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Abstract. In this paper we highlight the benefits of using genus-2 curves in public-key cryp-
tography. Compared to the standardized genus-1 curves, or elliptic curves, arithmetic on genus-2
curves is typically more involved but allows us to work with moduli of half the size. We give a tax-
onomy of the best known techniques to realize genus-2 based cryptography, which includes fast
formulas on the Kummer surface and efficient 4-dimensional GLV decompositions. By studying
different modular arithmetic approaches on these curves, we present a range of genus-2 imple-
mentations. Our implementation on the Kummer surface breaks the 120 thousand cycle barrier
which sets a new software speed record at the 128-bit security level for side-channel resistant
scalar multiplications compared to all previous genus-1 and genus-2 implementations.

1 Introduction

Since its invention in the 1980’s, elliptic curve cryptography [37, 46] has become a popular
and standardized approach to instantiate public-key cryptography. The use of elliptic curves,
or genus-1 curves, has been well studied and consequently all of the speed records for fast
curve-based cryptography are for elliptic curves (cf. the ECRYPT online benchmarking tool
eBACS [7]). Jacobians of hyperelliptic curves of high genus have also been considered for
cryptographic purposes, but for large genus there are subexponential attacks on the discrete
logarithm problem [2, 23, 19, 16]. Subexponential attacks are not known, however, for genus-2
curves. In [25], Gaudry showed that scalar multiplication on the Kummer surface associated
with the Jacobian of a genus-2 curve is much faster than scalar multiplication on the Jacobian
itself. Thus, it was proposed (cf. [5]) that hyperelliptic curve cryptography in genus-2 has
the potential to be competitive with its genus-1 elliptic curve cryptography counterpart. One
significant hurdle for genus-2 cryptography to overcome is the difficulty of generating secure
genus-2 curves: that is, such that the Jacobian has a large prime or almost prime group order.
In particular, for fast cryptographic implementations it is advantageous to work over special
prime fields, where the underlying field arithmetic is fast, and to generate curves over those
fields with suitable group order. A major catalyst for this work is that genus-2 point counting
methods and complex multiplication (CM) methods for constructing genus-2 curves with a
known group order have become more practical. Hence, the time is ripe to give a taxonomy
and cross-comparison of all of the best known techniques for genus-2 curves over prime fields.
The focus on prime fields is motivated by the recommendations made by the United States’
National Security Agency Suite B of Cryptographic Protocols [51].

In this paper we set new performance speed records at the 128-bit security level using
genus-2 hyperelliptic curves. For instance, using the Kummer surface given by Gaudry and
Schost [30], we present the fastest curve based scalar multiplication over prime fields to date —
this improves on the recent prime field record for elliptic curves from Longa and Sica presented
at Asiacrypt 2012 [44]. As an additional bonus, our implementations on the Kummer surface
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are inherently side-channel resistant, so we present the fastest protected software for curve
based cryptography compared to all prior implementations.

Another advantage for genus-2 curves is that the endomorphism ring is larger than for
genus-1 curves, so higher dimensional scalar decomposition is possible without passing to an
extension field [22, 21]. For prime fields we implement 4-dimensional GLV decompositions on
Buhler-Koblitz (BK) curves [12] and on Furukawa-Kawazoe-Takahashi (FKT) curves [20], both
of which are faster than all prior eBACS-documented implementations. To optimize overall
performance, we present implementations based on two different methods that achieve fast
modular arithmetic: one based on the special form of the prime using “NIST-like” reduction [58]
and another based on the special form of the prime when using Montgomery multiplication [47].

In addition, we put forward a multi-faceted case for (a special class of) Buhler-Koblitz
curves of the form y2 = x5 + b. The curves we propose are particularly flexible in applications
because they facilitate both a Kummer surface implementation and a GLV decomposition.
Thus, a simple Diffie-Hellman style key exchange can be instantiated using the fast (and
automatically side-channel protected) formulas on the Kummer surface, but if a more com-
plicated protocol requires further group operations, one has the option to instead exploit a
4-dimensional GLV implementation using the same curve. Our implementations show that
both scenarios provide fast public-key cryptography.

The paper is organized as follows. In Section 2 we recall the necessary background for this
paper. Section 3 outlines the two different approaches for the modular arithmetic. Section 4, 5
and 6 summarize the state-of-the-art in “generic”, Kummer surface and GLV implementations
respectively, together with the specific choices and optimizations we made in each scenario.
Section 7 presents our performance results. In Section 8 we propose a particular family of
curves that allow both Kummer surface and GLV implementations. Section 9 concludes the
paper.

2 Preliminaries

We start by recalling some basic facts and notation concerning genus-2 curves in Section 2.1.
In Section 2.2 we outline the CM method, which is used several times in this work to generate
secure curves. In Section 2.3 we briefly review the main techniques used to compute scalar
multiplications.

2.1 Genus-2 Curves

A hyperelliptic genus-2 curve over a field of odd characteristic K can be defined by an affine
model C : y2 = f(x), where f(x) has degree 5 or 6 and has no double roots. We call such a
curve real hyperelliptic if the degree of f is 6, and if such an f(x) has a rational root in K,
then we can birationally transform the curve so that f has degree 5 instead, in which case we
say C is imaginary hyperelliptic. Arithmetic is currently slightly faster in the imaginary case.

Unlike genus-1 elliptic curves, in genus-2, the points on the curve do not form a group.
Roughly speaking, unordered pairs of points on the curve form a group, where the group
operation adds two pairs of points by passing a cubic through the four points, finding the
other two points of intersection with the curve, and then reflecting them over the x-axis. More
formally, we denote this group by Jac(C), the Jacobian of C, which consists of degree zero
divisors on the curve modulo principal divisors. For genus-2 hyperelliptic curves, each class has
a unique reduced representative divisor consisting of at most two rational points (which are
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not reflections of each other) minus the point(s) at infinity. General Jacobian elements can be
represented by encoding these two points via a pair of polynomials, where the x-coordinates
of the points are the roots of the first polynomial and the second polynomial is a line passing
through the two points. Throughout this paper we abbreviate this Mumford representation of
general divisors D = (x2 +u1x+u0, y−(v1x+v0)), and instead write D = (u1, u0, v1, v0). This
will avoid confusion when x and y are used as two of the Kummer coordinates in Section 5.
When working in homogeneous projective space, we write such divisors as D = (U1 : U0 : V1 :
V0 : Z), where ui = Ui/Z and vi = Vi/Z for i = 0, 1 and Z 6= 0.

2.2 The CM Method

There are two high-level strategies for constructing cryptographically strong genus-2 curves.
The first strategy is “point-counting”, which typically involves fixing a particular genus-2 curve
C (over an underlying field) and using the classical Schoof-Pila [56, 53] algorithm to compute
#Jac(C), repeating the process for different curves until this group order is prime or almost
prime. Until recently, using this technique to compute the group orders of Jacobians of curves
which target the 128-bit security level was infeasible. However, in their record-breaking work,
Gaudry and Schost [30] presented a fast version of the general Schoof-Pila algorithm that
manages to compute the order of the Jacobian corresponding to any such a curve in around
1000 CPU hours. They further integrated an early abort strategy into this extended point-
counting routine to find a 128-bit secure curve in over 1,000,000 CPU hours. The Kummer
surface associated to the curve they found is especially attractive for fast implementations, and
we use it to obtain record performance numbers in this work. Even more recently, on families of
curves which have been constructed to have known real multiplication (RM), Gaudry, Kohel
and Smith [29] gave an accelerated Schoof-Pila algorithm and set a record for RM-point-
counting, computing a 128-bit secure Jacobian in about 3 hours.

The second strategy for finding cryptographically secure genus-2 curves is the CM method,
which we use several times throughout this paper to find curves defined over special prime
fields that facilitate fast field arithmetic. The CM method works as follows. For a smooth,
projective, irreducible genus-2 curve, C, over a prime field Fp with ordinary Jacobian Jac(C),
the Frobenius endomorphism has a quartic characteristic polynomial f(t) = t4− s1t

3 + s2t
2−

ps1t + p2. Let K be the quartic CM field defined by the polynomial f and fix an embedding
of K into the complex numbers. We denote by π a complex root of the polynomial f(t). The
roots of f consist of conjugate pairs with the property ππ = p. If a solution to ππ = p exists
in the field K, then there exists an ideal p = (π) in OK with relative norm pp = p. Thus,
given a CM field K and a prime p, the ordinary genus-2 curves over Fp with CM by K (i.e.
with End(Jac(C)) ∼= OK) correspond to generators of principal ideals with relative norm p
such that |π| =

√
p. Note that a generator may have to be scaled by a root of unity in K

to ensure that |π| =
√

p. Since #Jac(C)(Fp) = (1 − π)(1 − π)(1 − π′)(1 − π′), in order to
know the possible group orders for genus-2 curves with CM by K, it suffices to find the prime
ideal decomposition of p in OK (which determines all possible π’s). For primes which split
completely into principal ideals in the reflex field of K, there are always 2 possible group
orders when K 6= Q(ζ5) is Galois cyclic and 4 possible group orders when K is non-Galois
(see [18, Proposition 4] for the possibilities).

When a CM field K gives rise to a suitable group order over Fp, the next problem is to
construct a genus-2 curve with the desired number of points. We use Shimura’s theory which
shows that CM abelian varieties correspond to ideal classes in OK , and their invariants are
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values of genus-2 Siegel modular functions defined by Igusa; these invariants can be computed
modulo p as roots of the Igusa class polynomials. These Igusa class polynomials have coeffi-
cients in Q and are computationally expensive to compute. There are three general methods
of approaching this computation: the complex analytic method [66], the Chinese remainder
theorem (CRT) method [18], and the p-adic method [28]. All of the class polynomials we used
in this work were taken from Kohel’s comprehensive Echidna database [39]. Upon computing
the Igusa invariants, we can then reconstruct the curve C/Fp using the Mestre-Cardona-Quer
algorithm [45].

Depending on the scenario, we use the CM method in one of two ways. We either start
by fixing a prime field Fp and searching through many CM fields until we find a curve whose
Jacobian has prime or almost prime group order, or conversely, we start with a fixed CM field
K and search over many prime fields until we find a suitable curve. The first approach is used
when we do not require curves corresponding to a particular CM field or when the defining
equation for C is not important, which is the case when searching for “generic” curves (see
Section 4.2) and for curves facilitating arithmetic on the Kummer surface (see Section 5.5).
Alternatively, we use the second approach when we need either a certain defining equation for
C (e.g. the GLV curves in Section 6.2), or if we need to fix a particular CM field (e.g. the van
Wamelen curves in Section 8.5). Roughly speaking, if we can afford flexibility in the curves we
search for, then this allows us to be picky with the underlying fields we choose. Conversely,
being picky with the curves we seek usually means we have to be more flexible with the primes
we search with.

2.3 Scalar Multiplication

There are many different ways to compute the scalar multiplication. Most approaches, like
the double-and-add algorithm, are based on addition chains [55] and a typical optimization to
lower the number of point additions is using windows [10] of a certain width w > 1. Given the
input point P , we compute a lookup table consisting of the multiples [c]P such that 0 ≤ c < 2w,
and perform a point addition once every w bits (instead of at most once per bit). After adding
a precomputed multiple, we can “slide” to the next set-bit in the binary representation of the
scalar; such sliding windows [62] lower the number of point additions required and halve the
size of the lookup table since only the odd multiples of P are required. When computing the
negation of a point is inexpensive, which is the case for both elliptic and genus-2 curves, we can
either add or subtract the precomputed point, reducing the total number of group operations
even further; this is called signed windows [50]. See [6] for a summary of these techniques.

Adding an affine point to a projective point to obtain another projective point, often
referred to as mixed addition, is typically faster than adding two projective points. In order
to use these faster formulas, a common approach is to convert the precomputed projective
points into their affine form. This requires an inversion for each point in the table. Using
Montgomery’s simultaneous inversion method [48], I independent inversions can be replaced
by 3(I − 1) multiplications and a single inversion, which is typically much faster.

3 Fast Modular Arithmetic using Special Primes

When computing arithmetic modulo a prime p in practice, it is common to use primes of a
special form since this allows fast reduction. For instance, in the FIPS 186-3 standard [63],
NIST recommends the use of five prime fields when using the elliptic curve digital signature
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algorithm (but see also [3]). Such special primes have been studied from both a theoretical
and practical point of view. A study of a software implementation of the NIST-recommended
elliptic curves over prime fields on the x86 architecture is given by Brown et al. [11], and in [8]
a comparison is made between the performance when using Montgomery multiplication [47]
and specialized multiplication using the NIST primes. In this section we describe two different
approaches to obtain fast modular arithmetic. We use the prime p1271 = 2127 − 1 to illustrate
both methods, since this prime is used in some of our implementations (cf. Section 4 and
Section 5).

3.1 Generalized Mersenne Primes

Primes which allow fast reduction are typically of the form 2s± δ, where s ∈ Z and 0 < δ ∈ Z

is small compared to the word-size of the target architecture, which is typically 32- or 64-bit.
Another popular choice are generalized Mersenne primes of the form 2s +

∑
i∈S i, where S

is a set of integers ±2j such that |2j | < 2s and the cardinality of S is small. For example,
fast reduction modulo p = 2s − δ can be done as follows. For integers 0 ≤ a, b, ch, cℓ, δ < 2s,
write c = a · b = ch · 2s + cℓ ≡ cℓ + δch mod 2s − δ where 0 ≤ cℓ + δch < (δ + 1)2s. At the
cost of a multiplication by δ (which might be a shift depending on the form of δ) and an
addition, compute c′ ≡ c mod p where c′ is (much) smaller than c, depending on the size of
δ. This is the basic idea behind Solinas’ reduction scheme [58], which is used to implement
fast arithmetic modulo the NIST primes [63]. We refer to this type of reduction as NIST-like

reduction. When computing a · b mod p1271 with 0 ≤ a, b < p1271, one can first compute the
multiplication c = a · b = c1 · 2128 + c0 for 0 ≤ c1, c0 < 2128. A first reduction step can be
computed as c′ = (c0 mod 2127) + 2 · c1 + ⌊c0/2

127⌋ ≡ c mod p1271 such that 0 ≤ c′ < 2128.
One can then reduce c′ further using conditional subtractions. Modular reduction in the case
of p1271 can therefore be computed without using any multiplications.

3.2 Montgomery-Friendly Primes

Montgomery multiplication [47] involves transforming each of the operands into their Mont-
gomery representations and replacing the conventional modular multiplications by Mont-
gomery multiplications. One of the advantages of this method is that the computational
complexity is usually better than the classical method by a constant factor.

Let r = 2b be the radix of the system and b be the bit-length of a word. Let p be an n-
word odd prime such that rn−1 ≤ p < rn, and suppose we have the integer X =

∑n−1
i=0 xi · ri.

The Montgomery radix R = rn is a fixed integer such that gcd(R, p) = 1. The Montgomery
residue of X is defined as X̃ = X · R mod p. The Montgomery product of two integers is
defined as M(X̃, Ỹ ) = X̃ · Ỹ · R−1 mod p. Practical instances of Montgomery multiplication
use the precomputed value µ = −p−1 mod r. The interleaved Montgomery multiplication
algorithm, where the multiplication and the reduction are combined, computes C = M(A,B)
for 0 ≤ A,B < p. Let A =

∑n−1
i=0 ai · ri and start with C = 0. For all 0 ≤ i < n, the result C

is updated as

C ← C + ai · B, C ←
(
C + ((µ · C) mod r) · p

)/
r.

The division by r can be implemented by a shift since the precomputed value µ ensures that
the least significant digit (b-bits) of (C + ((µ · C) mod r) · p) is zero. It can be shown that
the final Montgomery product C is bounded as 0 ≤ C < 2 · p, and therefore a final condi-
tional subtraction is needed when complete reduction is required. In order to avoid handling
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additional carries in the Montgomery multiplication, which requires more instructions, our
implementations prefer 127-bit moduli over 128-bit moduli. In [41] it is noticed that fixing
part of the modulus can have advantages for Montgomery multiplication. For instance, the
precomputation of µ can be avoided when −p−1 ≡ ±1 mod r, which also avoids computing
a multiplication by µ for every iteration inside the Montgomery multiplication routine. This
technique has been suggested in [36, 1, 32] as well. When µ is small, e.g. µ = ±1, one could
lower the cost of the multiplication of p with (µ·c0) mod r by choosing the n−1 most significant
words of p in a similar fashion as the generalized Mersenne primes: ⌊p/2b⌋ = 2s +

∑
i∈S i.

Consider the prime p1271 on 64-bit architectures: r = 264 and we have µ = −p−1
1271 mod

264 = 1, so that the multiplication by µ can be avoided. Write C = c2 ·2128+c1·264+c0 with 0 ≤
c2, c1, c0 < 264. Due to the shape of the most-significant word of p1271 = (263−1)·264+(264−1),

the result of C+((µ·C) mod r)·p
r

can be obtained using only two shift and two 64-bit addition
instructions by computing c2 ·264+c0 ·263+c1. Similar to the NIST-like reduction, Montgomery
reduction in the setting of p1271 can be computed without using any multiplications.

3.3 Other Arithmetic Operations

Besides fast multiplication and reduction, the whole spectrum of modular operations is re-
quired to implement curve arithmetic. Here we outline the different approaches we use.

Modular Inversion. When using the regular representation of integers, one can either use
the (binary) extended GCD algorithm to compute the modular inversion or use the special
form of the modulus to compute the inverse by using modular exponentiations. For instance,
in the case of p1271 one can compute a2127

−2 ≡ a−1 mod p1271. The situation when working
in Montgomery form is slightly different. Given the Montgomery form ã = a2bn mod p of an
integer a, we want to compute the Montgomery inverse ã−122bn ≡ a−12bn mod p. This would
require a classical inversion and modular multiplication, however we found that the approach
presented in [9] (which uses the binary version of the Euclidean algorithm from [34]) is faster
in practice. The first step of this approach computes a value ã−12k ≡ a−12k−bn mod p for
some 0 ≤ k < 2bn. This value is then corrected via a Montgomery multiplication with 23bn−k.
This last multiplication typically requires a lookup table with the different precomputed values
23rn−k mod p. In the case of p = 2127−1, one can avoid this lookup table since 2t mod 2127−1 =
2t mod 127.

Modular Addition/Subtraction. Let 0 ≤ a, b < 2k−c. We compute (a+b) mod (2k − c) as
((((a+c)+b) mod 2k)−c · (1−carry((a+c)+b, 2k))) mod 2k. The carry function carry(x, y)
returns either zero or one if x < y or x ≥ y respectively. The output is correct and bounded
by 2k − c since if a + b + c < 2k, then a + b < 2k − c, while if a + b + c ≥ 2k, then
(a + b + c) mod 2k = a + b − (2k − c) < 2k − c. Note that since a + c < 2k, the addition
requires no carry propagation. Furthermore, c is multiplied with either one or zero such that
this multiplication amounts to data movement.

The modular subtraction (a − b) mod (2k − c) is performed by computing (((a − b) mod
2k)−c·borrow(a−b)) mod 2k. Analogous to the carry function, the borrow function borrow(x)
returns zero or one if x ≥ 0 or x < 0 respectively. If a < b, then 0 ≤ (a − b) mod 2k − c =
a − b + (2k − c) < 2k − c, and if a ≥ b, then 0 ≤ a − b < 2k − c. In some scenarios one can
compute additions as (((a+ b) mod 2k)+ c · carry((a+ b), 2k)) mod 2k, but we note that here
the output may not be completely reduced and can be ≥ 2k − c.
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4 “Generic” Genus-2 Curves and their Arithmetic

To give a concrete idea of the advantage gained when working on the Kummer surface or when
exploiting GLV endomorphisms, we also consider the generic scenario that employs neither
technique.

4.1 Explicit formulas

We make use of the fast formulas for arithmetic on imaginary quadratic curves from [15], which
employed homogeneous projective coordinates and focused on reducing the total number of
multiplications in projective point doublings, point additions and mixed additions.3 Due to
the small size of our fields the cost of modular addition and subtraction compared to modular
multiplication is relatively high. Hence, we optimize the formulas from [15] for 128-bit fields
by trading some addition and subtractions for multiplications (see Algorithms 1, 2 and 3).

We assume that our curves are of the form C : y2 = x5 +f3x
3 +f2x

2 +f1x+f0, and count
multiplications by the fi as full multiplications, unless they are zero.4 Letting m, s and a be
the cost of Fp-multiplications, Fp-squarings and Fp-additions or subtractions respectively, we
summarize the modified counts as follows. For D = (U1 : U0 : V1 : V0 : Z), one can compute
[2]D in 34m + 6s + 34a – see Algorithm 1. For the special GLV curves in Section 6, which
have f2 = f3 = 0, the projective doubling can be computed using 32m + 6s + 32a. For
D = (U1 : U0 : V1 : V0 : Z) and D′ = (U ′

1 : U ′

0 : V ′

1 : V ′

0 : Z ′), one can compute the projective
addition D + D′ in 44m + 4s + 29a – see Algorithm 2. For the mixed addition between the
projective point D = (U1 : U0 : V1 : V0 : Z) and the affine point D′ = (u′

1 : u′

0 : v′1 : v′0), one can
compute the projective result D + D′ in 37m + 5s + 29a – see Algorithm 3. Full and mixed
additions cost the same on the special GLV curves. Given these operation counts, our “generic”
implementations performed fastest when using 4-bit signed sliding windows (see Section 2.3).

4.2 Curves

To find “generic” curves for comparison against the GLV and Kummer techniques, we searched
Kohel’s Echidna database [39] with two fixed primes that facilitate our chosen techniques for
field arithmetic. We terminated the search when we found curves with Jacobians of prime
order. While these curves are not general in the sense that their CM field is chosen in advance,
there is no reason that the corresponding timings obtained will differ from any other generic
curves over the same prime fields, unless such curves are real (degree-6) curves which cannot
be transformed into imaginary (degree-5) curves.

Generic curve over p = 2127 − 1. The CM field K = Q[x]/(x4 + 137x + 4429) has class
number 6 [39] and gives rise to a curve C over Fp whose Jacobian has prime order

r = 28948022309329048848169239995659025138451177973091551374101475732892580332259,

which is 254 bits. A possible degree 5 model is C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0, where

f3 = 34744234758245218589390329770704207149, f2 = 132713617209345335075125059444256188021,

f1 = 90907655901711006083734360528442376758, f0 = 6667986622173728337823560857179992816.

3 Note that the formulas to compute the projective doubling from [15] can be sped up since the first multi-
plication to compute UU is redundant.

4 Over prime fields it is standard to zero the coefficient of the x4 term via an appropriate substitution.
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Algorithm 1 Projective
doubling for general divisors
on the Jacobian of C : y2 =
x5 + f3x

3 + f2x
2 + f1 + f0.

Input: P = (U1 : U0 : V1 : V0 : Z)
and f2, f3 (curve constants)

Output: [2]P
= (U ′′

1 : U ′′

0 : V ′′

1 : V ′′

0 : Z′′).

U ′′

0 ← U0 · Z, t1 ← Z2,
t2 ← U2

1 , t3 ← 2 · t2,
t4 ← 2 · U ′′

0 , t5 ← t3 + t4,
t5 ← t5 · U1, t6 ← V 2

1 ,
t7 ← f2 · t1, t6 ← t7 − t6,
t6 ← t6 · Z, t6 ← t6 + t5,
t1 ← f3 · t1, t1 ← t1 + t2,
t4 ← t1 − t4, t4 ← t4 + t3,
V ′′

0 ← V0 · Z, t1 ← U1 · V1,
t2 ← 2 · t1, t1 ← t1 + V ′′

0 ,
t2 ← t2 − V ′′

0 , t3 ← t3 + U ′′

0 ,
t3 ← V1 · t3, t5 ← t3 · t4,
t7 ← t6 · t2, t5 ← t5 − t7,
t6 ← t6 · V1, t4 ← t4 · t1,
t4 ← t4 − t6, t3 ← t3 · V1,
t1 ← t1 · t2, t3 ← t3 − t1,
t1 ← t5 · t4, t2 ← t3 · t4,
t4 ← t24, t6 ← U ′′

0 · t4,
t7 ← t4 · Z, t4 ← t4 · U1,
t3 ← 2 · t3, t3 ← t23,
t3 ← t3 · Z, t2 ← 2 · t2,
U ′′

0 ← t2 · Z, V ′′

1 ← V1 · U
′′

0 ,
V ′′

0 ← V ′′

0 · t2, t2 ← t1 − t4,
t5 ← t25, t8 ← 2 · t3,
t8 ← t8 − t2, t8 ← t8 − t1,
t8 ← t8 · U1, t8 ← t8 + t5,
t5 ← 2 · V ′′

1 , t8 ← t8 + t5,
V ′′

1 ← t6 + V ′′

1 , t6 ← t6 · t2,
U ′′

1 ← 2 · t2, U ′′

1 ← U ′′

1 − t3,
t2 ← U ′′

1 − t2, t4 ← t4 − U ′′

1 ,
t4 ← t4 · t2, t4 ← t4 · Z,
Z′′ ← U ′′

0 · Z, t1 ← t1 − U ′′

1 ,
U ′′

1 ← U ′′

1 · Z
′′, U ′′

0 ← t8 · U
′′

0 ,
V ′′

1 ← V ′′

1 − t8, V ′′

1 ← V ′′

1 · t7,
V ′′

1 ← t4 − V ′′

1 , V ′′

0 ← V ′′

0 · t7,
t1 ← t1 · t8, t1 ← t1 − t6,
V ′′

0 ← t1 − V ′′

0 , Z′′ ← Z′′ · t7,

Algorithm 2 Projective ad-
dition between general divi-
sors on the Jacobian of C :
y2 = x5+f3x

3+f2x
2+f1+f0.

Input: P = (U1 : U0 : V1 : V0 : Z),
Q = (U ′

1 : U ′

0 : V ′

1 : V ′

0 : Z′).
Output: P + Q

= (U ′′

1 : U ′′

0 : V ′′

1 : V ′′

0 : Z′′).

U ′′

1 ← U1 · Z
′, U ′′

0 ← U0 · Z
′,

t1 ← V0 · Z
′, t2 ← V ′

0 · Z,
t1 ← t1 − t2, t2 ← U ′

0 · Z,
t3 ← U ′

1 · Z, t4 ← t3 · t2,
t2 ← t2 − U ′′

0 , t5 ← U ′′

1 − t3,
t6 ← U ′′

1 · U
′′

0 , t4 ← t4 − t6,
t6 ← V ′

1 · Z, Z′′ ← Z · Z′,
t7 ← V1 · Z

′, t8 ← t7 − t6,
t6 ← t7 + t6, t9 ← U ′′2

1 ,
t10 ← Z′′ · t2, t10 ← t9 + t10,
t11 ← t23, t3 ← U ′′

1 + t3,
t12 ← t10 − t11, t11 ← t9 + t11,
t9 ← t4 · t8, t4 ← t4 · t5,
t5 ← t1 · t5, t1 ← t1 · t12,
t8 ← t2 · t8, t2 ← t2 · t12,
t1 ← t9 + t1, t5 ← t5 + t8,
t2 ← t2 − t4, t4 ← t5 · Z

′′,
t8 ← t2 · t4, t2 ← t22,
t5 ← t5 · t4, t4 ← t1 · t4,
U ′′

1 ← U ′′

1 · t5, t9 ← 2 · t4,
t9 ← t9 − t2, t12 ← t5 · t3,
t9 ← t9 − t12, t2 ← t9 − t2,
t2 ← t2 · t3, t11 ← t5 · t11,
t2 ← t2 + t11, t2 ← t2/2,
t12 ← Z′′ · t5, U ′′

0 ← U ′′

0 · t12,
t12 ← t8 · t12, t11 ← Z′ · t12,
V ′′

0 ← t11 · V0, V ′′

1 ← t11 · V1,
t11 ← t4 − t9, t4 ← U ′′

1 − t4,
t1 ← t21, t6 ← t8 · t6,
t1 ← t1 · Z

′′, t1 ← t1 + t6,
t1 ← t1 − t2, t2 ← t1 − U ′′

0 ,
t5 ← t2 · t5, t2 ← t9 · t11,
t11 ← t1 · t11, t6 ← U ′′

1 · t4,
t6 ← t6 + t2, t5 ← t6 + t5,
t4 ← U ′′

0 · t4, t11 ← t4 + t11,
t9 ← t9 · t8, U ′′

1 ← t9 · Z
′′,

U ′′

0 ← t1 · t8, t5 ← t5 · Z
′′,

V ′′

1 ← t5−V ′′

1 , V ′′

0 ← t11−V ′′

0 ,
Z′′ ← Z′′ · t12,

Algorithm 3 Mixed addi-
tion between general divisors
on the Jacobian of C : y2 =
x5 + f3x

3 + f2x
2 + f1 + f0.

Input: P = (U1 : U0 : V1 : V0 : Z),
Q = (u1, u0, v1, v0).

Output: P + Q
= (U ′′

1 : U ′′

0 : V ′′

1 : V ′′

0 : Z′′).

t1 ← v0 · Z, V ′′

0 ← V0 − t1,
t1 ← v1 · Z, t2 ← t1 + V1,
t1 ← t1 − V1, V ′′

1 ← u1 · Z,
t3 ← V ′′

1 + U1, t4 ← u0 · Z,
t5 ← V ′′

1 · t4, t6 ← U1 · U0,
t6 ← t6 − t5, U ′′

0 ← U0 − t4,
t5 ← V ′′2

1 , t7 ← U2
1 ,

U ′′

1 ← V ′′

1 − U1, t8 ← t5 − t7,
t5 ← t5 + t7, t7 ← Z · U ′′

0 ,
t8 ← t7 + t8, t7 ← t6 · t1,
t1 ← U ′′

0 · t1, U ′′

0 ← U ′′

0 · t8,
t6 ← t6 · U

′′

1 , U ′′

1 ← V ′′

0 · U
′′

1 ,
t8 ← V ′′

0 · t8, t7 ← t7 − t8,
t1 ← t1 − U ′′

1 , U ′′

0 ← U ′′

0 − t6,
t8 ← U ′′2

0 , t6 ← t1 · Z,
U ′′

0 ← U ′′

0 · t6, t1 ← t1 · t6,
V ′′

1 ← t1 · V
′′

1 , t5 ← t1 · t5,
V ′′

0 ← t7 · t6, t6 ← t26,
t7 ← t27, t4 ← t4 · t6,
t6 ← U ′′

0 · t6, U ′′

1 ← 2 · V ′′

0 ,
U ′′

1 ← U ′′

1 − t8, t2 ← U ′′

0 · t2,
t7 ← t7 · Z, t7 ← t7 + t2,
t2 ← t1 · t3, U ′′

1 ← U ′′

1 − t2,
t8 ← U ′′

1 − t8, t3 ← t3 · t8,
t3 ← t3 + t5, t3 ← t3/2,
t7 ← t7 − t3, t8 ← V ′′

1 − V ′′

0 ,
V ′′

0 ← V ′′

0 − U ′′

1 , t5 ← t7 − t4,
V ′′

1 ← V ′′

1 · t8, t1 ← t1 · t5,
t1 ← t1 + V ′′

1 , V ′′

1 ← U ′′

1 · V
′′

0 ,
V ′′

1 ← V ′′

1 + t1, t4 ← t4 · t8,
V ′′

0 ← V ′′

0 · t7, V ′′

0 ← t4 + V ′′

0 ,
t4 ← t6 · v1, V ′′

1 ← V ′′

1 − t4,
U ′′

1 ← U ′′

1 · Z, U ′′

1 ← U ′′

1 · U
′′

0 ,
U ′′

0 ← t7 · U
′′

0 , V ′′

1 ← Z · V ′′

1 ,
Z′′ ← Z · t6, t7 ← Z′′ · v0,
V ′′

0 ← V ′′

0 − t7,

Generic curve over p = 2128 − 173. The CM field K = Q[x]/(x4 + 41x + 389) has class
number 1 [39] and gives rise to a curve C over Fp whose Jacobian has prime order

r = 115792089237316195429342203801033554170931615651881657307308068079702089951781,
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which is 257 bits. A possible degree 5 model is C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0, where

f3 = 318258242717201709453901384328569236653, f2 = 75380722035796344355219475510170298006,

f1 = 129416082603460579272847694630998099237, f0 = 143864072772599444046778416709082679388.

5 The Kummer Surface

Gaudry [25] built on earlier observations by the Chudnovsky brothers [13] to show that scalar
multiplication in genus-2 can be greatly accelerated by working on the Kummer surface asso-
ciated to a Jacobian, rather than on the Jacobian itself. Although the Kummer surface is not
technically a group, it is close enough to a group to be able to define scalar multiplications on
it, and is therefore an attractive setting for Diffie-Hellman like protocols that do not require
any further group operations [57].

5.1 The Squares-only Kummer Routine

The Kummer surface that was originally proposed for cryptography in [25] is a surface whose
constants are completely parameterized by the four fundamental Theta constants (a, b, c, d) =
(ϑ1(0), ϑ2(0), ϑ3(0), ϑ4(0)), and whose coordinates come from the four fundamental Theta func-

tions (x, y, z, t) = (ϑ1(z), ϑ2(z), ϑ3(z), ϑ4(z)), all of which are values of the classical genus-2
Riemann Theta function. Bernstein [5] pointed out that one can work entirely with the squares
of the fundamental Theta constants without loss of efficiency. This provides more flexibility
when transforming a given genus-2 curve into an associated Kummer surface, and makes it
easier to control the size of squared fundamental Theta constants, for which small values can
give worthwhile speedups.

Cosset [14] formally presented the “squares-only” setting, in which the Kummer surface K
is completely defined by the squared fundamentals (a2, b2, c2, d2) as

K : E′xyzt = ((x2 + y2 + z2 + t2)− F (xt + yz)−G(xz + yt)−H(xy + zt))2,

where

E′ = 4E2a2b2c2d2, E =
ABCD

(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)
,

F =
a4 − b4 − c4 + d4

a2d2 − b2c2
, G =

a4 − b4 + c4 − d4

a2c2 − b2d2
, H =

a4 + b4 − c4 − d4

a2b2 − c2d2
,




A
B
C
D


 =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1







a2

b2

c2

d2


 . (1)

We write (x : y : z : t) = (ϑ1(z)
2 : ϑ2(z)

2 : ϑ3(z)
2 : ϑ4(z)

2) for the coordinates of a projective
point on K. We present here the four algorithms needed to achieve scalar multiplication on a
Kummer surface using the squared coordinates. Algorithm 4, the Hadamard transform (H),
is a building block used to improve efficiency throughout the entire routine: the linear alge-
bra involved in computing A,B,C,D from (a2, b2, c2, d2) in (1) appears numerous times in
the formulas for arithmetic on K, and this is an optimized way to do those operations [5].
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Algorithm 4 The Hadamard
transform (H).

Input: (x, y, z, t).
Output: H(x, y, z, t).
1. t1 ← x + y, t2 ← z + t,

t3 ← x− y, t4 ← z − t.
2. x← t1 + t2, y ← t1 − t2,

z ← t3 + t4, t← t3 − t4.
3. return (x, y, z, t).

Algorithm 5 Doubling, K(DBL).

Input: P = (x : y : z : t) and constants y0, z0, t0, y
′

0, z
′

0, t
′

0.
Output: [2]P = DBL(P ).
1. x, y, z, t← H(x, y, z, t).
2. x← x2, y ← y2, z ← z2, t← t2.
3. y ← y · y′

0, z ← z · z′

0, t← t · t′0.
4. x, y, z, t← H(x, y, z, t).
5. x← x2, y ← y2, z ← z2, t← t2.
6. y ← y · y0, z ← z · z0, t← t · t0.
7. return (x : y : z : t).

Algorithm 5, K(DBL), computes the doubling [2]P ∈ K of a point P ∈ K, while Algorithm 6,
K(DBLADD), computes the pseudo-addition of the distinct points P,Q ∈ K with known differ-
ence P−Q ∈ K. Both of these algorithms are the squares-only formulas from [14]. Algorithm 7
computes the scalar multiple [k]P ∈ K of P ∈ K using a genus-2 version [25] of the Mont-
gomery ladder [48]. The six surface constants that appear in the algorithms are defined as

y0 =
a2

b2
, z0 =

a2

c2
, t0 =

a2

d2
, y′0 =

A

B
, z′0 =

A

C
, t′0 =

A

D
. (2)

Although the formulas in Algorithm 6 are presented for general inputs P , Q and P −Q, the
inputs to K(DBLADD) in the laddering algorithm are always of the form [m]P and [m + 1]P ,
so their difference is always the initial point P (see lines 4 and 6 of Algorithm 7). Thus, the
inversions in line 9 of Algorithm 6 can all be precomputed. In fact, since K is projective we
can multiply each coordinate in this line by any scalar, say x̄, such that Line 9 is modified to
compute 3 multiplications: y′ ← Y ·(x̄/ȳ), z′ ← Z ·(x̄/z̄), and t′ ← T ·(t̄/ȳ), where the quotients
in the parentheses are precomputed and stay fixed throughout the scalar multiplication [25,
5].

5.2 Extracting the Squared Kummer Surface Parameters from C

In [25] Gaudry showed the relationship between the Kummer surface and the isomorphic
Rosenhain model of the genus-2 curve, given as

CRos : y2 = x(x− 1)(x− λ)(x− µ)(x− ν), (3)

where the Rosenhain invariants λ, µ and ν are linked to the squared fundamentals by

λ =
a2c2

b2d2
, µ =

c2(AB + CD)

d2(AB − CD)
, ν =

a2(AB + CD)

b2(AB − CD)
,

with A,B,C,D as in (1). Since the three Rosenhain invariants are functions of the four
squared fundamentals, there is a degree of freedom when inverting the equations to compute
(a2, b2, c2, d2) from (λ, µ, ν). Thus, we can set d2 = 1 [27] and compute the other squared
fundamentals as

c2 =

√
λµ

ν
, b2 =

√
µ(µ− 1)(λ− ν)

ν(ν − 1)(λ− µ)
, a2 = b2c2 ν

µ
.
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Algorithm 6 Combined doubling and pseudo-
addition, K(DBLADD).

Input: P = (x : y : z : t), Q = (x′ : y′ : z′ : t′),
P −Q = (x̄ : ȳ : z̄ : t̄), and y0, z0, t0, y

′

0, z
′

0, t
′

0.
Output: ([2]P, P + Q) = DBLADD(P, Q, P −Q).
1. x, y, z, t← H(x, y, z, t), x′, y′, z′, t′ ← H(x′, y′, z′, t′).
2. X ← x · x′, Y ← y · y′

0, Z ← z · z′

0, T ← t · t′0.
3. x← x2, y ← y · Y , z ← z · Z, t← t · T .
4. Y ← Y · y′, Z ← Z · z′, T ← T · t′.
5. x, y, z, t← H(x, y, z, t), X, Y, Z, T ← H(X, Y, Z, T ).
6. x← x2, y ← y2, z ← z2, t← t2.
7. X ← X2, Y ← Y 2, Z ← Z2, T ← T 2.
8. y ← y · y0, z ← z · z0, t← t · t0.
9. x′ ← X/x̄, y′ ← Y/ȳ, z′ ← Z/z̄, t′ ← T/t̄.

10. return (x : y : z : t), (x′ : y′ : z′ : t′).

Algorithm 7 Scalar multiplication,
K(SMUL).

Input: P = (x : y : z : t) and integer
n =

Pℓ−1

i=0
ni2

i with n > 2.
Output: [n]P ∈ K.
1. Pm ← P , Pp = DBL(P ).
2. for i = ℓ− 2 down to 0 do
3. if ni = 1 then
4. (Pp, Pm)← DBLADD(Pp, Pm, P )
5. else
6. (Pm, Pp)← DBLADD(Pm, Pp, P )
7. (x : y : z : t)← Pm.
8. return (x : y : z : t).

Given a hyperelliptic curve C of genus-2, there are up to 120 unique Rosenhain triples
λ, µ, ν that give an isomorphic representation CRos

∼= C over the algebraic closure [24, §2.2].
So for a given curve with rational 2-torsion, we can expect that there may be at least one
Rosenhain triple for which the square roots above lie in the same field as λ, µ and ν, so that
the Kummer surface is also defined over the same field (but see Section 8.3). If the 2-torsion
is rational, then 16 must divide the cardinality of Jac(C) [25].

5.3 Mapping from K to Jac(C)

The maps from K to Jac(C) were originally given by Gaudry [25] and tweaked for the squares
only case by Cosset [14]. We reproduce them here for completeness, correcting a sign mistake
introduced in the computation of v0 in [14]. It should be noted that the map below is not
directly to the Jacobian of C, but rather to the Jacobian of the isomorphic curve CRos in Rosen-
hain form. The map takes P = (x, y, z, t) ∈ K to D = (u1, u0, v1, v0) or D = (u1, u0,−v1,−v0),
where the choice between these two possibilities is made when we choose the square root in
the computation of v0 in (5).

We expand the first part of the map (to the u-polynomial of D), to write it as

u0 =
uxx + uyy + uzz + utt

dxx + dyy + dzz + dtt
and u1 =

u′

xx + u′

yy + u′

zz + u′

tt

dxx + dyy + dzz + dtt
− u0 − 1,

where

ux = −ϑ2
1ϑ

2
3ϑ

2
8ϑ

2
5ϑ

2
9, u′

x = −ϑ2
7ϑ

4
9ϑ

2
5ϑ

2
8, dx = −ϑ2

2ϑ
2
4ϑ

2
10ϑ

2
6ϑ

2
7,

uy = −ϑ2
1ϑ

2
3ϑ

2
8ϑ

2
6ϑ

2
7, u′

y = ϑ2
7ϑ

4
9ϑ

2
5ϑ

2
10, dy = −ϑ2

2ϑ
2
4ϑ

2
10ϑ

2
5ϑ

2
9,

uz = ϑ2
1ϑ

2
3ϑ

2
8ϑ

2
5ϑ

2
7, u′

z = ϑ4
7ϑ

2
9ϑ

2
5ϑ

2
8, dz = ϑ2

2ϑ
2
4ϑ

2
10ϑ

2
6ϑ

2
9,

ut = ϑ2
1ϑ

2
3ϑ

2
8ϑ

2
6ϑ

2
9, u′

t = −ϑ4
7ϑ

2
9ϑ

2
5ϑ

2
10, dt = ϑ2

2ϑ
2
4ϑ

2
10ϑ

2
5ϑ

2
7. (4)



12 Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter

For the computation of v0 and v1, we have

ℓ =−
(
ϑ2

12(z)ϑ7(z)
2b2c2ϑ4

9 + ϑ2
11(z)ϑ

2
9(z)a

2d2ϑ4
7 + 2a2b2c2d2(xz + yt)

+
(
x2 + y2 + z2 + t2 − F (xt + yz)−G(xz + yt)−H(xy + zt)

) a2c2 + b2d2

E

)
,

v0 =

√
ℓ · ϑ2

8ϑ
4
3ϑ

4
1ϑ

2
14(z)

(ϑ2
16(z)b

2d2ϑ2
10)

3
,

v1 =
u3

0 − u2
0(u

2
1 + u1 + (u1 + 1)(λ + µ + ν) + λµ + νλ + νµ) + u0λµν + u1v

2
0

2v0u0
, (5)

where the λ, µ and ν are the particular choice of Rosenhain invariants corresponding to CRos

in (3). The six Theta constants ϑ2
i with i = 5, . . . , 10 and the six Theta functions ϑ2

j(z) with
j ∈ {7, 9, 11, 12, 14, 16} are all exactly as in [25, §7.3-7.4].

5.4 Twist Security

There is an additional security consideration when working on the Kummer surface because
a random point on K can map to either the curve CRos

∼= C or its twist C ′

Ros
∼= C ′ [25, §5.2].

As long as the public generator P ∈ K is chosen so that it maps back to Jac(CRos), then
any honest party participating in a Diffie-Hellman style protocol computes with multiples of
P that also map back to Jac(CRos). However, an attacker could feed a party another point
P ′ ∈ K that (unbeknownst to the party) maps back to C ′

Ros, and on return of [s]P ′, attack
the discrete logarithm problem on the twist instead. It is undesirable to include a check of
which curve the Kummer points map to, because the maps above are so complicated. The
best solution is to compute curves where both Jac(C) and Jac(C ′) have large prime order
subgroups. Such curves and their associated Kummer surfaces are called twist-secure [30, 29].

5.5 Curves and their Kummers

Our implementations use two different Kummer surfaces defined over the prime fields with
p = 2127−1 and p = 2128−237. In the case of p = 2127−1, we use the twist-secure curve found
by Gaudry and Schost [30]. For the prime p = 2128−237, we used the CM method to generate
a cryptographically secure genus-2 curve over this fixed prime field. We searched through fields
up to class number 144 in Kohel’s Echidna database to find a curve whose Jacobian had order
16 times a (253-bit) prime5, but this curve was not twist-secure (the largest prime factor on
the twist was 222 bits) and did not have small surface parameters, which Gaudry and Schost
prioritized in their search. Thus, the curve for p = 2128 − 237 is only used for comparative
purposes since it is not twist-secure.

Kummer Surface over p = 2127−1. Gaudry and Schost [30] label the curve as C11,−22,−19,−3,
since the squared fundamental Theta constants are (a2, b2, c2, d2) = (11,−22,−19,−3). A cor-
responding degree 5 isomorphic Rosenhain model is given by the constants

λ = 28356863910078205288614550619314017618, µ = 154040945529144206406682019582013187910,
ν = 113206060534360680770189432771018826227.

5 The quartic CM field is K = Q[x]/(x4 + 1990x2 + 989193).
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The group orders of Jac(C) ∼= Jac(CRos) and Jac(C ′) ∼= Jac(C ′

Ros) are given by 24 ·r and 24 ·r′
respectively, where

r = 1809251394333065553414675955050290598923508843635941313077767297801179626051,
r′ = 1809251394333065553571917326471206521441306174399683558571672623546356726339,

which are 250- and 251-bit primes respectively. The corresponding Kummer surface K is
parameterized by

E′ = 37299146226279590906389874065895056737, F = 145242473685766417331928186098925456110,
G = 81667768061025231231209905783624370749, H = 54058235547640725801037772083642107170.

Since the curve is twist-secure, we are free to choose any generator, for example the generator

(x′, y′, z′, t′) = [2](1, 1, 1, 78525529738642755703105688163803666634)

has order r on K.

Kummer Surface over p = 2128 − 237. For this prime we found a curve from Kohel’s
Echidna database over the (class number 2) quartic CM field K = Q[x]/(x4 +41x+389). One
choice of the Rosenhain model is given by the constants

λ = 128534436098496400337491922800626495083, µ = 138365487282865177796922369720361855387,
ν = 328480392121026877111417192072570789522.

The group order of Jac(C) ∼= Jac(CRos) is 24 · r, where

r = 7237005577332262214072797209406249707568321823640356418684124053756801466361

is a 253-bit prime. One choice of the squared fundamentals corresponding to the above Rosen-
hain triple is

a2 = 239787395557946134106985933824874005295, b2 = 25872439158573675147402852447691114873,
c2 = 20548760516608934922742512228704274345, d2 = 1.

The corresponding Kummer surface K is parameterized by

E′ = 332371133554703752153743957854113212587, F = 132548732776531240551503236526338110642,
G = 198219842417172000280660546928795447629, H = 293899164222979967538360298717156893328.

A generator on K with order r that maps back to Jac(CRos) is

P = [2](1, 1,−1, 706133183720512204201264210416943654).

We re-emphasize that this surface is not twist-secure (see Section 5.4), and was used for
comparative purposes only.

5.6 Implementation Details and Side-channel Resistance

From Algorithm 7 it is clear that for every bit in the scalar, except the first one, the combined
double and pseudo-addition routine (Algorithm 6) is called. The main branch, i.e. checking if
the bit is set (or not), can be converted into straight-line code by masking (pointers to) the in-
and output. Since no lookup tables are used, and all modern cache sizes are large enough to
hold the intermediate values from Algorithm 6 when using 128-bit arithmetic, the algorithm
becomes side-channel resistant almost for free. The only input-dependent value is the scalar
n whose bit-size can differ, meaning that the total runtime could potentially leak the value of
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the most significant bits. In order to make the implementation run in constant time, we can
either increase the scalar via addition of the subgroup order, or we can artificially increase
the running time by computing Algorithm 6 on dummy values such that the computation of
K(DBLADD) occurs exactly ⌈log2(r)⌉ − 1 times after calling K(DBL) once only.

We note that we incur a cost of 16m + 9s + 32a each time K(DBLADD) is called, where 6 of
the multiplications are by surface constants. For the curve over p = 2127− 1 found by Gaudry
and Schost (see Section 5.5), the 6 surface constants are y0 = −1/2, z0 = −11/19, t0 = −11/3,
y′0 = −3, z′0 = −33/17 and t′0 = −33/49, where it is immediately clear that the multiplications
by y0 and y′0 are less expensive than full Fp multiplications. As we mentioned in Section 5.1,
the projective nature of K allows us to simultaneously multiply the coordinates of any point on
K by a constant factor. From Algorithm 6, we can see that this also permits us to rescale either
set of the surface constants, i.e. we are free to scale those appearing on Line 2 (y0, z0 and t0)
and/or those appearing on Line 8 (y′0, z′0 and t′0) of Algorithm 6 by any non-zero factor in Fp.
To determine the best scaling of the surface constants, we must first note that the expressions
in (2) were already scaled so that two original constants x0 and x′

0 both became 1 (and were
thus omitted), meaning that any scaling must be simultaneously applied to the four constants
x0, y0, z0, and t0 or the four constants x′

0, y′0, z′0, and t′0. As it stands, multiplications by
z0 = −11/19 and t0 = −11/3 are treated as full multiplications in Fp, so suppose we clear the
denominators of this first set of constants to instead take (x0, y0, z0, t0) = (−114, 57, 66, 418).
In this case all four of the multiplications are now by “single-word” constants, which are
naturally faster than full Fp multiplications where both operands occupy two machine words.
In our implementations however, we found that the code ran faster when the constants were
essentially left unchanged, save for the scaling of (x0, y0, z0, t0) = (1,−1/2,−11/19,−11/3) to
(x0, y0, z0, t0) = (2,−1,−22/19,−22/3), where the multiplication by 2 is slightly faster than
the division by 2. We optimized all of the obvious combinations of scalings at the assembly
level, such as clearing the smallest denominator only, but this always destroyed one of the
constants being 1, which was not made up for by the benefit of reducing two-word constants
into one-word constants.

6 GLV in Genus-2

The Gallant-Lambert-Vanstone (GLV) method [22] significantly speeds up scalar multipli-
cation on algebraic curves that admit an efficiently computable endomorphism φ of degree
d > 1, by decomposing the scalar k into d “mini-scalars”, all of which have bit-lengths that
are approximately 1/d that of k. The d scalar multiplications corresponding to each of these
mini-scalars can then be computed as one multi-scalar multiplication of length ≈ log2 (k/d),
which effectively reduces the number of required doublings by a factor of d.

6.1 Endomorphisms

In general, algebraic curves over prime fields do not come equipped with an useful endomor-
phism φ, which means we have to use special curves to take advantage of the GLV method.
For genus-1 elliptic curves, Gallant et al. suggested the curves y2 = x3 + b and y2 = x3 + ax,
which allow a 2-dimensional decomposition of scalars over prime fields. On the other hand,
the genus-2 analogues of these curves, Buhler-Koblitz (BK) curves of the form y2 = x5 + b [12]
and Furukawa-Kawazoe-Takahashi (FKT) curves of the form y2 = x5+ax [20], have φ’s whose
minimal polynomials are of degree 4, which means that we can achieve 4-dimensional scalar
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decompositions on genus-2 curves over prime fields. Besides the two families above that offer
4-dimensional GLV decompositions, families of genus-2 curves with real multiplication (RM)
facilitate 2-dimensional scalar decompositions [40, 29]. To give an idea of the expected perfor-
mance in such scenarios, we also present timings for a 2-dimensional GLV decomposition on
FKT curves.

Dimension-4 GLV on Buhler-Koblitz Curves. To achieve a 4-dimensional GLV on curves
of the form C : y2 = x5 + b, we require p ≡ 1 mod 10 so the non-trivial fifth roots of unity are
in Fp. Buhler and Koblitz showed how we can compute the group order of Jac(C) efficiently
in this scenario [12] (also see [20, §6]) and we note that Jacobians of these curves can have
prime order. Take any ξ5 6= 1 such that 1 = ξ5

5 ∈ Fp and observe that if (x, y) ∈ C, then
(ξ5x, y) ∈ C. This induces an endomorphism φ on the Jacobian that is defined on full degree
elements as φ : (u1, u0, v1, v0) 7→ (ξ5u1, ξ

2
5u0, ξ

4
5v1, v0), which costs only 3 multiplications in Fp

as the ξj
i are all precomputed. The minimal polynomial of φ is T 4 + T 3 + T 2 + T + 1 = 0.

Dimension-4 GLV on FKT Curves. Curves of the form C : y2 = x5 + ax need to be
defined over fields of characteristic p ≡ 1 mod 8, so that the eighth roots of unity are all found
in Fp. Computing the cardinality of Jac(C) in this scenario is also efficient [20]. Since the point
(x, y) = (0, 0) ∈ C induces a point of order 2 on Jac(C), the best we can do is to find a curve
whose Jacobian is two times a prime. Let ξ8 6= 1 be such that 1 = ξ8

8 ∈ Fp and observe that
if (x, y) ∈ C, then (ξ2

8x, ξ8y). The induced endomorphism on full degree Jacobian elements
is φ : (u1, u0, v1, v0) 7→ (ξ2

8u1, ξ
4
8u0, ξ

7
8v1, ξ8v0), which costs 4 multiplications in Fp and which

satisfies the minimal polynomial T 4 + 1 = 0.

Dimension-2 GLV on FKT Curves. The reason we chose FKT curves for the 2-dimensional
example is because we can take the endomorphism φ2 : (u1, u0, v1, v0) 7→ (ξ4

8u1, u0, ξ
6
8v1, ξ

2
8v0),

which has minimal polynomial T 2 + 1 = 0. For the Buhler-Koblitz curves, we can still get
a 2-dimensional decomposition by defining φ : (x, y) 7→ ((ξ5 + ξ−1

5 )x, y) on C and extending
Z-linearly to general divisors under the canonical embedding of C in Jac(C). In this case φ
satisfies the minimal polynomial T 2 + T − 1 on Jac(C).

6.2 Curves

We searched for BK and FKT curves over 127-bit primes that are suited to Montgomery style
reduction and over 128-bit primes that are suited to the NIST-style modular reduction. There
are only a few isomorphism classes for both types of curves over any particular prime field, so
we had to search numerous primes before we found cryptographically suitable curves. Since
the definitions of both prime forms encompass a vast number of primes, we were able to find a
field that simultaneously gave a prime order BK and an FKT curve with an optimal cofactor
of 2.

GLV Curves over a 127-bit Prime. Let p127m = (263 − 27443) · 264 + 1. This is a
Montgomery-friendly prime (see Section 3.2) where µ = −p−1

127m mod 264 = −1. The Jaco-
bians of the curves CBK/Fp127m

: y2 = x5 + 17 and CFKT/Fp127m
: y2 = x5 + 17x have orders

#Jac(CBK) = r and #Jac(CFKT) = 2 · r′, where

r = 28948022309328876595115567994214488524823328209723866335483563634241778912751,

r′ = 14474011154664438299023932553432254007696198466166455661883334092795880233441
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Table 1. Statistics for 1,000,000 scalar decompositions in each of the GLV scenarios. Each row reports a
different scenario and the columns across a row show the percentage frequency corresponding to decompositions
with a maximum “mini-scalar” length. The final column accounts for all decompositions whose maximum “mini-
scalar” length were below a particular bound.

curve/prime- r max{|kℓ|} (bits) / freq. (%)
GLV dimension (bits)
CBK/Fp127m

- 4 254 64/21.0401 63/ 59.2356 62/18.1809 61/14.456 60/0.0928 ≤ 59/0.0050
CFKT/Fp127m

- 4 253 63/1.0009 62/60.2852 61/35.6103 60/2.9155 59/0.1773 ≤ 58/0.0108
CFKT/Fp127m

- 2 253 126/50.0546 125/37.3918 124/9.3992 123/2.3752 122/0.5803 ≤ 121/0.1989
CBK/Fp128n

- 4 256 65/0.0006 64/37.5937 63/56.1647 62/5.8495 61/0.3660 ≤ 60/0.0255
CFKT/Fp128n

- 4 255 64/23.3766 63/64.2568 62/11.6045 61/0.7160 60/0.0433 ≤ 59/0.0028
CFKT/Fp128n

- 2 255 127/50.0756 126/37.4652 125/9.3466 124/2.3331 123/0.5841 ≤ 122/0.1954

are 254- and 253-bit primes respectively.

GLV Curves over a 128-bit Prime. Let p128n = 2128−24935. The Jacobians of the curves
CBK/Fp128n

: y2 = x5 + 37 and CFKT/Fp128n
: y2 = x5 + 37x have orders #Jac(CBK) = r and

#Jac(CFKT) = 2 · r′ respectively, where

r = 115792089237316195401210495125503591471546519982099914586091636775415022457661,

r′ = 57896044618658097706542424143127279595817201688638085882569066869306899160801.

are 256- and 255-bit primes respectively.

6.3 Scalar Decomposition via Division

At Eurocrypt 2002, Park, Jeong and Lim [52] gave an algorithm for performing GLV decompo-
sition via division in the ring Z[φ] generated by φ. This algorithm is very simple and effective
in decomposing the scalar k quickly: in both 4-dimensional cases (BK and FKT) it takes 20
multiplications to fully decompose k, and in the 2-dimensional case the decomposition totals
just 6 multiplications.

For the curves we used, this algorithm performed slightly better on average than the
(conservative) numbers quoted in [52, Table 4]. Table 1 gives the statistics from 1, 000, 000
decompositions of random scalars in [0, r) in each scenario. Each of the columns report the
percentage frequency at which k decomposed into vectors with the given maximal bit length.
For example, consider the top row which reports the statistics corresponding to 4-dimensional
decompositions on Buhler-Koblitz curves with r being 254 bits. The first column indicates
that around 21% of scalars decomposed to 4 mini-scalars where the maximum bit length was
64, whilst the second column reports that around 59% of scalars decomposed to 4 mini-scalars
{k1, k2, k3, k4} where the maximum bit length was 63. The most common maximum length
and its percentage frequency are shown in bold for each scenario.

6.4 Computing the Scalar Multiplication

We describe the two approaches we used to implement the scalar multiplication. The de-
composition of the scalar k results in d smaller scalars kℓ for 0 ≤ ℓ < d. The first ap-
proach precomputes the 2d different points in a lookup table Li =

∑d−1
ℓ=0

[⌊
i
2ℓ

⌋
mod 2

]
Pℓ for

0 ≤ i < 2d. When processing the jth bit of the scalar, the precomputed multiple Li is added,

for i =
∑d−1

ℓ=0 2ℓ
(⌊

kℓ

2j

⌋
mod 2

)
. Hence, besides the minor bit-fiddling overhead to construct the
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lookup table index, this requires computing at most a single curve addition and a single curve
doubling per bit of the maximum of the kℓ’s. The second approach [21] is very similar to using
signed windows for a single scalar (see Section 2.3). We start by precomputing the multiples
Lℓ(c) = [c]Pℓ for d different tables: one corresponding to each scalar kℓ. When computing the
scalar multiplication, the jth part (of width w bits) in the scalar kℓ determines which point

needs to be added (or subtracted), namely
∑d−1

ℓ=0 ±Lℓ(
⌊

kℓ

2wj

⌋
mod 2w), where the addition or

subtraction depends on the addition-subtraction chain used. Thus, an addition to the running
value has to be made only once every w bits and combining the lookup table values take at
most d − 1 additions, so one needs at most d additions per w bits. The optimal value for w
depends on the dimension d, the bit-size of kℓ and the cost of (mixed) additions and doublings.
There are multiple ways to save computations in this latter approach. After computing the
multiples in the first lookup table L0, the values for the d − 1 other tables can be computed
by applying the φ map to the individual point in the lookup table [21]. Since the computation
of the φ map is only three or four multiplications (depending on the curve used), this is a
significant saving compared to computing the group operation which is an order of magnitude
slower. Furthermore, since the endomorphism costs the same in affine or projective space, one
can convert the points in L0 to affine coordinates using Montgomery’s simultaneous inversion
method (see Section 2.3), and obtain all of the affine points in the other lookup tables cheaply
through application of φ. This means the faster mixed addition formulas can be applied when
adding any element in a lookup table. In our implementations, the first approach is faster in
the 4-dimensional case and the second approach is faster in the 2-dimensional case.

7 Results and Discussion

In Section 7.1 we discuss our code and the benchmarking environment we used. We present
the main results in Section 7.2 and discuss them further in Section 7.3. In Section 7.4 we
report timings in the case of key-pair generation, i.e. when a fixed public generator allows for
precomputation before the scalar is known.

7.1 Benchmark Setting and Code

All of the implementations in Table 2 were run on an Intel Core i7-3520M at 2893.484 MHz with
hyperthreading turned off and over-clocking (“turbo boost”) disabled. The implementations
labeled (a) use the Montgomery-friendly primes. They have been compiled using Microsoft
Visual Studio 10 and run on 64-bit Windows, where the timings are obtained using the time
stamp counter instruction rdtsc over several thousand scalar multiplications. The implemen-
tations labeled (b) use the NIST-like approach and have been compiled with gcc 4.6.3 to run
on 64-bit Linux, where the timings are obtained using the SUPERCOP toolkit for measuring
the performance of cryptographic software (see [7]). The implementations labeled (b)6 will be
made publicly available through [7]. Both (a) and (b) perform a final modular inversion to
ensure that the output point is in affine form: this is the standard setting when computing a
Diffie-Hellman key-exchange.

6 The EBAT is now available through http://hhisil.yasar.edu.tr/files/hisil20121128genus2.tar.gz
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Table 2. Performance timings in 103 cycles of various programs implementing a Diffie-Hellman key-exchange
over a prime field, i.e. calculating a ⌈log2(r)⌉-bit scalar multiplication.

Primitive g SCR field char p ⌈log2(r)⌉ #Aut s 103 cycles

curve25519 [3] 1 X 2255 − 19 253 2 125.8 182
ecfp256e [33] 1 ✕ 2256 − 587 255 2 126.8 227
Longa-Sica 2-GLV [44] 1 ✕ 2256 − 11733 256 6 127.0 145
surf127eps [31] 2 X 2127 − 735 251 2 124.8 236
NISTp-224 [63, 35] 1 X 2224 − 296 + 1 224 2 111.8 302
NISTp-256 [63] 1 ? 2256 − 2224 + 2192 + 296 − 1 256 2 127.8 658

(a) generic127 2 ✕ 2127 − 1 254 2 126.8 295
(b) generic127 2 ✕ 2127 − 1 254 2 126.8 248
(b) generic128 2 ✕ 2128 − 173 257 2 127.8 364
(a) Kummer 2 X 2127 − 1 251 2 124.8 139
(b) Kummer 2 X 2127 − 1 251 2 124.8 117
(b) Kummer 2 X 2128 − 237 253 2 125.8 166
(a) GLV-4-BK 2 ✕ 264 · (263 − 27443) + 1 254 10 125.7 156
(a) GLV-4-FKT 2 ✕ 264 · (263 − 27443) + 1 253 8 125.3 156
(a) GLV-2-FKT 2 ✕ 264 · (263 − 27443) + 1 253 8 125.3 220
(b) GLV-4-BK 2 ✕ 2128 − 24935 256 10 126.7 164
(b) GLV-4-FKT 2 ✕ 2128 − 24935 255 8 126.3 167
(b) GLV-2-FKT 2 ✕ 2128 − 24935 255 8 126.3 261

7.2 Results

Table 2 summarizes the performance and characteristics of various genus-g curve implemen-
tations. For the security estimate we assume that the fastest attacks possible are the “generic
algorithms”, where we specifically use the complexity of the Pollard rho [54] algorithm that
exploits additional automorphisms [17, 67]. If r is the largest prime factor of a group with

#Aut automorphisms, we compute the security level s as s = log2(
√

πr
2#Aut

). We also indicate

if the implementation is side channel resistant [38].
The implementations in the top part of the table are obtained from eBACS, except for [63]

and [44]. The standardized NIST curves [63], one of which is at a lower security level, are
both obtained from the benchmark program included in OpenSSL 1.0.1.7 The implementation
from [44] is not publicly available, but the authors gave us a precompiled binary which reported
its own cycle count so that we could report numbers obtained in our test-environment. All
these implementations are compiled and run on our hardware.

7.3 Discussion

The first thing to observe from Table 2 is that the standard NISTp-256 curve and the genus-2
curve “generic128” (see Section 4) offer the highest level of security. This “generic” genus-2
implementation is our slowest performing implementation, yet is it still 1.80 times faster than
the NIST curve at the same security level. Interestingly, all our Kummer and 4-dimensional
GLV implementations manage to outperform the previous fastest genus-2 implementation [31].
Prior to this work, the fastest curve arithmetic reported on eBACS was by Bernstein [3], whilst
Longa and Sica [44] held the overall software speed record over prime fields. We note that the
former implementation is side-channel resistant, whilst the latter is not. Even though our GLV

7 Note, to enable this implementation, using the techniques described in [35], OpenSSL needs to be configured
using “./Configure enable-ec_nistp_64_gcc_128”.
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Table 3. Performance timings in 103 cycles of y2 = f(x), deg(f) = 5 with NIST-like reduction and precom-
putation.

field char storage (KB) 103 cycles field char storage (KB) 103 cycles

2127 − 1

64 53

2128 − c

64 81
128 42 128 62
256 36 256 53
512 33 512 49
1024 33 1024 49
2048 33 2048 49

implementations are currently not side-channel resistant, we note that they can be made into
resistant implementations following, for instance, the techniques from [44]. Our (b) approach
on the Kummer surface sets a new software speed record by breaking the 120k cycle barrier
for side-channel resistant implementations at the 128-bit security level.

With respect to the different arithmetic approaches from Section 3, we can conclude that
when using the prime 2127 − 1, the NIST-like approach is the way to go. In the more general
comparison of 2128− c1 versus 264(263− c2)±1 for NIST-like and Montgomery-friendly primes
respectively, we found that the Montgomery-friendly primes outperform the former in practice.
This was a surprising outcome and we hope that implementers of cryptographic schemes will
consider this family of primes as well. The (b) implementations of “generic” and Kummer
highlight the practical advantage of the prime 2127 − 1 over the prime 2128 − c: in both
instances the former is around 1.4 times faster than the latter.

7.4 Generating key-pairs with precomputation

Two cycle counts are reported for all of the implementations of Diffie-Hellman secret sharing
benchmarked on eBACS [7]. The first is the “time to compute a shared secret”, which corre-
sponds to the variable point scalar multiplications that we reported in Table 2. The second
is the “time to generate a key pair", which corresponds to fixed-point scalar multiplications
that allow precomputations on a known public generator. Our timings for the second case are
reported in Table 3, where our fixed-point scalar multiplications employ the fixed-point comb
method [43] and simultaneous addition [42]. In both settings precomputed tables larger than
512 KB did not lower the cycle count. This is due to the size of the cache on our Intel Core
i7, but this threshold size might be different on other platforms.

8 Kummer Chameleons

In this section we explore curves that facilitate both efficient scalar multiplication on the Kum-
mer surface and efficient scalar multiplication on the Jacobian using a GLV decomposition.
Such curves give cryptographers the option of taking either route depending on the protocol
at hand: for Diffie-Hellman protocols, working on the associated Kummer surface is the most
efficient option, but if the pseudo-addition law on the Kummer surface is insufficient, the GLV
method can be used on an associated curve. Since these curves can morph depending on the
scenario, we call them Kummer chameleons.

We primarily focus on the two families that facilitate 4-dimensional GLV decompositions.
We start with the FKT family of curves to show an unfortunate drawback which prohibits
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us from using this Kummer/GLV duality over prime fields. We then move to the BK fam-
ily of curves which does allow this duality in practice, and provide some example Kummer
chameleons in this case. For these special families, we also show the benefits of computing the
Kummer surface parameters analytically (i.e. over C). This approach tells us when we can
(or cannot) expect to find practical Kummer parameters using the technique of extracting
K from CRos in Section 5.2. It can additionally reveal when we are likely to find small sur-
face constants, which guarantees solid speedups in practice. For an overview of computations
involving the analytic Jacobian of a hyperelliptic curve, we refer to [64].

8.1 Recognising Kummer Parameters over C

We use an analytic approach to assist us in generating Kummer surfaces which are associated
to a particular CM field. For each CM field, there is a collection of period matrices which
correspond to the isomorphism classes of Jacobians of genus-2 curves with CM by that field,
and thus with known possible group orders (see [64]). The theta functions can be evaluated at
these period matrices, and approximations of the complex values of quotients of the associated
theta constants can be used to recognize the minimal polynomials that they satisfy.

Although it can be difficult to analytically recognize the theta constants themselves, for
special families it is often possible to recognize quotients of certain theta constants. In Tables 4
and 6 we give the minimal polynomials satisfied by all of the parameters required for the
Kummer surface implementation for the FKT and BK families: the values E′, F , G, H, y0,
z0, t0, y′0, z′0 and t′0 (as defined in Section 5). The coefficients of these minimal polynomials
can be reduced modulo any prime p, and so for any p where the polynomials have a consistent
choice of roots modulo p, they can be used to define a Kummer surface over Fp such that the
associated group order of Jac(C) is known (from the CM field).

8.2 The Kummer Surface of FKT Curves

For curves of the form y2 = x5 + ax, the complex values (and corresponding minimal poly-
nomials) of the required Kummer parameters are given in Table 4. We note that once we
choose i =

√
−1 by sufficiently extending Fp (if necessary), all of the required constants are

determined. Observe that two of the six surface constants that appear in each iteration of
K(SMUL) are 1, which immediately results in two fewer multiplications in Algorithm 6.

We further note that is possible to recognize quotients of theta constants that appear in
the maps from K to Jac(CRos) in (4). In the case of FKT curves, Table 5 gives the values
of all the quotients we need, which allows us to simplify the expressions in the map to the
u-polynomial of a divisor D ∈ Jac(CRos) as

u0 =
(2− 2i)x− (1 + i)y + 2iz + 2it

(i− 1)x− (2 + 2i)y + 2z + 2t
, u1 =

(2 + 2i)x− 2y − 2z + (1− i)t

(i− 1)x− (2 + 2i)y + 2z + 2t
− u0 − 1.

Although the expressions for the v-polynomial expand to be more complicated, leaving them
in factored form allows similar simplifications.

Table 4. Kummer parameters (and their minimal polynomials) over C for the FKT family.

Kummer parameter E F , G, H y0, t0 z0 y′

0, t′0 z′

0

Value (over C) 17 + 31i (3 + i)/2 1 1− i 3 + 4i −3− 4i

Min. polynomial x2 − 34x + 1250 2x2 − 6x + 5 x− 1 x2 − 2x + 2 x2 − 6x + 25 x2 + 6x + 25
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Table 5. Quotients appearing in the maps from K to the u-polynomial of D ∈ Jac(CRos) for FKT curves.

ux/ut uy/ut uz/ut u′

x/u′

t u′

y/u′

t u′

z/u′

t dx/dt dy/dt dz/dt ut/dt u′

t/dt

−1− i i−1

2
1 2i −1− i −1− i i−1

2
−1− i 1 i 1−i

2

The above maps take points on the Kummer surface to divisors on the Jacobian of the
curve CRos : y2 = x(x−1)(x−λ)(x−µ)(x−ν), for which we can also recognize the Rosenhain
invariants in C as λ = (i+1)/2, µ = i and ν = i+1. Now, if p ≡ 1 mod 4, then i =

√
−1 ∈ Fp

and the Rosenhain model defined by those values is defined over Fp. The curve C : y2 = x5+ax
can be rewritten as y2 = x(x − α)(x + α)(x − αi)(x + αi), where α is a non-trivial fourth
root of −a. Clearly C and CRos can only be isomorphic over Fp if α ∈ Fp, which implies that
Jac(C) is isogenous over Fp to the product of two elliptic curves [20, Lemma 4]. Thus C is
not suitable for cryptographic applications in this case, since the group order of Jac(C) is a
product of factors of at most half the size of the total. If instead p ≡ 3 mod 4, then i ∈ Fp2\Fp,
and from Table 4 it follows that the Kummer surface is defined over Fp2, which destroys the
arithmetic efficiency of the group law algorithms. Therefore, we conclude that the FKT family
does not yield a secure and efficient Kummer surface over prime fields.

8.3 The Kummer Surface of Buhler-Koblitz Curves

For curves of the form y2 = x5+b, the minimal polynomials for the required Kummer parame-
ters are given in Table 6. Since these polynomials have degree larger than two, writing down the
correct root corresponding to each Kummer parameter becomes more involved. Furthermore,
these polynomials tell us that we can not expect any Kummer constants to automatically be of
a small size. Nevertheless, they do help us deduce when it is possible to find practical Kummer
parameters. For example, t0 is a root of Φ5(−x2), which does not have any roots in Fp when
p ≡ 11 mod 20, yet splits into linear factors when p ≡ 1 mod 20. In fact, all of the polynomials
in Table 6 split into linear factors in Fp for p ≡ 1 mod 20; this agrees with our experiments
which always extracted working Kummer parameters for BK curves when p ≡ 1 mod 20, and
always failed to do so when p ≡ 11 mod 20.

The only minor drawback for the Kummer surface associated to the BK family is that, for
primes congruent to 1 modulo 5, if the 2-torsion of Jac(C) or Jac(C ′) is defined over Fp, then
5 divides at least one of the two group orders. Hence, even in the best case the two group
orders have cofactors of 16 and 80, which means either the curve or its twist will be around
1 bit less secure than the other. In this case, generators on the Kummer surface should be
chosen which map back to the curve with cofactor 16. We give two examples of these Kummer
chameleons below.

Buhler-Koblitz Kummer Chameleon over a 127-bit Prime. Let p = 264 · (263 −
1035383) + 1, and let C/Fp : y2 = x5 + 75, the quadratic twist C ′ of which can be written as
C ′ : y2 = 7(x5 + 75). The group orders are #Jac(C) = 24 · r and #Jac(C ′) = 24 · 5 · r′, where

r = 1809251394332659353210044721779965716777199535768060758956615770711891100371,

r′ = 361850278866531870644657474375793908062332565172509431488359127778261331091,

are 250- and 248-bit primes respectively. A degree 5 Rosenhain model CRos isomorphic to C
is given by the constants

λ = 10661186819665911293108276192639592333, µ = 41446607883878104474654728233964584014,
ν = 127213099918419761245342755241553487702,
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Table 6. Kummer parameters (and their minimal polynomials) over C for the Buhler-Koblitz family.

Kummer parameter Minimal polynomial
E, F , G, H x2 − 20x − 400, x8 − 11x6 + 46x4 − 96x2 + 121, x8 − 11x6 + 46x4 − 96x2 + 121, x2 + x− 1

y0, z0 x4 − x3 + x2 − x + 1, x8 − 4x6 + 6x4 + x2 + 1

t0, y′

0 x8 − x6 + x4 − x2 + 1, x4 − 16x3 + 46x2 − 16x + 1

z′

0, t′0 25x8 − 100x7 + 460x6 + 580x5 + 286x4 + 36x3 − 4x2 − 4x + 1

for which one choice of the squared fundamental theta constants is

a2 = 84491026685045794598730782355659170339, b2 = 33186841131699432035082366865570982234,
c2 = 85766492034541656770688027007588903688, d2 = 1.

The corresponding Kummer surface K is parameterized by

E′ = 13918006086331812549080199159745305770, F = 18762584066480003760134595205485259983,
G = 137599581973583773482954213814600348679, H = 85766492034541656770688027007588903688.

A generator on K with order r that maps back to Jac(CRos) is

P = [2](1, 1, 1, 86011366689699880330600293725419043935).

Buhler-Koblitz Kummer Chameleon over a 128-bit Prime. Let p = 2128 − 12091815,
and let C/Fp : y2 = x5 + 175, the quadratic twist C ′ of which can be written as C ′ : y2 =
17(x5 + 175). The group orders are #Jac(C) = 24 · r and #Jac(C ′) = 24 · 5 · r′, where

r = 7237005577332262215080031836658877787354274212851606663878680202836635096291,

r′ = 1447401115466452442573268257885216407322324444568217420589854251119792109811,

are 253- and 250-bit primes respectively. A degree 5 Rosenhain model CRos isomorphic to C
is given by the constants

λ = 69750747073243793503741945404989703593, µ = 150179622307743074988869416441414313355,
ν = 227997816177602308074873451087733623676,

for which one choice of the squared fundamental theta constants is

a2 = 311378520185987879249636451466710084857, b2 = 194692299483499628396825108659644530161,
c2 = 77818193869859233086004034646319310321, d2 = 1.

The corresponding Kummer surface K is parameterized by

E′ = 195234409713430807866582263199361727876, F = 142475655262409749610168226227930172175,
G = 25789434559921498757356883420864617479, H = 77818193869859233086004034646319310321.

A generator on K with order r that maps back to Jac(CRos) is

P = [2](1, 1,−1, 330547215562037048968388688956419952626).

8.4 Kummer Chameleons with 2-dimensional GLV

Although we have focused on two families of genus-2 curves that offer 4-dimensional GLV
over prime fields, there are many more families that offer 2-dimensional GLV [40, 60, 29]. We
especially mention the family due to Mestre [45], which was studied further in [29, §4.4]. This
family might be particularly attractive since the techniques in [29] make it practical to find
twist-secure instances over Fp with p = 2127− 1. Working analytically, we observed that small
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Kummer constants are often obtained if we take special instances of the families with efficiently
computable RM. An example from the family due to Tautz, Tops and Verberkmoes [61] (also
see [40, §5.1]) is the Kummer surface associated to the curve y2 = x(x4 − x2 + 1), which
yields t0 = 1 over C, so the techniques in [29, §4.4] could be used (over many primes) to find
twist-secure curves that take can advantage of this.

8.5 GLV on the Kummer Surface?

Gaudry [26] observed that there are a certain class of Kummer surfaces that come equipped
with a simple endomorphism on the Kummer surface itself. If the squared fundamental theta
constants are related by b2 = a2−c2−d2, then the doubling step in Algorithm 5 can be seen as
a map φ : K → K composed with itself, which means φ2 = [2], and we must have that φ = [

√
2]

on K. It is natural to go looking for these Kummers within families of genus-2 curves that have
RM by

√
2, whether the RM is explicit and efficiently computable8 on the Jacobian or not.

One such instance comes from the curves defined over the rationals by van Wamelen [65], the

second example of which has CM by the quartic CM field Q(
√
−2 +

√
2). Over the two forms

of prime field we prefer, we used the CM method to find many instances of these curves, and
indeed we were always able to extract several Kummer parameterizations with b2 = a2−c2−d2:
two twist-secure examples of these are given at the end of this subsection. The question now
becomes: can we exploit this endomorphism and perform GLV on the Kummer surface itself?

Since we are limited to pseudo-additions on K, the standard GLV technique of merging the
mini-scalars and proceeding with a standard addition chain does not apply in this scenario.
In this case, to compute [k]P from P and φ(P ), we need a two-dimensional differential-

addition chain. Such chains have already been well studied because of their application to
multi-exponentiations in Montgomery coordinates [49, 4, 59]: in the two-dimensional case this
means computing [m]P + [n]Q from the three starting values P , Q and P − Q. This brings
forward the main hurdle in achieving GLV on the Kummer surface, in that after computing
Q = φ(P ), we only have two of the three values that are needed to start the addition chain.
In order to proceed we need either Q + P or Q− P on K, which equivalently means we need
an explicit and efficient way of computing the map φ+ = φ + [1] or the map φ− = φ− [1] on
K.

In estimating the performance gain that finding these maps would offer, we must mention
two caveats. Firstly, we note that since the input difference into the pseudo-addition algorithm
is no longer constant throughout the routine, we suffer an extra 6 Fp multiplications each
time it is called - the inverses that were precomputed are now projectively scaled to on-
the-fly multiplications. Furthermore, we are no longer performing additions and doublings
concurrently throughout, and we therefore lose the benefit of the constant overlap between
them. Nevertheless, using either of the chains given in [49, 4] would mean performing less
than half the total number of doubling and pseudo-addition operations than in the standard
Kummer case, and this is more than enough motivation to pose the problem of finding a
setting where φ+ and/or φ− are efficiently computable.

Van Wamelen “[
√

2]-on-K” Curve over a 127-bit Prime. Let p be the Montgomery-
friendly prime p = 264 · (263 − 107126) + 264 + 1. The group orders of the Jacobian of C/Fp :

8 These terms are made precise in [29, Def. 1,2].
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y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x + 1 and its twist C ′ are given as #Jac(C) = 25 · r and
#Jac(C ′) = 24 · r′, where

r = 904625697166511763040116799547618814004487139266761754879956154884593483799,

r′ = 1809251394333023526590934270642281340029094439228748499659037824507445397703,

are 249- and 250-bit primes respectively. An isomorphic Rosenhain model CRos of C is defined
by the triple

λ = 168171229223321177769186812485517969948, µ = 9417430203573952280833540215738464957,
ν = 158753799019747225488353272269779504992,

for which one choice of the squared fundamental theta constants is

a2 = 150321345934746312135040529601365675926, c2 = 96985692613693010230188339033665775936,

with d2 = 1 and b2 = a2− c2− d2. The corresponding Kummer surface K is parameterized by

E′ = 16, F = 112722080887356168648583571057476016874,
G = 39639675051441886978375755957603131604, H = 133526895531650151065292246583602218570.

A compact generator on K is

P = [2](1, 1,−1, 129889658466772916887665811107285236509).

Van Wamelen “[
√

2]-on-K” Curve over a 128-bit Prime. Let p be the prime p =
2128−6404735. The group orders of the Jacobian of C/Fp : y2 = −x5+3x4+2x3−6x2−3x+1
and its twist C ′ are given as #Jac(C) = 25 · r and #Jac(C ′) = 24 · r′, where

r = 3618502788666131107463347962322673561312709571881084013989949351691450367367,

r′ = 7237005577332262213019677201440096504580481109273330370637841367829704337687,

are both 252-bit primes. An isomorphic Rosenhain model CRos of C is defined by the triple

λ = 338853613323961976541294628448051393997, µ = 161826994076915014352261046382941880808,
ν = 177026619247046962189033582065109513190,

for which one choice of the squared fundamental theta constants is

a2 = 186055185429089423029499828889903742105, b2 = 233026500647549896143967466786219085085,
c2 = 293311051702477990348906969535446463740, d2 = 1.

The corresponding Kummer surface K is parameterized by

E′ = 16, F = 308566990761521795503609453351512063008,
G = 308454362983698080867749557083716129230, H = 293367365591389847666836917669344430628.

A compact generator on K is

P = [2](1, 1,−1, 328931498180381025899390285257510062396).
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9 Conclusions

We have given a taxonomy of the state-of-the-art in genus-2 arithmetic over prime fields, with
respect to its application to public-key cryptography. We studied two different approaches
to achieve fast modular arithmetic and implemented these techniques in three settings: on
“generic” genus-2 curves, on special genus-2 curves facilitating 2-and 4-dimensional GLV de-
compositions, and on the Kummer surface proposed by Gaudry [25]. Furthermore, we pre-
sented Kummer chameleons; curves which allow fast arithmetic on the Kummer surface as
well as efficient arithmetic on the Jacobian that results from a GLV decomposition. Ulti-
mately, we highlighted the practical benefits of genus-2 curves with our Kummer surface
implementation - this sets a new software speed record at the 128-bit security level for com-
puting side-channel resistant scalar multiplications compared to all previous elliptic curve and
genus-2 implementations.
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