
Aggregating Web Offers to Determine Product Prices

Rakesh Agrawal
Microsoft Research, Search Labs

rakesh.agrawal@microsoft.com

Samuel Ieong
Microsoft Research, Search Labs

samuel.ieong@microsoft.com

ABSTRACT
Historical prices are important information that can help
consumers decide whether the time is right to buy a prod-
uct. They provide both a context to the users, and facilitate
the use of prediction algorithms for forecasting future prices.
To produce a representative price history, one needs to con-
sider all offers for the product. However, matching offers to
a product is a challenging problem, and mismatches could
lead to glaring errors in price history. We propose a prin-
cipled approach to filter out erroneous matches based on a
probabilistic model of prices. We give an efficient algorithm
for performing inference that takes advantage of the struc-
ture of the problem. We evaluate our results empirically
using merchant offers collected from a search engine, and
measure the proximity of the price history generated by our
approach to the true price history. Our method outperforms
alternatives based on robust statistics both in tracking the
true price levels and the true price trends.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Experimentation

Keywords
Data Aggregation, Time Series Analysis

1. INTRODUCTION
The Internet has become one of the most important sources

of information for consumers researching for their next pur-
chase. While there are many e-commerce websites dedicated
to helping consumers decide what product to buy and where
to buy it, few sites exist to help with the question of when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$10.00.

to buy the product. In [1, 2], the authors proposed a sys-
tem that addresses this need by providing users with prod-
uct price history and making recommendations of buy or
wait depending on price forecasts and consumer preferences.
In their experiments, product prices are obtained through
a data vendor. In this paper, we investigate the question
of how to aggregate web offers to determine representative
product prices, thus circumventing the explicit dependence
on data vendors.

If the set of all offers correctly matched to the product
were given as input, determining the product prices would
have been straight-forward: one can simply take the average
of the prices (or the minimum, depending on the applica-
tion). Unfortunately, matching offers to products is known
to be a difficult problem, and despite much work in the area
(reviewed further in Section 2), it is inevitable that a match-
ing algorithm will make mistakes. We are thus interested in
the following question:

Given a set of offers matched to a product, how
do we determine a representative price history for
the product, allowing for some of the matches to
be possibly incorrect.

Note that to produce a good and representative price his-
tory, it is not necessary (although it would be sufficient) for
an algorithm to identify all of the incorrect matches. For
example, if we are interested in the average product price,
an incorrectly matched offer with a price close to the av-
erage will be mostly harmless. Errors are introduced when
we fail to identify incorrect matches with prices significantly
different than the average (or in the case of minimum, sig-
nificantly lower than the true minimum).

As the main challenge in aggregating web offers is due
to incorrect offers with prices that are outliers, could the
problem be solved using robust statistics [12]? Focusing on
determining the average price, for example, could we replace
the simple average of product prices by the trimmed mean,
where the top and bottom x% of the data points are dis-
carded before the average is computed, or by the median,
often considered to be robust to outliers? It turns out that
these solutions are inadequate for two reasons.

First, errors made by matching algorithms are typically
not random. A common form of error is confusing one prod-
uct with another. For example, confusing two models of
TVs made by the same manufacturer, or confusing the ac-
cessories of a product with the product itself. This form of
errors leads to entire sets of offers being (mis)matched to
the same product. Another common form of error is due to

products that are configurable. For example, a digital SLR
camera may be packaged together with different lenses. The
different configurations may be sold at very different prices.
Under both form of errors, trimmed mean will remove some
offers from both the most and the least expensive sets, but
the resulting price will likely remain a mixture of multiple set
of offers, and the final price is not representative of a single
product. The median will select an offer from one particular
set of offers, but as the composition of offers changes over
time, it may select an offer from a different set at in the
future, leading to inconsistencies and creating discontinuity
in the price history when none is present.

Second, a direct application of robust statistics fails to
take advantage of the sequential nature of the data. Using
all the matched offers across time can help in two ways.
First, determining whether an offer is correctly matched or
not at an isolated time point is difficult; a valid price can
easily be confused with an outlier. By taking into account
the entire price history of an offer, we improve our ability to
decide whether the offer itself is an outlier. Also, in trying
to disambiguate between multiple clusters of prices (with
similar number of offers), we can use the historical prices in
deciding which cluster is most likely to be correct.

To address these shortcomings, we propose to model offer
prices by a generative process motivated by linear Gaus-
sian processes [21]. We model the true product prices as
unobserved latent variables that follow some linear dynam-
ics. We associate each offer with a Bernoulli variable that
determines whether the offer is correct for this product. If
it is correct, the offer prices will be drawn according to a
Gaussian distribution with a mean equal to the underlying
product prices (and variance to be learned, as different of-
fers exhibit different price volatilities); otherwise the offer
prices will be sampled from a background distribution. This
model allows us to take advantage of the sequential nature
of the data, and by explicitly modeling whether an offer
is correctly matched, the solution is sensitive to the type
of errors typically made by matching algorithms described
above. To ensure efficiency of our learning algorithm, we
design an inference algorithm that takes advantage of an in-
dependence assumption and allows us to achieve a quadratic
speed-up over standard Kalman filter. The technique may
be of independent interest.

The rest of the paper is organized as follows. We review
related work in offer matching, Kalman filters, and deciding
when to buy in Section 2. We then present a probabilistic
model of offer prices in Section 3. We consider how to learn
the model parameters in Section 4. To speed-up the learning
algorithm, we introduce a technique that makes use of the
independence assumptions in the model in Section 5. We
evaluate the performance of algorithm using merchant offers
collected from a search engine over six months in Section 6.
We conclude with our main findings and directions for future
research in Section 7.

2. RELATED WORK
Matching offers to products is a central problem in ecom-

merce [16]. Offers for products are often partly structured
(including URLs, prices, and sometimes Universal Product
Codes (UPCs)) and partly unstructured (offer titles and
textual descriptions). There has been much work in the
database and data mining communities on matching struc-
tured records to other structured records, including record

linkage [8, 19, 20, 25], entity resolution [3, 23], and dupli-
cate detection [7, 22]. There has also been some work on
matching unstructured text to structured records that uses
techniques based on natural language processing [18], seg-
mentation [16, 17], and clustering [4]. Our work builds on
these past works and assumes that an initial matching of
offers to products has been performed, and takes the out-
put and creates representative product prices for the prod-
ucts. As part of the process, we need to identify incorrect
matches where the prices are significantly different than oth-
ers. While prices can be used as part of the matching pro-
cess, to our knowledge, there has been no work that uses the
sequentiality of the prices in determining the correctness of
a match. Our work complements the existing work and can
be used to handle matching scenarios where some attribute
values of a record are slowly changing over time.

The main modeling technique in this paper is by modeling
the offer prices as observations generated from a linear dy-
namical system (also known as linear Gaussian processes). A
good summary of this research area from the machine learn-
ing perspective is given in [21]. The study of linear dynam-
ical dates back to early work in signal processing, with the
Kalman filter being one of the seminal work in the area [14].
Learning the parameters to a linear dynamical system, also
known as system identification, has also been well studied
and a review is given in [9]. Many extensions to Kalman fil-
ters have been proposed, for example, the extended Kalman
Filter [26] and particle filters [11, 13, 15]. While these work
relax various assumptions on the linearity of the process and
provide efficient algorithms for learning, their models do not
consider the possibility of erroneous observations.

In our work, we augment the classical linear dynamical
model by allowing for observations to be possibly incor-
rect. This is related to the robust Kalman filter [27] and
Kalman filter with intermittent observations [24]. For the
latter work, using a cutoff criteria, one can treat a single
outlier as a missing observation. However, in both lines of
works, the basic modeling units are individual data points,
hence the learned model will not take into account the en-
tire offer (consisting of all offer prices) in deciding whether
an observation is an outlier. Closer in spirit to our work is
the switching state-space model proposed in [10]. One can
view the background prices in our model as a separate state-
space model, and that the switching variable of [10] controls
whether a set of observations is generated by the background
prices or the product prices. However, the learned model
will instead group the correct and incorrect observations by
time; we are interested in grouping them by offer. As a final
note, the technique proposed in Section 5 to speed up the
computation of the Kalman Filter under independent obser-
vation assumptions is novel to our knowledge, and could be
of independent interest.

There has been recent work that investigates the question
of helping users to decide when to buy a product [1, 2].
The present study extends this line of work and considers
how to obtain representative product prices automatically
by aggregating web offers. The history can then be presented
to users in response to product queries, be fed as input to
forecasting algorithms.

3. MODEL
We now present a generative model of offer prices moti-

vated by linear Gaussian processes. Informally, the model

p1 p2 pn product prices

o1 o2 on
1 1 1

…

…

o1 o2 on
k k k

1st offer prices

kth offer prices

…

…

…

q1

qk

…

Is the
match
correct?

Figure 1: Graphical representation of the generative model of offer prices. The shaded nodes are the ob-
servations, which include all of the offer prices o1,o2, . . . ,ok. The unshaded nodes are latent variables in the
model, which include the product prices p and offer status q. The parameters of the model, not shown here
to reduce clutter, are learned to maximize likelihood of the observations.

postulates that there is a set of true but unobserved prices
for the product, one for each time step, and that the prices
evolve according to some yet-to-be-learned linear dynamics.
A set of offers are purportedly matched to the product. An
offer is either correctly matched, in which case its prices
are drawn according to a distribution parameterized by the
product prices, or incorrectly matched, in which case its
prices are drawn according to some background price distri-
bution. Our goal is to learn the the underlying prices and
the correctness of the matching treating the offer prices as
observations.

Formally, we consider a discrete-time generative model as
illustrated in Figure 1. Let the true but unobserved prod-
uct prices be denoted p = {p1, p2, . . . , pn}. The prices are
generated by a linear Gaussian process, determined by four
parameters: µ0, σ2

0 , α, and σ2
α, where

p1 ∼ N(µ0, σ
2
0)

pt ∼ N(αpt−1, σ
2
α) for 1 < t ≤ n

and N(µ, σ2) denotes a Gaussian distribution with mean µ
and variance σ2.

Let the number of offers matched to the product be k,
which may vary from product to product. For the i-th of-
fer, its prices oi = {oi1, oi2, . . . , oin} are generated as follows.
First, an unobserved Bernoulli variable qi, which we call the
offer status, is drawn according to parameter πi. If qi equals
1, the offer is correctly matched, and the observed offer price
oit at time t is drawn according to a Gaussian distribution
with mean pt and variance σ2

i , which we call the observa-
tion variance of offer i. On the other hand, if qi equals
0, the offer is incorrectly matched, and the observed offer
price oit at time t is drawn according to a Gaussian distribu-
tion with mean µb and variance σ2

b that corresponds to some
background distribution of prices. We treat this background
distribution as exogenously given, and do not learn them in
the model as this distribution is estimated using all offers
matched to the products of a given category.

Summing up, for each offer i,

qi ∼ Bernoulli(πi)

oit ∼

{
N(pt, σ

2
i) if qi = 1

N(µb, σ
2
b) otherwise

for 1 ≤ t ≤ n .

Under this model, the probability of a set of observed
prices O = {o1,o2, . . . ,ok} can be expressed as a function
of the parameters Θ = (µ0, σ

2
0 , α, σ

2
α, {πi}ki=1{σ2

i }ki=1) and
background mean and variance µb and σ2

b by summing out
the latent variables, namely,

P (O; Θ) =

∫ ∑
q∈{0,1}k

P (O,p,q; Θ)dp

where

P (O,p,q; Θ) = P (p1;µ0, σ
2
0)

n∏
t=2

P (pt|pt−1;α, σ2
α)

k∏
i=1

((
πi

n∏
t=1

P (oit|pt;σ2
i)
)qi

(
(1− πi)

n∏
t=1

P (oit;µb, σ
2
b)
)(1−qi)

)
(1)

The parameters of the model can be learned, once for each
product, by treating the offer prices as observations; this will
be discussed further in Section 4. The learned parameters
together with the observations can then be used to jointly
infer the most likely product prices. In addition, the param-
eters πi’s, corresponding to the likelihood of an offer being
correctly matched, can be used to determine the set of cor-
rect matches by comparing its value to a cutoff threshold.
The offers deemed correctly matched by the model can then
be used to compute the average or the minimum product
prices as desired.

Note that in a real running system, offer prices may be
missing at times for various reasons, hence we need to make
provisions in the generative model to allow for missing ob-
servations. We assume that with some fixed probability r
an observation may be missing, independent of whether the
offer is correctly matched or not. This assumption allows
us to simplify the derivation of the inference procedure, as
the probability of a missing observation can be factored out
from the likelihood function in Equation (1).

4. INFERENCE AND LEARNING
At runtime, given the offer prices, we can learn the values

of the parameters of the model by maximizing the likelihood
function. As the model consists of both latent and observed
variables, we can generalize the Expectation-Maximization
(EM) framework [6] to learn the parameters. Following stan-
dard EM derivation (see, e.g., Chapter 9 of [5]),

• In the E-Step, we infer the distribution of the latent
variables given the parameters, i.e., we compute

Q(p,q) = P (p,q|O; Θ)

• In the M-Step, we find the values of the parameters
that maximizes the likelihood, treating the probability
estimates Q as given, i.e., we compute

Θnew = arg max
Θ

∫ ∑
q∈{0,1}k

Q(p,q) logP (O,p,q; Θ)dp

Due to the interactions between the latent variables q and
p, an exact inference is intractable in the E-step. Instead, we
consider an approximate inference procedure by variational
methods, discussed further in Section 4.1. The optimization
of parameters in the M-step are fairly straightforward, and
for completeness we present them in Section 4.2. The overall
approach is motivated by the learning algorithm for switch-
ing state-space models [10], with adaptations to account for
the differences in the model.

4.1 The Variational E Step: Inference
Given the observations O, the distribution of the latent

product price variables p and latent offer status variables q
are not independent; this can be verified from the graphical
structure of the model (Figure 1) that these variables are
not d-separated given the observations. In order to perform
efficient inference, we apply variational approximation in the
E-step.

Specifically, we focus on the following structural approx-
imation to Q(j)(p,q) that decouples the variables p and q,
viz.

P (p,q|O; Θ) = Q(p,q) = Q(p)Q(q) .

We then find the factors Q(p), Q(q) that minimizes the
KL-divergence to the correct non-independent distribution
P (p,q|O; Θold). Using the general result from Chapter 10
of [5], this can be found by iteratively solving the following
system until convergence:

logQ(q) = Ep[logP (O,p,q; Θ)] + constant (2)

logQ(p) = Eq[logP (O,p,q; Θ)] + constant (3)

where the constants ensure that the factors Q(p) and Q(q)
integrates to one.

From Equations (2) and (1), we can verify that logQ(q)
can be expressed as an exact factorization over the individual
offer statuses, i.e.,

logQ(q) =

k∑
i=1

logQ(qi)

where

logQ(qi) = Ep[logP (qi|O,p; Θ)] + constant .

Solving for Q(qi) for each offer i, we find that

logQ(qi = 1) ∝ n log
1√

2πσ2
i

−
n∑
t=1

Ep

[
(oit − pt)2

2σ2
i

]

logQ(qi = 0) ∝ n log
1√

2πσ2
b

−
n∑
t=1

(oit − µb)2

2σ2
b

(4)

which has the natural interpretation that the log odds be-
tween Q(qi = 1) and Q(qi = 0) is precisely the ratio of
the log likelihoods of offer i being generated by the product
prices or through the background distribution.

From Equations (3) and (1), we can verify that logQ(p)
can be expressed as an exact factorization according to the
linear dynamics that underlie the product prices, i.e.,

logQ(p) = logQ(p1) +

n∑
t=2

logQ(pt−1, pt)

where

logQ(p1) = Eq[logP (pi|O,q; Θ)] + constant

and for 1 < t ≤ n,

logQ(pt−1, pt) = Eq[logP (pt|pt−1,O,q; Θ)] + constant

As that the factorization preserves the structure of the dy-
namics, we can apply the forward-backward algorithm (also
known as Kalman filter and smoother) for inferring the la-
tent variables given the parameters. To take into account
the offer statuses q (over which we are taking expectations),
it is necessary and sufficient to divide the observation vari-
ance σ2

i of offer i by Q(qi = 1) in the algorithm (the same
has been observed in [10]). This has the effect of decreasing
the influence of offer i to the product prices if the likelihood
of offer i being correctly matched is low.

Note that just as in the standard derivation of inference
for linear dynamical systems, instead of determining the dis-
tribution Q(p) exactly, we only determine the required ex-
pectations under the distribution. We follow the notations
and derivations from [5] with suitable modifications. For-
mally, let 1k denote a column vector of ones of length k,
and 1k×k denote a square matrix of all ones of size k × k
(not to be confused with the identity matrix of size k × k).
Let Σ be a k × k matrix that corresponds to the modified
observation variances, with the i-th diagonal entry equal to

σ2
i

Q(qi=1)
, and zero elsewhere. Let ot denotes all observed of-

fer prices at time t. The forward stage, corresponding to the
Kalman filter, can be computed iteratively from t = 1 to n,
where for t = 1,

K1 = σ2
01Tk (σ2

01k×k + Σ)−1

µ1 = µ0 +K1(o1 − 1kµ0)

v1 = (1−K11k)σ2
0

c1 = N(o1|1kµ0, σ
2
01k×k + Σ)

and for 1 < t ≤ n,

pt−1 = α2vt−1 + σ2
α

Kt = pt−11
T
k (pt−11k×k + Σ)−1

µt = αµt−1 +Kt(ot − 1kαµt−1)

vt = (1−Kt1k)pt−1

ct = N(ot|1kαµt−1, pt−11k×k + Σ)

The backward stage, corresponding to the Kalman smoother,
can be computed iteratively from t = n−1 down to 1, where

jt = vtα/pt

µ̂t = µt + jt(µ̂t+1 − αµt)
v̂t = vt + j2

t (v̂t+1 − pt)

For both the variational E-step and the subsequent M-
step, the required expectations are given by

Ep[pt] = µ̂t

Ep[p2
t] = µ̂2

t + v̂t

Ep[ptpt−1] = jt−1v̂t + µ̂tµ̂t−1

To sum up, in the variational E-step, we alternate between
computing Q(p) and Q(q) until convergence based on the
system of equations described in Equations (2) and (3). The
factor Q(p) is not determined explicitly, but rather we use
the forward-backward algorithm to determine the required
expectations. The factor Q(q) is determined explicitly using
the log odds described in Equation (4).

Note that the most expensive computation step in the
E-step is inverting the k × k matrices (σ2

01k×k + Σ) and
(pt−11k×k+Σ) in computing the Kalman gain matricesKt at
the forward stage. Note that these are not diagonal matrices
and hence a direct computation of the inverses will take time
O(k3). However, one can take advantage of the structure of
these matrices to avoid the need to take inverses explicitly.
This is discussed further in Section 5.

4.2 The M Step: Parameter Learning
In the M-step, we learn the parameters Θ = (µ0, σ

2
0 , µa,

σ2
a, {πi}ki=1{σ2

i }ki=1) by maximizing the likelihood of the ob-
served data. The optimization can be solved analytically by
taking the derivative of each of the parameters and setting
it to zero. For completeness, the updates to the parameters
are

µ0 = Ep[p1] = µ̂1

σ2
0 = Ep[p2

1]− Ep[p1]Ep[p1] = v̂1

α =

∑n
t=2 Ep[ptpt−1]∑n
t=2 Ep[p2

t−1]

σ2
α =

1

n− 1

n∑
t=2

(
Ep[p2

t]− 2αEp[ptpt−1] + α2Ep[p2
t−1]

)
and for 1 ≤ i ≤ k,

πi = Q(qi = 1)

σ2
i =

1

n

n∑
t=1

(
(oit)

2 − 2oitEp[pt] + Ep[p2
t]
)

Putting it altogether, the learning algorithm is given in
Algorithm 1.

Algorithm 1: EM Algorithm for learning parameters to
generative model of offer prices

input : Offer prices matched to a product O
output: Parameters to the model Θ

Initialize the values of Θ (random or by heuristics);
repeat

Variational E-step:
repeat

Compute required expectations according to
Q(p) using forward-backward algorithm;
Compute Q(q) according to Equation (4);

until convergence;
M-step: Update Θ according to Section 4.2;

until convergence;
return Θ;

5. KALMAN FILTER SPEEDUP
As mentioned in Section 4.1, the dominant computation in

the learning algorithm is inverting the matrices needed in the
forward stage of the inference algorithm. We now consider
how this step can be sped up by avoiding the explicit need
to compute the inverse.

As this technique may be of independent interest, we de-
rive it in a case more general than the one considered in Sec-
tion 4.1. Let s0 be some scalar quantity, c = [c1, c2, . . . , ck]
be a column vector of length k, and D be a diagonal matrix
of size k× k with the diagonal elements being s1, s2, . . . , sk.
Consider the matrix M formed by

M = cs0c
T +D .

For convenience of notation, let c0 = 1. We can show by
induction the following lemmas related to the matrix M .

Lemma 1. The determinant of M equals

|M | =
∑

0≤m≤k

(∏
0≤`≤k, 6̀=m

s`
)
c2m .

Lemma 2. The inverse of M equals

(M−1)ij =
1

|M |

∑

0≤m≤k,m6=i

(∏
0≤`≤k, 6̀=i,m

s`
)
c2m for i = j(∏

0≤`≤k, 6̀=i,j

s`
)
cicj for i 6= j

.

Lemma 3. The product of vector aT = [s0c1, s0c2, . . . , s0ck]
and M equals

(aTM−1)i =
1

|M |

(∏
0≤`≤k, 6̀=i

s`
)
ci .

where (aTM−1)i is the i-th entry of the vector (aTM−1).

By setting c = 1k, D = Σ, and s0 = σ2
0 or pt−1 as ap-

propriate, together with Lemma 3, we can avoid taking the
matrix inverse explicitly, and instead compute the Kalman
gain filter directly in O(k) time. Note that the evaluation
of the determinant of M using Lemma 1 will only take O(k)

time, as one can first pre-compute the product
(∏

0≤`≤k s`
)

in O(k) time and obtain the required product in the sum-
mand by division, thus avoiding taking O(k) time to eval-
uate each of the k summands. Likewise this applies to the
evaluation in Lemma 3.

6. EVALUATION
We now present an empirical evaluation of our technique

using real product and offer data obtained from a commerce
search engine.

6.1 Experimental Setup
We obtain a set of products related to televisions from a

commerce search engine for which we want to create price
histories. The products include both televisions and acces-
sories such as remote controls and mounts. For some of these
products, we manage to obtain its Universal Product Code
(UPC), a unique identifier.

For the products with UPCs, we obtain a set of offers
that are matched to each of them according to the search
engine. We have also obtained the offer prices over a five-
month period from mid July 2011 to mid December 2011.
We filter out any product that include offers with prices that
exhibit a regime change (prices going up or down by more
than 50% from day to day), as these are often due to two
offers being confused as one, and are not proper candidate
for evaluation.

For some of these offers, we manage to obtain their UPCs,
and we treat an offer with a UPC that is equal to that of
the product as ground truth. There are certainly limitation
to this ground truth set—it is possible that an offer with a
missing UPC could be a correct match; it is also possible that
the UPC is incorrect. However, obtaining human judgments
for whether an offer is correctly matched to the product
is a difficult and costly process, and an attempt to obtain
judgment via Mechanical Turk has resulted in very noisy
labels, hence we settle on employing UPCs as ground truth.
To eliminate some of the mistakes due to incorrect UPCs,
we filter out cases where the ground truth includes offers
for which their prices differ by over 100%, as these are signs
that some of the UPCs are incorrect. We also require that
a product has to have there are at least three offers in the
ground truth set.

To identify aberrations in the ground truth set, we com-
pare the daily average prices according to the ground truth,
and the daily average prices according to all offers with
prices between the lowest and the highest prices among the
offers in the ground truth. A priori, there is no reason based
on a price argument that an offer within this range is not a
correct match. Therefore, if many of the offers are missing,
it is an indication that the set of offers in the ground truth
for this product is too small. As the usefulness of our met-
rics depend on a sampling argument (see next subsection),
the results measured on products for which this happens are
less reliable. We remove from consideration products where
the daily averages according to the two computation differs
by more than 5% at the peak. After these processing steps,
our evaluation is conducted over a total of 700 products.

6.2 Metrics
For each product, we compute the average product price

history and the minimum product price history according
to the ground truth set. We measure the difference between
these price histories (both average and minimum) and the
ones generated algorithmically via two metrics.

Our first metric is the mean scaled absolute difference
(MASE), designed to measure how closely the generated
price history tracks the price level of the true price history.
Given the price history p∗ computed from ground truth and

the algorithmic price history p, the MASE is defined as:

MASE(p∗,p) =
1

n

n∑
t=1

|p∗t − pt|
p∗t

.

The lower the MASE, the better the performance of the
algorithm. We denote the MASE for the average price his-
tory as Avg-MASE and that for the minimum price history
as Min-MASE. We report the numbers averaged across all
products.

Our second metric is the mean absolute change difference
(MACD), designed to measure how closely the generated
price history tracks the price trends in the true price history.
Given the price history p∗ computed from ground truth and
the algorithmic price history p, the MACD is defined as:

MACD(p∗,p) =
1

n− 1

n∑
t=2

∣∣∣∣p∗t − p∗t−1

p∗t−1

− pt − pt−1

pt−1

∣∣∣∣ .
This metric captures the average difference between the change
in prices according to each history in relative terms. The
lower the MACD, the better the performance of the algo-
rithm. We denote the MACD for the average price his-
tory as Avg-MACD and that for the minimum price history
as Min-MACD. We report the numbers averaged across all
products.

As a final note, we discuss how the choice of the ground
truth set affects the usefulness of these metrics. If the ground
truth set contains all and only correctly matched offers, the
metrics will measure the desired difference between the true
price histories and the algorithmically genearted ones. As-
suming that the correct matches in the ground truth set
is only sampled (uniformly) from among all of the correct
matches, and that the prices of the correctly matched of-
fers are distributed according to a Gaussian distribution, the
average price history based on the ground truth is an unbi-
ased estimator of the true average price history, and hence
we expect Avg-MASE and Avg-MACD to be good metrics,
provided the samples are sufficiently dense. On the other
hand, the minimum price history based on the ground truth
will systematically overestimate the true minimum price his-
tory. Hence, the Min-MASE and Min-MACD should be in-
terpreted with caution. However, given the importance of
minimum price histories for consumers in deciding when to
buy a product, we decide to keep these metrics in the eval-
uation.

6.3 Choices for Our Algorithms
There are two approaches to computing the average price

history using the probabilistic model proposed in this paper.
First, we can use the inferred latent prices p computed in
the final iteration of the variational E-step in Algorithm 1.
In the experiment, we label this method as Latent. Alterna-
tively, we can use the parameters {πi}ki=1 that correspond to
the likelihoods of the offers being correct matches. Together
with a cutoff threshold τ , we can select all offers with πi > τ ,
and take the average over these offers. In the experiment,
we label this method as Match.

To compute the minimum price history, the inferred latent
prices are not directly applicable. Therefore, we follow the
paradigm of Match as described in the preceding paragraph,
and instead of taking the average we take the minimum after
offers are selected.

In all of our experiments, we have selected τ to be 0.6.

After inspecting the values of the parameters {πi}ki=1 for a
number of products, we notice that the values are typically
very close to 0 or 1. Hence, the choice of τ has minimal
effect on the performance of Match.

6.4 Algorithms for Comparison
We compare our approach to three alternatives in our

experiments for the evaluation on average price histories.
These algorithms are (labels in parentheses):

• Trimmed mean (Trim): for each day, the top and bot-
tom 10% of the offer prices are removed before the
average is taken.

• Median (Median): for each day, the median among all
offer prices is chosen.

• Postprocessing with Kalman filter and smoother (Post
KF): form a price history by taking the daily average
of all offer prices, then apply the Kalman filter and
smoother to the resulting price history treating it as
observations.

We choose the trimmed mean and the median as they
are common and popular alternatives to the simple average,
and they are considered more robust to outliers. We also
choose the Kalman filter and smoother applied as a post-
processing step after the average is taken, as it can help
to smooth away anomalous averages that are caused by the
occasional outliers.

For the evaluation on minimum price histories, the median
no longer makes sense. Instead, we select the price of the
offer closest to the 10-th percentile as the product price.
We call this method as the Trimmed Min (Trim) as it is
analogous to removing the top and bottom 10% of the offer
prices before taking the minimum. We continue to evaluate
the Kalman filter and smoother as a post-processing step
applied to the minimum taken over all offer prices.

Finally, as baseline, we consider using the entire set of
matched offers to generate the price history. In the experi-
ment, we label that as All.

6.5 Results
The performances of our algorithms, the baseline, and the

alternatives are presented in Table 1. Note that while these
percentages may appear small, they do matter to prospective
consumers. For example, for a $2,000 TV (a typical price
for a brand-named LCD TV), a MASE of 5% corresponds to
a difference of $100 on average between the true price and
the reported price each day. Such errors can significantly
decrease credibility of the system. Likewise, a MACD of 1%
corresponds to a difference of $20 on average between the
true price change and the reported price change. The errors
quickly add up and may lead to poor recommendations for
consumers who are deciding between buying now or wait.

For each metric, we present its value, followed by % dif-
ference from the baseline in the next row. Recall that under
all four metrics, the lower the value, the better the perfor-
mance; improvements over baseline will give a negative %
difference. Our main findings are:

• Match is the best algorithm overall. The differences
in performance under all four metrics between Match
and the baseline All are statistically significant under
paired t-tests, with p < 0.1 for both MASE measures

Metric All Trim Median Post KF Latent Match
Avg-MASE 3.48% 3.77% 4.49% 3.58% 4.84% 3.34%

- +8% +29% +3% +39% -4%
Avg-MACD 0.63% 0.63% 1.00% 0.69% 0.67% 0.58%

- 0% +59% +9% +6% -9%
Min-MASE 4.59% 5.14% N/A 4.85% N/A 4.27%

- +12% - +6% - -7%
Min-MACD 0.80% 0.94% N/A 0.80% N/A 0.59%

- +18% - 0% - -26%

Table 1: Overall Results of All Algorithms Under
Four Metrics. The best performing approaches are
highlighted in bold.

and p < 0.005 for both MACD measures. The mag-
nitude of improvements are higher for the minimum
price history, and under MACD that measures price
trends.

• The baseline All is a difficult baseline to beat. This
should perhaps be not too surprising as UPCs consti-
tute an important signal commonly used in matching
algorithms. Indeed, none of the alternatives, Trim, Me-
dian, or Post KF, has outperformed All on any of the
metrics. This shows that the type of errors made by All
cannot be addressed by simply applying more robust
statistics, or by smoothing away an occasional outliers.

• Although Match and Latent employ the same proba-
bilistic model, Latent performed far worse than Match.
This was initially quite puzzling to us. Through an
error analysis, we determine the causes were due to
the product price dynamics; this is discussed further
in Section 6.7.

6.6 Factor Analysis
To better understand when we could expect Match to

do well, and under what conditions Match will outperform
All and vise versa, we analyze different groupings of the
products to identify factors that are highly correlated with
performance. We identify two factors—fraction of offers
matched in the ground truth, and the difference in prices
among matched offers—as the two most influential factors.
Their effects on Avg-MASE and Avg-MACD are presented
in Figure 2. Their effects on Min-MASE and Min-MACD
exhibit the same trends and are omitted due to space limi-
tations. The key observations are:

• The fraction of offers that are matched to a product
in the ground truth set is negatively correlated with
MASE and MACD for both Match and All, i.e., higher
fraction of offers matched lead to better performance.
This is unsurprising and can be explained by the ex-
perimental setup, as an increasing fraction of offers in
the ground truth set increases the likelihood that an
offer matched to the product is correct and will con-
tribute to the average product price.

From the system design viewpoint, an insight from
this analysis is that there exists a cross-over point at
around 70% when All starts to outperform Match. As
most matching algorithm in ecommerce utilizes UPC
as one of the features for matching, one can readily

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v

g
-M

A
S

E

Fraction of Offers in Ground Truth

All

Match

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v

g
-M

A
C

D

Fraction of Offers in Ground Truth

All

Match

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v

g
-M

A
S

E

Difference between Max and Min Price in Ground Truth

All

Match

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v

g
-M

A
C

D

Difference between Max and Min Price in Ground Truth

All

Match

Figure 2: Primary factors that influence the relative performance between Match and All.

use the fraction of offers with matched UPC as a fea-
ture, and only apply Match when the fraction falls be-
low some threshold, and derive a hybrid approach that
should outperform both.

• The difference between the correctly matched offers
with the highest and lowest prices is positively corre-
lated with MASE and MACD for both Match and All,
i.e., larger differences lead to worse performance. This
points to the increased difficulty of creating represen-
tative price histories as the differences in offer prices
increase. There is no clear cross-over point like the
preceding factor, hence a hybrid approach is unlikely
to help with this scenario.

On examining further the set of products with large
differences, we discover that there are often fundamen-
tal issues with the matching associated with such prod-
ucts. This is discussed further in the next subsection.

6.7 Error Analysis
Examining the cases for which our method performs poorly,

we note that a common cause is due to the existence of
multiple sets of offers, each with distinct price ranges, be-
ing mapped to the same product, and in the ground truth
set, offers from two or more sets are deemed correct. This
problem often also leads to large differences in the prices of
the matched offers, a problem noted before. This leads to
poor performance for Match, as the probabilistic model often
learns parameters that corresponds to one set of offers, and
Match produces an average price history that corresponds
only to the set selected.

We find it intuitively unlikely that a set of correctly matched
offers should have exhibited such big variations in prices.
While it is possible that this is simply a reflection of dif-
ferent pricing strategies by the merchants, we think a more
likely explanation is that the offers are fundamentally dif-

ferent in some ways, for example, TVs sold with accessories
versus just the TVs, or the price is inclusive of shipping or
extended warranty. We believe a representative price history
should avoid mixing these different offers, as the underlying
product sold is different. Instead, a better solution is to
group the like offers together and present separate price his-
tories for each of the groups.

Despite both being based on the same probabilistic model,
Latent performs significantly worse than Match. Examining
some of the products for which the difference is large, we
notice that poor performance often happens when either (1)
the composition of the set of offers changes, causing a large
discrete jump occurs in the true price history, or (2) there
is an offer considered likely to be correct by the model ex-
hibits a temporary change in prices. As the latent price vari-
ables attempt to balance the price dynamics of the model
(as governed by α and σ2

α) and the set of new observations,
Latent enters into a transition period and adjusts to these
changes gradually . The errors during this transition pe-
riod are high. On the other hand, Match reacts immediately
under both situations, and therefore does not suffer from a
transition period. As both types of situations are common
in our dataset, Latent performs worse than Match.

7. CONCLUSION
We study the problem of how to aggregate web offers to

create representative price histories, taking into account that
offers that are matched to a product are not always correct.
To solve this problem, we propose a probabilistic model for
how offer prices are generated, extending the classical linear
dynamical system to allow for possibly incorrect observa-
tions. We give an EM algorithm for finding the parameters
that maximize likelihood, and work around the computa-
tionally intractable exact inference needed in the E-step by
variational approximation. To further speed up the learning

algorithm, we take advantage of the structure of our prob-
lem that assumes independence among offers, and establish
certain matrix equalities that allow us to circumvent the
need to take matrix inverses in computing the Kalman gain
filter, leading to quadratic speedup of the algorithm. This
technique may be of independent interest.

We conduct an extensive evaluation of our approach using
data obtained from a commerce search engine. We consider
two metrics in evaluation—MASE for evaluating how well a
method tracks the true price level, and MACD for evaluating
how well a method tracks the true price trend. Our method
significantly outperforms alternatives including the median,
the trimmed mean, and post-processing using Kalman fil-
ter and smoother. The improvements over the baseline are
statistically significant. How the output of the probabilistic
model is used has large influence over the performance. We
find that it is significantly better to use the learned likeli-
hood of whether offers are correctly matched than to use
the latent price variables. This work addresses a limitation
of the experiments in [1] which depends on data vendor for
product prices, and constitutes a step towards building a
system that helps consumers decide when to buy a product.

We conclude with several interesting future research di-
rections. First, can the probabilistic model proposed in the
paper be integrated into some matching algorithm to im-
prove the matching process itself? While some proposed
matching algorithms in the literature can use price as one of
the matching features, we are not aware of any solution that
takes advantage of the sequentiality of the offers. Combin-
ing a dynamic model of prices like the one presented here
with matching will likely be both fruitful and challenging.
Second, we have considered only a state-space model with
only a single state in our probabilistic model. Better perfor-
mances may be possible by adopting a higher-dimensional
state-space model. One may also want to revisit the gener-
ative process for the correctly matched offers, as it is com-
mon for merchants to keep offer prices constant for periods
of time before adjustments. Finally, looking at the entire
set of offers open up new possibility in predicting future
product prices. An important direction is to revisit the al-
gorithms proposed in [1], and see if by using all offers one
can improve forecasting accuracies, and help make better
buy-or-wait recommendations to consumers.

8. REFERENCES
[1] R. Agrawal, S. Ieong, and R. Velu. Ameliorating

buyers’ remorse. In Proc. KDD, 2011.

[2] R. Agrawal, S. Ieong, and R. Velu. Timing when to
buy. In Proc. CIKM, 2011.

[3] O. Benjelloun, H. Garcia-Molina, D. Menestrina,
Q. Su, S. E. Whang, and J. Widom. Swoosh: a generic
approach to entity resolution. The VLDB Journal,
18(1):255–276, 2009.

[4] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. IEEE Intel. Sys., 18(5):16–23, 2003.

[5] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer-Verlag New York, 2006.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. Journal Of The Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[7] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. on
Knowl. and Data Eng., 19(1):1–16, 2007.

[8] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

[9] Z. Gharamani and G. E. Hinton. Parameter
estimation for linear dynamical systems. Technical
report, University of Toronto, 1996.

[10] Z. Gharamani and G. E. Hinton. Variational learning
for switching state-space models. Neural Computation,
12(4):963–996, 2000.

[11] N. J. Gordon, D. J. Salmond, and A. F. M. Smith.
Novel approach to nonlinear/non-gaussian bayesian
state estimation. Radar and Signal Processing, IEE
Proceedings F, 140(2):107–113, 1993.

[12] P. J. Huber. Robust Statistics. Wiley, 1981.

[13] M. Isard and A. Blake. CONDENSATION —
conditional density propagation for visual tracking.
Int. Journal of Computer Vision, 29(1):5–18, 1998.

[14] R. E. Kalman. A new approach to linear filtering and
prediction problems. Transactions of the
ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[15] K. Kanazawa, D. Koller, and S. Russel. Stochastic
simulation algorithms for dynamic probabilistic
networks. In Proc. UAI, 1995.

[16] A. Kannan, I. E. Givoni, R. Agrawal, and A. Fuxman.
Matching unstructured product offers to structured
product specifications. In Proc. KDD, 2011.

[17] M. Michelson and C. Knoblock. Creating relational
data from unstructured and ungrammatical data
sources. Journal of Artificial Intelligence Research,
31:543–590, 2008.

[18] R. Mitkov. Anaphora Resolution. Longman, 2002.

[19] H. B. Newcombe, M. J. Kennedy, S. J. Axford, and
A. P. James. Automatic linkage of vital records.
Science, 130:954–959, October 1959.

[20] P. Ravikumar and W. W. Cohen. A hierarchical
graphical model for record linkage. In UAI, 2004.

[21] S. Roweis and Z. Ghahramani. A unifying review of
linear gaussian models. Neural Computation, 1997.

[22] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In KDD, pages
269–278, 2002.

[23] S. Singh, K. Schultz, and A. McCallum. Bi-directional
joint inference for entity resolution and segmentation
using imperatively-defined factor graphs. In
ECML-PKDD, pages 414–429, 2009.

[24] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla,
M. I. Jordan, and S. Sastry. Kalman filtering with
intermittent observations. IEEE Trans. on Automatic
Control, 49:1453–1464, 2004.

[25] W. E. Winkler. Overview of record linkage and
current research directions. Technical report, Bureau
of the Census, 2006.

[26] P. Zarchan and H. Musoff. Fundamentals of Kalman
Filtering: A Practical Approach. AIAA, 2nd ed., 2005.

[27] J. Zhong and S. Sclaroff. Segmenting foreground
objects from a dynamic textured background via a
robust kalman filter. In Proc. ICCV, 2003.

