Multi-user Source Localization using Audio-Visual Information of KINECT

Hong-Goo Kang
DSP Lab, Dept. of EE, Yonsei University
Contents

Overview: Research Overview

Group 1: Multiple User Localization

Group 2: Active Speaker Detection and Beamforming

Group 3: Speaker Identification

Discussion
Research Overview (1)

- Multiple user source tracking and localization
- Microphone array processing: beamforming
- Active speaker detection & real time speaker identification
Research Overview (2)

• Speech signal processing for multi-user environment
 • Requires a user dependent processing → user location/direction
 • Degrades performance in harsh acoustical environment, e.g. noise, reverberation, interference, and so on → beamforming

• Solutions/Approaches
 • Introduces video signal processing approaches (depth image)
 • Head/face detection and tracking
 • Improves the performance of microphone array based speech enhancement algorithms (beamforming) using the head location information
 • Apply the enhanced signal to speech signal processing applications, i.e. speaker recognition/identification
Proposed Framework

Audio
Voice information: speech signal

Video
Depth Image: robust to environment

KINECT

- Games
- Virtual Conference
- ASR

Microsoft Research Asia Faculty Summit 2012
Research Groups

Group 1
- Multi-user Localization
 - Video-based head detection and tracking
 - Coordinate translation 2D -> 3D

Group 2
- Beamforming
 - Active speaker detection
 - Beamforming

Group 3
- Speaker Identification
 - Feature extraction
 - User identification
Contents

Overview : Research Overview

Group 1 : Multiple User Localization

Group 2 : Active Speaker Detection and Beamforming

Group 3 : Speaker Identification

Discussion
Multiple User Localization

- Objective

Kinect Depth Image → Candidate Location

Head Detection → Candidate Location
Depth Image based Head Tracking

- Overview of head detection and tracking

Head Detection
- Background Removal
- Distance Transform
- Distance Measure
- Edge Detection
- 2D Chamfer Matching

Head Tracking
- Set Initial Window
- Centroid Calculation
- Coordinate Translation
- Localization
- Coordinate Inf.
- Position Inf.
- Depth Data

Microsoft Research Asia Faculty Summit 2012
Head Detection (1)

- Background removal
 - Use player information

- Player index = 0 ➞ Background!
- Result

<table>
<thead>
<tr>
<th>Depth (mm.)</th>
<th>Skeleton ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Head Detection (2)

- Chamfer matching
 - Shape detection algorithm

- Morphological edge detection
 - Uses dilation and erosion images
 - Dilation: grow image region
 - Erosion: shrink image region
Head Detection (3)

- Distance Transform
 - Converts binary image into distance image
 - Results in distance from the closest edge pixel

- Result

![Edge image](image1)

![Distance image](image2)
Head Detection (4)

- Distance measure
 - Between edge and distance image
 - Edge image : template head image
 - Distance image : depth image
 - RMS chamfer distance
 - \(\sqrt{\frac{1}{n} \sum_{i=1}^{n} (e_i d_i)^2} \)

Black dots : edge image
Numbers : distance from edge
Head Detection (5)

- Template matching
 - Detects candidate of head locations obtained from the chamfer matching
 - Uses nine head template images
 - Obtains fine head location
Head Tracking

- Initial window
 - Sets the coordinates from head detection
- Real-time head tracking
 - Shifts the center of window center to the centroid of head
 - Adjusts the size of window
Coordinate Translation

• Sound source localization
 • Uses the center pixel of head location to relative location from KINECT
 • \((x, y, D) = f(x, y, D)\)
 \((x, y):\) Pixel indices
 \(D:\) Distance
 \((x, y, z):\) Relative source location in meters

• Coordinate translation equation
 • Linear expressions using trigonometry

\[
\begin{align*}
\&= \frac{13D(160 - x)}{4000} \\
\&= \frac{13D(120 - y)}{4000} \\
\&= D
\end{align*}
\]
Head Detection and Tracking

- Multi-user tracking demo
Contents

Overview: Research Overview

Group 1: Multiple User Localization

Group 2: Active Speaker Detection and Beamforming

Group 3: Speaker Identification

Discussion
Beamforming

- Beamforming
 - Takes a spatial filtering
 - Enhances target speech by
 - suppressing noise and interference

- Beamforming process

- Spatial Filtering
 \[x(k) = x(k) \]
 \[x_2(k) = x(k - \tau_2) \]
 \[x_3(k) = x(k - \tau_3) \]
 \[\ldots \]
 \[x_N(k) = x(k - \tau_N) \]

Source Location Information → **Spatial Filtering**

x: input signal
w: weights
y: output signal

\[
y(k) = w^H x
\]

\[
Y(\omega) = \sum_{n=1}^{N} W_n^H(\omega) X_n(\omega)
\]
Sound Source Localization Simulation

- Conventional DoA estimation
 - Male speech, 16kHz
 - 32ms Hanning window, 16ms overlap
 - Diffused white noise, 20dB SNR

- Limitations of conventional approach
 - Susceptible to acoustical effects
 - Noise, Reverberation, Interference
 - Error in localization
 → Performance degradation in the beamforming processing

- High computational complexity
 - Need to estimate source location for every frame
Proposed Method - Overview

Audio → Sound Source Localization → Beamforming

Video
Beamforming for Multiple Candidates

- Q: multiple # of candidate speakers?
 - How to find active speaker?

- A: Simultaneously form multiple beams
 - Need to consider multiple active speaker scenario
Active Speaker Detection (1)

- Candidate speaker detection
 - Apply SRP-PHAT algorithm to all the candidates’ locations
 - Find the location \mathbf{q} that has the maximum sound level

 $$\hat{\mathbf{q}} = \arg \max_{\mathbf{q}} P(\mathbf{q}) \quad \forall \, \mathbf{q} = \{\mathbf{q}_i \mid i = 1, 2, \ldots, 6\}$$

 $$P(\mathbf{q}) = \int_{-\infty}^{\infty} \left| \sum_{n=1}^{4} \frac{X_n(\omega) e^{j\omega \Delta(\mathbf{q})}}{|X_n(\omega)|} \right|^2 d\omega$$
Active Speaker Detection (2)

• A/V integrated active user localizer
 • Uses average magnitude difference function (AMDF)
 • Find k that best compensates $\tau_1 - \tau_2$
 \[
 \hat{k} = \arg \max_k \Psi_{AMDF}(k)
 \]
 \[
 \Psi_{AMDF}(k) = \frac{1}{N} \sum_{n=0}^{N-1} |x_1(n) - x_4(n + k)|
 \]
 • Compares \hat{k} with actual τ_1 and τ_2 obtained from video signal
 • Speaker is active if the difference of direction is within the pre-defined threshold

Target User

Interference

Target User

Interference
Beamforming - Simulation

- Simulation set up
 - Uses Generalized Sidelobe Canceller (GSC)
 - Interference: white noise
- Results
 - Conventional vs proposed localization

![Graphs showing target speech and corrupted speech with GSC, conventional localization, and GSC, proposed localization over time and frequency.](image)
Performance Evaluation

- Localization error

- Spectral distortion and SNR Improvement
Demonstration

- Beamforming
 - Noise reduction and target speech preservation
- Active speaker detection
Contents

- Overview : Research Overview
- Group 1 : Multiple User Localization
- Group 2 : Active Speaker Detection and Beamforming
- Group 3 : Speaker Identification
- Discussion
Application

- Online-meeting
 - Speaker identification
 - Speech recognition
 - Gesture recognition
• Active speaker ID is displayed during speech active region
Problems

• Implementation issues
 • Real-time online system
 • Frame based decision instead of utterance based decision
 • Complexity
 • Can not use high order of Gaussian mixtures
 • Use the fact that a few of the mixtures of a GMM contributes significantly to the likelihood value for a speech feature vector

• Multi-speaker identification
 • Cannot use the conventional pruning algorithm
Feature Extraction (1)

- Mel-Frequency Cepstral Coefficients (MFCC): followed by ETSI configuration
 - 39th-order MFCC include 0th order coefficient with delta and delta-delta
 - 25ms hamming window / 10ms shift
 - 24th-order mel-filterbank without 1st order (~64Hz)

Log-mel spectral features
Feature Extraction (2)

- Real-time Cepstral Mean Normalization (CMN)
 - CMN cannot be applied to real-time applications directly.
 - Mean vector can be calculated after receiving the input signal completely
 - Uses an approximated on-line technique
 \[
 \bar{c}_n = c_n - c_{cmn}^n
 \]
 \[
 c_{cmn}^n = (1 - \alpha) \cdot c_{cmn}^{n-1} + \alpha \cdot \bar{c}_{n-1}
 \]

[Graph showing MFCCs with and without CMN and real-time CMN]
Training – GMM-UBM

Speech DB → Feature Extraction → GMM Modeling → UBM → MAP

Obtain Top N mixtures → Log-likelihood of top N mixtures

Obtain max score → Identified Speaker ID

Unknown Utterance → Feature Extraction → MFCC → Feature buffer

VAD → MFCC

pre-recorded

Spk1, Spk2, Spk3

Model1, Model2, Model3
Final Demonstration
Contents

Overview : Research Overview

Group 1 : Multiple User Localization

Group 2 : Active Speaker Detection and Beamforming

Group 3 : Speaker Identification

Discussion
Discussion

- A/V localization and speaker identification: who is where?
 - Utilizes depth video stream
 - Is robust to environmental effects
 - Can be useful for multi-user applications
 - User friendly

- Possible future works
 - System level optimization
 - Audio and Video signal processing
 - Applications
 - Speech recognition, A/V communications
Thank you!