
Improving Energy Efficiency of Personal Sensing
Applications with Heterogeneous Multi-Processors

Moo-Ryong Ra∗, Bodhi Priyantha†, Aman Kansal†, Jie Liu†

University of Southern California∗ Microsoft Research Redmond†

ABSTRACT
The availability of multiple sensors on mobile devices of-
fers a significant new capability to enable rich user and con-
text aware applications. Many of these applications run in
the background to continuously sense user context. How-
ever, running these applications on mobile devices can im-
pose a significant stress on the battery life, and the use of
supplementary low-power processors has been proposed on
mobile devices for continuous background activities. In this
paper, we experimentally and analytically investigate the de-
sign considerations that arise in the efficient use of the low
power processor and provide a thorough understanding of
the problem space. We answer fundamental questions such
as which segments of the application are most efficient to
be hosted on the low power processor, and how to select
an appropriate low power processor. We discuss our mea-
surements, analysis, and results using multiple low power
processors and existing phone platforms.

INTRODUCTION
The ubiquity, portability, and connectivity of mobile phones
make them ideal platforms for continuous sensing applica-
tions that are used to derive user context for a variety of pur-
poses. Several such applications have been proposed and
prototyped using phone based sensors [14].

One of the key challenges for continuous mobile sensing ap-
plications is their energy use and the resultant battery life im-
pact. Sensors, other than GPS, along with associated signal
processing, are often not a huge energy concern when used
in interactive foreground applications. For example, when
playing games, the display (300-800mW), the network (600-
1400mW), and the processor activities for graphics render-
ing dominate the total application energy consumption. On
the other hand, for many mobile sensing applications, the
sensing activity is performed in the background, continu-
ously, when the other components such as the display are
not in use. Such continuous operation has a high energy
overhead on current mobile phone architectures. One of the
main reasons is that the phone’s application processor (AP)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp ’12, Sep 5-Sep 8, 2012, Pittsburgh, USA.
Copyright 2012 ACM 978-1-4503-1224-0/12/09...$10.00.

is designed to handle intense user interactions such as touch
and content rendering in a responsive manner, and is not en-
ergy efficient for performing continuous sensing tasks.

To solve this problem, prior work has proposed the use of an
additional low power processor (LP) to control the sensors
in mobile device platforms [3, 28, 18]. New mobile device
processors such as TI OMAPTM5 Platform [32] already of-
fer such an on-chip low power processor core in addition to
the main AP core. The basic tenet is that the LP consumes
very low power in active state and has negligible wakeup
overheads. It can thus execute simple repetitive sensing tasks
very efficiently, allowing the AP to stay in sleep mode unless
a computationally intensive task is to be performed. The en-
ergy consumption of continuously running background sens-
ing tasks on the LP is similar to the idle energy consumption
of the phone [28] and hence acceptable. Programming ab-
stractions that facilitate application development using both
processors have been recently proposed [18].

This new multi-processor architecture presents an additional
challenge for application design. Decisions must be made on
what functionality should be put on the LP and how to parti-
tion an application among the two processors. In addition to
controlling sensors, the LP can also handle application logic
as long as it fits in the memory. However, for most complex
computational tasks, using the AP is not only faster but of-
ten consumes lower total energy as well. The partitioning
decision is hence non-trivial.

There are at least three design choices available here. A
first possibility is that the determination of which applica-
tion components run on the LP may be made at run time,
based on the overall demand for resources across the mul-
tiple applications active at any time. Such approaches have
been explored for offloading to the cloud [29]. A second pos-
sibility is to let the developer determine the partition of the
application at design time and compile the application ap-
propriately for the two processors. Programming infrastruc-
ture for this approach has been developed in [18], assuming
that the developer has determined the correct partition. A
third possibility is to hardwire a library of methods on the
LP that are expected to be useful for all applications. Devel-
opers write their applications only on the AP, utilizing the
LP library for methods already provided.

In this paper, we investigate the partitioning of applications
across the two processors from an energy efficiency per-

spective. We provide a methodology to analyze the applica-
tion components to determine the most efficient placement.
We quantify the impact of different active mode power con-
sumptions and transition overheads across the two proces-
sors on the partitioning decision.

Specifically, we make the following contributions. First, we
provide a methodology to analyze if a computational task
is more efficient on the LP or the AP, and perform mea-
surements to apply the analysis on a realistic set of com-
putational tasks used in sensing applications. Second, we
extend the analysis and measurements to study the energy
efficiency effects of processor selection for complete appli-
cations that consist of multiple computational tasks. Third,
we study the energy efficiency trade-offs for multiple appli-
cations executed simultaneously. Finally, based on the sin-
gle task, complete application, and multi-application mea-
surements, we derive guidelines to facilitate the decision of
which processor a task should be placed on.

The above study allows us to quantitatively conclude which
of the design choices in the use of multiple heterogeneous
processors is the most efficient and effective. Our investiga-
tion suggests that the third approach of pre-determining a li-
brary of methods for the LP is the most energy efficient one
in practice, and also offers additional advantages in terms
of ease of use for developers. We also propose how lim-
ited amount of processor selection may be made at run time
for additional energy gains, but the magnitude of the gains
does not justify the complexity of supporting dynamic place-
ments for app components. The second approach of parti-
tioning each application at design time suffers from poten-
tially incorrect and inefficient placements when multiple ap-
plications are combined.

Using a survey of sensing applications, we propose an ex-
ample library of methods that are efficient to be provided on
the LP for low energy operation of a wide variety of applica-
tion classes. While our selection of methods for the library
is motivated based on the applications currently envisioned,
the methodology developed allows updating this selection if
new types of applications are envisioned.

RELATED WORK
Recently proposed Reflex [18] platform provides easier pro-
gramming experience in multi-processor mobile platforms.
They wrap complex low-level development issues in LPs us-
ing distributed shared memory abstraction, thereby the pro-
grammer can use standard development techniques to build
applications. LittleRock [28] realizes a proof-of-concept pro-
totype to emphasize the effectiveness of the low power pro-
cessor, also inspires our work. Unlike these works, we pro-
vide a partitioning guideline as well as proper runtime design
principles to enable continuous sensing applications. Our
work is complementary to both works since our guidelines
can be realized on top of those platforms.

There are several works on workload partitioning across het-
erogeneous platforms. MAUI [7] and Goraczko et al. [10]
proposed integer linear programming based partitioning ap-
proach. The former is across mobile devices and the cloud.

The latter is between two processors. Unlike these works,
our work uses simulation-based approach to derive more ac-
curate results closer to reality. Because wakeup and sleep
transitions depend on actual job scheduling at runtime, ad-
justing ILP-based optimization to our setup is not an easy
task. There are other partitioning approaches as follows.
Wishbone [25] uses profile-based compile-time optimization
method to determine partitions under the context of sensor
network. Odessa [29] dynamically offloads compute stage
at runtime between mobile and cloud platform based on run-
time profiles. Chroma [1] switches its configuration at run-
time among pre-defined set of partitions either programmer-
specified or suggested by domain expert. These works have
either significantly different goals, e.g. fps and makespan in
[29], different partitioining guidelines in [25, 1].

Our work is inspired by emerging demands of continuous
sensing applications. Numerous continuous sensing appli-
cations have been developed in research community. Part of
them are illustrated in Table 3. More in-depth exploration
can be found in [14].

With the emergence of continuous sensing applications, the
needs on systems support for those applications naturally
arise. A set of prior work [31, 27, 21] have proposed fil-
tering out uninteresting data using simpler processing states
in the inference pipeline. Despite of limited similarity, our
investigation explores the generic APIs that will help app
developers to exploit such pre-filtering in a heterogeneous
multi-processor architecture for energy efficiency. MyExpe-
rience [9] proposes a framework that can combine both ob-
jective, e.g. sensor readings/classification results, and sub-
jective sensing activities. SeeMon [11] suggests context mon-
itoring framework for mobile devices with many sensors.
Focusing on the energy consumption, the framework pro-
vides a way to select a relevant set of sensors, intuitive pro-
gramming abstraction to the developers. Jigsaw [21] identi-
fies common components for sensing tasks per sensor, opti-
mizes related components so that multiple applications can
adaptively and effectively utilize the sensor functionality. The
Mobile Sensing Platform [5] equips various sensors, and
provides a suit of feature extraction and classification meth-
ods in a dedicated hardware.

ENERGY PROPORTIONALITY
The goal of defining energy proportionality is to quantify
the energy “wasted” in addition to executing the applica-
tion logic and to compare the energy efficiency across differ-
ent application configurations. An application configuration
refers to a set of executing applications with some portion
of the processing chain of each application executing on the
LP. Given a platform P and a set of applications, we first in-
troduce the notion of ideal energy consumption (IEC) of ex-
ecuting these applications on P . We define an ideal platform
P̂ as a platform with the same performance and energy char-
acteristics of P , except P̂ has zero sleep power consumption
and takes zero time and energy to transition from sleep state
to active state. The ideal energy consumption (IEC) of a set
of applications on P , ÊP is the energy consumed when ex-
ecuting the applications on the AP of P̂ . In reality, all the

Execution
Wakeup

(12ms)
Back to sleep

(8ms)

Execution

IEC

REC
(SGH-i917)

Time

Time

Figure 1. Running a piece of code on the main processor(AP)

processors have some non-zero sleep power consumption,
and have to pay a transition cost when transitioning between
sleep and wake up. We denote the real energy consumption
(REC) of the application on P by EP .

We illustrate the difference between REC and IEC with a
concrete measurement from a mass market mobile phone –
Samsung Focus SGH-i917. Figure 1 shows the energy trace
collected when the phone woke up from the sleep mode, ex-
ecuted a user application that stresses the CPU to 100%, and
went back to sleep. Ideally, if all energy is used by executing
the user application, the profile of power consumption will
have the same shape as the execution. However, due to the
process of waking up the phone and then putting it back to
sleep, the real energy consumption is significantly higher.

On an ideal platform, the system can enter the sleep state
whenever there is a gap in the execution of applications.
In real platforms, however, whether the platform can go to
sleep depends on whether the gaps between executions are
greater than the time it takes to make state transitions, known
as the break-even time [2, 8]. For example, if the time that
an application waits for its inputs is less than the break-even
time, the whole platform has to stay in the active mode even
though there is nothing to execute, which we call the idle
mode.

To qualify the difference between REC and IEC, we define
the Energy Proportionality Factor (EPF) of running an ap-
plication configuration A on platform P as

EPFP
A =

EP
A

ÊP
A

.

When the platform is obvious, we also write EPFA for short.
If all applications are run on the AP, since no real platform
has zero transition energy, EPF will be greater than 1. How-
ever, in application configurations where processing is shared
between AP and LP, EPF can be smaller than 1 if applica-
tion stages run more efficiently on LP to offset the transition
costs. Given a platform P , our aim is to determine the appli-
cation configuration with the smallest EPF.

OPTIMIZING EPF ON TWO-PROCESSORS
Next we examine how to use the notion of energy propor-
tionality to determine energy efficient application configu-
rations that span AP and LP. Here we assume a single ap-
plication being executed. During evaluation, we extend this
to multiple concurrent applications. We assume that an ap-
plication consists of several computational stages wired to-
gether either sequentially or conditionally. Certain stages
may not be executed for all inputs, such as certain complex
signal analysis may not be performed when the sampling and
thresholding reveals that the signal magnitude is close to the
noise floor. The specific computations that comprise mobile
sensing applications are described in the next section.

Assumptions To make the analysis tractable, we begin with
a few assumptions some of which are later removed. First,
we assume that a sensing application starts with sensor data
sampling, and its execution is periodic. Second, we assume
that the execution time of a particular compute stage, for the
input instances where the stage is executed, is constant and
does not depend significantly on the input. In reality, cer-
tain inputs such as all zeros, may simplify the computation
leading to faster execution of a given stage but for now we
assume such differences are insignificant. We also assume
that communication cost between the two processors is neg-
ligible, compared to the execution time and the sampling pe-
riod. This is a realistic assumption since most new platforms
have the AP and LP on the same chip; even if they are im-
plemented as two chips, they would be connected by a fast
bus.

Fourth, since we specifically use a low power microcon-
trollers (LP) to offload sensing, we assume (which is con-
firmed by measurements in next section) that the sleep to
active and active to sleep state transition costs for the LP,
as well as the idle power consumption of the LP in sleep
state, are all negligible relative to other energy parameters
involved. We also assume that all computation stages are
schedulable regardless of which processor they are placed
on. This means that the sum of the execution times of all
the compute stages of the application is lower than the sam-
pling rate governed periodicity of the application execution.
However, we note that, particularly when multiple applica-
tions are executing simultaneously, the LP may not be fast
enough to keep all the tasks schedulable. We remove this
assumption later in the evaluation section.

Total Energy Consumption Suppose that one invocation of
an application consists of N stages, with possible repetitions
of certain stages, and lasts one period of duration d. We use
the notations in Table 1 in the analysis.

On the application processor, M , the ideal energy consump-
tion(IEC) of the application is

ÊM =

N∑
i=1

[
Fi · PM

active · TM
i

]
(1)

In reality, the transition energy and sleep energy in applica-

Variable Description

E
{cpu}
i (Ê

{cpu}
i)

(Ideal) energy consumption contributed by the
execution of a stage i. cpu could be M for AP,
L for LP.

d The duration of the execution.

P
{cpu}
active

Power consumption when the cpu is in active
state. We assume same idle and active power
consumption.

P
{cpu}
sleep

Power consumption when the cpu is in sleep
state.

T
{cpu}
i

Execution time of stage i on the {cpu}.
Etrans Transition energy cost for AP.

K
of mode transitions on AP in a given duration
d, since we ignore transitions on LP.

N # of compute-stages.

si
Slow-down factor of the stage i. Formally si =
TL
i

TM
i

Fi
Expected number of times that stage i is exe-
cuted in a given duration d.

Li

Placement variable of the stage i, which takes ei-
ther 0 or 1. If 1, the stage i runs on the main pro-
cessor, otherwise it runs on the low-power pro-
cessor.

Table 1. Variables used in the modeling effort

tion processor cannot be ignored. So, real energy consump-
tion(REC) (on the application processor) is:

EM = ÊM + Etrans ·K + PM
sleep (d−

N∑
i=1

(Fi T
M
i)) (2)

where Etrans · K is the energy spent on mode transitions.
Here we ignore the time spent transitioning between the two
states since d (in the order of 10’s of minutes or hours) is
much larger than the total transition time (in the order of
seconds).

When there are two processors, M and L, we use a place-
ment variable Li to determine the energy, Li takes the value
1 when a stage is placed on the AP (M), or 0 if on the LP
(L). The active energy use can be broken down into its con-
stituent portions of active and transition energy and be writ-
ten as:

Emulti =

N∑
i=1

[Li

(
Fi(P

M
active − PM

sleep)TM
i

)
+ (1− Li)(FiP

L
activeT

L
i)] + EtransK ′ + PM

sleepd

(3)

Notice that, since we assigned some stages to LP, the num-
ber of transitions in the AP, K ′ is different from the K in
Eqn. (2), and it can be different from the sum of Fi since ad-
jacent execution stages may get coalesced or dispersed de-
pending on the placement and the specifics of task schedul-
ing. Comparing Emulti and EM , it is obvious that the po-
tential gain at energy proportionality comes from the trade
off between the reduction of the number of transitions and
the energy inefficiency of LP.

Computation Stage Placement To determine the partition
that results in best EPF, we use some additional characteris-

tics of typical mobile continuous sensing applications. For
these applications, typically, along the compute pipeline, the
output rate of each stage tends to significantly decrease. For
instance, sampling and buffering stage may execute at 100Hz
to collect and buffer sensor samples, however, activity clas-
sification that operates over a buffer of data executes at a
much slower rate, e.g. at 1Hz.

On the other hand, as we observe in the next section, stages
at the start of the pipeline tend to be more light weight, per-
forming simple buffering and filtering of data, while stages
further into the pipeline tend to be more compute intensive.

Given the smaller transition cost of LP, and that computa-
tionally heavy tasks run more efficiently on AP (computa-
tional efficiency more than makes up for the wake up cost),
it is very likely that the optimum partition would be a simple
cut of the processing chain. Hence, we partition an applica-
tion by cutting the processing chain into two; where the fist
several stages are assigned to a LP while rest of the chain is
assigned to AP. Specifically, when partitioning an applica-
tion, we start from the very first processing stage and incre-
mentally improve EPF by examining the placement of con-
secutive compute stages. We stop when we reach the first
stage that does not improve EPF when assigned to LP (later
we add additional constraints such as resource restrictions
when assigning tasks to LP). Our measurement results ver-
ify the assumption of a simple cut of the processing chain.

When deciding the placement of a specific stage i, under our
scheduleability assumption, the only deciding factor is the
relative EPF(energy) difference between the two processors.
We assign a stage i to the LP only if the corresponding EPF
reduces compared to assigning it to AP.

This relative EPF difference relying on the placement of
stage i is denoted as ∆i, and can be calculated as follow-
ing. Let current app partition between two processor be
D[i → M] when stage i is on AP, D[i → L] when it is
on LP.

∆i = EPFD[i→M] − EPFD[i→L]

=
EM

i − EL
i∑N

i=1 Ê
M
i

=
Fi T

M
i

[
PM
active − PM

sleep − si ∗ PL
active

]
+ Etrans K′∑N

i=1 Ê
M
i

(4)

Note that new variable K’ denotes the difference in num-
ber of transitions due to the different stage placement. Us-
ing Eqn. (4), one can compute where ∆i is greater than 0
and then place the computation on the LP (setting Li = 0).
The equation clearly shows the key parameters that affect
the placement of the computation stage. One of the factors
that appears is si, which is the ratio of the execution time on
the LP to that on the AP. This can be thought of as the slow-
down factor for the LP compared to the AP. Given a particu-
lar hardware configuration for the AP and the LP, most of the

�

�

�

LP wins

AP wins

Figure 2. Partitioning Decision: Break-Even Graph

parameters in the equation are predetermined. What varies
for the specific computation stage is si. Re-writing the con-
dition for the case when LP wins, that is, ∆i > 0 assuming
the worst case K ′ ≈ Fi to bring out si, we get:

∆i > 0

⇒ Fi T
M
i

[
PM
active − PM

sleep − si ∗ PL
active

]
+ EtransK ′ > 0

≈ si <
PM
active − PM

sleep

PL
active

+
[Etrans/PL

active]

TM
i

(5)

Eqn. (5) can be used to draw a break-even line for the value
of si below which using the LP is advantageous, as shown in
Figure 2. The actual si is difficult to assess analytically since
it can depend on several factors including the availability of
data parallel instructions such as SIMD, floating point unit,
memory size of the processor, bus speed, DMA availability,
cache size, and the processor frequencies. It is best measured
experimentally, and we perform such measurements in the
next section to explore the placement decisions for realistic
mobile sensing applications.

MEASUREMENTS ON HW/SW COMPONENTS
The goal of the measurement study is twofold: (1) getting
experimental values for hardware-dependent parameters in-
cluding the active and transition energy costs, and (2) mea-
suring the slow-down factor si to explore the break-even
graph (Figure 2) for concrete examples and extract useful
insights on execution time difference between two proces-
sors. The hardware parameters can be measured directly
and plugged into the anaylsis result in the previous section.
To measure the software dependent slow-down and break-
even parameters, we take common computational compo-
nents from a survey of several mobile sensing applications,
implement or port them to both platforms, and measure their
execution times. We discuss both of these measurements in
this section after describing the measurement platform.

Hardware Parameter Measurements
At the time of this study, there is no common smartphone
platform available with a LP in addition to the main pro-
cessor(AP). Hence for measurements related to the AP, we
use a recent smartphone, Samsung SGH-i917, running the
Windows Phone 7.5 operating system. The smartphone is

AP AVR MSP430 ARM
CPU frequency (MHz) 1000 12 18 168
CPU bus width (bits) 32 8 16 32
Sleep state power (uW) 9200 1.8 6 2000
Active state power (mW) 1000 21 15 152
Wake-up delay(us) 12000 1 5 110
Sleep delay (us) 8000 (NA) 5 (NA)
Wakeup energy (uJ) 3101 0.006 0.03 0.66
Sleep energy (uJ) 3065 (NA) 0.075 (NA)

Table 2. Processor Parameters (The stop mode was selected as the sleep
mode for the ARM. AVR & MSP - wakeup using internal clocks).

equipped with a Qualcomm Snapdragon QSD8250 RISC pro-
cessor. For the LP, we use three representative microcon-
trollers with varying HW capability: Atmel ATmega1284P
(AVR), TI MSP430F5438 (MSP), and ST Micro ARM Cor-
texM4 STM32F407VGT6 (ARM). Both the AVR and the
MSP have a HW multiplier. The ARM processor has a ded-
icated single precision floating point unit and supports DSP
instructions. For measuring the smartphone power consump-
tion, we used the Monsoon Power Monitor. For LP power
and execution timing measurements, we used a Textronix
TDS3054B oscilloscope. When impossible to measure, the
LP transition energy and time values are derived from the
worst case approximation based on respective datasheets.

The hardware dependent parameters measured are reported
in Table 2. The numbers for the AP are measured directly,
and include the effect of any transition overheads coming
from system components other than the AP. The LP power
numbers reflect only the power consumed by the LP. We as-
sume that the communication cost between the AP and the
LP will be negligible when they are either part of the same
on-board chipset or even part of a single System-on-Chip
(SoC). It is easy to see from the table that the transition en-
ergy cost for the AP (≈3 mJ) is several orders of magnitude
more than that of the LP and the assumption regarding ig-
noring the LP transition costs is thus justified. Second, the
power consumption of the AP in sleep state is quite signif-
icant and about the same order of magnitude as the active
power for the LP.

Measuring Application Characteristics
As discussed before, the slow-down factor is highly compu-
tation dependent. To ensure that our measurements and the
resultant conclusions are generally applicable, it is important
to measure the energy use for computational tasks performed
by representative applications. Since the range of possi-
ble applications is very large, to make this study tractable,
we focus specifically on the parts of the application related
to continuous sensing and corresponding inference that are
likely to be executed in a continuous, background mode. In
order to identify such common computational tasks, we be-
gin with a survey of sensing applications published in the
literature. For the rest of this section, we use MSP430F5438
as the representative LP.

Common Structure of the Continuous Sensing Applications
Table 3 summarizes the list of applications surveyed. Most
sensing applications process the sensor data to detect or infer

Application Description

UbiFit System
Devises a glanceable display to encourage phys-
ical activity based on sensed and inferred user
status. [6]

Lester et al.
Esitmates daily caloric expenditure based on
the sensor reading to help people’s weight con-
trol. [17]

Lester et al.
Identifies physical activities (sitting, standing,
walking, riding) for personal fitness, elder care,
etc. [16]

Playful Bottle Uses camera and accelerometer to estimate how
much water a user drinks. [4]

KidCam Records children’s daily activities by designing
a camera-based mobile sensing device. [12]

SensLoc
Identifies semantically meaningful places. Acti-
vates only a necessary set of sensors to optimize
energy consumption. [13]

Lifelogging
Records daily life events for the people who
have episodic memory impairement. Uses cam-
era, audio, and GPS to log everyday life. [15]

SoundSense
Uses microphone to recognize human voice as
well as categorize the ambient sounds using au-
dio signal processing techniques. [20]

SpeakerSense
Recognizes who the speaker is. Partitions the
computation pipeline across two different pro-
cessors in order to conserve energy. [19]

Maekawa et al.
Recognizes daily activities using dedicated sen-
sors (wrist mounted sensors and image process-
ing components). [22]

Darwin Phone
Collaborative machine learning. Training data is
shared among a multiple phones to augment the
classification model. [23]

Nericell Monitors road bumps and traffic using accelero-
menter, microphone, and GPS sensors. [24]

PEIR Analyzes GPS traces from the smartphones to
provide a personal carbon exposure report. [?]

HealthGear Uses a blood oximeter sensor to monitor user’s
physiological signals. [26]

EmotionSense
Combine several sensor readings from ac-
celerometer, audio, GPS, BlueTooth to recog-
nize people’s emotional status. [30]

Fall Detector Detects falls, crucial for the elderly. [33]

Table 3. Sensing applications surveyed

certain attributes of interest. The key observation from the
survey is that most applications are comprised of a series of
compute-stages, as follows.

Sampling and Buffering: Every sensing application must
sample the sensors of interest, either periodically or using a
custom sampling strategy, and put them into a data buffer.
Application dependent windowing and framing may be per-
formed. Some applications [19, 20] require overlapped fram-
ing to ensure the quality of classification.
Filtering (optional): Some applications may filter out un-
interesting sampled signals, e.g. SoundSense [20], an appli-
cation that needs sound data, may filter out all data samples
corresponding to silence. The filtering stage may determine
if the subsequent (possibly energy expensive) stages are ex-
ecuted at all. Since the filtering stage is executed almost
always, it often uses computationally light-weight features
such as zero-crossing rates, pitch detection, etc.
Feature Extraction: This stage extracts necessary features
for the classification stage. The features computed depend
on the type of the application. For instance, an activity recog-

App. & Sensors Sampling &
Buffering

Feature Ex-
traction Classification

Intel MSP - Various 2∼550 Hz 0.1∼10 Hz << 0.1 Hz

SoundSense - Audio 4, 8, 16 kHz 16 or 1.56 Hz < 1 Hz

SenseLoc - Accel. 4∼50 Hz 0.1 Hz 0.1 Hz

SenseLoc - GPS 1/60∼1/10 Hz < 1 Hz < 1 Hz

SenseLoc - WiFi 1/30∼1/10 Hz 1/60∼1/30 Hz 1/60∼1/30 Hz

PEIR - GPS 1/30 Hz << 1 Hz << 1 Hz

Table 4. The Stage Invocation Rate

Components Description
Integer Operations +, ×, ÷ with different iteration counts
Floating Point Operations +, ×, ÷ with different iteration counts
FFT input size 8∼256 1

MFCC input size 8∼1024
Activity Recognition Custom Implementation

Table 5. Measured Software Components

nition application [5] using a Bayes’ classifier may use raw
sensor samples. Others such as [19, 20] compute more com-
plex features like Mel-Frequency Cepstral Coefficients (MF-
CC). Machine learning based applications may compute mul-
tiple simple features simultaneously.
Classification: This stage entails performing the applica-
tion specific classification. Typically probability-based or
machine learning based algorithms are used, which often in-
volve heavy floating point operations and iterative computa-
tions. Among all compute-stages involved, the classification
stages are most computationally demanding.
Post Processing: Once the event is classified, it may trig-
ger another continuous sensing compute-chain or other ap-
plication specific task such as displaying user notifications
or initiating network communications. Some work [4, 6] en-
courage users to do certain physical activities. Others [9,
13] invoke other compute processes, etc. We treat the post
processing task as a separate application in this paper.

Frequency of Stage Execution
Table 4 illustrates some example rates of stage execution
based on the surveyed work. Overall output rates of stage
executions are dramatically decreased after we pass the sam-
pling stage, and then remain as a small value. This is be-
cause many continuous sensing applications are highly re-
lated with human behaviors and human-perceivable rate is
not as intense as individual sensor’s sampling rates. As we
can identify in the table, for the sensors such as microphone
and accelerometer, the impact of frequent invocation can
severely impact energy consumption, so we need to carefully
adjust the observation when we design a related system.

Slow-down Factor and Break Even Analysis
Table 5 summarizes the components that we measure on two
processors. The two most prominent libraries in our sur-
vey were the Fast Fourier Transform and the Mel-Frequency
Cepstral Coefficients. For a fair comparison, we used more
storage intensive benchFFT on AP to take advantage its abun-
dant storage while we used less storage intensive Kiss FFT 2

2http://sourceforge.net/projects/kissfft/

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9

sl
o

w
 d

o
w

n
 f

a
ct

o
r

Execution time on AP (ms)

FFT 64bit w/ HW mult.

MFCC

32

64

128

256

51225612864
3216

8

Annotated by

Input Size

(a) Advanced Libraries

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

sl
o

w
 d

o
w

n
 f

a
ct

o
r

Execution time on AP (ms)

INT(+)

INT(x)

INT(/)

100000

10000

1000

10000

100000

100000

10000

Annotated by

Iteration Count

Break-Even Line

With Transition Cost

(QSD + MSP430)

Break-Even Line

Without Transition Cost

(b) Integer Operations

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11

sl
o

w
 d

o
w

n
 f

a
ct

o
r

Execution time on AP (ms)

AR code

FLOAT(+)

FLOAT(x)

FLOAT(/)

100000100000

100000

10000

10000

10000

1000

Annotated by

Iteration Count

Sampling Stage

Bayes’ classifier

(c) Floating Point Operations

Figure 3. Measured results using common components in continuous
sensing applications.

to profile the LPs. We used our own implementation for the
MFCC library. In our measurement, we observe a lower
bound of the unit operations on the AP, which is approxi-
mately 0.09 ms. We attribute this to various operating sys-
tem resource management related overhead enforced by .NET
framework on the phone.

The slow down factor measurement is plotted against the
break-even curve based on Eqn. (5) in Figure 3. In this
graph, we plot the actual break even curve based on the mea-
sured transition energy as well as an ideal break even curve
(horizontal line) assuming zero transition energy. Based on
these graphs, we identify three types of computing task (for
routines such as FFT, for this discussion, we define a task
by the combination of the computation and the particular in-

Simulator
Trace

Data

System Configuration (xml)

Generator
(Trace,

App Structure)

Application Configuration (xml)

Energy Statistics,

Execution Time,

Transition Counts

Figure 4. Overview of the Simulator

put size), as follows. First, since we assume the worst case
transitions, the tasks that lie above the break-even curve are
always most energy efficient when executed on the AP, irre-
spective of how they are scheduled. Second, the tasks that
lie below the ideal break-even curve are most energy effi-
cient when executed on the LP, irrespective of the AP tran-
sition energy. Third, for the tasks that lie between these two
curves, the most energy efficient processor assignment may
depend on how they are scheduled. For example, if each
of these tasks are schedules in an infinite back-to-back se-
quence, they will be more energy efficient when assigned to
the AP since the impact of transition cost becomes negligi-
ble; however, if they are always scheduled individually, LP
becomes the most efficient.

Together with these observations, the frequency of execu-
tion may make a significant influence on overall energy con-
sumption. Hence, to further explore real impact of the as-
signment policy, we developed a simulator that enables us
to investigate various parameter combinations, thereby gives
us a good intuition to determine the right assignment policy.
The results are illustrated in the evaluation section.

EVALUATION
We quantify energy consumption of the system under realis-
tic scenarios, using the following simulations and measure-
ments.

Simulator. When we consider multiple application running
simultaneously, the timing behavior of the computational
tasks from all applications as well as the resultant numbers
of transitions and sleep durations become more involved to
be captured analytically. We built a simulator that operates
at a fine time granularity to capture these effects. Figure 4
describes the architecture of the simulator. We use an event-
driven simulator design. It takes three input files. The first
input contains system configuration parameters, such as pro-
cessor power consumption in every power state for both pro-
cessors, CPU operating frequencies, scheduling policy, and
transition energy cost. The second input describes the appli-
cation structure in terms of compute stages and their wiring.
The last input is a trace file of potentially multiple appli-
cations. The simulator computes the entire execution trace
and outputs the desired statistics including total time spent
on active and sleep state, average transition energy cost per
processor, energy cost consumed by active and sleep state,
the number of transitions occurred during execution, system-
wide average power consumption, expected battery life as-
suming that the applications run continuously.

QSD8250 MSP430 Slowdown Frequency
Factor of Execution

Sampling 0.15 ms 0.0365 ms 0.24 1-30 Hz
Classification 0.63 ms 15.02 ms 23.84 0.1 Hz

Table 6. Activity Recognition

QSD8250 MSP430 Slowdown Frequency
Factor of Execution

Sampling 0.15 ms 0.0365 ms 0.24 1-15 Hz
FFT 0.38 ms 146 ms 384.21 1 Hz
MFCC 4.468 ms 753.71 ms 168.69 0.1 Hz
Classification 0.63 ms 15.02 ms 23.84 0.1 Hz

Table 7. Simplified SoundSense Application

Computation Stage Placement
Using the simulator and measurement results we try to achieve
three goals. First we do a first-order verification of our en-
ergy tradeoff analysis using two representative continuous
sensing applications [16, 20] under reasonable simplifica-
tions. Next, we use the simulation framework to understand
how concurrent applications impact the overall EPF (hence
the total energy consumption). Finally, we use these results
to derive a guideline for partitioning applications between
AP and LP.

Applications. We choose two representative applications.
The first application is an activity recognition application
that consists of two compute-stages. The sampling stage
takes accelerometer readings and stores them in a buffer.
Then the classification stage uses the Naive Bayesian clas-
sifier to identify an activity based on the cumulative data in
the buffer. The second application is a sound classification
application, inspired by SoundSense [20]. We slightly sim-
plify the application so that our measurement results can be
used for profiling while preserving the reasonable applica-
tion structure. This application is comprised of four stages;
sampling, FFT, MFCC, and Bayesian classifier. To setup the
simulator, we take measured data from Figure 3 to get exe-
cution times and slow-down factors for each compute-stage.
We vary or set execution frequencies of individual compo-
nents based on the original configuration. Table 6 and Ta-
ble 7 contain details of these two applications.

Runtime Analysis on Applications. We first run each ap-
plication alone. To evaluate the impact of partitioning deci-
sions, we plot the EPF of the application execution against
different partitioning strategies. For the partition strategy,
we start with all the application components assigned to the
AP; next we move one component at a time, starting form
the sensor sampling component, to the LP and evaluate the
EPF using the simulator. We do not evaluate all possible par-
titioning strategies due to two reasons; one is since a compli-
cated partitioning is likely to incur heavy management over-
head, the other is that the frequency of execution is likely to
decrease as we go deep into the compute-pipeline.

Figure 5(a) shows the results from the activity recognition
application. From this results we observe that almost all the

0

500

1000

1500

2000

2500

3000

0 0.5 1

sl
o

w
-d

o
w

n
 f

a
ct

o
r

Execution Time on AP (ms)

 QSD + TI MSP430

 32 bit w/ HW mult.

 32 bit wo/ HW mult.

 64 bit w/ HW mult.

 64 bit wo/ HW mult.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.5 1

Execution Time on AP (ms)

 QSD + AVR

 32 bit w/ HW mult.

 32 bit wo/ HW mult.

 64 bit w/ HW mult.

 64 bit wo/ HW mult.

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1

Execution Time on AP (ms)

 QSD + ARM Cortex M4

 Float (32bit)

 Double (64bit)

Figure 6. Break-Even Graphs using KissFFT for Different LPs

reduction in EPF (hence, the energy) comes from the assign-
ment of the high frequency sampling and buffering stage on
to the LP. Beyond that, although the Naive Bayesian classi-
fier lies well below the break-even line (Figure 3(c)), the in-
cremental benefit from assigning it on the LP is small since
the frequency of invocations of this stage is much smaller
than the sampling stage.

The case of more than two compute-stages running together
are in Figure 5(b) and 5(c). We presented two such cases.
Simplified sound sensing application has four stages and two
application running together have 6 stages in total. Despite
the interactions among those compute-stages, the results are
qualitatively similar to the simple two stage case.

To more concretely relate the above results to actual battery
lifetime on current phone hardware, consider the following
hardware characteristics. Suppose that we have a 1500mAh
battery, the one used in Samsung Focus i917 smartphone,
fully charged at the beginning. We use the activity recogni-
tion app with 20 Hz sampling rate, continuously run it all the
time until the entire battery is consumed. No other processes
are running together. We use our simulator to execute the
setting, and get the following results. LP-LP has 9.24 mW
of average power consumption, 600.7 hours of battery life.
LP-AP shows similar results; 9.96 mW and 557.33 hours.
However, AP-AP consumes much more power, 147.79 mW,
and ends up with only 37.5 hours of battery life. Unsurpris-
ingly, the EPF difference in Figure 5(a) is directly connected
to battery life time.

PLATFORM DESIGN IMPLICATIONS
In this section, we draw three guidelines for the platform
developers. First, it would be useful for hardware design-
ers to know the impact of choosing different LP. We sug-
gest a direction by executing a sample stage under different
LP configurations. Second, we come up with an application
partitioning strategy that makes continuous sensing on mo-
bile devices practical. Third, we propose a proper set of API
library as well as runtime design strategy for the hardware
platform developer.

Low-Power Processor Selection. We next develop guide-
lines for selecting an appropriate low-power processor. Fig-

0

10

20

30

40

50

60

70

80

90

100

AP-AP LP-AP LP-LP

E
P
F

1 Hz

10 Hz

20 Hz

30 Hz

(a) Activity Recognition Application

0

5

10

15

20

25

30

35

40

45

50

AP-AP-AP-AP LP-AP-AP-AP LP-LP-AP-AP LP-LP-LP-AP LP-LP-LP-LP

E
P
F

1 Hz

5 Hz

10 Hz

15 Hz

(b) Simplified SoundSense Application

0

5

10

15

20

25

30

35

E
P
F

10Hz-1Hz

10Hz-5Hz

10Hz-10Hz

(c) Activity Recognition + SoundSense

Figure 5. Multiple Stages Running Together

ure 6 shows the break-even graphs using KissFFT executing
on different HW configurations. From the figure, we ob-
serve that a) the different HW configurations result in widely
varying energy numbers. b) ARM processor has a much
larger wakeup delay compared to others, and it adds signif-
icant overhead. c) relatively large performance differences
between individual LPs, e.g. AVR vs MSP, may have neg-
ligible impact on the overall performance when paired with
an AP. So, we conclude that any simple low power proces-
sor with a small wakeup transition delay is suitable as the LP.
On the other hand, feature-rich processors with custom HW
support that does not get exercised very often may result in
a poor overall performance when paired with an AP.

Paritioning Guidelines. The simulation results in the eval-
uation section show that most of the energy savings due
to partitioning an application between the AP and the LP
come from the assignment of more frequently executed sen-
sor sampling and buffering stages to the LP. Beyond that,
there is a diminishing return. Even those computing stages
that lie well below the break-even curve do not add much to
the overall energy savings since they are executed at much
slower frequency compared to the sampling stages. Based
on these observations, we draw the following conclusion for
application partitioning between the AP and the LP.

AP: For tasks found to be more efficient on the AP (above
the trade-off curve in Figure 2), always place on the AP since
the efficiency of the AP out-weights the transition penalty.

LP: For tasks that are more efficient on the LP, simplest tasks
that are executed most frequently within an app should first
be placed on the LP since the savings are the greatest for
these. From the survey of applications, this almost always
includes the sampling and buffering task.

AP and LP: For tasks more efficient on the LP, but exe-
cuted with lower frequency, (subsequent stages within an ap-
plication) placement on LP provides only marginal gains in
energy (since these tasks are not the dominant energy con-
sumers within the app). However, since these tasks are rel-
atively more complex computationally, they incur an oppor-
tunity cost by occupying a disproportionate amount of LP
resources that could otherwise be used host the lowest layer
and most energy saving tasks of other apps on the LP. Hence,
such tasks should be implemented on the LP along with a

Layer Description Examples

1 Sampling&Buffering SampleAndBuffer(Rate,
BufSize)

2 Simple processing, Ad-
vanced Filtering

GetMean(), GetVar(),
GetSIMDAdd()

3 Platform-specific Spe-
cial libraries FFT/DFT, MFCC

Table 8. Layered API suggestions for LP

mechanism to evict them from the LP when additional ap-
plications are started. One way to achieve this is to have the
app developer only develop their app on the AP and allow
them to use some of the pre-implemented methods on the LP
to service the lowest layer, frequently used, stages in a large
class of applications. If a new application is started on the
device, and the LP does not have resources to accommodate
the lowest layer sampling and buffering stage for the new
app, one of the higher layer methods on the LP is evicted
and the app uses its own implementation on the AP.

Following the guidelines above, we propose a layered set of
APIs for the LP based on our survey of a number of applica-
tions (Table 8). The list of APIs chosen will suffice for not
only the specific apps in Table 3 but also other applications
that share similar types of data processing. As new types of
apps are envisioned, the list will need to be correspondingly
expanded.

The lowest layer API, to sample and buffer data from a sen-
sor, is common to all apps surveyed and found to be uni-
versally most efficient on the LP. This method is also often
the only app stage that yields significant energy savings by
migrating to the LP. Hence we suggest that a sampling and
buffering API be provided for each sensor on the LP.

The decision becomes trickier for computations typically used
at subsequent stages after sampling. Using the survey of ap-
plications and the trade-off analysis in earlier section, along
with the measurements performed for multiple apps, we rec-
ommend a second layer of APIs to be provided on the LP,
listed at layer 2 in Table 8. The set of methods included in
layer 2 occupy a relatively small amount of resources on the
LP in terms of memory and CPU cycles used at run time and
are useful to multiple applications.

Lastly, we propose a third layer of APIs chosen from among

the methods measured to be more efficient on the LP and
also used among multiple apps. A key distinction from the
layer 2 APIs is that these APIs may occupy a significant
amount of resource on the LP. Hence, it is critical that for
every layer 3 method that is selected to be implemented on
the LP, an equivalent version also be provided on the AP. At
any time when a new app is started and the LP does not have
resources to accommodate its lowest layer task for sampling
and buffering, any layer 3 methods running on the LP will
be de-activated and their counterparts initialized on the AP,
since the energy gain is much higher by making space for
the lowest layer methods on the LP.

CONCLUSION
This paper examined how to split multiple modules of a
continuous sensing application between the main processor
and a low-power processor to reduce the overall energy con-
sumption. To achieve the goal, we first identified the com-
mon structure of applications envisioned in the literature.
Using this, we modeled and analyzed the system energy con-
sumption. We performed extensive measurements on vari-
ous combination of LPs and one of the latest APs to identify
efficient operating points. We also quantified energy con-
sumption of multiple applications running simultaneously.
From the insights derived from these analyses and measure-
ments, we presented important design implications for the
platform developers. In summary, assigning simple and fre-
quent sampling & buffering, and arithmetic operations to the
LP brings the most energy benefit. Additional tasks can be
placed on the LP, but careful dynamic job scheduling based
on accurate resource monitoring for LP is needed at runtime
for such tasks.

REFERENCES
1. R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb.

”Simplifying Cyber Foraging for Mobile Devices”. In MobiSys, 2007.

2. L. Benini and G. d. Micheli. System-level power optimization:
techniques and tools. ACM Trans. Des. Autom. Electron. Syst.,
5:115–192, April 2000.

3. G. Challen and M. Hempstead. The case for power-agile computing.
In HotOS, 2011.

4. M.-C. Chiu, S.-P. Chang, Y.-C. Chang, H.-H. Chu, C. C.-H. Chen,
F.-H. Hsiao, and J.-C. Ko. Playful bottle: a mobile social persuasion
system to motivate healthy water intake. In Ubicomp, 2009.

5. T. Choudhury et al. The mobile sensing platform: An embedded
system for activity recognition. IEEE Pervasive Magazine,
7(2):32–41, April 2008.

6. S. Consolvo, P. Klasnja, D. W. McDonald, D. Avrahami, J. Froehlich,
L. LeGrand, R. Libby, K. Mosher, and J. A. Landay. Flowers or a
robot army?: encouraging awareness & activity with personal, mobile
displays. In UbiComp ’08, 2008.

7. E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
and P. Chandra, Ranveer an d Bahl. ”MAUI: Making Smartphones
Last Longer with Code Offload”. In MobiSys, 2010.

8. V. Devadas and H. Aydin. Real-time dynamic power management
through device forbidden regions. In IEEE RTAS, 2008.

9. J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay.
Myexperience: a system for in situ tracing and capturing of user
feedback on mobile phones. In MobiSys, 2007.

10. M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao. Energy-optimal software partitioning in heterogeneous
multiprocessor embedded systems. In DAC, 2008.

11. S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song.
Seemon: scalable and energy-efficient context monitoring framework
for sensor-rich mobile environments. In MobiSys, 2008.

12. J. A. Kientz and G. D. Abowd. Kidcam: Toward an effective
technology for the capture of children’s moments of interest. In
Pervasive, 2009.

13. D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava. Sensloc: sensing
everyday places and paths using less energy. In SenSys, 2010.

14. N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. Campbell. A survey of mobile phone sensing. IEEE
Communications Magazine, 48(9):140 –150, sept. 2010.

15. M. L. Lee and A. K. Dey. Lifelogging memory appliance for people
with episodic memory impairment. In UbiComp, 2008.

16. J. Lester, T. Choudhury, and G. Borriello. A practical approach to
recognizing physical activities. In Pervasive, 2006.

17. J. Lester, C. Hartung, L. Pina, R. Libby, G. Borriello, and G. Duncan.
Validated caloric expenditure estimation using a single body-worn
sensor. In Ubicomp ’09, 2009.

18. F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex: Using
low-power processors in smartphones without knowing them. In
ASPLOS, 2012.

19. H. Lu, A. Bernheim Brush, B. Priyantha, A. Karlson, and J. Liu.
SpeakerSense: energy efficient unobtrusive speaker identification. In
Pervasive, 2011.

20. H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell.
Soundsense: scalable sound sensing for people-centric applications on
mobile phones. In MobiSys, 2009.

21. H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell.
The jigsaw continuous sensing engine for mobile phone applications.
In SenSys, 2010.

22. T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Ishiguro, K. Kamei,
Y. Sakurai, and T. Okadome. Object-based activity recognition with
heterogeneous sensors on wrist. 6030:246–264, 2010.

23. E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu,
and A. T. Campbell. Darwin phones: the evolution of sensing and
inference on mobile phones. In MobiSys, 2010.

24. P. Mohan, V. N. Padmanabhan, and R. Ramjee. ”Nericell: rich
monitoring of road and traffic conditions using mobile smartphones”.
In SenSys’08, Nov. 2008.

25. R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden.
Wishbone: Profile-based Partitioning for Sensornet Applications. In
NSDI, April 2009.

26. N. Oliver and F. Flores-Mangas. Healthgear: a real-time wearable
system for monitoring and analyzing physiological signals. In BSN,
2006.

27. T. Park, J. Lee, I. Hwang, C. Yoo, L. Nachman, and J. Song. E-gesture:
a collaborative architecture for energy-efficient gesture recognition
with hand-worn sensor and mobile devices. In SenSys, 2011.

28. B. Priyantha, D. Lymberopoulos, and J. Liu. LittleRock: Enabling
energy-efficient continuous sensing on mobile phones. IEEE
Pervasive Computing, 10(2):12–15, Feb. 2011.

29. M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan. Odessa: enabling interactive perception applications on
mobile devices. In MobiSys, 2011.

30. K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow,
C. Longworth, and A. Aucinas. Emotionsense: a mobile phones based
adaptive platform for experimental social psychology research. In
Ubicomp, 2010.

31. G. Raffa, J. Lee, L. Nachman, and J. Song. Don’t slow me down:
Bringing energy efficiency to continuous gesture recognition. In
ISWC, pages 1–8. IEEE, 2010.

32. TI. OMAP 5 mobile application platform. 2011.

33. G. Yavuz, M. Kocak, G. Ergun, H. O. Alemdar, H. Yalcin, O. D. Incel,
and C. Ersoy. A Smartphone Based Fall Detector with Online
Location Support. In PhoneSense, 2010.

