
Encoding Low-Rank and Sparse Structures
Simultaneously in Multi-task Learning

Shike Mei
Tsinghua University

meiskoier@gmail.com

Bin Cao
Microsoft Research Asia

bincao@microsoft.com

Jiantao Sun
Microsoft Research

jtsun@microsoft.com

Abstract

Multi-task learning (MTL) aims to improve the performance of each task by bor-
rowing the knowledge learned from other related tasks. Identifying the underlying
structures among tasks is crucial for MTL to understand the relationship among
tasks. In this paper, we propose a novel multi-task learning model to simulta-
neously consider low-rank structure and sparse structure. Combining these two
types of structures could not only improve the learner’s performance, but also
make the interpretation of learned structures easier. However, the standard sub-
gradient optimization method for solving this problem could only achieve a rate
of convergence O(1/

√
k). We propose a novel optimization method combining

the Moreau approximation and an accelerated proximal method to achieve a rate
of convergence O(1/k). We conduct experiments on synthetic data and several
real-world data sets and the results show the gains of our model in comparison
with state-of-the-art baselines.

1 Introduction

Multi-task learning (MTL) aims to improve the generalization performance of each learning task
by exploiting the intrinsic structures shared among a group of tasks. The shared structures, which
encode the common knowledge of related tasks, are crucial for the success of multi-task learning.
MTL is especially desirable when many related tasks are required for learning but the training data
for each of them is limited. With the help of the learnt structures of multiple tasks, the scarcity
of training data can be alleviated. In previous studies, different structures were assumed to exist
among tasks and corresponding algorithms are proposed to learn such structures. For example,
[10] assumes that all tasks are related to each other, [25, 24, 1] assume a shared low-dimension
feature space among tasks, [26] uses a covariance matrix to model the relationship among tasks.
[11] assumes a cluster structure shared among tasks.

Two types of structures have been extensively studied in MTL. One is that multiple learning tasks
share one low-dimension feature space, which is natural for many applications. For example, [1]
proposes a method to learn the shared low-dimension feature space. [11] assumes the cluster struc-
ture shared among tasks, which is shown to be equivalent with the low-dimension feature space
assumption [27]. In this paper, we refer to the structure induced by the low-dimension space as-
sumption as the low-rank structure. Sparsity is another important structure in machine learning and
is introduced to MTL, such as group sparse structure [14, 19] and hierarchical sparse structure [13].
Being sparse means having good properties in theoretical statistics, such as having good consistency

1



when the sparsity assumption holds [14], as well as having efficiency of prediction and an explicitly
interpretable model in practice [2].

Although both the low-rank structure and the sparse structure are explored in previous MTL re-
search, they are seldom considered together in multi-task learning. However, we argue that they
should be considered jointly for the following reasons:

• Many MTL problems have both the low-rank structure and the sparse structure. The low-
rank structure is usually introduced by the cluster relationship in tasks. When each cluster
of tasks shares their own features, the parameter matrix is a block matrix with many blocks
of zero matrices, making the parameter matrix both low-rank and sparse.

• The two assumptions are helpful to each other with regard to learning meaningful mod-
els for multiple tasks. The low-rank assumption aims to find a small number of factors
that govern multiple task learning. The sparsity assumption aims to find the most concise
models by dropping irrelevant features. Finding similar tasks with low-rank structure could
help capture the relationship among features, which is helpful for learning sparse represen-
tations. At the same time, the sparsity requirement may help identify more salient features,
which will then lead to better low-rank structures.

In this paper, we exploit both low-rank and sparse structures for MTL. We derive the convex formu-
lation, which regularizes the parameter matrix by both the trace norm and the `1-norm. Although the
problem is convex, it is not easy to solve due to the non-smoothness of the two norms and their dif-
ferent properties [2, 20]. To the best of our knowledge, the standard subgradient method can be used
for solving this problem but it can only achieve a rate of convergence O(1/

√
k). To improve the

performance of the algorithm, we propose a method combining the Moreau approximation [15] and
an accelerated proximal method to optimize the objective. We prove that our method can optimize
the objective with a rate of convergence O(1/k), which is much faster than the standard subgradient
method.

The contributions of this paper include:

• To the best of our knowledge, we are the first to model both low-rank and sparse structures
in multi-task learning.

• We propose a novel optimization algorithm that has the guaranteed rate of convergence
O(1/k), which improves the standard subgradient optimization method with a rate of con-
vergence O(1/

√
k).

• We conduct experiments with synthetic data and several real-world data sets and verify the
improvement created by exploiting the low-rank and sparse structure in MTL.

2 Notations and Preliminaries

Here is an introduction to the notations used in this paper. Let Q be a matrix, qi denotes the i-th
row, qj denotes the j-th column and qij denotes the (i, j) entry. σi(Q) denotes i-th largest singular
value of matrix Q. We define Sp+ as a set of symmetric positive definite matrices with size p × p.

Tr(Q) denotes the trace of matrix Q. ‖Q‖F =
√∑

i

∑
j q

2
ij denotes the Frobenius norm of matrix

Q. ‖Q‖0 =
∑
i

∑
j I(qij 6= 0) denotes the `0-norm of matrix Q. ‖Q‖1 =

∑
i

∑
j |qij | denotes

the `1-norm. ‖Q‖∞ = maxi,j |qij | denotes the `∞-norm. rank(Q) denotes the rank of matrix Q.

‖Q‖∗ = Tr(QTQ)
1
2 =

∑
i σi(Q) indicates the trace norm (also called nuclear norm) of matrix Q.

In the multi-task learning setting, we have T related tasks and aim to learn functions over the feature
space X ⊆ Rp given the training data (x

(t)
i , y

(t)
i )nti=1. where nt is the number of training samples

for task t, x
(t)
i ∈ X is the feature vector for the i-th training sample in the t-th task data and

y
(t)
i ∈ Y is the corresponding response. In binary classification problems, Y = {−1, 1} and in

regression problems Y ⊆ R. We denote the function we need to learn as f(x) : X → Y . In
this paper, we focus on linear predictors, where f(x) = 〈x,w〉. w is referred to as the weight
vector. Under this setting, the problem of learning f(x) converts to learn the weight vector w.

2



Let Xt = [x
(t)
1 ,x

(t)
2 , ...,x

(t)
nt ]T ∈ Rp×nt denotes the feature matrix containing each feature vector

x
(t)
i as a column, yt = [y

(t)
1 , y

(t)
2 , ..., y

(t)
nt ]T ∈ Rnt denotes the response vector for task t, and

W = [w1,w2, ...,wT ] ∈ Rp×T is defined as the parameter matrix that we need to estimate. The
general formulation for multi-task learning can be expressed as:

min
W

∑
t

L(XT
t wt,yt) + λΩ(W)

where L(XT
t wt,yt) : R × Y 7→ R is a loss function with respect to wt to penalize the prediction

error. For simplicity of notation, we denote the whole loss function
∑
t L(XT

t wt,yt) as L(W).
For the whole paper, we assume L(W) is convex and differentiable and has Lipschitz continuous
gradient function. λΩ(W) is the penalty on the parameter matrix W to encode some structures of
W, typically it is a non-smooth norm. For instance, [9] uses Ω(W) = ‖W‖∗, which is the convex
surrogate of rank of W, to enforce the low-rank structure of W.

3 Problem Formulation

In our model, we expect W to be simultaneously sparse and low-rank. Formally, we propose the
following convex problem:

min
W

F (W) , L(W) + λ1‖W‖1 + λ2‖W‖∗ (1)

where λ1 and λ2 are the regularization coefficients to balance the strength of the loss and regular-
ization terms. We observe that there is actually a trade-off between the low-rank structure and the
sparse structure. To better visualize this, we consider several special cases of our formulation. When
λ1 = 0, the problem degenerates to a model with only low-rank structure. This degenerated model
is the same as the models in [9] that learn the small number of shared features among tasks and get
a convex formulation. When λ2 = 0 the problem degenerates into model with only sparse structure
where each task is independent and regularized by the `1-norm. Therefore, we can adjust λ1, λ2 to
balance the sparse and low-rank structures, and take advantages of both properties.

Moreover, we can easily generalize our model to encode prior structure information into the s-
parse regularizer. For example, we can replace our `1-norm regularization with the `1/`2-norm:
λ1

∑
i ‖wi‖2, which is first used in group lasso [23]. Then our reduced model (when λ2 = 0)

is the same as work [19] which uses the `1/`2-norm to encode group sparsity. Similarly, we can
generalize our model to encode the hierarchical structure of features into our model by replace our
`1-norm with

∑
i

∑
g αi,g‖wi

g‖2. This structure was first introduced to MTL in [13], which is also
a special case of our generalized model (when λ2 = 0). We will show in the next section that all
these generalized models can be efficiently solved by our optimization method.

Also note that our model is substantially different with robust multi-task learning models [6, 8].
Because the two works are similar, we use the model in [6] as an example. They decomposes the
parameter matrix W into two parts and use a trace-norm and a `1-norm on each part. The goal of
their model is to distinguish the outlier features or tasks to maintain the robustness of the model. In
comparison, our model aims to penalize W with both trace-norm and `1-norm simultaneously to
have both low-rank and sparse structures of W. Our goal is to learn concise and more interpretable
structure of the tasks with the help of sparsity.

The next result shows how we can learn the parameter matrix for MTL by balancing the effects of
low-rank structure and sparse structure.
Theorem 1. We assuming each task has the same number of samples and denote this number as
n. Each task’s feature matrix Xt ∈ Rp×n has all columns i.i.d. sampled from a p-variate N (0,Σ)
distribution. We denote the true parameter matrix as W∗. We assume W∗ to be both low-rank and
sparse, that is rank(W∗) ≤ r and ‖W∗‖0 ≤ q, where r and q are two positive integers. Response
vector of each task is generated as yt = XT

t w∗t + bt, where bt is a noise with all entries i.i.d
sampled from N (0, σ2

w). We denote B = [b1, ...,bT ] as the noise matrix. We consider the case
where the loss is square loss, that is

∑
t L(XT

t wt,yt) = 1
N ‖yt − XT

t wt‖22 where N is the total
number of samples and N = nT . The minimizer of the objective Eq (1) is denoted as Ŵ. The

error is defined as ∆ = Ŵ −W∗. By choosing λ1 + λ2 ≥ 2
12
√
p+Tσw

√
σmax(Σ)

n
1
4

we can bound

3



the Frobenius norm of ∆ with probability 1 − c1 exp(−c2(m1 + m2)
√
n), where c1 and c2 are

constants.
‖∆‖F ≤ (2λ1

√
2r + 2λ2

√
q)

9

σmin(Σ)

Moreover,

‖∆‖F ≤ (β
√

2r + (1− β)
√
q)

432
√
p+ Tσw

√
σmax(Σ)

σmin(Σ)n
1
4

(2)

where β can be arbitrary value in [0, 1]

The proof generalizes the result of low-rank matrix estimation in [16] and can be found in the
appendix. From Eq (2) we can observe that the bound is actually a trade-off between the results
from the trace norm and the `1-norm. We consider two extreme cases: when

√
q �

√
2r we will

take β ≈ 0, Eq (2) is dominated by a bound for lasso. When
√

2r � √q we will take β ≈ 1, Eq (2)
is dominated by the bound for multi-task in [16]. Therefore, we can adjust β ∈ [0, 1] according to
the strength of low-rank and sparse structures to balance the generalization bound induced by both
structures, and take advantages of both properties.

4 Optimization Algorithm

In this section, we first introduce the Moreau approximation method to provide an approximation
of Eq (1). Next, we show that by solving an appropriate approximation with a rate of convergence
O(1/k2) we can optimize Eq (1) with a rate of convergenceO(1/k). We then present the accelerated
proximal method to optimize the approximate objective with a rate of convergence O(1/k2).

4.1 Smoothing Method

The optimization algorithm for convex objective in Eq (1) is non-trivial. This is because both ‖W‖1
and ‖W‖∗ are non-smooth. For such an objective, the best optimization method we know of is the
subgradient method, which has been proven to achieve a rate of convergence O(1/

√
k) [17] .

To improve the efficiency of the optimization algorithm, we further exploit the structures of the ob-
jective. An objective with either a `1-norm or a trace norm as the only regularizer can be optimized
with a rate of convergence O(1/k2). However, when the two regularizers are combined, the ob-
jective is difficult to optimize because the two regularizers are both non-smooth and have different
properties. This inspires us to reduce the two regularizers to one regularizer via a smoothing method.
Therefore, we use Moreau proximal smoothing [15] on the trace norm regularizer. More formally,
we use the Moreau approximation Ωµ(W) to approximate the trace norm λ2‖W‖∗

Ωµ(W) = min
M

(
1

2µ
‖W −M‖2F + λ2‖M‖∗), (3)

where µ is the smoothing parameter. The Moreau smooth approximation has a good property that
even the convex regularizer on W is non-smooth, its approximation Ωµ(W) is convex and smooth
with respect to W. Moreover, the gradient can easily be computed as

∇Ωµ(W) = λ2(W −M∗(W)) (4)

where M∗(W) = arg min
M

( 1
2µ‖W −M‖2F + λ2‖M‖∗). For the trace norm, we can determine

the closed-form expression of M∗(W) using the soft-threshold operation on the singular values of
W [12]. Next, we replace the trace norm with its Moreau approximation in Eq (1) and obtain the
approximated objective with only one non-smooth term.

min
W

Fµ(W) , L(W) + λ1‖W‖1 + Ωµ(W) (5)

We can define the smooth component in Eq (5) as Pµ(W) , L(W) + Ωµ(W) and the objective
Fµ(W) can be seen as the summation of the smooth term Pµ(W) and the simple non-smooth `1-
norm regularization term λ1‖W‖1.

min
W

Fµ(W) = Pµ(W) + λ1‖W‖1 (6)

4



One important question about the smoothing method is how precise can the approximation be. We
will show below that based on properly selected smoothing parameter µ, we can solve the problem
Eq (1) efficiently at arbitrary precision. Before giving the theorem, we first give two lemmas.
Lemma 1. For any W , we have |Ωµ(W) − λ2‖W‖∗| ≤ cµ, where c is a constant independent of
µ.

Lemma 2. For any W , the Lipschitz constant of the gradient function of Ωµ(W) is less than or
equal to 1/µ.

The proof of the two lemmas can be found in [15]. The first lemma shows that the precision of
the approximation is proportional to the smoothing parameter µ. The second lemma shows that the
Lipschitz constant of the gradient function, which is a measure of the smoothness of a function, is
proportional to the inverse of µ. The two lemmas show an interesting conflict between the precision
and smoothness when using the smooth approximation. This conflict, as we shall show in Theo-
rem 2, leads a rate of convergence O(1/k) by optimize approximation objective Eq (5) with rate
O(1/k2). This theorem is similar with Theorem 3.1 in a very recent work [5].
Theorem 2. Suppose that W∗ is the minimizer of Eq (5), and that α is a constant, and that LP is
the Lipschitz constant of the gradient function of the smooth component in Eq (5). Suppose thatM
is an iterative method for solving Eq (5) which generates a sequence {Wk}. We assume that the
sequence satisfies the condition:

Fµ(Wk)− Fµ(W∗) ≤ LPα

k2
(7)

Then by solving Eq (5) with proper µ, we can solve Eq (1) with the rate of convergence O(L/k),
where L is the Lipschitz constant of the gradient function of the smooth component in Eq (1).

4.2 Approximate Proximal Method

We now present an algorithm to optimize Eq (5), which can converge on global minimum and
generate the sequence satisfying Eq (7). According to Theorem 2, the same algorithm can opti-
mize Eq (1) with a rate of convergence O(L/k). Our algorithm is based on FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) [4], which is a popular version of accelerated proximal meth-
ods (APM) [18]. APM can be adopted when the objective is able to be decomposed into a convex
smooth term and a “simple” non-smooth convex term, where “simple” means the minimizer of the
summation of the non-smooth term and a quadratic auxiliary term can be easily obtained. The key
step of APM is taking the proximal operator after taking the gradient step in each iteration. In Eq (5),
based on the gradient step of the smooth component Pµ(W) in each iteration, we use the proximal
operator to deal with the non-smooth `1-norm component:

Wi+1 = proxλ1
Li
‖·‖1

(Wi −
1

Li
∇Pµ(Wi))

= arg min
W

1

2
‖W − (Wi −

1

Li
∇Pµ(Wi))‖2F

+
λ1

Li
‖W‖1

= arg min
W

Pµ(Wi) +∇Pµ(Wi)
T (W −Wi)

+
Li
2
‖W −Wi‖2F + λ1‖W‖1 + const

(8)

where proxh(·)(W) , arg min
M

1
2‖W −M‖2F + h(M) is called the proximal operator [2]. It

actually linearizes the smooth component near the current point and solve the minimization problem
when adding the non-smooth component. The quadratic term Li

2 ‖W −Wi‖2F in Eq (8) is called
the proximal term, which can enforce the minimizer to be chosen near Wi. The Li is a parameter
that should be no smaller than the Lipschitz constant of the gradient of smooth component Lp and
is determined by backtracking [4]. Also note that when the non-smooth component disappears
(i.e. λ1 = 0), we get a proximal method for optimizing the smooth component Pµ(W), which is
equivalent to the gradient descent. At this point, we should view the proximal gradient method as a
generalization of the gradient method to deal with a non-smooth component.

5



It has been shown in [4] that FISTA can achieve a rate of convergence O(LP /k
2). Therefore, the

efficient computation of the proximal operator is important for attaining this fast rate. Fortunately,
by utilizing the separability of Eq (8), we can derive a closed-form solution [2], which performs the
soft-threshold operation on each entry of W. Note that the generalized models introduced in the
above section can also be efficiently solved by the closed-form solution of the proximal operator of
these structured sparsity norms [2]. Therefore, the generalized models can be solved by our method
without loss of computational efficiency.

Algorithm 1 APM for the Trace-norm and the `1-norm
1: Input: W0, L0, Pµ(W), λ1, λ2, µ
2: Output: W∗

3: Initialize: t1 = 1, S1 = W0, i = 1
4: while W does not converge do
5: Determine Li by backtracking [4].
6: Wi ← proxλ1

Li
‖·‖1

(Si − 1
Li
∇Pµ(Si))

7: ti+1 ← 1
2 (1 +

√
1 + 4t2i )

8: Si+1 ←Wi + ti−1
ti+1

(Wi −Wi−1)

9: i← i+ 1
10: end while
11: W∗ ←Wi

4.3 Time complexity analysis

Due to the iterative nature of the algorithm, the time complexity depends on two factors, the number
of iterations before convergence and the time consumed in a single iteration. We give the theorem
that guarantees the rate of convergence O(1/k) and the total computation time as follows (proof can
be found in the appendix):

Theorem 3. Algorithm 1 converges to the global minimum of objective Eq (1) with rate of con-
vergence O(1/k). The total time consumed by Algorithm 1 is O(Np + m)/k), where m is the
computation time for the SVD of matrix W.

5 Related Work

To the best of our knowledge, there are two closely related works that consider both low-rank and
sparse structures. In this section, we discuss them in detail and point out their differences from our
work. The first work is [25], which proposes a probabilistic latent factor model for MTL and uses the
Laplacian distribution as the prior of the latent vectors, which can introduce `1-norm in MAP. There
are two differences compared with our work. First, this model puts a sparsity constraint on the latent
factors rather than the parameter matrix. The sparsity of latent factors does not necessarily lead to
a sparse parameter matrix. Our model directly puts the `1-norm on W, which has guaranteed W
will be sparse. Second, they use a matrix factorization model, which is not formulated as a convex
problem, while our model is convex and a global optimal can be found.

The second work is quite recent [21]. The authors analyze the problem of matrix completion with
both low-rank and sparse structures. The main differences with our work include:

• Their goal is to find the approximate matrix for some given entries, while we focus on ex-
ploiting the low-rank structure and sparse structure in the MTL setting where the parameter
matrix is learned.

• They directly optimize the regularization with both the trace norm and the `1-norm, and
their optimization method has no guarantee for the rate of convergence. However, we
propose a method that guarantees a rate of convergence O(1/k).

6



6 Experiment

In this section, we present the models for comparison, the results on synthetic data, real data sets used
for experiments, the evaluation methods, and the experiment results, as well as some discussions.

6.1 Experiment Setting

Now we introduce the five models compared in our experiment. LSS indicates the multi-task learn-
ing model proposed in this work. MTFL indicates he multi-task feature learning [9] model with
square loss. Lasso indicates he formulation with square loss and the `1-norm regularization on the
parameter matrix. Note that it can be seen as a summation of the objectives for single tasks, thus it
is not a MTL model. RMTL [8] indicates the robust multi-task learning model, which is shown to
be the state-of-the-art MTL method. This method can simultaneously learn the task relationship and
distinguish outliers. CMTL [11] indicates a convex model that can learn the cluster structure among
multiple tasks. Note that we do not compare the ASO model [7] because ASO has been proven to
be mathematically equivalent to CMTL [27].

6.2 Synthetic Data

We first construct a synthetic dataset for experiments. We generate 10 task clusters. Each task
cluster has 12 tasks and tasks in one cluster use the same set of 30 features. Then we get the
parameter matrix W ∈ Rp×T where p = 300 and T = 120. For simplicity, we set all non-zero
entries in the matrix to have value of 1.0. The parameter matrix is displayed in Figure 1(a). For each
task we generate nt = 20 data samples, where the feature vector x are drawn i.i.d. from N (0, I)
and the response is generated by y = xTw + ε where ε is a noise drawn fromN (0, 5). We show the
parameter matrix recovered by Lasso, MTFL, LSS in Figure 1(b),1(c), and 1(d), respectively. We
can observe that the LSS model can better recover the parameter matrix despite the noise and small
number of samples. It is also observed that LSS model can better capture the both the low-rank and
sparse structures of parameter matrix.

(a) Ground
Truth

(b) Lasso (c) MTFL (d) LSS

Figure 1: Parameter matrix recovered by each model

To show the efficiency of our optimization method, we compare our proposed optimization method
with some other candidates. Since the model is being proposed for the first time, we do not know any
other specially designed optimization methods we only compared to two general optimization meth-
ods. Therefore, we compare our method (called LSS-SmoothAPM) with the standard subgradient
method [17] (called LSS-subgradient) and the general forward-backward splitting method (called
LSS-GFB) recently introduced in [21]. We set these methods with the same initial parameters and
all specific parameters for each method (such as step size) are tuned to achieve its best efficiency.
We can see the convergence in Figure 2 that our method converges much faster than the other two
methods, which is consistent with the theoretical analysis of our method.

7



0 100 200 300 400 500 600 700 800 900
280

285

290

295

300

305

310

315

320

325

o
b

je
ct

iv
e 

va
lu

e
iteration

 

 
LSS−Subgradient
LSS−GFB
LSS−SmoothAPM

Figure 2: Convergence of LSS-subgradient, LSS-GFB and LSS-SmoothAPM on synthetic data

Table 1: Statistics of the benchmarks data sets

DATA SAMPLE SIZE DIMENSION TASK NUMBER TYPE
SCHOOL 15,392 27 139 SURVEY
YEAST 2,417 103 14 GENE
SCENE 2,407 294 6 IMAGE
20NEWSGROUP 19,928 62,061 20 TEXT

6.3 Real Data Sets

We also use four real-world data sets for more experimental studies. The datasets include School
data [26, 3] Scene data,Yeast data1 [6] and 20 Newsgroups data2 [1]. The School data is a
multi-task regression problem and the other three are multi-class classification problems for which
we view classifying each class as a task. Table 1 summarizes the statistical information of each data
set.

For all benchmark data sets except the 20 newsgroup, we randomly sample 10% from the data sets
as the training sets and use the rest 90% as the test sets. The reason for the small sampling ratio is
that multi-task learning is well-suited for situations where only a small set of training data exists for
each task. For 20 newsgroup, we sample only 5% as a training set and the remaining is used as the
test set because it has been shown that 20 newsgroup data set can be predicted well even when there
is a relatively small training set [1]. For the regression problem, we report the normalized mean
square error (NMSE) and averaged mean square error (AMSE), which were also used in previous
work [9]. For the classification problem, we report the average Area Under the Curve (AUC), Macro
F1, and Micro F1. The definition of these three metrics can be found in [22]. For all the data sets, we
run 15 rounds of experiments and report the mean and variance for all metrics. We tune algorithm
parameters via cross-validation.

6.4 Results

We present the average performance and standard deviation for all five algorithms on the four bench-
mark data sets in Table 2. From the table, we can reach the following conclusions:

1. LSS outperforms MTFL and Lasso on all data sets. This supports the claim that simulta-
neously considering low-rank and sparse structures will improve the generalization perfor-
mance.

2. LSS outperforms RMTL on the gene and text classification data and achieve similar perfor-
mances on the image classification data. This indicates that considering sparsity in addition
to low-rank structure is at least as important as enforcing robustness to for these types of
tasks.

1Available at http://www.csie.ntu.edu.tw/˜cjlin
2Available at http://www.ai.mit.edu/˜jrennie/20Newsgroups/

8



Table 2: Performance comparison of the five competing models in terms of multiple metrics on four
data sets.

METRIC DATA/METHOD LSS MTFL LASSO RMTL CMTL
NMSE SCHOOL 0.8111± 0.0161 0.8392± 0.0367 0.9088± 0.0231 0.7972± 0.0144 0.9139± 0.0276
AMSE SCHOOL 0.2240± 0.0049 0.2317± 0.0103 0.2510± 0.0065 0.2201± 0.0044 0.2524± 0.0079

AVERAGE AUC
SCENE 0.8761± 0.0046 0.8703± 0.0039 0.8535± 0.0177 0.8768± 0.0021 0.8709± 0.0061
YEAST 0.6260± 0.0076 0.6055± 0.0110 0.5960± 0.0062 0.6069± 0.0088 0.6021± 0.0103

20NEWSGROUP 0.8989± 0.0031 0.8891± 0.0029 0.8502± 0.0042 0.8882± 0.0026 0.8723± 0.0070

MACRO F1
SCENE 0.5686± 0.0063 0.5554± 0.0059 0.5469± 0.0135 0.5645± 0.0016 0.5589± 0.0103
YEAST 0.4190± 0.0049 0.4033± 0.0071 0.3944± 0.0030 0.4096± 0.0044 0.4011± 0.0043

20NEWSGROUP 0.5100± 0.0054 0.4830± 0.0053 0.4867± 0.0076 0.4878± 0.0050 0.4813± 0.0067

MICRO F1
SCENE 0.5669± 0.0031 0.5523± 0.0041 0.5404± 0.0137 0.5661± 0.0014 0.5579± 0.0107
YEAST 0.4640± 0.0048 0.4451± 0.0071 0.4406± 0.0057 0.4556± 0.0043 0.4628± 0.0041

20NEWSGROUP 0.5169± 0.0057 0.4930± 0.0061 0.4882± 0.0076 0.4980± 0.0061 0.4891± 0.0070

0 2 4 6 8 10 12 14

0.58

0.6

0.62

0.64

0.66

0.68

Training Ratio index

a
v
e
ra

g
e
 A

U
C

 

 

LSS
MTFL
Lasso
RMTL
CMTL

(a)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

singular value index of W

s
in

g
u

la
r 

v
a
lu

e
 o

f 
W

 

 
LSS
MTFL
Lasso
RMTL
CMTL

(b)

0
2

4
6

8
10

0

0.5

1

0.57

0.58

0.59

0.6

0.61

0.62

0.63

(c)

Figure 3: (a)Performance comparison of MTL models with different training ratio. (b)The ranked
singular values of the learned parameter matrix for each MTL algorithm. (c)Model performance
against parameters λ1 and λ2. The x-axis (left) represents λ1 and the y-axis (right) represents λ2

and the z-axis (vertical) is average AUC score.

We also study the effect of the training ratio on model performance. We vary the training ratio from
5% to 70% with a increment of 5% and report the average evaluation results based on 15 runs of
experiments. Due to the limited space, we only report the results on the Yeast data set on the AUC
metric here. However, the result for other data sets and metrics are similar. The results can be seen
in Figure 3(a). From the figure, we find that: (1) For all models, the overall performance improves
as the training ratio is increased. This is reasonable since more data is available for model training.
(2) The difference between models becomes smaller as the training ratio increase. This indicates
that multi-task learning is desirable especially when we lack training data. (3) LSS achieves the
best results at almost all settings. This verifies the ability and benefit of LSS when simultaneously
learning low-rank and sparse structures from multiple tasks.

6.5 Discussions

In this subsection, we investigate if our proposed LSS algorithm is able to learn low-rank and sparse
structures from multiple tasks. Figure 3(b) plots the ranked singular values of each parameter matrix
learned by the corresponding algorithm in School data. Note that due to limited space we cannot plot
all figures here, however we report that the phenomenons are similar. We can observe that: (1) Most
singular values learned by LSS, MTFL and RMTL are close to zero. While singular values learned
by Lasso and CMTL are relatively larger than other models. This is because LSS, MTFL and RMTL
have the trace norm regularization to encourage low trace, while Lasso and CMTL do not have such
a regularization. (2) MTFL has the smallest singular values. LSS also obtains a low trace result, but
is slightly larger than MTFL. This is easy to understand since LSS is making a trade-off between
low trace and sparsity. (3) low trace could be a good approximation for low-rank since most of the
singular values are close to zeros with the trace norm regularization.

9



Table 3: Sparsity comparisons among MTL algorithms on four benchmark data sets.

DATA/METHOD LSS MTFL LASSO RMTL CMTL
SCHOOL 74.7% 100.0% 33.0% 100.0% 100.0%
SCENE 72.6% 100.0% 70.5% 100.0% 100.0%
YEAST 83.4% 100.0% 26.3% 100.0% 100.0%
20NEWSGROUP 1.98% 100.0% 1.97% 100.0% 100.0%

In Table 3, we compare the sparsity of the learned parameter matrices. This comparison is conducted
among different MTL algorithms on all four data sets. The values in Table 3 indicate the percentage
of nonzero entries in the learned parameter matrices. The smaller the value, the sparser the learned
parameter matrix. We can find that MTFL, RMTL and CMTL have no zero entries in their learned
parameter matrices, which is reasonable because they do not learn sparse structures. LSS is able to
learn sparse structures but the learned parameter matrix is not as sparse as that of Lasso. This is
reasonable since LSS balances the structures of low-rank and sparsity. Due to the sparsity nature
of text data, LSS and Lasso obtain extremely sparse parameter matrices (less than 2% of non-zero
entries) on the 20 newsgroup data set. It is worth noting that other methods cannot achieve sparse
models even on text data.

In order to study the influence of learned structures on model performance, we vary the parameters
λ1 and λ2 and show the result (average AUC) of the Yeast data. We can not report results on other
data sets or other metrics due to limited space, however we find that the other data sets show similar
results. We change λ1 from 0 to 1 with step length of 0.05 and λ2 from 0 to 10 with step length
of 1.0. In Figure 3(c), we plot the AUC evaluation scores over the whole parameter space. We can
see from Figure 3(c) that only considering low-rank structure or sparse structure can not lead to an
optimal model. The best performance is obtained when λ1 = 0.3 and λ2 = 3.0, i.e., the learning of
low-rank and sparse structures is considered simultaneously and is well-balanced.

7 Conclusion and Future Work

In multi-task learning (MTL), both low-rank structure and sparse structure are important but are quite
different in nature. We proposed a MTL formulation to learn both low-rank and sparse structures. In
order to have an efficient solution, we propose a method for combining the Moreau approximation
and APM, which achieves a rate of convergence O(1/k). The experiments on synthetic data and
four benchmark data sets demonstrate the effectiveness of our model.

References
[1] R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and

unlabeled data. JMLR, 6:1817–1853, 2005.

[2] F. Bach. Optimization with Sparsity-Inducing Penalties. Foundations and Trends in Machine
Learning, 4(1):1–106, 2011.

[3] B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. JMLR,
4:83–99, 2003.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[5] A. Beck and M. Teboulle. Smoothing and first order methods: A unified framework. SIAM
Journal on Optimization, 22(2):557–580, 2012.

[6] J. Chen, J. Liu, and J. Ye. Learning incoherent sparse and low-rank patterns from multiple
tasks. In SIGKDD, pages 1179–1188. ACM, 2010.

[7] J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning shared structures from
multiple tasks. In ICML, pages 137–144. ACM, 2009.

[8] J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-
task learning. In SIGKDD, pages 42–50. ACM, 2011.

[9] A. Evgeniou and M. Pontil. Multi-task feature learning. In NIPS, volume 19, page 41. MIT
Press, 2007.

10



[10] T. Evgeniou and M. Pontil. Regularized multi–task learning. In SIGKDD, pages 109–117.
ACM, 2004.

[11] L. Jacob, F. Bach, and J. Vert. Clustered multi-task learning: A convex formulation. Arxiv
preprint arXiv:0809.2085, 2008.

[12] S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In ICML, pages
457–464. ACM, 2009.

[13] S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity.
Arxiv preprint arXiv:0909.1373, 2009.

[14] K. Lounici, M. Pontil, A. Tsybakov, and S. Van De Geer. Taking advantage of sparsity in
multi-task learning. Arxiv preprint arXiv:0903.1468, 2009.

[15] J. Moreau. Proximitéet dualité dans un espace hilbertien.(french). Bull. Soc. Math. France,
93:273–299, 1965.

[16] S. Negahban and M. Wainwright. Estimation of (near) low-rank matrices with noise and high-
dimensional scaling. The Annals of Statistics, 39(2):1069–1097, 2011.

[17] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer, 2003.

[18] Y. Nesterov. Gradient methods for minimizing composite functions. preprint, 2007.
[19] G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection for grouped classification.

Department of Statistics, University of California, Berkeley, Tech. Rep, 743, 2007.
[20] T. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: Reformulations, algorithms, and

multi-task learning. SIAM Journal on Optimization, 20(6):3465, 2010.
[21] E. Richard, P. Savalle, and N. Vayatis. Estimation of simultaneously sparse and low rank

matrices. In ICML, 2012.
[22] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categorization. In

ICML, ICML, pages 412–420, 1997.
[23] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.
[24] J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent independent

component analysis. NIPS, 18:1585, 2006.
[25] J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latent variable models for multi-task learning.

Machine Learning, 73(3):221–242, 2008.
[26] Y. Zhang and D. Yeung. A convex formulation for learning task relationships in multi-task

learning. In UAI, pages 733–742, 2010.
[27] J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alternating structure optimization.

In NIPS, 2011.

8 Appendix

8.1 Proof of Theorem 1

We give a lemma which is the multi-task version of Lemma 2 in [16]
Lemma 3. Consider {X1, ...,XT }, where Xt ∈ Rp×n(t = 1, 2, ..., T ) is a random matrix with
i.i.d. columns sampled from a p-variate N (0,Σ) distribution. Then for n ≥ 2p we have

P (min
t
{σmin(

1

n
XtX

T
t )} ≥ σmin(Σ)

9
,max

t
{σmax(

1

n
XtX

T
t )} ≤ 9σmax(Σ)) > 1− 4T exp(−n

2
)

(9)

Proof. First, because all matrices are i.i.d., so the probability in Eq (9) is equal to∏
t

P (σmin(
1

n
XtX

T
t ) ≥ σmin(Σ)

9
, σmax(

1

n
XtX

T
t ) ≤ 9σmax(Σ))

=P (σmin(
1

n
X1X

T
1 ) ≥ σmin(Σ)

9
, σmax(

1

n
X1X

T
1 ) ≤ 9σmax(Σ))T

(10)

11



According to Lemma 2 in [16] we have

P (σmin(
1

n
X1X

T
1 ) ≥ σmin(Σ)

9
, σmax(

1

n
X1X

T
1 ) ≤ 9σmax(Σ)) ≥ 1− 4 exp(−n

2
) (11)

Combine Eq (10),Eq (11) and the inequality (1−x)a > 1−ax (when x > 0, a > 1), we can obtain

P (min
t
{σmin(

1

n
XtX

T
t )} ≥ σmin(Σ)

9
,max

t
{σmax(

1

n
XtX

T
t )} ≤ 9σmax(Σ))

=(1− 4 exp(−n
2

))T

≥1− 4T exp(−n
2

)

We now give a lemma which is the multi-task version of Lemma 3 in [16]
Lemma 4. Let Z = [X1b1, ...,XTbT ] ∈ Rp×T , then there exist constants ci > 0 such that

P (
‖Z‖2
N
≥

12
√
p+ Tσw

√
σmax(Σ)

n
1
4

) ≤ c1exp(−c2(p+ T )
√
n) (12)

Proof. Let Sm−1 = {u ∈ Rm | ‖u‖2 = 1} denote the Euclidean sphere in m-dimension space.
The norm of Z has the variational representation

‖Z‖2
N

=
1

N
sup

u∈Sp−1

sup
v∈ST−1

uTZv

Now, following the similar proof of Lemma 3 in [16], we have

P (
‖Z‖2
N
≥ 4δ) ≤ 8p+T max

u∈Sp−1,v∈ST−1
P (

uTZv

N
≥ δ) (13)

Now we should bound quantity uTZv
N given fixed value u,v. We first rewritten the quantity as

uTZv

N
=

1

N

∑
t

(uTXt)(btvt)

Recall that (bti)s are i.i.d. sampled fromN (0, σ2
w) distribution. Therefore, According to the proper-

ty of Gaussian distribution, we can get the distribution of uTZv
N conditioned on the random matrices

X1, ...,XT as
uTZv

N
∼ N (0,

σ2
w

N2

∑
t

v2
t ‖uTXt‖22)

We define the variance of Gaussian distribution above as α2. We have

α2 =
σ2
w

N2

∑
t

v2
t ‖uTXt‖22 ≤

σ2
w

T 2n

∑
t

v2
t σmax(

XtX
T
t

n
)

According to Lemma 3, with probability no smaller than (1−4T exp(−n2 )) we have σmax(
XtX

T
t

n ) ≤
9σmax(Σ). That is

σ2
w

T 2n

∑
t

v2
t σmax(

XtX
T
t

n
) ≤ σ2

w

T 2n

∑
t

v2
t 9σmax(Σ) =

9σ2
w

T 2n
σmax(Σ) (14)

We define the event {α2 ≤ 9σ2
w

T 2nσmax(Σ)} as E. Conditioning on event E and its complement Ec,
we can bound P (uTZv

N > δ) as

P (
uTZv

N
> δ) ≤ P (

uTZv

N
> δ | E) + P (Ec) (15)

12



Recall the tail bound for Gaussian distribution: for a random variable x drawn from N (0, σ2), the
probability that |x| > t can be bounded as P (|x| > t) < exp(−t2/2σ2) when t > σ. We use the
tail bound on P (uTZv

N > δ | E). Also note that we have P (Ec) = 1 − P (E) ≤ 4T exp(−n2 ).
Combining the results above, we obtain

P (
uTZv

N
> δ | E) + P (Ec) ≤ exp(− δ2

2
9σ2
w

T 2nσmax(Σ)
) + 4T exp(−n

2
) (16)

Combining result of Eq (16), Eq (15) and Eq (13), we get

P (
‖Z‖2
N
≥ 4δ) ≤ 8p+T {exp(− δ2

2
9σ2
w

T 2nσmax(Σ)
) + 4T exp(−n

2
)} (17)

by setting δ2 = (p + T )
9σ2
w

T 2
√
n
σmax(Σ). It satisfies the condition δ > α. From Eq (17) we can get

the probability now:

P (
‖Z‖2
N
≥ 4δ) ≤ 8p+T {exp(− (p+ T )

√
n

2
) + 4T exp(−n

2
)}

This probability vanishes soon as n > 16(p+ T ).

Lemma 5. We denote the W∗ as the real parameter matrix, Ŵ as the minimizer of the objective
and ∆ = Ŵ −W∗ as the difference between the two matrices. Then we have

1

N

∑
t

‖XT
t ∆t‖22 ≤

2

N

∑
t

(Xtbt)
T∆t + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1) (18)

Proof. According to the definition of minimizer of objective, we have

1

N

∑
t

‖yt−XT
t ŵt‖22 +λ1‖Ŵ‖∗+λ2‖Ŵ‖1 ≤

1

N

∑
t

‖yt−XT
t w∗t ‖22 +λ1‖W∗‖∗+λ2‖W∗‖1

Using some algebra we have

1

N

∑
t

(‖XT
t ∆t‖22 + 2(XT

t w∗t − yt)
T (XT

t ∆t)) ≤ λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

Recall that yt = XT
t w∗t + bt. We now can obtain

1

N

∑
t

(‖XT
t ∆t‖22 − 2bTt (XT

t ∆t)) ≤ λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

Move the second term from left side to the right side of the inequality we get the result in Lemma 5.

Lemma 6. Define U ∈ Rp×p and V ∈ RT×T as the matrices consisting of the left and right
singular vectors of W∗, respectively. Then there exists a matrix decomposition ∆ = ∆

′

L + ∆
′′

L of
the error ∆ such that:

• (a) the matrix ∆
′

L satisfies the constraint rank(∆
′

L) ≤ 2r;

• (b) the difference of trace norm between Ŵ and W∗ can be bounded as ‖W∗‖∗−‖Ŵ‖∗ ≤
‖∆′

L‖∗ − ‖∆
′′

L‖∗.

• (c) ‖∆′

L‖F ≤ ‖∆‖F

Proof. This Lemma can be seen as the special case of Lemma 1 in [16] when rank(W∗) ≤ r. For
error matrix ∆, we consider

Γ , U∆VT =

(
Γ11 Γ12

Γ21 Γ22

)

13



where Γ11 ∈ Rr×r and Γ22 ∈ R(p−r)×(T−r). Define matrix ∆
′

L and ∆
′′

L as

∆
′′

L , U

(
0 0
0 Γ22

)
VT and ∆

′

L , ∆−∆
′′

L (19)

We can bound rank(∆
′

L) by

rank(∆
′

L) = rank

(
Γ11 Γ12

Γ21 0

)
≤ rank

(
Γ11 Γ12

0 0

)
+ rank

(
Γ11 0
Γ21 0

)
≤ 2r

This is the proof of (a) of Lemma 6. Also note that the trace norm satisfies the decomposition below

‖W∗ + ∆
′′

L‖∗ = ‖W∗‖∗ + ‖∆
′′

L‖∗ (20)

Now, with Eq (19), Eq (20) and triangle inequality, we have

‖Ŵ‖∗ =‖W∗ + ∆
′′

L + ∆
′

L‖∗
≥‖W∗ + ∆

′′

L‖∗ − ‖∆
′

L‖∗
=‖W∗‖∗ + ‖∆

′′

L‖∗ − ‖∆
′

L‖∗

And, as a result, we can have

‖W∗‖∗ − ‖Ŵ‖∗ ≤ ‖W∗‖∗ − ‖W∗‖∗ − ‖∆
′′

L‖∗ + ‖∆
′

L‖∗ = ‖∆
′

L‖∗ − ‖∆
′′

L‖∗

Now we establish (b) in Lemma 6. We have

‖∆
′

L‖F = ‖
(

Γ11 Γ12

Γ21 0

)
‖F ≤ ‖Γ‖F = ‖∆‖F

Then we finish the proof of (c) in Lemma 6.

Lemma 7. Define the nonzero indicator matrix of W∗ as Θ and Θ⊥{0, 1}p×T as its complemen-
tary. That is θij = I(wij 6= 0) and θ⊥ = I(wij = 0). Define ∆

′

S = Θ ◦∆ and ∆
′′

S = ∆ −∆
′

S ,
where A ◦B means elementwise product of matrix A and B. Then we have

• (a) ‖∆′

S‖0 ≤ q

• (b) ‖W∗‖1 − ‖Ŵ‖1 ≤ ‖∆
′

S‖−‖∆
′′

S‖1

• (c) ‖∆′

S‖F ≤ ‖∆‖F

Proof. According to the definition of ∆
′

S , the set of nonzero entries of ∆
′

S is a subset of nonzero
entries of W∗. Therefore we can get (a) of Lemma 7.

Decomposing Ŵ as the summation of W∗ and ∆ and using the triangle inequality, we can get

‖Ŵ‖1 =‖(W∗ + ∆
′′

S + ∆
′

S‖1
≥‖W∗ + ∆

′′

S‖1 − ‖∆
′

S‖1
=‖W∗‖1 + ‖∆

′′

S‖1 − ‖∆
′

S‖1

(21)

According to Eq (21) we can have

‖W∗‖1 − ‖Ŵ‖1 ≤ ‖W∗‖1 − ‖W∗‖1 − ‖∆
′′

S‖1 + ‖∆
′

S‖1 = ‖∆
′

S‖1 − ‖∆
′′

S‖1

This establishes (b) of Lemma 7 According to the definition of ∆
′

S , the set of nonzero entries of ∆
′

S
is a subset of nonzero entries of ∆∗. Therefore we prove (c) of Lemma 7.

We can now give the proof of Theorem 1.

14



Proof. According to Lemma 5 we have
1

N

∑
t

‖XT
t ∆t‖22

≤ 2

N

∑
t

(Xtbt)
T∆t + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

(22)

Recall the definition of Z in Lemma 4, we have
2

N

∑
t

(Xtbt)
T∆t + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

=
2

N
(Z ◦∆) + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

=
2λ1

N(λ1 + λ2)
(Z ◦∆) +

2λ2

N(λ1 + λ2)
(Z ◦∆) + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

≤ 2λ1

N(λ1 + λ2)
‖Z‖2‖∆‖∗ +

2λ2

N(λ1 + λ2)
‖Z‖∞‖∆‖1 + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

(23)

Where the inequality uses the definition of dual norm. Recall that in Lemma 4 we can bound ‖Z‖2N

below 12
√
p+Tσw

√
σmax(Σ)

n
1
4

with probability 1− c1 exp(−c2(m1 +m2)
√
n). By setting λ1 + λ2 ≥

2
12
√
p+Tσw

√
σmax(Σ)

n
1
4

we obtain the following inequality with probability 1 − c1 exp(−c2(m1 +

m2)
√
n). Note that ‖Z‖∞ ≤ ‖Z‖2. We can obtain

2λ1

N(λ1 + λ2)
‖Z‖2‖∆‖∗ +

2λ2

N(λ1 + λ2)
‖Z‖∞‖∆‖1 + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

≤λ1‖∆‖∗ + λ2‖∆‖1 + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)
(24)

By using Lemma 6 and Lemma 7, triangle inequality and Cauchy inequality ‖A‖∗ ≤√
rank(A)‖A‖F and ‖A‖1 ≤

√
‖A‖0‖A‖F .

λ1‖∆‖∗ + λ2‖∆‖1 + λ1(‖W∗‖∗ − ‖Ŵ‖∗) + λ2(‖W∗‖1 − ‖Ŵ‖1)

≤λ1‖∆‖∗ + λ2‖∆‖1 + λ1(‖∆
′

L‖∗ − ‖∆
′′

L‖∗) + λ2(‖∆
′

S‖1 − ‖∆
′′

S‖1)

≤λ1(‖∆
′

L‖∗ + ‖∆
′′

L‖∗) + λ2(‖∆
′

S‖1 + ‖∆
′′

S‖1) + λ1(‖∆
′

L‖∗ − ‖∆
′′

L‖∗) + λ2(‖∆
′

S‖1 − ‖∆
′′

S‖1)

=2λ1‖∆
′

L‖∗ + 2λ2‖∆
′

S‖1
≤2λ1

√
2r‖∆

′

L‖F + 2λ2
√
q‖∆

′

S‖F
≤2λ1

√
2r‖∆‖F + 2λ2

√
q‖∆‖F

=(2λ1

√
2r + 2λ2

√
q)‖∆‖F

(25)

Combining Eq (22), Eq (23), Eq (24) and Eq (25) we can get
1

N

∑
t

‖XT
t ∆t‖22 ≤ (2λ1

√
2r + 2λ2

√
q)‖∆‖F

And use Lemma 3, with probability 1− 4T exp(−n/2) we have

σmin(Σ)

9
‖∆‖2F ≤

1

N

∑
t

‖XT
t ∆t‖22 ≤ (2λ1

√
2r + 2λ2

√
q)‖∆‖F (26)

Note that this event is implied Eq (24). As a result, when λ1 +λ2 = 2
12
√
p+Tσw

√
σmax(Σ)

n
1
4

, we have

‖∆‖F ≤ (β
√

2r + (1− β)
√
q)

432
√
p+ Tσw

√
σmax(Σ)

σmin(Σ)n
1
4

15



This inequality holds with probability 1 − c1 exp(−c2(m1 + m2)
√
n). Using λ1 + λ2 ≥

2
12
√
p+Tσw

√
σmax(Σ)

n
1
4

in Eq (8.1), and denote β = λ1

λ1+λ2
we have

‖∆‖F ≤ (2λ1

√
2r + 2λ2

√
q)

9

σmin(Σ)

8.2 Proof of Theorem 2

Proof. This proof is similar with the proof of Theorem 3.1 in a very recent work [5]. The smooth
component Pµ(W) consists of two parts: the loss function and the smoothed regularizer. The
Lipschitz constant of the gradient function of the loss function LW is equal to L. And we denote the
Lipschitz constant of the gradient function of the smoothed regularizer as LΩ. Because Pµ(W) =
L(W) + Ωµ(W), we have LP = L+LΩ. Denote {Wk} as the sequence generated by methodM.
{Wk} has the following property

Fµ(Wk)− Fµ(W ∗) ≤ LPα

k2
=

(L+ LΩ)α

k2
(27)

where α is a constant. By Lemma 1 in paper, we can bound the difference between F (W) and
Fµ(W) as

Fµ(W)− F (W)

=(L(W) + Ωµ(W) + λ2‖W‖1)− (L(W) + λ1‖W‖∗ + λ2‖W‖1)

=Ωµ(W)− λ1‖W‖∗
≤cµ

(28)

and
Fµ(W)− F (W) = Ωµ(W)− λ1‖W‖∗ ≥ 0 (29)

Where c is a constant. Combining Eq (27), Eq (28) and Eq (29), we can get

F (Wk)− F (W∗) ≤ (Fµ(Wk) + cµ)− Fµ(W∗) ≤ (L+ LΩ)α

k2
+ cµ (30)

According to Lemma 2 in paper, we have LΩ = 1
µ , substitute LΩ in Eq (30), we get

F (Wk)− F (W∗) ≤ Lα

k2
+

α

µk2
+ cµ (31)

We select µ to minimize the right side of Eq (31), according to AM-GM inequality, we have µ =√
α
c

1
k and then

F (Wk)− F (W∗) ≤ Lα

k2
+ 2

√
αc

k
= O(1/k)

8.3 Proof of Theorem 3

Proof. Because the loss function and the Moreau approximation function are both smooth and have
continuous Lipschitz gradient, the smooth part of objective Eq (5) satisfies the condition in [4].
Moreover, the summation of the smooth part and `1-norm regularizer has a closed-form minimizer
by Eq (8). According to [4], Algorithm 1 will converge to the global minimum of approximated
objective Eq (5) which satisfies the condition in Theorem 2. According to Theorem 1, Algorithm 1
can converge to the global minimum of the original objective Eq (1) with rate of convergence O(1/k).
Summarizing the above points we finish the proof of convergence rate.

As to the time consumed in one iteration, to compute the gradient of the smooth part Pµ(W),
we need to calculate the gradient of the loss function and the gradient of Moreau approximation
function. It costs O(Np) and O(m), respectively, where N denotes the total training data points
and m is the computation time for SVD of W. The time to consider the `1-norm is O(pT ) which
is an order of smaller than the other two terms. Therefore, the time complexity for each iteration is
O(Np+m). In conclusion, the total time complexity is O((Np+m)/k)

16


