2
K(vi) = {vj : e2ij ∈ E2

K}

Using the 2-hop distances, we can rewrite equation 2
as:

P
(
yi|N 2

K(vi)
)

=
1

|N 2
K(vi)|

∑
vj∈N 2

K(vi)

yij (3)
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While equation 2 has no opportunity for collective clas-
sification due to the border nodes being conditionally
independent from one another, the 2-hop distribution
shown in equation 3 can use collective classification as
the Border nodes can be connected to one another.
To do this we can use Gibbs sampling to estimate the
joint distribution of the Border labels, making the al-
gorithm a variant of Relational Dependency Networks
(Neville & Jensen, 2007) with the wvRN defining the
conditional distributions.

4.2. Weighted Collective Classification

Lastly, we introduce weighting into the distribution:

w2
ij =

|V |∑
k=1

I [(eik ∩ ekj) ∈ EK ]

Essentially, the weights are now a count of the num-
ber of 2-hop paths. For example, in Figure 1 when
determining the conditional distribution for node (a),
node (b)’s value is given twice as much weight as node
(c)’s due to there being two 2-hop paths from (a) to
(b) as opposed to a single one from (a) to (c). Our
distribution becomes:

PW

(
yi|N 2

K(vi)
)

=
1∑

vj∈N 2
K(vi)

w2
ij

∑
vj∈N 2

K(vi)

w2
ijyij

(4)
This has the effect up upweighting the nodes 2-hops
away that share the most common neighbors with vi.
Since nodes with many common neighbors likely share
more common interests, it is likely they have a higher
probability of sharing the same label.

4.3. Separate Nodes

As we have no attribute or relational information for
the Separate nodes, we assign a probability of being
positive for the Separate nodes based on the previ-
ous draws from the Separate population. Let S be
elements of IL which were chosen from the Separate
population. Our estimation that the probability a Sep-
arate node is positive is:

θ̂S =

∑
vi∈S yi

|S|

4.4. Node Selection

The active sampling (AS) method we use is a combi-
nation of the estimates for the border and the sepa-
rate nodes. The active sampling maximum likelihood
method (ASML) simply chooses from the nodes the
one with the highest likelihood from either estimation.

5. Handling Uncertainty with Priors

In order to pick instances with less uncertainty, we in-
troduce a Beta prior for both the Border nodes and
Separate nodes. To do this, we first estimate the pro-
portion of nodes in the labeled set that are positive:

θL =

∑
vi∈IL yi

|IL|

We now have a predefined weight for the prior γ which
controls the weight of the prior with respect to the like-
lihood of the Separate (or Border) nodes. Our poste-
rior distribution for the Separate θS is simply another
Beta distribution with expected value:

E [θS |θL, γ,S] =
θLγ +

∑
vi∈S yi

γ + |S|

Thus, when choosing from the set of Border and Sepa-
rate nodes, we assume all Separate nodes are positive
with probability E [θS |θL, γ,S].

Next, we need a comparable prior for the Border
nodes. As a first step, we create a probability of a
positive value over a random draw from the border
population, this probability of positive value over the
population of border instances is then used to formu-
late a prior for each border instance. Let B be elements
of IL which were chosen from the Border population.
We get an expected value for θB in a similar manner
as θS :

E [θB |θL, γ,B] =
θLγ +

∑
vi∈B yi

γ + |B|
Now we use the expected value of a positive draw from
the border nodes to formulate a prior to be used in con-
junction with each individual border node. Formulat-
ing it as a Beta prior again, the expected value of the
posterior distribution for an individual node vi ∈ IB
is:

E [yi|E [θB ] , γ,B] =
E[θB ]γ +

∑
vj∈N 2

L(vi)
w2

ijyij

γ +
∑

vj∈N 2
L(vi)

w2
ij

The active sampling maximum expected posterior
(ASMEP) then picks the maximum from:{ ⋃

vi∈IB

E [yi|E [θB ] , γ,B] ,
⋃

vi∈IS

E [θS |θL, γ,S]

}

6. Experiments

In this section we begin by generating a large num-
ber of labels on top of existing, real-world networks in
order to simulate how the methods perform over a dis-
tribution of networks. The first network we use is one
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Figure 2. Recall Scores for the first AddHealth school network with synthetic labelings having varying levels of autocor-
relation.
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Figure 3. Recall Scores for the RoviraEmail network with synthetic labelings having varying levels of autocorrelation.

of the schools from the AddHealth dataset (Harris &
Udry, 2009), while the second we choose for this task
is an email network collected from the University of
Rovira (Guimera et al., 2003). For each of these real-
world networks we generate a set of labelings where
approximately one sixth of the labels are positive with
the rest being negative, with varying levels of (fairly
low) correlation for each (Table 1). For each network
we generate a set of 100 different labelings which the
methods are then run on, with different starting labels
each run.

In addition to the synthetic networks, we chose two
of the schools in the AddHealth dataset which have
correlations along the Smoking label. The Smoking
label has an integer value between 0 and 6; 0 indicat-
ing students who never smoke while 6 indicates heavy
smokers. We used a threshold for our labeling, denot-
ing 1 for values 4,5, and 6 and 0 denoting the rest.
The task is then to examine the heaviest smokers in
the school. Similar to the synthetic network we run

Dataset Nodes + Prop Mean AC Std AC
AddHealth (School 1) 635 0.24 0.20 N/A
AddHealth (School 2) 576 0.15 0.23 N/A

AddHealth (Synthetic)
635 0.17 0.216 0.03
635 0.17 0.306 0.056
635 0.17 0.391 0.077

Rovira (Synthetic)
1,133 0.17 0.204 0.054
1,133 0.17 0.298 0.054
1,133 0.17 0.390 0.040

Table 1. Autocorrelation across linkages in the synthetic
networks. Broken down by the proportion of nodes which
were positive, the average autocorrelation of the network
and the standard deviation of the autocorrelations.

each method 100 times; however, instead of relabeling
the network we simply start the methods from differ-
ent initial nodes.

6.1. Methods

We compare several methods on each dataset, record-
ing the recall of each as the iterative process regresses.
First, we examine two baselines, denoted Oracle and
Random. The Oracle method always chooses a pos-
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Figure 4. Recall Scores the Smoking attribute the first Ad-
dHealth school.
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Figure 5. Recall Scores the Smoking attribute on the sec-
ond AddHealth school.

itive instance from the Border when available, other-
wise it randomly selects from the Separate set. This
represents the best any algorithm can do, should it es-
timate the positive probability for the border instances
perfectly. Additionally, the Random baseline simply
chooses instances at random from the network. All
methods should perform at least as well as Random.

For our methods we compare usage of the Gibbs col-
lective classification and the Beta prior with versions
that omit either Gibbs, the prior, or both. All algo-
rithms use the weighted version of the 2-hop paths;
in addition, we set γ = 2 for all of the priors. The
Gibbs sampler is done over only 100 iterations with
the first 50 being considered the “burn-in” and thrown
out; this is due to the fact Gibbs must be ran for each
iteration, so we trade-off accuracy for efficiency. The
initial values are set by a draw from the conditional
distributions of the Labeled instances.

For each method we collect 10 ‘initial’ starting points
to grow from; 5 are randomly selected positive in-
stances (perhaps students who have been caught smok-

ing) and 1 neighbor of each of the 5 (a friend). We then
compare each method on 50 samples, using Recall to
determine the method which after 60 total samples has
found the highest proportion of positive instances. In
the smoking case, the more students we find that are
heavy smokers the more the administration can help.

6.2. Analysis

Studying the synthetic networks first (Figures 2,3), we
see that the higher amount of correlation in the net-
work results in a higher recall for each of the non-
baseline methods (Oracle and Random). Interestingly,
we find that for lower amounts of correlation Gibbs
sampling (without priors) outperforms the usage of
priors (without Gibbs). However, as correlation in-
creases between the instances the prior becomes more
useful than Gibbs. When there is high correlation a
few neighbors can likely give a reasonable estimate of
the probability for an instance, making the prior more
useful for discerning between the amount of confidence
in the estimates. In the low correlation case the Gibbs
is likely more useful due to its ability to more accu-
rately estimate the joint probability of the instances;
not having enough information may result in a very
poor estimate, making the prior version less useful (but
still better than no prior).

While having either Gibbs sampling or priors improves
over omitting both, the combination of the two is the
most powerful method. We can see across Figures 2
and 3 that combining the Gibbs sampler with the pri-
ors helps in cases where there is little correlation or
considerable correlation between the instances. Thus,
we can effectively combine them to create a method
which has the advantages of both, without detracting
from either one.

Next, we run the methods on the AddHealth schools
looking for the heavy Smoker labeling (Figures 4,5).
Both of these networks have a low correlation (around
.2), resulting in the Gibbs sampler (without priors)
performing better than the priors (without Gibbs),
while both continue to outperform omission of Gibbs
and a prior. Furthermore, we again see that combi-
nation of the Gibbs sampling and priors outperforms
either by itself.

7. Conclusions

In this work we have introduced the problem of Ac-
tive Sampling, where nodes are investigated and la-
beled without full access to the entire network. We
have shown the promise of utilizing a weighted vote
relational neighbor model over the squared network,
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allowing for collective classification of the Border in-
stances. Furthermore, a method for learning priors
over the Border and Separate nodes was demonstrated
to have a significant increase in recall when applied to
a distribution of networks.

Future work on this area is extensive as considerable
effort can be made towards balancing short term gain
with long term gain. Additionally, this work covers
networks with no attributes aside from the label we
are trying to predict; incorporation of additional at-
tributes could improve overall accuracy.
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