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Abstract

We describe a new type of vulnerability present in many implementations of differentially private
mechanisms. In particular, all four publicly available general purpose systems for differentially private
computations are susceptible to our attack.

The vulnerability is based on irregularities of floating-point implementations of the privacy-preserving
Laplacian mechanism. Unlike its mathematical abstraction, the textbook sampling procedure results in a
porous distribution over double-precision numbers that allows one to breach differential privacy with just
a few queries into the mechanism.

We propose a mitigating strategy and prove that it satisfies differential privacy under some mild
assumptions on available implementation of floating-point arithmetic.

1 Introduction

The line of work on privacy of statistical databases starting with seminal papers by Dwork et al. [DN04, Dwo06,
DMNS06] advanced a general approach towards achieving privacy via randomization of outputs. Instead of
releasing accurate answers to statistical queries, which potentially leads to a breach of privacy, the curator
of a database randomizes its responses. For numerical outputs, the randomization process typically involves
adding to the accurate answer a secret random number (noise) sampled from a publicly-known distribution,
whose shape and parameters are chosen to guarantee a certain level of privacy.

Realizations of differentially private mechanisms include privacy-preserving histograms [MKA+08], lo-
gistic regressions [CM08], recommender systems [MM09], network-analysis tools [MM10], and many others.
In response to the need for solutions that would simplify development of privacy-preserving systems, with
specific focus on cloud computing, several platforms were proposed in recent years: PINQ [McS09], Aira-
vat [RSK+10], Fuzz [HPN11], and GUPT [MTS+12]. These systems differ in their implementation languages,
target operating systems, and programming models, and yet they share essentially the same noise-generation
mechanism central to differential privacy.

We describe a new type of vulnerability present in all general purpose systems and many implementations
of differentially private algorithms available to us. The vulnerability, which can be remarkably effective
against differentially private systems, exploits the porous distributions of textbook implementations of the
Laplacian mechanism resulting from finite precision and rounding effects of floating-point operations. While
differential privacy requires all outputs to be feasible for all possible inputs and having similar probabilities
when the inputs are close, the results of floating-point arithmetic will be concentrated on a small subset of
outputs. Careful examination of these subsets demonstrate that they overlap only partially on close inputs,
thus breaking the guarantee of differential privacy, which would have applied if all operations were computed
with infinite precision and unlimited source of entropy.

Our attack defeats systems that were specifically designed to eliminate side-channel vulnerabilities, em-
ploying strategies such as LSM-based mandatory access control mechanisms [RSK+10, MTS+12], or a gen-
eralized linear-type system [HPN11]. We remark that while these systems carefully block all traditional side
channels—timing and state—the output of the differentially private mechanism, which is supposed to be safe
to release due to its mathematical properties, creates a side channel of its own. The reason for this exploitable
vulnerability is that floating-point implementations of differentially private algorithms deviate in important
respects from their mathematical abstractions.

Although workarounds are relatively simple and low overhead, the fact that these independent and very
diverse implementations are all susceptible to the same attack, demonstrates that subtle properties of floating-
point arithmetic can be easily overlooked.
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The paper’s organization is as follows. We recall the definition of differential privacy and describe the
Laplacian mechanism in Section 2. Platforms for differentially private computations are reviewed in Section 3,
followed by discussion of relevant facts of floating-point arithmetic and its implications to implementations
of the Laplacian mechanism in Section 4. We describe our main attack in Section 4.5, analyze its success
probability in Section 4.6, and discuss its implications for privacy. Section 5 on defense mechanisms considers
two flawed approaches, followed by proof of security of a floating-point implementation of the snapping
mechanism. Another example of vulnerability due to use of floating-point arithmetic is given in Section 6.

2 Differential Privacy

Differential privacy, introduced by Dwork et al. [Dwo06, DMNS06] and recently surveyed in [Dwo11], is a
standard notion of privacy for computations over databases. It is defined for randomized functions (i.e.,
distributions over the set of possible outputs) and can be formally stated as follows:

Randomized function f : D 7→ R satisfies ϵ-differential privacy if for all subsets S ⊂ R and for all
pairs of adjacent inputs D,D′ ∈ D:

Pr[f(D) ∈ S] ≤ eϵ Pr[f(D′) ∈ S].

The exact definition of two databases being adjacent is domain-specific and dependent on the desired level of
security guarantee. Commonly used definitions are the user-level privacy, where two databases are considered
adjacent if they differ in contribution of a single person, and the entry-level privacy, where the protected
entity is a single item, action, or attribute.

An equivalent Bayesian interpretation of the definition of differential privacy asserts that if f is ϵ-differen-
tially-private and O is the observed output of f , then for all priors p and all pairs of adjacent D and D′

p(D | O)

p(D′ | O)
≤ eϵ

p(D)

p(D′)
.

If two database are adjacent when they differ in records pertaining to one individual, we say that the ad-
versary’s probability of guessing whether any one person, chosen after interacting with the mechanism, is
present in the database increases multiplicatively by at most eϵ (≈ 1 + ϵ for small ϵ). This guarantee holds
for any auxiliary information, modeled as a prior on the database or that person.

One important consequence of this interpretation is that all outputs of f that have non-zero support in
f(D) must also be feasible under f(D′). Otherwise, the adversary could rule out D′ for some outputs in
violation of the definition of differential privacy.

If the function of interest is not differentially private, such as when it is deterministic, it can be approxi-
mated by a differentially private function. Minimizing the loss of accuracy due to approximation, or the noise
level, is the major research goal in differential privacy.

We emphasize that just adding noise to the output is neither necessary nor sufficient for achieving a
meaningful level of privacy. Noiseless privacy has been explored in the work of Bhaskar et al., which taps into
uncertainty that the adversary may have about the input into the database [BBG+11]; Blocki et al. describe a
randomized functionality (the Johnson-Lindenstrauss transform) that offers a relaxation of differential privacy
without any additional noise [BBDS12].

More importantly, some (or even substantial) amount of additive noise is not by itself a guarantee of
differential privacy. For instance, several of the “doughnut-shaped” noise distributions proposed for disclosure
limitation of microdata collected by the US Census Bureau [EZS98] do not achieve differential privacy despite
introducing a non-trivial amount of noise.

Consider a different example, which captures the essence of our attack. A counting query returns the
number of records in a database satisfying a certain predicate. If the noise added to the accurate output
of the query is always even, then the adversary can trivially win the differentially private game (guessing
whether the query was evaluated on D or an adjacent D′, such that their counts differ by 1) by looking at the
parity of the output. In this example, the adversary’s probability of success is independent of the absolute
value of the noise, i.e., accuracy of the answer to the query.
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Figure 1: Distributions of f̃ϵ(D) = f(D) + Lap(∆/ϵ) over two inputs: f(D) = 0, f(D′) = 1, sensitivity
∆ = 1, privacy parameter ϵ = 0.5.

2.1 Laplacian mechanism

The basic method for achieving differential privacy is called the Laplacian mechanism. The mechanism is
additive, i.e., given the function f it approximates its output by computing the function exactly and then
adding noise sampled from a specific distribution. The distribution is Laplacian and in order to preserve
privacy of function f , the distribution is scaled to f ’s sensitivity, defined below.

We say that a deterministic real-valued function f : D 7→ R has sensitivity at most ∆ if for all
adjacent databases D and D′:

|f(D)− f(D′)| ≤ ∆.

The (zero-mean) Laplacian distribution Lap(λ) is continuous probability distribution defined by
its density function

hλ(x) ,
1

2λ
exp

(
−|x|

λ

)
.

The classic result from literature on differential privacy establishes that the following transformation of
f , called Laplacian mechanism, is ϵ-differentially-private if f has sensitivity ∆:

f̃ϵ(D) , f(D) + Y, where Y ← Lap(∆/ϵ).

Ghosh at el. [GRS09] proved that (a discrete version) of the Laplacian mechanism is optimal and universal,
i.e., it is the only mechanism the curator has to implement to support integer-valued functionalities and a
large class of loss functions.

The distribution of f̃ϵ on two inputs where f(D) = 0 and f(D′) = 1 is plotted in Figure 1.

3 Overview of Privacy-Preserving Platforms

Many sophisticated differentially private algorithms have been implemented and evaluated on real data,
such as privacy-preserving logistic regressions [CM08], the matrix mechanism [LHR+10] or the exponential
mechanism with the multiplicative weights update rule (MWEM) [HLM10]. Doing it right, however, is
an error-prone and highly non-trivial task, akin to implementing one’s own cryptography. Furthermore,
custom analyses of privacy-preserving algorithms are expensive and labor-intensive efforts requiring experts
in the loop. It limits applications of differential privacy to problems that justify that expense, excluding
scenarios that allow exploration of the query space by untrusted or non-expert participants. Examples of
these attractive scenarios include datamining, where analysts are restricted to issuing differentially private
queries, and a Netflix-style crowdsourcing competition, where participants train their systems on sensitive
data via a differentially private on-line interface.

The first system whose ambition was to facilitate adoption of differential privacy in practice by relieving
developers from having to certify privacy of their code was PINQ [McS09, McS10]. PINQ (Privacy INtegrated
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Queries) is a declarative programming language that guarantees differential privacy as long as the dataset is
accessed exclusively through PINQ queries. PINQ’s research goal was to identify a set of data transformation
and aggregation operators that would be expressive enough for a range of analytical tasks and yet allow for
prove-once-run-everything approach. A PINQ prototype is available as a C# LINQ library.

Airavat [RSK+10] is a Hadoop-based MapReduce programming platform whose primary goal is to offer
end-to-end security guarantees, while requiring minimal changes to the programming model or execution
environment of big data computations. In particular, it allows execution of untrusted mappers by integrat-
ing SELinux-style mandatory access control to the Java Virtual Machine, the Hadoop framework, and the
distributed file system. In contrast with PINQ, whose guarantees are language-based and whose current
implementation treats developers as cooperating entities, Airavat accepts arbitrary Java bytecode as map-
pers and then uses trusted reducers and system-level isolation mechanisms to ensure compliance with privacy
policies.

Fuzz [HPN11] employs a novel type system [RP10] to facilitate static analysis of sensitivity of arbitrary
data transformations. It further limits the subset of allowed mappers through the use of a domain-specific pro-
gramming language, which requires primitives to supply timeout information and enforces constant execution
time on basic data manipulation routines.

The most recent of these systems, GUPT [MTS+12], explores a different point in the design space of
privacy-preserving computations. It uses the sample-and-aggregate framework due to Nissim et al. [NRS07],
which allows execution of an arbitrary client-provided program over a sample of the original dataset. Accuracy
is boosted by running the program multiple times over many samples and averaging the outputs, and privacy
is enforced by adding Laplacian noise to the average.

PINQ, Airavat, Fuzz, and GUPT, while different in their design goals, philosophy and languages of
implementation, all expose instantiations of the Laplacian mechanism, where the numerical output of a
computation of bounded sensitivity is released after adding noise sampled from a Laplacian distribution.

4 LSBs as a Side Channel

As we saw in the previous section, the Laplacian mechanism is the staple of general-purpose differentially
private systems. These systems are extremely diverse in their implementation details, yet they share variants
of the same sampling procedure, which we reproduce below.

4.1 Sampling from Laplacian

The Laplacian distribution Lap(λ), sometimes called the symmetric exponential distribution, can be thought
of as the exponential distribution assigned a randomly chosen sign. The exponential distribution is defined
by its cumulative distribution function (cdf)

F (t) , Pr[Y ≤ t] = 1− e−t/λ.

The most common method of generating Y is based on the generic procedure, called the inverse sampling
method. To draw from the probability distribution given the inverse of its cdf, F−1(·), and a source of uniform
randomness U from the [0, 1) interval, compute the following:

Y ← F−1(U).

To see that the cdf of Y is indeed F (·), one can check that:

Pr[Y ≤ t] = Pr[F−1(U) ≤ t] = Pr[U ≤ F (t)] = F (t).

Computing the inverse cdf F−1(·) happens to be particularly simple, which results in the following pro-
cedure for sampling from the exponential distribution with parameter λ:

Y ← F−1(U) = −λ ln(1− U)

(the distribution 1 − U can be replaced by the uniform distribution over (0, 1]). This method appears in
standard references and libraries [Knu97, PTVF07].
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To transform Y into the Laplacian distribution one chooses sign at random, resulting in the following
procedure:

Y ← (2Z − 1) · λ ln(U), (1)

where Z is an integer-valued variable uniform over {0, 1}, and U is a real-valued variable uniform over (0, 1].
In practice most random number generators sample from [0, 1), but the probabilities of generating the exact
zero or one are small enough that they can be ignored. A twist on the method above uses a single draw from
the uniform distribution on (0, 1) to generate the sign and the absolute value of the Laplacian variable:

Y ← sign(r) · λ ln(1− 2|r|), where r ← U − 0.5. (2)

All differentially private systems considered by this paper use one of the two methods (1) and (2) to sample
a Laplacian1.

4.2 Floating-point numbers and notation

The procedure presented in the previous section is simple and efficient, requiring only a single sample from the
(0, 1) interval. Unfortunately, simplicity of this procedure is deceptive, since once implemented in floating-
point arithmetic, its behavior deviates markedly from its mathematical abstraction.

Before we proceed with discussion of implementations of differentially private mechanisms, we review basic
facts about floating-point arithmetic and introduce some notation. For a brief introduction to the subject see
Goldberg [Gol91]; Muller et al. serves as a current reference [MBdD+10].

All systems considered in this paper work over double-precision floating-point numbers or just doubles,
for short. Doubles occupy 64 bits and reserve 1 bit for sign, 11 bits for exponent, and 52 bits of significand
or mantissa. The exponent e is represented as an offset from 1023, thus the smallest representable exponent
is 2−1022 and the largest exponent is 21023 (e = 0 is used to represent 0 and subnormal numbers, e = 2047
represents infinity and NaNs, which we will ignore). The first bit of significand has an implicit value of 1,
which gives the total precision of 53 significant bits. If the sign is s, the exponent is e, and the significand is
d1 . . . d52, the corresponding floating point number is

(−1)s(1.d1 . . . d52)2 × 2e−1023.

The take-away point is that values representable as doubles are spaced non-uniformly throughout the real
line. There are exactly 252 representable reals in the interval [.5, 1), 252 reals in the interval [.25, .5), etc.

The ubiquitous IEEE floating-point standard [IEE08] requires the results of basic arithmetic operations
(addition, subtraction, multiplication, division) to be exactly rounded, i.e., be computed exactly and then
rounded to the closest floating-point number. We will use ability to compute over floating-point numbers
with maximal precision in Section 5, where we introduce and analyze a sampling procedure.

To distinguish between real numbers and doubles, we denote the latter as D. The literature on floating-
point arithmetic has a name for the value of the least significant digit of a floating-point number, called the
unit in the last place, or ulp for short. For numbers from the set D ∩ (0, 1) (i.e., doubles from the (0, 1)
interval) their ulps vary between 2−1022 and 2−53.

To differentiate between exact, mathematical, functions and arithmetic operations, we will use the fol-
lowing notation, common in the literature: ⊕,⊖,⊗,⊘ are floating-point analogues of addition, subtraction,
multiplication, and division; LN(·) stands for a floating-point implementation of the natural logarithm func-
tion.

4.3 Sampling from the uniform distribution

Given a non-uniform density of doubles, a uniform distribution over (0, 1) is not well defined. It turns out that
standards usually offer no guidance and various references and libraries approximate the distribution differ-
ently (see Table 1 for a summary). For example, the distribution generated by Java’s Random.nextDouble()
is confined to integer multiples of 2−53.

1Current version of Airavat has a stub in lieu of its noise generation routine; we instantiate it with SSJ [L’E]—the library
used in reporting performance and accuracy results by Roy et al. [RSK+10].
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Reference and Library Uniform from [0, 1)
Knuth [Knu97] multiples of 2−53

“Numerical Recipes” [PTVF07] multiples of 2−64

C# multiples of 1/(231 − 1)
SSJ (Java) [L’E] multiples of 2−32 or 2−53

Python multiples of 2−53

OCaml multiples of 2−90

Table 1: Support of random doubles.

Many of these sources of randomness are not cryptographic, i.e., having insufficient entropy and/or pre-
dictable, and thus not appropriate for security applications, including differential privacy. We enumerate
various strategies for sampling “uniform” floating-point numbers to emphasize lack of consistency in this
area.

4.4 Sampling from Laplacian: Examples

As we saw in the previous section, samples from the uniform distributions are most likely confined to a
small subset of doubles, equally spaced throughout the (0, 1) interval. Even if care is taken to include all
doubles in support of the uniform distribution, transforming the uniformly distributed random variable into
the Laplacian via formulas (1) or (2) will generate artifacts of its own.

Consider the following, actual example of applying the log function (from C++’s <math.h>) to the set
of 10 double numbers following 1/π (there is nothing special about this number from the point of view of
sampling Laplacians, which is why it is chosen for illustrative purposes):

x = 1⊘ π x+ 9 · 2−54

LN(x) LN(x+ 9 · 2−54)

LN(·)

. . .

. . .

It is apparent that some output values are more frequent than others. For some other starting points,
another phenomenon is in effect: some potential output values from D become missing (indicated on the
diagram by empty squares):

x = 2⊘ π x+ 5 · 2−53

LN(x) LN(x+ 5 · 2−53)

LN(·)

. . .

. . .

Multiplying the output of the transformation U 7→ − ln(U) by λ, to generate a scaled Laplacian Lap(λ),
results in some values being repeated several times and some, none at all. We repeat the experiment with
x = 1⊘π but this time multiply the result by 3, which corresponds to sampling from the Laplacian mechanism
with ∆ = 1 and ϵ = 1/3:
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x = 1⊘ π x+ 9 · 2−54

3⊗ LN(x) 3⊗ LN(x+ 9 · 2−54)

3⊗ LN(·)

. . .

. . .

Since most random number generators do not output all potential doubles (see Table 1), their actual
approximation of the Laplacian distribution will have missing values and values that appear more frequently
than they should.

4.5 Attack on floating-point implementation of the Laplacian mechanism

Recall that the reason for introducing Laplacian noise is to convert a deterministic function f into a differ-
entially private one by smoothing its output distribution. The proof of differential privacy of the Laplacian
mechanism [DMNS06] depends on the fact that the probabilities of seeing the same output of f̃ϵ(·) on two
adjacent inputs are multiplicatively close to each other.

If the floating-point implementation of the Laplacian distribution misses some output values on input D
and others on input D′, the resulting mechanism cannot satisfy differential privacy. This is exactly what
happens when the Laplacian mechanism is instantiated with floating-point arithmetic without appropriate
defense mechanisms.

To differentiate between ideal and real-world realizations of the Laplacian distribution and the differentially
private mechanism f̃ϵ(·), we will denote floating-point implementations of the Laplacian distribution Lap∗p(λ)

and the corresponding Laplacian mechanism f̃∗
ϵ,p(D) = f(D) ⊕ Lap∗p(∆/ϵ), where p is the precision with

which the uniform distribution over (0, 1) is sampled. If the precision is maximal, i.e., all doubles D are in
the support of the uniform distribution, the p index is dropped.

Let ∆ = 1, f(D) = 0 and f(D′) = 1. Consider the distribution of f̃∗
1/3(D) = 0⊕Lap∗(3) (striped squares)

and f̃∗
1/3(D

′) = 1⊕ Lap∗(3) (solid squares) around 1.5:

1.5

f̃∗

1/3(D)

f̃∗

1/3(D
′)

. . .

. . .

. . .

. . .

1.5 + 3 · 2−52

1.5 + 2 · 2−52

It is apparent from this example that if the output of the Laplacian mechanism is 1.5+2 ·2−52, then its input
was D′, and if the output is 1.5 + 3 · 2−52, then the input must have been D.

Observing an output that is infeasible under one distribution, constitutes “smoking gun” evidence that
rules out the corresponding input. It gives a simple measure of the distribution’s deficiency, or a lower
(conservative) bound on the adversary’s advantage of breaching differential privacy. Let the support of the
distribution be defined as

supp(f̃∗
ϵ (D)) , {x ∈ D : Pr[f̃∗

ϵ (D) = x] > 0}.

Then the probability of differential privacy guarantee’s being broken is at least

Pr[f̃∗
ϵ (D) /∈ supp(f̃∗

ϵ (D
′))],

since it captures the probability of the event that a sample from f̃∗
ϵ (D) falls outside the support of the

distribution f̃∗
ϵ (D

′).
Figure 2 plots this probability, expressed as a function of λ = .01 . . . 3, for two floating-point implementa-

tions of the Laplacian mechanism: f∗
1/λ(·) and f∗

1/λ,53(·), for ∆ = 1, f(D) = 0 and f(D′) = 1.

For smaller λ’s, which should provide a lower (but still non-trivial) level of differential privacy, the prob-
ability that a single sample reveals the input is close to 100%. For larger λ’s, presumably yielding stronger
differential privacy, the probability of a compromise never becomes less than 35%. Lowering resolution of the

7



0%

20%

40%

60%

80%

100%

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

“s
m
ok

in
g
gu

n
”
p
ro
b
ab

il
it
y

λ

maximal precision

•••••••
•••••
•
••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••

•
precision 2−53

◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦

Figure 2: Probability that outputs from f̃∗
1/λ(D) (solid dots) or f̃∗

1/λ,53(D) (hollow dots) fall outside support

of f̃∗
1/λ(D

′) (resp., f̃∗
1/λ,53(D

′)), as a function of λ. f(D) = 0 and f(D′) = 1.

uniform distribution (sampling from integer multiples of 2−53 instead of D∩ (0, 1)) increases the success rate
of the attacker by making the distributions on D and D′ more divergent.

This graph, that plots the probability of a catastrophic breach of differential privacy, demonstrates that
textbook floating-point implementations of the Laplacian mechanism are insecure. The results are repro-
ducible (with some variations due to compiler options, math libraries, and settings of CPU flags) across
languages (C/C++, Java, C#, Python, OCaml), operating systems (Windows, Linux, OS X), and processors
(x86, x64). In particular, all four systems surveyed in Section 3 return to the programmer double-precision
floating-point answers, and thus enabling this attack.

4.6 Analysis

In addition to empirical data on success probability of the attack, we present heuristic analysis of one partic-
ularly important attack scenario, of λ much larger than f(D) or f(D′).

We first observe that, somewhat counterintuitively, the attack does not lose its effectiveness for larger
values of λ (corresponding to smaller decrements to the privacy budget). Consider the success probability
of the attacker after a single interaction with the Laplacian mechanism with λ = 106, f(D) = 100 and
f(D′) = 101. The consumed privacy budget is ϵ = 10−6, which would nominally imply a negligible increase
in the adversary’s confidence (exp(10−6) ≈ 1 + 10−6) if its mathematical guarantee held true. Instead, for
the textbook implementation of the floating-point Laplacian mechanism, the probability of ruling out one
of two adjacent databases is almost 40%. It effectively means that one can consume the privacy budget in
arbitrary small increments, without reducing capacity of the side channel. This ability will be exploited in the
next section, where we show that the entire database can be extracted by asking sufficiently many adaptively
chosen queries.

Another reason to consider the case of a large λ, is that it applies to all values of f(D) and f(D′) as long
as they are both much smaller than λ.

Figure 3 plots two functions. The first (smooth graph) is the probability density function of f̃∗
1/λ(D) for

λ = 106 and f(D) = 100. The range of the x-axis is [−2λ, 2λ], which covers 1 − exp(−2) ≈ 0.865 fraction
of output values under that distribution. The second (ragged) line is the probability, computed over small
intervals [a, a + µa], of the event that an output of f̃∗

1/λ(D) in that range is outside the support of the

distribution f̃∗
1/λ(D

′):

s(a) , Pr
[
x /∈ supp(f̃∗

1/λ(D
′))

∣∣∣ x ∈ supp(f̃∗
1/λ(D)) ∩ [a, a+ µa]

]
.

8



We use µ = 0.001 and f(D′) = 101.
The plot suggests that s(a) (computed over sufficiently small intervals) is smooth except with sharp

discontinuities at powers of 2 and certain multiples of λ. Indeed, consider an interval [2k · u, 2k · v], when
f(D′) + 2k < ln 2 · λ, 2k ≫ f(D′), and 1/2 < u < v < 1. The set of doubles in this interval is uniformly
spaced and has cardinality 253(v − u).

On the other hand, the interval in the range of the uniform distribution that is mapped to [2k · u, 2k · v]
is approximately (ignoring for a moment the contribution of f(D)≪ 2k):

[exp(−2kv/λ), exp(−2ku/λ)],

which, for 2k < ln 2 · λ is contained in the [1/2, 1) interval. The total number of doubles in that interval is
253 · (exp(−2ku/λ) − exp(−2kv/λ)). The ratio of the doubles in the range and the domain of the mapping
x 7→ −λ ln(x) is thus

253 · (exp(−2ku/λ)− exp(−2kv/λ))
253(v − u)

,

which can be approximated for v ≈ u as

− exp(−2ku/λ)′(u) = 2k

λ
exp(−2ku/λ).

As 2k gets smaller compared to λ, the ratio quickly approaches 0. It means that for smaller values of k, the
number of doubles in the image of the mapping is much larger than the number of doubles in its range.

Recall that the doubles output by the uniform distribution are spaced evenly. The logarithm function
destroys the arithmetic progression, resulting in a sequence that is not translation invariant. The Laplacian
mechanism on inputs D and D′ produces two distributions shifted by 1, and we may heuristically assume that
a random element from the support of f̃∗

1/λ(D) on [a, b] belongs to the support of f̃∗
1/λ(D

′) with probability

close to the density of f̃∗
1/λ(D

′) in [a, b], which we estimated earlier. It follows that

s(a) ≈ 2k

λ
exp(−a/λ),

where 2k is the smallest power of 2 larger than a. This expression is in remarkable agreement with Figure 3,
giving a tight lower bound on the ragged curve in the range [−(ln 2)λ, (ln 2)λ]. Although some breaches of
differential privacy happen outside that range, our analysis explains almost 90% of all violations for this
setting of the parameters.

4.7 A practical attack

To demonstrate that the vulnerability described in the paper is more powerful than a simple breach of
differential privacy, we adapt the technique from the previous section to extract the entire content of a
database.

Consider a list of alphanumerical records and a query language that reports counts of records sharing a
particular prefix. All systems considered by this paper allow this access mechanism.

If histogram counts are protected with Laplacian noise generated with a method vulnerable to our attack,
we may reconstruct the entire database by issuing adaptively-chosen queries. We begin by obtaining an upper
bound on number of records in the database, then ask a histogram query on the first character of all records,
i.e., ask the number of records that start with ‘\0’, ‘\1’,. . . ,‘\255’. Initially, all counts up to the upper bound
are feasible, but with every query, approximately 40% of the counts not equal to the exact answer can be
excluded.

After a unique count for each first character is identified, we append all possible characters to prefixes
with non-zero support, and iterate the process until the entire dataset is recovered. Since a single run of the
attack is effective even for very large λ according to the analysis of the previous section, the attack can be
executed within an arbitrarily small total privacy budget.

We implemented the attack against PINQ, and verified its effectiveness. We were able to reconstruct a
database consisting of 18K records in a fewer than 1000 queries with the total privacy budget smaller than
10−6.
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Figure 3: The ragged curve plots the probability for x in supp(f̃∗
1/λ(D)) that x /∈ supp(f̃∗

1/λ(D
′)) averaged

over small intervals, where f(D) = 100, f(D′) = 101, and λ = 106. The smooth curve is pdf(f̃∗
1/λ(D)).

5 Defense

The primary reason why the attack of the previous section succeeds is because the standard floating-point
Laplacian sampling procedures (Section 4.1) result in very porous distributions, missing out on many possible
output values. That would not be a problem if the missing values were the same for adjacent inputs. Un-
fortunately, the distributions are not translation invariant, and after being shifted by f(D) and f(D′), they
diverge significantly.

These effects are observable in vanishingly small scales, bearing almost no relation on numerical accuracy
or the number of usable bits of the outputs. Even if a non-private f(·) returns answers with many significant
digits, the Laplacian mechanism degrades accuracy of the resulting mechanism, introducing error with the
standard deviation of ∆/ϵ.

We leverage both observations in designing the snapping mechanism, whose floating-point implementation
is proved differentially private in Section 5.2: the set of output values is made independent of the input, and
output values are spaced approximately λ apart. Before we introduce the snapping mechanism, we discuss
two approaches that are simple but insecure.

5.1 False starts

An appealing goal for a defense mechanism would be to come up with a method for sampling from a “floating-
point aware” Laplacian distribution whose addition guarantees differential privacy even when realized in
floating-point arithmetic. One benefit of this strategy is its modularity—it would be sufficient to prove and
implement such distribution once, and use it in a variety of contexts that require additive noise.

We analyze two most straightforward approaches towards this goal, and find them ineffective and possibly
even more detrimental to privacy than current implementations.
Rounding. It may appear that since gaps in the double-precision outputs of the Laplacian sampling pro-
cedure are only noticeable at the smallest possible scale, dropping the least significant bits of the Laplacian
could increase security.

Consider, for example, the effect of rounding the output of Lap∗(λ) to the closest integer multiple of,
say, 2−32, denoted as ⌊Lap∗(λ)⌉2−32 . It is easy to verify that under some mild assumptions on accuracy of
a floating-point implementation of the log function and access to the uniform distribution on D ∩ (0, 1), the
resulting distributions for f(D) + ⌊Lap∗(λ)⌉2−32 and f(D′) + ⌊Lap∗(λ)⌉2−32 will have identical supports if
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f(D) = 0 and f(D′) = 1. Moreover, the mechanism confined to these two output values is going to be
1/λ-differentially private.

Recall, however, that the sensitivity of f is an upper bound on the difference of f on adjacent inputs.
Suppose f(D) − f(D′) = 2−33, which may easily be arranged by an adversarially chosen function or input.
Adding a random variable rounded to a multiple of 2−32 will have the effect that the supports of two distri-
butions of the Laplacian mechanism applied to D and D′ become completely disjoint, and privacy is going to
be lost after a single invocation of the mechanism.
Smoothing. Taking the opposite approach, and trying to smooth the additive Laplacian noise, ensuring
that all doubles are in its support, also fails to achieve differential privacy, albeit for a different reason.

Again, consider two potential inputs f(D) = 0 and f(D′) = 1, and additive Lap(1) noise. With probability
≈ 20% the random variable x = f(D)⊕ Lap(1) belongs to the interval (0, 1/2). Conditional on x ∈ (0, 1/2),
ulp(x) is strictly less than 2−53. Since we assume Lap(1) takes all possible values, with probability at least
50% x will not be an integer multiple of 2−53. On the other hand, if 1 ⊕ y = x, where y is sampled from
Lap(1), then y ∈ (−1,−0.5), and ulp(y) = 2−53. Since addition is performed exactly in this range, 1 ⊕ y is
going to be an integer multiple of 2−53. It means that in this range the support of f(D′)⊕ Lap(1) will be a
proper (and relatively small) subset of the support of f(D)⊕ Lap(1).

5.2 Snapping Mechanism

In contrast with the first flawed method of the previous section, where the lower bits of the Laplacian noise are
simply tossed out, it turns out that doing so after adding the noise yields a differentially private mechanism.
The technique has been proposed in a different context by Dodis et al. [DLAMV12], where it was shown to
be an effective defense strategy when the mechanism is instantiated with imperfect randomness, modeled as
a Santha-Vazirani source [SV86].

Before we define the mechanism, which is proved to be differentially private in Theorem 1, we introduce
some notation. Let U∗ be the uniform distribution over D∩(0, 1), such that each double number is output with
probability proportional to its ulp; S be uniform over {−1,+1}. LN(·) denotes a floating-point implementation
of the natural logarithm with exact rounding. Function clampB(x) outputs B if x > B, −B if x < −B and
x otherwise. Λ is the smallest power of 2 (including negative powers) greater than or equal to λ, and ⌊·⌉Λ
rounds to the closest multiple of Λ in D with ties resolved towards +∞.

The snapping mechanism, parameterized by B and λ, is defined by the following distribution:

f̃(D) , clampB(⌊clampB(f(D))⊕ S ⊗ λ⊗ LN(U∗)⌉Λ).

Several points are in order. A uniform distribution over D ∩ (0, 1) can be generated by independently
sampling an exponent (from the geometric distribution with parameter .5) and a significand (by drawing a
uniform string from {0, 1}52). Efficient algorithms for computing natural logarithm with exact rounding are
known and available [dDLM07, CRL]. Rounding to the closest multiple of a power of 2 can be done exactly
by manipulating the binary representation of a double. Clamping can be done without introducing additional
error.

We additionally assume that the sensitivity of f is 1 (other values can be handled by scaling f in proportion
to its sensitivity).

Theorem 1. The distribution f̃(·) defined above satisfies (1/λ+2−49B/λ)-differential privacy when λ < B <
246 · λ.

Proof. The structure of the proof is as follows. We first define and prove differential privacy of an ideal version
of the mechanism f̃(·), where all computations are performed perfectly with infinite precision and U returns a
truly uniform distribution over (0, 1). We then consider for each possible output x of the real mechanism the
set of doubles from the support of the U∗ distribution that are mapped to x, and prove that its probability
mass is well approximated (with a bounded relative error) by the measure of the corresponding set of the
ideal mechanism.

The ideal mechanism is defined as

F̃ (D) , clampB(⌊clampB(f(D))± λ ln(U)⌉Λ),
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where U is uniform over (0, 1] and the sign is chosen from ‘+’ and ‘-’ with equal probabilities.
Since clampB is a stable transformation (i.e., if |x− y| ≤ 1, then |clampB(x)− clampB(y)| ≤ 1), applying

it to f before feeding the result into a differentially private mechanism preserves the mechanism’s privacy
guarantees. Post-processing the output of the mechanism by snapping it to Λ and clamping the result does
not affect privacy guarantees either. Therefore, F̃ (·) yields 1/λ-differential privacy, since after the inner and
outer operations are removed, what is left is the standard Laplacian mechanism.

Fix the sign in F̃ (D) to be a ‘+’ and similarly fix S = 1 in f̃(D). The case of the negative sign (and
S = −1) is not fully symmetric due to the direction in which ties are resolved by the rounding operator, but
its treatment is analogous to the one below.

Take any x in the support of F̃ (D). Consider the set of U outputs that are mapped by F̃ (D) to x. Since
all operations of F̃ (D) are monotone (with the sign fixed), this set forms an interval [L,R) ⊂ (0, 1). Similarly,
let [l, r) ⊂ D ∩ (0, 1) be the set of U∗ values mapped by f̃(D) to x (when S = 1).

We will argue that |L− R| ≈ |l − r| in terms of a relative error, which translates into f̃(·)’s guarantee of
differential privacy.

We may assume that f(D) ∈ [−B,B] (otherwise it would be forced to the interval by the inner clamping
operation). Since S = 1 and the output of LN(·) is negative, x ≤ ⌊f(D)⌉Λ.

Consider the case when −B < x < ⌊f(D)⌉Λ (the instances of x = −B and x = ⌊f(D)⌉Λ can be treated
similarly). In this case, the set of doubles mapped to x by the snapping operator is precisely [x−Λ/2, x+Λ/2).
Denote the endpoints of this interval by a and b.

Under these assumptions, L and R can be computed directly: L = exp((a− f(D))/λ) and R = exp((b−
f(D))/λ).

Notice that 0 < L < R < 1 and, since b− a = Λ, the ratio R/L = exp(Λ/λ) < exp(2).
The following lemma allows us to bound the relative error of replacing the [L,R) interval with [l, r). We

do so by proving upper and lower bounds on r and l.

Lemma 1. Let y ∈ [Λ/2, f(D)). Let u = exp((y − f(D))/λ) and η = 2−53 (usually called the machine
epsilon). Define the following two quantities:

u , exp[(y(1 + η)− f(D))/((1 + η)2λ)],

u , exp[(y/(1 + η)− f(D))(1 + η)2/λ],

then
f(D)⊕ λ⊗ LN(u) ≤ y ≤ f(D)⊕ λ⊗ LN(u).

Lemma 1. This is the only place in the proof of the main theorem where we use the facts that ⊕, ⊗, and
LN(·) are all implemented with exact rounding. The exact rounding means that the result of an operation is
correct within .5ulp of the answer, which translates into the relative error of 1 + 2−53 = 1 + η.

The following bounds follow directly from the exact rounding property of arithmetic operations and LN(·):

LN(u) ≥ ln(u)(1 + η) (since ln(u) < 0)

λ⊗ LN(u) ≥ λ ln(u)(1 + η)2

f(D)⊕ λ⊗ LN(u) ≥ (f(D) + λ ln(u)(1 + η)2)/(1 + η)

≥ y. (by definition of u)

Similarly,

LN(u) ≤ ln(u)/(1 + η)

λ⊗ LN(u) ≤ λ ln(u)/(1 + η)2

f(D)⊕ λ⊗ LN(u) ≤ (f(D) + λ ln(u)/(1 + η)2)(1 + η)

≤ y. (by definition of u)

[Lemma 1]

Analogous bounds can be derived for y ≤ −Λ/2.
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Lemma 2. Quantities y, u, u, u are defined as in the setting of Lemma 1. Then

exp(−3.1Bη/λ)u < u < u,

u < u < exp(2Bη/λ)u.

Lemma 2. Consider the ratio u/u. It can be expressed as

u/u = exp

{
1

λ

[
(

y

1 + η
− f(D))(1 + η)2 − (y − f(D))

]}
> exp

{
1

λ
(−ηy − 2.1f(D)η)

}
≥ exp(−3.1Bη/λ).

We used (1 + η)2 < 1 + 2.1η and that f(D), y ≤ B. Similarly,

u/u = exp

{
1

λ

[
y(1 + η)− f(D)

(1 + η)2
− (y − f(D))

]}
< exp

{
2f(D)η

λ

}
≤ exp(2Bη/λ).

We used the bound 1/(1 + η)2 > 1− 2η. [Lemma 2]

To obtain an upper and lower bounds on |l − r| in terms of |L−R|, we observe that

L ≤ l ≤ L,

R ≤ r ≤ R,

by applying Lemma 1 twice. Thus,
|L−R| ≤ |l − r| ≤ |L−R|. (3)

For this we need L < R, which follows from R/L = exp(Λ/λ) and the bounds of Lemma 2.
Applying the multiplicative bounds of Lemma 2, we find that

R− L > exp(−3.1Bη/λ)R− exp(2Bη/λ)L (by Lemma 2)

= L · (exp(Λ/λ− 3.1Bη/λ)− exp(2Bη/λ))

> L · (exp(Λ/λ)− 1) exp(−7Bη/λ)

= (R− L) exp(−7Bη/λ), (4)

and

R− L < exp(2Bη/λ)R− exp(−3.1Bη/λ)L (by Lemma 2)

= L · (exp(Λ/λ+ 2Bη/λ)− exp(−3.1Bη/λ))

< L · (exp(Λ/λ)− 1) exp(5Bη/λ)

= (R− L) exp(5Bη/λ), (5)

where both inequalities can be verified given Bη/λ < 2−7 and 1 ≤ Λ/λ < 2.
Together, the bounds on R−L and R−L, and inequalities (3) imply that |l− r| deviates multiplicatively

from |L−R| by at most exp(7Bη/λ).
According to our definition of U∗ (each element of D∩ (0, 1) is output with probability proportional to its

ulp), we observe that
r − l = Pr[U∗ ∈ [l, r)], (6)
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when l, r ∈ D ∩ (0, 1].
The only significant difference between the cases of positive and negative signs in the mechanism F̃ (·)

(corresponding to S = +1 and S = −1 in the mechanism f̃(·)), is due to the direction of the rounding
operation ⌊·⌉Λ in case of ties. It translates in the semiopen interval (l, r] replacing [l, r) from above. The
equality (6) has to be modified to account for the case when ulp(r) > ulp(l), which is a common occurrence:

r − l ≤ Pr[U∗ ∈ (l, r]]

= r + ulp(r)− (l + ulp(l))

≤ (r − l)(1 + 2η), (7)

when l < r/2.
The above argument is independent from the actual value of f(D) and applies equally to f(D′). Call the

corresponding quantities l′, r′, R′, L′.
Finally, putting these bounds together, we have

Pr[f̃(D) = x]

= Pr[U∗ ∈ [l, r) or U∗ ∈ (l, r]] (depending on the sign)

≤ (r − l)(1 + 2η) (by (6) or (7))

≤ (L−R) exp(5Bη/λ+ 2η) (by (3) and (by Lemma 2))

< Pr[F̃ (D) = x] exp(5Bη/λ+ 2η)

< Pr[F̃ (D′) = x] exp(1/λ+ 5Bη/λ+ 2η) (by differential privacy of F̃ )

= (L′ −R′) exp(1/λ+ 5Bη/λ+ 2η)

< (l′ − r′) exp(1/λ+ 12Bη/λ+ 2η) (by (3) and (by Lemma 2))

≤ Pr[U∗ ∈ [l′, r′) or U∗ ∈ (l, r]] exp(1/λ+ 12Bη/λ+ 2η) (by (6) or (7))

= Pr[f̃(D′) = x] exp(1/λ+ 12Bη/λ+ 2η),

as needed for differential privacy of the f̃(·) mechanism. The expression can be further simplified by plugging
in the numerical value of η = 2−53 and applying B > λ.

Since the mechanism “snaps” the output of a floating-point computation to the nearest multiple of Λ, the
error it introduces relative to the underlying Laplacian mechanisms is at most Λ/2 < λ. Before the outer
clamping is applied, the mechanism is unbiased. Depending on the relative magnitude of the range of f(·), λ
and B, the bias introduced by clamping may be exceedingly small.

6 Sensitivity Analysis

In this section we briefly describe another vulnerability at the intersection of differential privacy and floating-
point arithmetic.

Accurate analysis of sensitivity is essential to most methods in differential privacy. The function f may
be a combination of user-provided and trusted codebase, such as Airavat’s user-specified mappers and system
reducers. For both codebases, subtleties of floating-point arithmetic may dramatically increase sensitivity of
the outcome, beyond what mathematical analysis of the underlying mathematical abstraction would suggest.

Consider the following natural example of an aggregation operator: f(x1, . . . , xn) ,
∑n

i=1 xi. If the
sensitivity of input is 1, i.e., a single user may change at most one input variable xi by at most 1, then
the sensitivity of f is obviously at most 1. However, f ’s implementation in floating-point arithmetic where
summation is performed sequentially in the left-to-right order, denoted by f∗, has much higher sensitivity as
demonstrated by the following example:

n = 230 + 1,

x1 = 230, x2 = −2−23, . . . , xn = −2−23.
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Not surprisingly,

f∗(x1, . . . , xn) =

n∑
i=1

xi = 230 − 230 · 2−23 = 230 − 128.

Increment x1 by 1. Since ulp(230 + 1) = 2−22, computing (x1 + 1) ⊕ x2 will result in x1 + 1, computing
((x1 + 1)⊕ x2)⊕ x3 will again produce x1 + 1, etc. In this case

f∗(x1 + 1, x2, . . . , xn) = x1 + 1 = 230 + 1.

The sensitivity of f∗—a floating-point realization of f—on this pair of inputs is 129 rather than 1. This
is a manifestation of the accumulated error phenomenon, which can be counteracted by application of the
Kahan summation algorithm [Kah65, Hig02]. More complex mechanisms are likely to exhibit similar behavior
on adversarially-chosen inputs, complicating the task of validating their privacy claims.

7 Related Work

Modulating the lower order bits of transmitted data is a well-documented covert channel mechanism, whose
primary use is to enable communication between processes which are otherwise not allowed to exchange
information [Lam73, Gli93].

The main difference between our attack and well-known covert channels is in the intent of the transmitting
party. All platforms surveyed in Section 3 accept untrusted code and have to confront the threat of covert
communications. An example of a timing attack, to which PINQ and Airavat are vulnerable, and Fuzz and
GUPT explicitly address, involves a query that takes inordinate amount of time when it is evaluated on some
particular record. Measuring timing of the response leaks information about the input.

The attack described in this paper does not require adversarial code, or any active malicious intent. Any
textbook implementation of the floating-point Laplacian mechanism is potentially vulnerable.

Fixed-point or integer-valued algorithms are immune to our attack. Examples of such mechanisms in-
clude differentially private computations in a distributed setting [DKM+06], privacy-preserving billing and
aggregation [DKR11, KDK11].

The snapping mechanism is closely related to the mechanism proposed by Dodis et al. [DLAMV12], which
defends against an adversary who exerts some control over the source of randomness. The adversary in this
model is capable of introducing arbitrary bias into the source, as long as each subsequent bit has some constant
entropy conditioned on all previously output bits. In particular, the bias may depend on the previous bits and
the description of the mechanism. The model is known as the Santha-Vazirani source [SV86], and was shown
to imply negative results for existence of certain cryptographic tasks [MP91, DOPS04]. In contrast with
Dodis et al., we assume a perfect source of randomness but model inaccuracies due to use of floating-point
arithmetic.

8 Conclusions

Floating-point arithmetic is a notoriously leaky abstraction, which is difficult to argue about formally and hard
to get right in applications. Non-associativity of basic arithmetic operations, compounding errors, rounding
rules, signed zeros, denormals, NaNs, infinities, CPU flags, and hardware bug are complicated enough even
in the absence of security concerns.

We initiate study of adapting floating-point algorithms to applications in differential privacy. We describe
a practical, efficient attack on a textbook implementation of the Laplacian mechanism that underlies all
existing platforms for general purpose differentially private computations.

We describe and prove a post-processing snapping procedure, which does not perceptible increase the
error introduced by the Laplacian mechanism. The snapping mechanism is also known to preserve differential
privacy when instantiated with a class of weak sources of randomness.

In conclusion we observe that floating-point arithmetic presents a unique security challenge to developers
of real-world applications. It is different from convenient mathematical abstractions in ways that are, on
the one hand, complex and riddled with many corner- and special cases. On the other hand, its common
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implementations are standard, predictable, and deterministic, so that these problematic cases can be forced
and exploited by the adversary.
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Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, Advances in Neural Infor-
mation Processing Systems 21 (NIPS), pages 289–296. Curran Associates, Inc., 2008.

[CRL] Correctly rounded mathematical library. http://lipforge.ens-lyon.fr/www/crlibm/.

[dDLM07] Florent de Dinechin, Christoph Quirin Lauter, and Jean-Michel Muller. Fast and correctly
rounded logarithms in double-precision. Theoretical Informatics and Applications, 41(1):85–
102, 2007.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor, Advances
in Cryptology—EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
486–503. Springer, 2006.

[DKR11] George Danezis, Markulf Kohlweiss, and Alfredo Rial. Differentially private billing with rebates.
In Proceedings of the 13th international conference on Information hiding, IH’11, pages 148–162,
Berlin, Heidelberg, 2011. Springer-Verlag.
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L. P. Chen, editors, Proceedings of the 24th International Conference on Data Engineering,
ICDE 2008, pages 277–286. IEEE Computer Society, 2008.

[MM09] Frank McSherry and Ilya Mironov. Differentially private recommender systems: Building pri-
vacy into the Netflix Prize contenders. In John F. Elder, IV, Françoise Fogelman-Soulié, Peter A.
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