
Context-Based Automatic Local
Image Enhancement

Sung Ju Hwang1, Ashish Kapoor2, and Sing Bing Kang2

1 The University of Texas, Austin,TX, USA
sjhwang@cs.utexas.edu

2 Microsoft Research, Redmond, WA, USA
{akapoor,sbkang}@microsoft.com

Abstract. In this paper, we describe a technique to automatically en-
hance the perceptual quality of an image. Unlike previous techniques,
where global statistics of the image are used to determine enhancement
operation, our method is local and relies on local scene descriptors and
context in addition to high-level image statistics. We cast the problem
of image enhancement as searching for the best transformation for each
pixel in the given image and then discovering the enhanced image using
a formulation based on Gaussian Random Fields. The search is done in a
coarse-to-fine manner, namely by finding the best candidate images, fol-
lowed by pixels. Our experiments indicate that such context-based local
enhancement is better than global enhancement schemes. A user study
using Mechanical Turk shows that the subjects prefer contextual and
local enhancements over the ones provided by existing schemes.

1 Introduction

Recent advances in digital photography has made it possible for an amateur pho-
tographer to create professional-looking photos. Simple adjustments of color and
contrast can be performed using photo retouch tools such as Adobe Photoshop.
However, such manual adjustments do not scale up well with large collections
of captured photos. An automatic image enhancement method would help re-
solve this problem; by “image enhancement,” we mean improvement of image
perceptual quality of images.

Most existing automatic enhancement techniques make use of global inten-
sity transforms, either for color correction (white balancing) or contrast enhance-
ment. For these global schemes, the mapping of color or intensity is one-to-one
and is independent of pixel location or scene context. Such methods would not
work well for images where different parts require different types of correction,
e.g., the darker portions of an indoor scene requires higher contrast adjustment
and different color correction than the window, or it is desirable to emphasize
the subject by enhancing contrast between the subject and its background [1].

In our paper, we propose a new automatic technique for locally enhancing
images based on context at two levels: coarse (scene) and fine (pixel). For each
point in input image, we find the best local matches in a training database that
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Fig. 1. (a) Illustration of basic concept. We enhance a given image by scene matching
and use the recovered multiple candidates to combine enhancements. (b) An example
highlighting the local enhancement. The pixels marked A and B in the input image
have the same RGB values but are mapped to pixels A’ and B’ with different colors.

has original and enhanced image pairs. The matching relies on scene descriptors
in addition to low-level image statistics. We then combine enhancement func-
tions from multiple candidates over the entire image to generate an enhancement
map with local variations, to enhance each pixel based on both scene and local
context. Fig. 1(a) shows the concept of our idea where mapping for each input
pixel is found by considering relevant matched scenes and then inheriting the
enhancement operations from pixels in those matched images that are closest in
terms of local context. Fig. 1(b) further highlights the effect of local enhance-
ments achieves using the proposed scheme. In particular, we want to highlight
that two identical pixels (marked as A and B) in the input image can get mapped
to different values in the enhanced image. Note that the ratios (R/G, B/G) are
also different for A’ and B’ in the output. This highlights our core contribution,
namely an enhancement algorithm that considers local and contextual cues and
that has both the elements of tonal adjustment and color correction.

2 Related Work

Various techniques have been proposed for automatic image enhancement. First,
there are simple, heuristic-based methods, such as color correction based on
the gray-world [2] or gray-edge [3] assumption, and enhancing the contrast by
stretching the color histogram. While conceptually very simple, these strategies
work reasonably well in practice. There are also Bayesian approaches (e.g., [4, 5])
that model the illuminant as a random variable from a database of images, and
then estimates it from the posterior distribution conditioned on image intensity
data and/or feature descriptors such as direction filters.

In a similar vein, there are exemplar and learning-based methods that lever-
age databases of pre-enhanced images in order to enhance a new image. Kang
et al. [6] describe such an examplar-based method. A metric is first learned for
enhancement parameter similarity, then used to find the image in the training
set that is closest to the given test image in terms of image enhancement. The
enhancement parameter associated with the “closest” image is then used. Since
the database is trained for the use, the enhancement is personalized. Caicedo
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Fig. 2. Overview of the proposed coarse-to-fine local enhancement method. Enhance-
ment maps are contrast enhanced for better visibility.

et al. [7] further exploited the personalization aspect of the method, and use
collaborative filtering to discover clusters of user preferences.

While the methods of [6, 7] are non-parametric, Bychkovsky et al. [8] took
the parametric approach to reproduce the global tonal remapping function by
training it on input-output image pairs, where the output images are enhanced
by professional retouchers. However, this remapping function is only learned for
the luminance channel, and is tested on a dataset where the amount of white
balance is known, limiting its practicality. All these methods rely on mostly
lower-level image statistics (such as color or intensity histogram [6]), and the
enhancements are global. Bychkovsky et al. [8] use faces as one of their features,
but do not exploit other high-level scene or object-level semantics.

Techniques for tonemapping high dynamic range (HDR) images [9] locally
preserve detail in low dynamic range (LDR, or conventional 24-bit RGB) outputs
for display. These techniques have also been used to enhance local contrast in
single conventional RGB images. The approaches range from gradient-based [10],
digital dodging-and-burning [11], and use of bilateral filtering [12] to tonal style
remapping [13]. While local tonal adjustment is similar to our goal, regular
tonemapping does not explicitly involve color correction (unless it is a byprod-
uct of tonal adjustment). By comparison, we explicitly handle color correction
as well, and the enhancement is done via example-based learning using scene
descriptors and context (see Figure 1(b)).

The approach of Dale et al. [14] is the closest to ours. They used scene de-
scriptors to match images that are similar in terms of scene context, and then use
these images to search for the region match. Subsequently, each region in the
input images is matched to the corresponding regions in the retrieved images
using co-segmentation, and their color distributions are transferred. However,
their method does not consider the similarity in enhancement space for those
images while our method accounts for both scene semantics and enhancement
parameters. Even though the transferred color distributions are local, the ac-
tual enhancement is done by fitting a global enhancement function to minimize
the error between the globally enhanced image and the color-transferred image.
This is to overcome the possible artifacts at region boundaries. Thus, it does
not preserve one-to-many mappings that were present in the color-transferred
image. On the other hand, our method produces a potentially different mapping
operator for each pixel.



4 S. J. Hwang, A. Kapoor and S. B. Kang

3 Approach

We view the image enhancement process as a search for local functions that
would transform each ith pixel yoi in the original image to an enhanced value yei .
The key idea is to learn such mapping from a training database that consists of
input (original) and output (enhanced) image pairs. Since such training data set
encompasses a wide variety of real images, we can hope to recover enhancement
operations that are heteroscedastic and depend upon the local pixel context in
addition to the image global statistics.

Fig. 2 provides an overview of the pipeline. Given an image to enhance, a
retrieval step is first performed in order to focus on a subset of examples in the
training set that are most similar to the input image in terms of enhancement
requirements. Once such subset is retrieved, individual enhancement operation
for each pixel in the input image is found by matching it to the pixels in the
retrieved set of training examples. Finally, spatial smoothening is performed on
the enhancement map in order to preserve spatial and visual regularity.

One of the key technical aspects of this work is the course-to-fine search,
where the search over possible enhancements of each image is performed by
first finding candidate images based on scene first and then over the space of
pixels. Further, this matching is performed using different cues that incorpo-
rates knowledge at different levels of granularity, enabling us to consider both
high-level statistics using the scene cues, and local semantics using low-level de-
scriptors. Table 1 shows the list of features we used for each matching step. We
describe the individual components of the pipeline in detail next.

Retrieval type Feature Dimensionality

L*ab color histogram 128
Image (scene) GIST [15] 768

Bag-of-words 512

L*ab color 3
Pixel Saliency map [16] 1

y position 1
Dense SIFT [17] 8

Table 1. List of features used for matching.

3.1 Retrieving Relevant Training Images

The first step in our pipeline is to find a set of candidate images from the training
database that are most likely to be similar to the input test image in terms of
enhancement requirements. (This is similar to the metric learning approach used
in [6].) Instead of looking at the entire training database, the focus on the subset
that is contextually similar to the test image is more likely to provide us with
better enhancement choices. More specifically, given an input image x and a
procedure to measure distances between images, the algorithm retrieves the top
K images that are closest to the original images in the training set. In our work,
K = 10.
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Ideally, distance computation should be done such that the retrieved images
reflect the content and enhancement requirement of the input images. Conse-
quently, we rely on distance metric learning. In particular, we parameterize the
distance between any two images xi and xj using an n × n matrix MI that
operates on the extracted n-dimensional feature vectors of the images:

dMI
(xi,xj) = (ψ(xi)− ψ(xj))

TMI(ψ(xi)− ψ(xj)).

Here, ψ(xi) is the extracted feature vector from image xi and consists of a
representation that capture the content and high-level image statistics. For our
pipeline to work well, it requires that the distance-metric parameter MI is set
such that it considers images requiring similar enhancements closer to each other
than the others that need different enhancement operations. Consequently, we
learn the parameter MI using a target distance function dt(xi,xj) that captures
distance between enhancements applied to the images. Formally, given a training
dataset of images and their enhancements, we seek to learn MI by optimizing
the following objective:

arg min
MI

∑
i,j

||dMI
(xi,xj)− dt(xi,xj)||2. (1)

This objective looks at all pairs of images in the dataset. Minimizing this ob-
jective leads to finding an appropriate distance function that reflects how far
two images should be in terms of their enhancement parameters. Note that this
objective is convex; the unique optimum can thus be easily found by running a
gradient descent procedure (limited memory BFGS).

In our implementation, the image feature vector ψ(x) is constructed by first
concatenating L*ab histogram, GIST [15] descriptors, and bag-of-words (see Ta-
ble 1) representation, and then reducing the dimensionality to 256 using PCA.
Further, for the target distance we use dt(xi,xj) = ‖g(xi)− g(xj)‖2, where g(·)
denotes the enhancement function corresponding to the image. The enhance-
ment function is represented as the histogram of δy = ye − yo for each of the
color components in the L*ab color space (20 bins per component), where yo

and ye are pixels in the original and enhanced images, respectively.

3.2 Pixelwise Local Enhancement

Once the relevant subset of examples have been retrieved, the next stage in
the pipeline is to individually estimate the “best” enhancement for every pixel
in the test image. In particular, for every individual pixel we seek to map the
input L*ab to output values that make use of local cues within the scene context
defined by the set of retrieved images. Note that scene-level matching takes into
consideration object-level context; subsequent to scene-level candidate selection,
there is less ambiguity between object-level matches using the lower-level cues.
For pixelwise search, the key idea is to compute a local feature representation
of each pixel consisting of the original color and other local cues that describe
local context (saliency, SIFT, and y position, see Table 1). This representation
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is then used to measure similarity (or distance) between the pixels in terms of
local context, thereby enabling us to identify pixels in the training subset that
are most similar to the ones in the test image.

We again consider a distance metric parameterized by the matrix MP that
is used to compute distance between two pixels and retrieve similar pixels:

dMP
(yi, yj) = (τ(yi)− τ(yj))

TMP (τ(yi)− τ(yj)).

Here, τ() denotes feature representation of pixels. The parameter MP can be
learnt in a similar way before using an appropriate target distance. However, we
expect that the distance metric would be sensitive to the scene context of the
given input image. For example, consider an ocean scene with sky. We expect that
there may be blue pixels in the ocean and sky regions that map to similar L*ab
values but require different enhancements. Here, we expect that the y-position of
a pixel is a more informative similarity feature. For images that contain people
and faces, we expect saliency and appearance cues to be more useful. Thus, it is
very important to learn MP on-the-fly and that we learn a distance metric over
the space of pixels depending on the scene context of the given image.

Given the set of retrieved training images, we can apply the same distance
metric learning approach as before. As the number of pixels is relatively large, we
use an efficient online metric learning method from [18] with the target distance
computed as the sum of the L2 distance of enhancement pairs (yo, ye), computed
as dij = ‖yoi −yoj‖2+‖yei −yej‖2. To further speed up the distance metric learning,
we use 10,000 randomly sampled training points from each training example
image. Since the search space for retrieving top k-nearest pixels is huge (106),
we use locality sensitive hashing (LSH) as proposed in [19]. We set k = 10 in our
work. The efficiency can be further improved using parallel processing as each
search process is independent of each other. On a quad-core P4 2.4 GHz PC, it
took about 1.5 minutes to perform the search (with parallel implementation) for
an image of size 500× 333.

Once the set of k-nearest training pixels z1, .., zk to an input pixel yoi has
been retrieved, we then recover the enhancement mapping using the weighted
combination of the transformation observed on the retrieved pixels, i.e.,

fi(x) = yoi +

k∑
j=1

wj(z
e
j − zoj ).

zoj and zej correspond to the original and enhanced training pixel, respectively.
The core idea is to consider the transformations (zej−zoj ) that were applied to the
training pixels and apply a blending of those transformations to the input pixel
yoi . Furthermore, the weights that determine the blending of the transformations
are computed using a softmax function:

wj =
exp(−dMP

(yoi , z
o
j ))∑k

j′=1 exp(−dMP
(yoi , z

o
j′))

.
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This softmax transformation results in blending that considers the distance of
each of the retrieved pixels and assigns higher weights to nearby pixels. This
transformation is performed on all the three L*ab channels independently on
every single pixel, resulting in the output image f(xo) corresponding to the test
input xo. Note that since the proposed approach recovers individual transfor-
mations for each individual pixel, two pixels having same values in the original
image can be mapped to different output values under our scheme. This is the
fundamental difference between our approach and existing global enhancement
schemes where such one-to-many mappings are infeasible.

3.3 Regularizing the Enhancement Map

Up to this point, the enhancement operation for each of the pixel is estimated
independently. Also, the enhancement recovered for pixels can sometimes be
inexact, resulting in enhancement maps with discontinuity artifacts. Thus, we
need to spatially regularize to preserve the piecewise smooth characteristics of
the input image. In particular, the key intuition behind this step is that the
enhancement operation being applied to two pixels need to be similar if those
pixels are spatially and perceptually close in the original image. In other words,
similar operations need to be applied to neighboring pixels unless there is a sharp
edge between them in the original image.

We achieve spatial smoothening using a model motivated by Gaussian Ran-
dom Fields. Given the original input image xo and its pixelwise enhancement
map f(xo), we find

min
ye

 N∑
i

||yei − fi(xo)||2 + γ
∑

i,j∈Nbr

Lij ||yei − yej ||2
 .

Here ye denotes the final enhanced image with yei and yej as enhanced pixel
values (L*ab color) to be estimated for pixels i and j respectively. Nbr refers
to the set of 4-connected pairs of pixels. fi(x

o) corresponds to the individual
pixelwise enhancement and Lij is a similarity measure between pixels i and j,
computed using the value of input pixels yoi and yoj using radial basis function

(RBF): Lij = exp−‖y
o
i−y

o
j ‖

2

2σ2 . We found that the procedure worked well for
0.05 ≤ σ ≤ 0.5; we set σ = 0.1.

This formulation consists of the unary term that represent affinity to solutions
that are close to pixelwise local enhancements (f(xo)) and a pairwise term that
enforces spatial and perceptual smoothness. The pairwise term sums over all
pairs of spatially neighboring pixels (specifically, 4-connected neighborhood).
Thus, minimization of such objective should result in solutions that are both
smooth as well as similar to the local enhancements. Note that γ acts as a
regularization parameter which controls the degree of smoothness: a high value
of γ puts more weight on the pairwise component resulting in higher degree of
smoothening. In our work, γ = 400 and was found using cross-validation.
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In principle, our formulation is very similar to approaches in computer vision
that are based on Markov Random Fields (MRFs) or Conditional Random Fields
(CRFs); it also has connections to manifold-based learning techniques. The ob-
jective presented above is convex on ye, and we solve it using limited memory
BFGS. For a 500× 333 image, the optimization takes about 1.5 minutes.

4 Results

We validate our system via a user study. The database we use is the MIT FiveK
dataset [8], which has 5,000 pairs of original and enhanced images. Each en-
hanced version was generated by professionals who adjusted the color remapping
curve using the Adobe Lightroom software. Thus, the “ground truth” images
are generated using global transformations. To preserve as much detail as pos-
sible, we use the exposure-normalized set (Catalog AsShotZeroed in the Adobe
Lightrooom catalogue provided with the dataset) as the input set. The original
raw image data has 16 bits per channel, but to reduce the computational com-
plexity, we export them to 8 bits per channel 24-bit sRGB JPEG images, each
resized so the longer edge is 500 pixels.

We generate two test sets for our experiments: (1) “Random 250”: 250 ran-
domly selected images from the entire dataset, and (2) “High Variance 50”: 50
images manually selected by three individuals, based on the conjectured dif-
ficulty in performing global light/color correction. We compare our enhanced
images against the input images, those enhanced using Picasa, and those en-
hanced using Dale et al.’s [14] method. We did not compare with [8] since their
system adjusts only brightness/contrast.

In addition to reporting the L2 error, we ran a user study for comparative
assessment of image perceptual quality. For the user study, we randomly selected
25 images from “Random 250” dataset and 25 images from “High Variance 50”
dataset. Then, we presented random pairs, where one image is selected from
a baseline containing either the input images, images enhanced using Picasa,
images enhanced using Dale et al.’s method, and images enhanced using our
method (3 pairs per image).

We used Mechanical Turk for our user study. We ran parallel mini-studies,
with each study involving about 100 subjects, each subject looking at 3 different
images, i.e., 9 comparisons. The order of images was randomized to avoid bias.
Our only instruction to the subject is to select the image he/she thinks looks bet-
ter (or “no preference”). 417 unique subjects responded, with each comparison
taking 19.4 seconds on average.

4.1 Effect of local enhancement

Fig. 3 shows an example image enhanced using our method compared with the
images enhanced globally (by Picasa, Dale et al.’s method, and a human expert).
The given example is a typical case where global enhancement may not be ade-
quate. The sky in the background is saturated both in intensity and color, while
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the foreground train and the ground appears very dark. We want to enhance
the foreground to appear brighter, but since the histogram already spans the
full range, the global heuristic-based method (Picasa) cannot change the given
image. Dale et al.’s method and a human expert enhance the foreground by
increasing the overall brightness, but there is loss of sky color.

On the other hand, our method increases the brightness and contrast of
the foreground, while the sky is only moderately changed. This is because the
enhancements for the grass, tree, train, and sky originate from different regions
and images in the training database. The bars on the right of each retrieved image
is the weighting of each image, computed from the number of pixels retrieved
from the image. It shows that we actually make use of all the 10 retrieved images
to reconstruct the enhancement map for the given image; partial matches with
different scene contexts are used to enhance each region differently. For the
example shown in the first row of Fig. 4, the enhancement palette for the building
comes from the house matched in the last row, while the trees and the grass
benefit from matched images of trees and mountains. Also, for the last example
of the outdoor night scene, some of the matched scenes are similar (either night
scenes and/or having white buildings).

Dale et al.’s method also uses enhancements from multiple images by trans-
ferring colors from matched regions before finally fitting a global enhancement
operation. However, it is less effective on the FiveK dataset because of the diffi-
culty in finding a good matches. The dataset appears to be too diverse in lighting
and color temperature variation; furthermore, their method does not consider
the similarity in the enhancement space as ours does. See, for example, their
result in Fig. 4.

The RGB remapping curve in Fig. 3 shows that our method is truly local.
For our method, each RGB input is mapped to wider range of outputs3. The
main advantages of our local enhancement method are: (1) We can deal with
images that have spatially-varying lighting and color conditions; with global
tonal adjustment, enhancing one region would have an adverse effect on another.
(2) Using visual cues related to object importance such as saliency map, face, or
objectness, we can emphasize the subject by enhancing those regions differently
from the background. The example shown in the top row of Fig. 4 illustrates this
point. Here, Picasa and Dale et al.’s method enhance the image so that details
in the cloud are preserved, while the expert enhanced the foreground but lost
some detail in the background. Our method is able to preserve the cloud details
while enhancing the appearance of the grass and building.

4.2 Quantitative Evaluation

In this section, we report comparisons of results using L2 errors as a measure of
performance. We also show that the L2 error does not necessarily correlate with
perceptual image quality.

3 The mapping for global enhancement is not exactly one-to-one due to quantization
errors from resampling and color space conversion errors.
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Fig. 3. Illustration of local enhancement effect. (a) Input image. (b)-(d) Image en-
hanced using different enhancement methods. The numbers are L2 errors with respect
to the expert enhanced image. (e) Retrieved database images. The height of the bar to
the right of each image represents its relative weight. (f) RGB remapping curve. For
the expert enhanced images, the mapping is one-to-one, while our enhanced images are
not, demonstrating local enhancement.

L2 error on globally enhanced dataset: The FiveK dataset was created
through global tonal adjustment and our method performs local enhancement.
By enhancing different parts of the image differently, we do not expect our
method to perform significantly better than global methods for this experiment;
however, since our method uses the globally enhanced training dataset, we still
want to show that our method is able to learn and predict reasonably accurate
enhancement functions based on this dataset. Table 2 shows the L2 error (in
L*ab space) for the baseline systems and our method. The average L2 error we
obtained for the “Random 250” set is slightly worse than Picasa, and on the
“High Variance 50”, the average L2 errors are similar. However, for the “High
Variance 50” set, a significant amount of the errors comes from over-enhancing
dark regions (e.g., second row Fig. 4). The L2 errors for Dale et al.’s method are
higher than those for Picasa and ours, largely due to the difficulty of finding good
matches in the small but visually diverse dataset. In the original experiments
described in [14], the database used is large (about one million images) and
contains only images of natural scenes.

Method Random 250 High variance 50

Input 17.07± 0.93 14.85± 1.95
Picasa 13.39± 0.80 11.99± 1.46

Dale et al. [14] 20.43± 1.13 13.27± 1.67

Ours 15.01± 0.82 12.03± 1.27

Table 2. Comparisons of average L2 errors on two test sets, with the standard error
for 95% confidence interval.
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(a) Original (b) Picasa (c) Dale et al. (d) Ours (e) Expert (f) Matched images

Fig. 4. Examples showing the advantage of the proposed method. The bar on the
right side of each retrieved image denote the weighting for each image, calculated by
computing the number of pixels the system used to enhance each image. The images
with higher weights are the one that contribute most towards the enhancement of the
input.
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Fig. 5. User study results for the two different test sets. The graph denotes the pro-
portion of user preference amongst the three choices. The error bars denote the range
for 95% confidence. The proposed method outperforms global enhancement baselines
by significant margins.

L2 error is not a good predictor of quality: In most previous techniques, the
quality of an automatic image enhancement method is evaluated by computing
the L2 error between the enhanced image and the “ground truth” images, mostly
out of convenience. However, it is not a reliable measure, since it is not directly
related to the perceptual quality of the image. Fig. 6 illustrates this point; here,
perceptual quality was measured based on the user study. The L2 error results
in Table 2 are also not compatible with those of the user study shown in Fig. 5.
For both testsets, while the mean L2 errors for our results are worse than those
for Picasa, on average, more subjects prefer our results.

4.3 User Study

Since the L2 error is not a good predictor of quality, we rely on the user study
to compare different enhancement methods. The results of our user study is
summarized in Fig. 5. For the “Random 25” test set, our method received slightly
more votes on average than both global enhancement baselines, for 16/25 images
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Fig. 6. Examples showing why L2 error is not totally reliable for predicting image
quality. The numbers below the images are L2 errors. Top row: our method produced a
larger L2 error but subjects prefer our result. Bottom row (also a failure example): our
method produced a smaller L2 error but subjects prefer Picasa’s and Dale’s results.

for Picasa, and 18/25 images for Dale et al.’s. The difference is not statistically
significant for Picasa; in many cases, we received split votes for a given image.
However, our method outperforms Dale’s method significantly (for p ≤ 0.01%).

On the high-contrast images, the variance on the votes is significantly less,
and subjects predominantly prefer the images enhanced by our method (more
votes on 24/25 images for Picasa, and 18/25 images for Dale et al.’s). Dale
et al.’s method does relatively well on these images, as it can brighten darker
regions, though it also loses detail in the brighter regions (Fig. 7, first row).
Picasa appears to be unable to effectively handle high-contrast images whose
histograms already span the whole intensity range. We performed single-tailed
t-test on the all 50 images using the number of votes on each image as the score,
and the result confirms that the gains we get from using our method over Picasa
and Dale et al. are statistically significant (for p ≤ 0.01%). This makes sense
as finding a single global enhancement function for images with high variance
could be difficult.

Fig. 7 shows some images used in the experiment, along with the votes re-
ceived. The first two rows show examples where our method is preferred. For
these images, it is not possible to effectively enhance those regions using a global
enhancement method. The third row is a case where our method and a baseline
received split votes. The split votes may be a result of random personal prefer-
ences, as it is hard to tell that one enhanced version is better than the other.
In the last row, Picasa is preferred by more subjects; here our technique did not
properly color correct the skin. Using a skin detector (not implemented) should
handle this problem. Our framework is able to accommodate additional object
or scene knowledge.

We expect our technique to fail when scene matching fails. For the image
shown at the bottom of Fig. 6, even though our L2 error is significantly lower
than those for global enhancement baselines, subjects much prefer the other
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Fig. 7. Example images for the user study and the response. The numbers below each
image is the L2 error. The first two examples are from the “High variance 50” testset,
and the rest are from the “Random 50” testset.

results. Here, it appears that our technique did not sufficiently color correct
(although it is possible the sky has an orange hue).

5 Concluding Remarks

In this paper, we propose an automatic local image enhancement method based
on a coarse-to-fine (image, then pixel) search for the optimal enhancement func-
tion for each pixel. Pixelwise local enhancement is accomplished by combining
global enhancement functions from several matched images, searching the closest
pointwise enhancement operator using local cues, and regularizing the resulting
enhancement prediction map. Our method is truly local as both the prediction
and enhancement is performed at the pixel level. We show the advantage of us-
ing our local enhancement method over global enhancement, through qualitative
analysis and a user study. Extensions include having region-to-region matching
between the image and pixel match step, and use of higher-level semantics.
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