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Abstract

What can a social network tell us about the underlying latent “social structure,” the way
in which individuals are similar or dissimilar? Much of social network analysis is, implicitly or
explicitly, predicated on the assumption that individuals tend to be more similar to their friends
than to strangers. Having explicit access to similarity information instead of merely the noisy
signal provided by the presence or absence of edges could improve analysis significantly. We
study the following natural question: Given a social network — reflecting the underlying social
distances between its nodes — how accurately can we reconstruct the social structure?

It is tempting to model similarities and dissimilarities as distances, so that the social struc-
ture is a metric space. However, observed social networks are usually multiplex, in the sense
that different edges originate from similarity in one or more among a number of different cate-
gories, such as geographical proximity, professional interactions, kinship, or hobbies. Since close
proximity in even one category makes the presence of edges much more likely, an observed social
network is more accurately modeled as a union of separate networks. In general, it is a priori
not known which network a given edge comes from. While generative models based on a single
metric space have been analyzed previously, a union of several networks individually generated
from metrics is structurally very different from (and more complex than) networks generated
from just one metric.

In this paper, we begin to address this reconstruction problem formally. The latent “social
structure” consists of several metric spaces. Each metric space gives rise to a “distance-based
random graph,” in which edges are created according to a distribution that depends on the
underlying metric space and makes long-range edges less likely than short ones. For a concrete
model, we consider Kleinberg’s small-world model and some variations thereof. The observed
social network is the union of these graphs. All edges are unlabeled, in the sense that the
existence of an edge does not reveal which random graph it comes from. Our main result is a
near-linear time algorithm which reconstructs from this unlabeled union each of the individual
metrics with provably low distortion.
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1 Introduction

Much of social network analysis is, implicitly or explicitly, predicated on the assumption that people
tend to be more similar to their friends than to strangers. While many tasks — such as analyzing
power and centrality, trading and exchange, or understanding and influencing the diffusion of
viruses or information — rely crucially on the precise network structure, many others — such as
link prediction, identification of communities, or marketing to friends of past buyers — use network
structure as a noisy signal about an underlying social similarity space. To illustrate this insight
differently, consider altering a social network data set by removing links between “dissimilar” pairs
of individuals, and inserting instead links between “similar” (but previously unconnected) pairs. If
this change makes the analysis task easier, rather than impossible, then the analysis task is really
about the “social structure” — the latent similarities and dissimilarities between individuals —
rather than about the actual network structure.

Given the abundance of important problems naturally phrased in terms of social structure
(discussed in more detail below), it is a natural goal to explicitly reconstruct social structures from
a given social network. Knowing the social structure may also be of independent interest, as it
sheds light on the forces governing social link formation.

The task of inferring social structure in this sense is made non-trivial by the following two
obstacles. First, despite a general tendency for friends to be more similar than strangers, many
friends are still sufficiently different from each other to look essentially random. Second, and
perhaps more fundamentally, social networks are multiplex [19, 58, 73]: they tend to be the union
of multiple often independent relations among the same actors. For instance, friendships could
result from physical proximity, similarity of occupation, kinship, similarities of hobbies, etc. If
individuals are very similar in even one such attribute, they are more likely to be connected.

The main contribution of this paper is a near-linear time algorithm for reconstructing the latent
social structure with provably low distortion. The model explicitly produces a union of graphs,
one for each category, and an important feature of the algorithm is that it separates the different
graphs from each other. We also provide two extensions which, respectively, further improve the
distortion, and partially address the issue of data scarcity (i.e., very small node degrees). The
algorithms in this paper are based on, and significant extensions of, a natural idea that is widely
used in practice: nodes are likely to be close if they share many common neighbors.

1.1 An overview of the model

We posit a latent space model (described in detail in Section 3) for the generation of social net-
works akin to models widely used in the mathematical sociology, statistics, and computer science
communities [14, 29, 33, 34, 38, 40, 45, 62, 64, 65, 68] (see also the survey [71, pages 15–21]).

The model is based on two widely accepted tenets about social networks (e.g., [9, 56]). First,
people are more likely to have ties with those who are similar to them, but also have many ties
to others who are dissimilar.1 Second, multiple social dimensions (such as geography, occupation,
kinship, hobbies, etc.) can independently lead to interactions and the formation of ties.

We call the social dimensions along which people can be (dis)similar (social) categories, to avoid
confusion with the geometric dimensions of individual metric spaces. Each category is given by a
metric space Di, i = 1, . . . ,K; together, the Di define the social distances between the individuals.

1The model is agnostic about whether this similarity is caused more by homophily [47, 57] (the tendency to form
ties with those who are similar) or by social influence [55, 63] (the tendency to become similar to one’s associates).
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Each of the n individuals occupies a point in each of the categories. For concreteness, and in
accordance with much of the preceding literature, we assume that each category is a Euclidean space
of known dimensionality [33, 34, 40, 45, 62, 64], and that the density of the points corresponding to
individuals is nearly uniform [34, 40, 64]. Furthermore, we assume that the categories have small
local correlation. The “local correlation” of two categories is the maximal overlap between any two
small balls in those categories (see Equation (1) in Section 3).

Each category independently gives rise to a social network Gi, modeled as a random graph
whose edge distribution is parameterized by the corresponding metric space Di. Specifically, we
use a slight variation of Kleinberg’s small-world model [40], in which edge probabilities decrease
polynomially in Di(u, v). For our purposes, the key feature of the model is that the probability of
shorter links is much higher, but long-range links also appear with a significant probability; this
captures the first tenet. The algorithm observes the union G =

⋃

i Gi of the individual networks
Gi (on the same node set), but does not learn which particular network(s) Gi an edge belonged
to. This captures the second tenet; only the existence, but not the social “origins,” of ties can
be observed.2 The algorithm’s goal is to use G to reconstruct the individual metrics Di with small
distortion, with high probability (over the random network generation process).

Importantly, social similarity spaces in general tend not to be metrics (see, e.g., [11]), in the
sense that the triangle inequality fails to hold. The main reason is the presence of multiple social
categories. For example, one’s co-worker and one’s relative could be very dissimilar to one another,
even though the individual is similar to both. The inclusion of a union or minimum in the model
is crucial to capture this.

1.2 Algorithms and results

Our main contribution is a near-linear time algorithm, called the Amoeba algorithm, which infers
all individual categories with provably low distortion, with high probability. The following theorem
captures the result slightly informally.

Theorem 1.1 (informal). If the K metric spaces Di are locally sufficiently different, and the
average node degrees are at least Ω(K3 log2 n), then with high probability, the Amoeba algorithm, in
near-linear time, reconstructs metrics D′

i such that D′
i approximates Di with constant multiplicative

distortion (and at most polylogarithmic additive error).

That this approximate reconstruction should be possible at all — regardless of the running
time — is somewhat surprising. One might think a priori that after combining two social networks,
there would simply be no way to tease them apart.

In other words, a priori, the challenge appears to be information-theoretical (does the network
contain enough information for distance reconstruction with any provable guarantees?) as much
as computational. We also remark that even the single-category version was raised by Kleinberg
[42] as an open question; we answer the reconstruction question in the positive even for multiple
categories.

The Amoeba algorithm, we well as all other algorithms in this paper, is broadly based on a
heuristic widely used in practice (e.g., in Facebook, or see [1, 51, 64, 67]): edges (u, v) are more
likely to be between friends in a category if they are “supported” by many common neighbors

2Our model does not include any information such as demographics, location, wall posts, or communications which
would frequently be available to social networking sites [5]. Our goal here is to understand at a fundamental level
how much information on social structures can be inferred algorithmically from the observed social network alone.
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of u and v in that category. However, to deal with multiple categories, low node degrees, or to
sharpen the distance estimates, the basic idea of counting common neighbors needs to be extended
significantly.

The Amoeba algorithm, presented and analyzed in detail in Section 4, consists of two stages.
In a first stage, individual edges are pruned if they do not have enough common neighbors, a direct
implementation of the common neighbors heuristic.3 In the second stage, which we call the Amoeba
stage, basic estimates of the individual categories are constructed one by one. Each iteration starts
with a polylog-sized clique in the graph computed by the first stage, which is then expanded one
edge at a time: an edge (u, v) is added to a category only when enough of u’s neighbors lie in
a small ball around v according to the current estimate of the category. The basic idea is that
any sufficiently large clique must be sufficiently close in one category. The clique then bootstraps
further iterations, in that a node u with many edges to a small ball around v must itself be close to
v. While this intuition is straightforward, each iteration loses accuracy, so it takes a delicate proof
to show that this refined version of the common neighbors heuristic guarantees low distortion.

We improve the main result in the following two directions. The first direction (Sections 5 and 6)
focuses on improving the distortion using long-range links, which are now treated as an additional
data source rather than an obstacle to be pruned. We improve the distortion from a multiplicative
constant to a factor 1 + o(1), using a post-processing phase (run after the Amoeba algorithm)
which we call Two-Ball Algorithm. This is a variation of the common neighbors heuristic where
instead of common neighbors of two nodes (u, v), the algorithm counts long-range links between
two node sets. The node sets are low-radius balls around u and v according to the initial distance
estimates. This result requires a stronger notion of low correlation between categories. Under a
stronger uniform density conditions, the Two-Ball Algorithm can be applied recursively, yielding
unit distortion (with at most polylogarithmic additive error).

Second (in Section 7), we deal with the issue of data scarcity, which in our setting translates
to low node degrees. In the low (constant) node degree regime, the common neighbors heuristic
is uninformative, and it instead becomes necessary to count disjoint constant-length paths for a
suitably chosen constant. Combining the new initial pruning phase with a subsequent Two-Ball
Algorithm requires a much more careful analysis, which shows that all sufficiently long edges can
be treated as mutually independent given the pruned graph. We recover (essentially) all our results
for the single-category case; extending the results to multiple categories remains a direction for
future work.

For both extensions, more detailed descriptions of challenges, results, and high-level approaches
are deferred to the introductory portions of the corresponding sections.

Our algorithms are modular: a pre-processing step (counting common neighbors, or the low-
degree algorithm of Section 7) prunes away very long edges. The Amoeba step separates different
metrics and constructs initial distance estimates (though we have not adapted the algorithm and
analysis to low node degrees). Finally, the Two-Ball Algorithm and its recursive version can be
used to further improve the distortion in individual categories.

3Sarkar et al. [64] showed that under a model similar to ours (but using edge probabilities that decrease exponen-
tially with distance), counting common neighbors leads to an accurate distance estimate for a single-category social
network.
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1.3 Discussion of the model

Our modeling goal is not to define a model of social networks capturing all of their features; this
would be a formidable/impossible task for which there is much research but not much consensus.
Instead, we aim for generally accepted modeling choices which capture in a clean way the main
algorithmic challenges inherent in rigorous distance reconstruction. In particular, our main goal
was to capture the two conceptual obstacles to distance reconstruction: links between dissimilar
individuals, and multiple social categories. Nevertheless, we discuss some particular modeling
choices in more detail.

1. In Kleinberg’s small-world model [40, 39, 41, 42, 22], a version of which we adapt as a
generative model for individual categories, the probability for an edge between two nodes to
exist decreases polynomially in the nodes’ distance. Naturally, many other distributions lead
to distance-based random graphs [8].

Much of the past work in the statistics community [33, 34, 45, 62, 64] assumed that the
edge probabilities were logit-linear in the distance, i.e., that log( p

1−p) is linear in D(u, v).
Since long-range links are thus exponentially unlikely (p = e−αD(u,v)

1+e−αD(u,v) ), the reconstruction
task becomes much easier. More importantly, to the extent that precise distributions have
been empirically tested, remarkable fits have been found [2, 5, 52] with Kleinberg’s inverse
polynomial distribution [40, 41].4 Furthermore, our main constant-distortion result holds for
a much more general class of distributions, including logit-linear distributions.

2. The choice of Euclidean spaces with near-uniform density. Both choices (Euclidean and near-
uniform) are ubiquitous in past work5 [29, 33, 34, 38, 40, 45, 62, 64], and are made mostly
for technical convenience; they allow us to separate the conceptual difficulty of teasing apart
different metrics and inferring distances with low distortion from the technical difficulty of
dealing with arbitrary metric spaces. We believe that future work will achieve similar results
for more general metric spaces or related structures, in particular, ultrametrics [14, 41, 68],
which are another popular choice of latent metric spaces.

3. The choice of a union or minimum to combine individual metrics. This choice is clearly a
simplification of reality: individuals are more likely to form ties if they share similarities
in multiple dimensions, e.g., they work in the same field and live in the same town. Our
model is supposed to capture in the cleanest way the difficulty of separating edges originating
from different categories, and is certainly a better approximation to reality than widely used
models treating the social structure as one metric space.

Our model is closely related to (and a slight generalization of) a notion of social distance
proposed byWatts, Dodds, and Newman [76], which treats the social distance as the minimum
of distances in multiple metrics. To the extent that past work explicitly discussed models
of multiple categories, it was also based on the minimum [33, pp. 337, 348], [68, p. 335]. A
generalization to more realistic models is a natural direction for future work.

4However, links that appear long could plausibly be short in another metric; whether inverse polynomial distri-
butions remain prevalent when multiple metrics are considered is an interesting — although difficult — direction for
future empirical work.

5In many respects, our kind of latent space models deteriorate if node densities can be highly non-uniform [28].
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4. We capture a notion of “independence” between categories by requiring that small balls in
different categories have small overlap. Even without restrictions on computational resources,
some assumption about “independence” is clearly necessary: if categories could be extremely
similar, then no low-distortion reconstruction seems possible. It is an interesting direction for
future work whether a few isolated violations of the condition permit low-distortion recon-
struction in all but the affected areas of the metric spaces.

Our condition is significantly weaker than requiring probabilistic independence. Several past
papers (using a single metric space) assumed that nodes were placed independently and
uniformly at random over some space [34, 64]; such a model of individual categories would
imply our “small intersection” condition with high probability. In fact, we show in Section
8 that with high probability, the “small intersection” condition holds even when nodes are
placed adversarially, and their names are permuted randomly. We also remark that while in
reality, we will frequently observe high correlation between “categories” (such as work and
hobbies), this could be construed as a sign that the categories should be chosen differently, in
order to represent the latent traits that manifest themselves in choices of both occupations
and hobbies.

1.4 Applications

Our work provides two natural reconstruction abilities: separating edges by categories, and recon-
structing individual categories with low distortion. Both of them have multiple useful applications.

Important industrial applications for social network information include improving ad place-
ment (social advertising), web search results (social search), and product recommendations. These
applications are of vital importance for some of the major players on the Web. A key commonality
of all three applications is that they use the behavior of friends (clicking, searching, purchasing) to
predict the behavior of an individual. Yet, two recent studies [31, 53] undertaking a quantitative
evaluation of the predictive power of social links for purchases and click behavior have found at
best mixed evidence.

This apparent conundrum is resolved by noticing that many links are long-range, and short-
range links may be short in an irrelevant category for the prediction task. Indeed, a recent data-
driven study by Tang and Liu [75] has shown that social link-based classifiers perform much better
when edges are labeled with categories in which they are short. We conjecture that such classifiers
would improve even further if instead of edges, the actual social distance between nodes were used.

The ability to separate social categories also enables the automatic detection of circles of friends
from different contexts in social networking sites. This automatic detection has been cited as one
of the main selling points of Google+, and is at the heart of the startup Katango. In this sense, our
work provides some theoretical underpinnings for this fast-growing facet of the social networking
market. Separating edges by categories has the additional benefit that one can identify when edges
are short in more than one category, which could enable the automatic detection of close friends
[78, 79].

Another natural application is the discovery of “social communities” [10, 20, 21, 16, 66]. One
might argue that the plethora of different network community detection objectives and heuristics
is largely a result of stating the objectives and algorithms in terms of the graph structure, when
the goal is really to identify clusters in the metric spaces. Since the social space is rarely explicitly
modeled or related to the network, the connection between the objective function and the actual
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desired object is absent. Explicitly reconstructing the social space would constitute the first step
toward a more sound community identification algorithm. The presence of multiple categories in
the model will naturally give rise to overlapping communities as well. Indeed, some of the work on
reconstructing Euclidean spaces in the statistics community [33, 45] is explicitly motivated by the
desire to identify communities, and builds community structure into a Bayesian prior.

Social distances can also be used to predict unobserved or potential social links. Link prediction
has been studied in [1, 14, 51, 64, 67]. Unobserved or potential links are most likely present between
node pairs at small distances; hence, once distances are known, missing links can be predicted easily
[14, 64].

2 Related work

Our work is related to work in a large number of communities: latent space reconstruction in statis-
tics and mathematical sociology, community discovery, small-world networks, network localization,
and metric space embeddings. We discuss the different areas in their separate sections.

2.1 Latent Space Reconstruction

Several recent papers [5, 14, 29, 33, 34, 38, 45, 62, 64, 65, 68] aim to reconstruct latent metrics from
an observed social network. The precise models differ across these papers: most assume Euclidean
spaces [5, 29, 33, 34, 38, 45, 62, 64, 65], while a few consider ultrametrics to model hierarchical com-
munities [14, 68]. Among the papers considering Euclidean spaces, there are different assumptions
about link distributions: most assume a logit-linear model [33, 34, 45, 62, 64], while a few consider
inverse polynomial “small-world” distributions [5, 29, 38].6 There are many other modeling dimen-
sions along which these papers (and ours) differ, including: variance in node degrees, additional
information about nodes (such as locations of some nodes [5]), uniform or clustered priors for node
locations, whether algorithms are supposed to be centralized or distributed [38], etc.7

Two main differences stand out between our work and the majority of these papers (in addition
to the more minor modeling differences). First, we model multiple categories, which is extremely
realistic, but makes the model, algorithms, and analysis significantly more complex. Second, the
majority of the work cited above [5, 14, 33, 34, 38, 45, 62, 68] estimates the underlying space either
using Maximum Likelihood Estimates (MLE), or by imposing a Bayesian Prior and maximizing
the probability of the chosen locations. Both appear to be very complex problems, and indeed,
all of the papers employ heuristics (based on Gibbs Sampling, Metropolis-Hastings, Simulated
Annealing, etc.) without guarantees on the likelihood or probability of the solution returned. More
fundamentally, even if it were possible to obtain the MLE or highest-probability solution, it is not
clear that it would come with any guarantees on the worst-case (or even average) distortion; the

6We remark that several recent studies [2, 5, 52] show that the frequency of friendships as a function of (2-
dimensional) geographic distance, when corrected for non-uniform densities, appears to decrease as Θ(r−2). This
gives some tentative empirical evidence in favor of “small-world” distributions.

7Much of the recent work in the mathematical sociology community has focused on exponential random graph
models, which in a sense “hard-wire” desired distributions of certain features. These models are generally of a very
different nature from latent-space models. A recent paper by Butts [12] combines features of both location-based
and exponential random graph models; like the other papers listed above, it is not clear whether inference of model
parameters would be tractable, and whether it would lead to any guarantees on distortion.
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objective function does not explicitly model distortion, and in particular may be sacrificing the
distortion of some edges in order to optimize the more global objective.

Two notable exceptions to the MLE/Bayesian approach are the works of Fraigniaud, Lebhar,
and Lotker [29] and Sarkar, Chakrabarti, and Moore [64]. Fraigniaud et al. [29] aim to reconstruct
a single-category small-world model in order to use the distance estimates for greedy routing. They
propose a heuristic based on an MLE intuition; interestingly, this heuristic leads to essentially
counting common neighbors. Their algorithm may retain a small number of long-range edges, and
hence does not come with provable guarantees on the distortion of the reconstructed metric space.
They prove that this does not stand in the way of greedy routing: despite the lack of distortion
guarantees, the distances they construct provably enable greedy routing along poly-logarithmic
length paths.

Sarkar et al. [64] begin from the goal of explaining why simple heuristics for link prediction,
such as counting common neighbors, are successful. They show that such heuristics can be under-
stood as identifying close pairs of nodes in a latent Euclidean space, and use this insight to give
provable guarantees on the performance of several heuristics for link prediction. (They also suggest
additional heuristics). In the process, they show how a metric space is implicitly reconstructed
by counting common neighbors. There are a few key differences between their work and ours.
First, their distributions are logit-linear, implying that long-range edges are extremely unlikely.
The reconstruction task is still non-trivial, but they do not have to deal with any very long-range
edges, of which our model will have many. Second, they only consider a single category; for us,
the single-category pruning step is a departure point for the more complex stages of separating the
different categories, and using long-range links to improve the distortion.

2.2 Overlapping Communities

There are conceptual similarities between our work and concurrent and independent work by Arora
et al. [3] and Balcan et al. [6]. Their goal is more specifically to reconstruct overlapping community
structure in graphs; similar to our approach, they also posit that the social network is a noisy signal
about some true underlying social structure, and communities are defined with respect to those
structures. Recall that the goal of properly identifying communities is also one of the motivations
for our work, although we do not explicitly pursue the question of reconstructing communities with
provable guarantees.

The major difference between our work and that of [3, 6] is that both Arora et al. and Balcan et
al. assume a set-based latent structure (each community is modeled as a set), whereas we assume
a latent structure based on a near-uniform-density metric (each social category is modeled as
a separate metric space). This difference, in turn, leads to different random graph models and
algorithmic ideas. In principle, the set-based structures could be modeled as 0-1 metrics (and
thus fit into our framework); however, such metrics would dramatically violate our uniform density
assumption, so that our algorithms are not applicable.

Nonetheless, some conceptual similarities between our work and [3, 6] are worth noting. First,
a crucial aspect of all three papers is the ability to deal with overlapping latent structures: multiple
social categories in the present paper, and multiple communities for [3, 6]. All three papers need
some notion of “gap assumption” that limit overlaps in order to handle such structures. Second, a
high-level idea present in all three papers is to start with a “seed” and then “grow” it to find the
respective latent structures. While the high-level algorithmic ideas are similar, the details differ
significantly between our Amoeba algorithm and the algorithms in [3, 6]. The Amoeba algorithm
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grows the “Amoeba” gradually, and using short disjoint paths, whereas [3, 6] use ideas related
to finding hidden cliques. In addition, the goal of reconstructing metrics motivates substantial
algorithmic extensions (discussed in Sections 5–7) related to improving the distortion and dealing
with small node degrees. These algorithmic questions have no direct analogue in the setting of
reconstructing communities.

2.3 Network Localization, Embeddings, and Distance Oracles

Reconstructing (low-dimensional, Euclidean) node distances from distance measurements has been
studied both theoretically and practically from a wide variety of angles. In network localization for
mobile and sensor networks (e.g., [4, 72, 81]), and network embedding for peer-to-peer networks and
the Internet (e.g., [60, 15, 80, 43]), distances are known fairly accurately, but typically only to a
few “beacon” nodes. The challenge is to choose beacons, and combine measurements, to estimate
pairwise distance. In our setting, the presence or absence of edges provides much less reliable
estimates of distances. However, once we succeed in obtaining basic distance measurements, the
techniques from network embedding/localization can lead to further improvements in the estimates
without a blowup in the running time, as shown in Section 7.

We measure the quality of our inferred metrics in terms of the distortion of the estimates.
Distortion is commonly used as a measure of quality in metric embeddings and distance oracles
(see, respectively, [35] and [82] for surveys). In those domains, distances are known precisely, and
the challenge is typically to find a compact and faithful representation, for instance in terms of low
dimensionality of the target metric or small space of the oracle. In our setting, the true distances
(in each category) are not explicitly known, and the estimates are very noisy. Similar to metric
space embeddings, our goal is to extract a faithful representation of each category. However, a
second fundamental difference is that the space we “embed” in consists of multiple metrics, and
thus severely violates the triangle inequality.

Our focus on near-uniform density metrics is motivated by similar notions of low dimensionality
in metric embedding, nearest neighbor search, and a number of other problems, e.g. [36, 32, 44, 74,
43]. In particular, near-uniform density has been used along with various modeling assumptions in
[37, 43].

2.4 Small-World Networks

A long line of empirical studies confirms that many social ties and interactions correlate strongly
with social distance, and particularly geographical distance (see, e.g., [56, 59] for a discussion). For
example, Butts [11] gives calculations showing that geographical information alone could reduce the
entropy in network prediction by roughly 90% under moderate assumptions. More specifically, sev-
eral recent studies [2, 5, 52] show that the frequency of friendships as a function of (2-dimensional)
geographic distance, when corrected for non-uniform densities, appears to decrease as Θ(r−2).

Small-world models aim to capture the natural tradeoff between a preference for shorter links
and the randomness observed in the presence of long-range links. Initial models were due to Watts
and Strogatz [77] and Kleinberg [40, 41]. One of the main goals in these papers was to explain
why greedy routing — based only on the position of one’s neighbors in the metric space — can
discover paths of polylogarithmic length. Since the publication of [40, 41], a large number of papers
in the theoretical computer science community have expanded the models and results in various
ways [7, 18, 23, 24, 25, 27, 26, 28, 30, 46, 49, 48, 54, 61]. The main focus in the community has
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continued to be the ability of small-world networks to route greedily and efficiently. In particular,
the goal has been to find ways to augment graphs with suitable long-range links or (semi-)metrics,
provide nodes with additional knowledge or let them perform some local graph exploration, or
exploit non-uniformity in node degrees, all in an effort to achieve routing along paths of essentially
optimal length. Several good recent surveys summarize the work along these lines [22, 42, 50].

3 Definitions and Preliminaries

We define a formal model for the latent social space that gives rise to observed social networks.
In general, it will not be a metric space: it naturally possesses multiple social dimensions, and
proximity in just one of those dimensions (e.g., geography or occupation) usually means that
individuals are “close.”

First, we define a basic model of a single social metric space. We then discuss how to extend the
concept to multiple metrics; in particular, we formalize a notion of metric spaces being sufficiently
“independent.”

We begin with some formalities. Throughout, V is a ground set of n nodes. For a metric
D, we use the standard notion of balls, i.e., B(u, r) = {v | D(u, v) ≤ r}. We liberally use O(·)
notation to simplify the presentation. In theorem statements, the constants in O(·) can depend on
the constants in our setting. Elsewhere, the constants in O(·) are absolute, unless noted otherwise.

Most of our results are with high probability, with respect to the randomness in the graph
generation process. By this, we mean that the success probabilities are 1−n−c, where the constant
c ≥ 1 is large enough to allow all needed applications of the Union Bound (over polynomially many
events). By a slight abuse of notation, we will write with high probability for probability 1 − n−c,
without explicitly specifying the constant c ≥ 1.

3.1 A model for one social category

A single category of the latent space is modeled essentially as a d-dimensional Euclidean space.
More precisely,V is a subset of the d-dimensional torus8, that is, the nodes lie in [0, R]d for some
R, and the distance between points x, y ∈ [0, R]d is D(x, y) = (

∑

i(min(|xi− yi|, R−|xi− yi|))p)1/p.
We require that the node density be nearly uniform, in the following sense: any unit cube in the
torus contains at least one and at most CUD nodes, for some known constant CUD ≥ 1. (Since CUD

will always be a constant, we will sometimes hide CUD factors in O(·) notation.) For some of our
results, we also want to use the actual lattice structure as a reference: We refer to the graph of
integer points from [0, R]d with edges between all pairs at distance D(x, y) ≤ 1 as the toroidal grid.

If nodes u, v are at distance r = D(u, v), then the edge (u, v) is present independently of other
edges, with probability f(r) = min(1, Csgksg r

−d). Here, Csg = Θ( 1
logn) is a normalization constant

chosen to ensure that the expected average node degree is 1 whenever ksg = 1. Then, ksg is a
parameter controlling the expected average node degree. When Csgksg ≤ 1, the expected average
degree is exactly ksg; otherwise, the dependence of the node degree on ksg is sublinear and strictly
monotone. We call ksg the target degree, even though strictly speaking, it does not equal the
average degree. Following the literature (e.g., [40, 41]), we focus on the cases ksg = O(1) and

8Prior work deals with a d-dimensional grid, which is somewhat undesirable, as there is an asymmetry between
the nodes on the border and on the inside, which gets more pronounced in higher dimensions.
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ksg = polylog(n). We use Esg to denote the edge set obtained from this distribution, and G(V,Di)
for the random graph model, which we call the single-category social graph.

When ksg ≥ 1/Csg, all edges of length at most 1 are present in Esg with probability 1. Otherwise,
even to ensure connectivity of the social graph, one must insert a suitable “local edge set” separately.
(For instance, much of the literature on small-world networks assumes that the d-dimensional grid
is always part of the graph.) This issue is discussed in more detail in Section 7, in the context of
low node degrees.

Our main result easily extends to a more general model in which, for a suitably large R =
polylog(n), an edge (u, v) of length r = D(u, v) is present with probability at least f(r) for all
r < R, and with probability smaller than f(r) for all r ≥ R. We omit this generalization for ease
of presentation.

3.2 Multiple social categories

When multiple social categories give rise to edges independently (such as work-related, geography-
related, and hobby-related friends), we model the observed social network as the union of the
graphs generated by the individual categories. Formally, each social category is a single-category
social graph Gi = G(V,Di) with near-uniform density for i = 1, . . . ,K, and the edge sets of the Gi
are mutually independent. K is a (small) constant. Balls with respect to the category-i metric are
denoted by Bi(u, r). A multi-category social graph is obtained by taking the union of all edges,

i.e. Esg =
⋃K

i=1 E
(i)
sg . Taking the union is analogous to defining the social distance as the minimum

over the categories; in particular, the social space thus defined is not a metric.
The different categories may have different parameters, such as the target degree or number

of dimensions. If the target degrees are vastly different, then one category could be completely
“drowned out” by other, denser, categories, which would make it impossible to observe its structure.

Therefore, we assume that the target degrees k
(i)
sg of the categories are within a known constant

factor of one another. We define the target degree of the multi-category social graph as the average

ksg =
1
K ·

∑

i k
(i)
sg .

3.3 Local Disjointness of Categories

In order to be able to distinguish the edges arising from different categories, it is necessary that
the underlying metrics of different categories be sufficiently different. We capture this intuition by
requiring that any pair of small balls in two different categories be sufficiently different: formally,
the Local Category-Disjointness condition states that for any two balls Bi(u, r), Bi′(u

′, r′) in distinct
categories i 6= i′, with r, r′ = O(polylog(n)),

|Bi(u, r) ∩Bi′(u
′, r′)| ≤ O(log n). (1)

This condition suffices for our main result; some of the extensions require a similar but stronger
local condition called Scale-R Category-Disjointness, which will be introduced in Section 6. The
Local Category-Disjointness condition is not overly strong; for instance, we prove (in Section 8) that
both Local Category-Disjointness and Scale-R Category-Disjointness hold with high probability
when node identifiers within each category are randomly permuted.
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3.4 Input and output

Since our model has several parameters, we need to be precise about what is known to the algorithm.
Most importantly, in terms of the social network, only the union Esg of all social network edges is

revealed to the algorithm; the division into individual categories E
(i)
sg is not given.

We assume that the algorithm knows how many embeddings it needs to construct, and into
what spaces. More formally, this means that K (the number of categories), di (the number of
dimensions), and Ri (the sizes of the tori) are known to the algorithm. The average target degree
ksg can be estimated from the expected degree, and by Chernoff Bounds, such an estimate will
be within 1 ± O(n−1/2) of the correct value with high probability. According to the model, the

individual target degrees k
(i)
sg lie within a constant factor of ksg, and we assume that this constant

factor is also known to the algorithm. To simplify presentation we assume that the target degrees

k
(i)
sg and the dimensions di are the same for all categories i, and that ksg is known.

We also assume that the upper bound CUD on the number of points in any unit cube is known
to the algorithm. Knowing CUD and the other model parameters, the normalization constant
Csg = Θ( 1

logn) can also be computed to within a constant factor.

The goal of the algorithm is to output metrics D′
i that approximate the original Di. If the

output satisfies
σD(u, v) ≤ D′(u, v) ≤ δD(u, v) + ∆

for all node pairs u, v, then we say that D′
i estimates Di with contraction σ, expansion δ and

additive error ∆. The multiplicative distortion of D′
i is then δ/σ. If we mention no multiplicative

distortion (or contraction), then we implicitly refer to the case of distortion (contraction) 1. We do
not require that D′

i itself be a di-dimensional Euclidean metric, only that it approximate Di with
low distortion.

3.5 Chernoff bounds

In many places, we bound tail deviations using standard Chernoff Bounds. Specifically, we use the
following version, which can be found, e.g., in [17, pages 6–8].

Theorem 3.1 (Chernoff Bounds). Let X be the sum of independent random variables distributed
in [0, 1], and let µ′ ≥ µ = E[X]. Then the following hold:

Prob [ |X − µ| > δµ ] ≤ exp(−µ δ2/3), for any δ > 0 (2)

Prob
[

X > (1 + δ)µ′ ] ≤ exp(−µ′ δ2/3), for any δ ∈ (0, 1). (3)

The bounds in Theorem 3.1 sometimes apply (and are useful) even when the summands are
not independent. In particular, our analysis of Local Category-Disjointness and Scale-R Category-
Disjointness in Section 8 uses one such result in which the randomness arises from a random
permutation. We state and prove the corresponding version of Chernoff Bounds in that section.
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4 The main result

In this section, we present our main result, an algorithm for distance reconstruction for multiple
categories with constant distortion.

Theorem 4.1. Consider a multi-category social graph with Csgksg = Ω(log n), near-uniform density
and Local Category-Disjointness. There is an algorithm that with high probability reconstructs
distances in each category with constant expansion, no contraction, and polylog(n) additive error.
Moreover, such distance estimates (as spanner graphs or as distance labels) can be computed in
time n polylog(n).

4.1 Overview and intuition

We begin with a high-level overview of the algorithm and the intuition for the proof, before dis-
cussing the different stages in detail in individual subsections. Recall that the algorithm’s input

is the set Esg =
⋃

iE
(i)
sg of edges from all categories. For the entire section, we assume that the

average node degree is high enough: Csgksg = Ω(16dK3 log n) for a sufficiently large constant in
Ω(·). Let rloc = Θ((Csgksg)

1/d) be the local radius: by definition of the generative model, all edges
between node pairs (u, v) at distance D(u, v) ≤ rloc are in Esg with probability 1. We define the
pruning radius to be rpru = Θ(rlocK

2/d).
The algorithm proceeds in multiple stages. Each of these stages makes use of the (random)

long-range edges. To avoid stochastic dependencies between the stages, we can randomly partition
the edges of Esg into a constant number of sets. Each stage then makes use of its own set. Since
the nodes’ degrees are high enough, this does not affect the high-probability guarantees. For ease
of notation, we will not explicitly talk about the partitions for the remainder of this section. All
results in this section hold with high probability.

In the first stage, called the Two-Hop Test, the algorithm produces a pruned set Epru (which
need not be a subset of Esg), with the following guarantee for all node pairs (u, u′):

• If u, u′ are at distance at most rloc in (at least) one category i, then (u, u′) ∈ Epru.

• If u, u′ are at distance at least rpru in all categories i, then (u, u′) /∈ Epru.

Thus, the guarantee is that all short edges are present, and all sufficiently long edges are absent.
The algorithm makes no guarantees for node pairs in the intermediate distance range.

To achieve this pruning, the Two-Hop Test counts the number of 2-hop paths (common neigh-
bors) between (u, u′), and compares it to a carefully chosen threshold. Similar to what Sarkar
et al. [64] showed for the single-category case and the logit-linear edge probabilities, our analysis
shows that this simple heuristic can provide provable distortion guarantees under the small-world
model, even in the more difficult case of multiple categories.

In the second stage, called Amoeba stage, the algorithm covers Epru with individual edge sets

E
(i)
amb (which need not be disjoint); the set E

(i)
amb corresponds to category i. The key property we

prove is that whenever u, v are at distance at most rloc in category i, then (u, v) ∈ E
(i)
amb, whereas

(u, v) /∈ E
(i)
amb whenever u and v are at distance at least ramb = Θ(rpruK

3/d) = Θ(rlocK
5/d). Again,

for the intermediate range, the algorithm makes no guarantees about the presence or absence of

edges. This guarantee implies that the shortest-path metric of E
(i)
amb gives an embedding of Di
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with constant multiplicative distortion O(K5/d) for all node pairs at distance at least rloc, and
poly-logarithmic additive distortion for all node pairs at distance at most rloc.

The algorithm constructs the edge sets E
(i)
amb one by one. For each i, it begins by finding a

poly-logarithmically large clique in Epru that is sufficiently spread out in all previously constructed

E
(j)
amb. (We show using the Local Category-Disjointness condition that the node set of this clique

will have diameter at most 4rpru in some category i). Starting from this clique, as long as possible,
it adds edges (u, v) that are “supported” by enough edges (in Esg) between v’s neighborhood in

E
(i)
amb and u. The key part of our analysis is to show that this process will indeed add all sufficiently

short edges (and in particular end up having added all nodes), while excluding all edges that are
long in category i.

Throughout this section, we frequently count the number of edges in Esg between two node sets
(one of which may be a single node). We usually calculate the expectation, and then invoke Chernoff
Bounds to guarantee that the number of edges is within the desired range. The expectation or
desired number of edges will be (at least) logarithmic, allowing the application of Chernoff Bounds.

4.2 Pruning stage: the Two-Hop Test

For a node pair u, v, let MΛ(u, v) be the number of two-hop u-v paths in Esg, i.e., the number of
common neighbors of u and v in Esg. The Two-Hop Test is as follows:

for each node pair (u, u′), accept if MΛ(u, u
′) ≥MΛ, reject otherwise. (4)

We define the threshold as MΛ = Θ(ksgCsg), where the constant in Θ(·) can be calculated explicitly
from the known parameters. Henceforth, let Epru be the set of all accepted node pairs.

Lemma 4.2. With high probability, the Two-Hop Test accepts all node pairs of distance at most
rloc in some category, and rejects all node pairs whose distance is at least rpru in all categories.

Proof. The proof is based on a careful decomposition of the metric space into intersections of rings
around u and u′, allowing a sufficiently accurate estimate of the number of their common neighbors.

We begin by proving the positive (acceptance) part. If u, u′ are at distance Di(u, u
′) ≤ rloc,

then they are close enough such that the balls Bi(u, rloc) and Bi(u
′, rloc) overlap in a (dimension-

dependent) constant fraction of their nodes. Counting the size of this overlap, and using that
rloc = Θ((ksgCsg)

1/d), we get that

|Bi(u, rloc) ∩Bi(u
′, rloc)| ≥ Ω(2−d|Bi(u, rloc)|) ≥ Ω(2−dΘ((ksgCsg)

1/d)d) ≥ Ω(ksgCsg),

for a sufficiently large constant in the definition of rloc. In the original model, each edge between
u or u′ and a node in Bi(u, rloc) ∩ Bi(u

′, rloc) is present with probability 1. Even if the edge set is
randomly partitioned into a constant number of edge sets for the different stages of the algorithm,
both u and u′ will have edges to each node in Bi(u, rloc)∩Bi(u

′, rloc) independently with constant
probability. An application of the Chernoff Bound therefore guarantees that MΛ(u, u

′) > Ω(ksgCsg)
with high probability, and MΛ = Ω(ksgCsg) for a suitably chosen constant.

For the second part of the lemma (rejection), fix two nodes u, u′ such that Di(u, u
′) > rpru

for all categories i. Consider two categories i, i′ (i = i′ is possible), and define Si,i′ to be the set

of all nodes v such that (u, v) ∈ E
(i)
sg and (u′, v) ∈ E

(i′)
sg . We prove a high-probability bound of
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O(Csgksg/K
2) on |Si,i′ | for a suitably small (absolute) constant in the O(·). A union bound over

all K2 pairs i, i′ then implies the claim.
We define a sequence of concentric rings of exponentially increasing radius around u, as follows:

R0 = Bi(u, rpru/2)

Rj = Bi(u, 2
j/d · rpru/2) \Bi(u, 2

(j−1)/d · rpru/2)
= {v | Di(u, v) ∈ (2(j−1)/d · rpru/2, 2j/d · rpru/2)}, for each j ≥ 1.

So Rj is the set of nodes at distance roughly 2j/d · rpru/2 from u in category i. Likewise, we define
the concentric rings around u′, with respect to category i′:

R0 = Bi′(u
′, rpru/2)

Rj = Bi′(u
′, 2j/d · rpru/2) \Bi′(u

′, 2(j−1)/d · rpru/2) for each j ≥ 1.

The rings {Rj}j≥0 form a disjoint cover of V , as do the rings {R′
j}j≥0. To bound the size of

Si,i′ , we bound Si,i′ ∩Rj ∩R′
j′ for all j, j

′ ≥ 0.
First consider the case j = j′ = 0. For i = i′, R0 and R′

0 are disjoint by definition, and for
i 6= i′, the Local Category-Disjointness condition ensures that |R0 ∩R′

0| = O(log n).
Next, we consider the case j ≥ j′, j ≥ 1. (The case j′ ≥ j, j′ ≥ 1 is symmetric.) We write

r = 2j/d · rpru/2 and r′ = 2j
′/d · rpru/2. By definition of the edge generation model, the probability

that v ∈ Rj has an edge to u in E
(i)
sg is at most Csgksg(r/2

1/d)−d = 2Csgksgr
−d, while the probability

that v ∈ R′
j′ has an edge to u′ in E

(i′)
sg is at most 2Csgksg(r

′)−d, or at most 1 if j′ = 0. The presence
of these edges is independent of one another. Because Rj ∩ R′

j′ is contained in Bi′(u
′, r′), it can

contain at most CUD(r
′)d = O((r′)d) nodes.9 Thus, both for the case j′ = 0 and j′ > 0, we obtain

that

E
[

|Si,i′ ∩Rj ∩R′
j′|

]

≤ O
(

(Csgksg)
2 r−d(r′)−d(r′)d

)

≤ O
(

(Csgksg)
2 (2j/d · rpru/2)−d

)

≤ O
(

(Csgksg)
2 2d r−d

pru · 2−j
)

.

We now first sum over all j ≥ j′ (using that
∑

j≥j′ 2
−j = O(2−j′)), and then over all j′, to obtain

that

∑

j,j′: j+j′>0

E
[

|Si,i′ ∩Rj ∩R′
j′ |

]

≤ O((Csgksg)
2 2d r−d

pru).

By choosing rpru = Θ(rlocK
2/d) with a suitably large (absolute) constant, we can cancel out the

2d term and obtain an arbitrarily small absolute constant γ in the O(·) term. Recalling that
rloc = Θ((Csgksg)

1/d) and adding the at most O(log n) nodes (with some absolute constant) in
Si,i′ ∩R0 ∩R′

0, we see that

E
[

|Si,i′ |
]

≤ O(γCsgksg/K
2) +O(log n).

9Recall that we include CUD terms in O(·).
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Applying Chernoff Bounds, we obtain that with high probability, |Si,i′ | = O(γ Csgksg/K
2 +

log n), and a union bound over all i, i′ now shows that with high probability we have

MΛ(u, v) = O(γ Csgksg +K2 log n) < MΛ

(when Csgksg is large enough and γ small enough), which means that (u, v) will be rejected.

For the remainder of this section, we condition on the high probability event of Lemma 4.2,
i.e., we assume that Epru contains all edges of length at most rloc (in at least one category) and no
edges whose length would exceed rpru in all categories.

Notice that in the single-category case (K = 1), the result of Lemma 4.2 by itself already gives
an expansion of rpru/rloc = Θ(1), no contraction, and additive error polylog(n). We simply estimate
D(u, v) by the length of the shortest u-v path in the pruned graph, multiplied by rpru. Lemma 4.3
analyzes the distortion for a single category, and will also be used for the multi-category case. The
lemma requires the unit-disk graph to be a good approximation of the metric space, a property
that is obvious for near-uniform density sets in R

d.

Lemma 4.3. Let (V,D) be a metric space. Let G be a graph on V that includes all node pairs at
distance at most r and no node pairs at distance more than r′, for some r′ > r ≥ 1. Let DG be the
shortest-paths metric of G. Let Dsp be the shortest-paths metric of the unit disk graph on (V,D),
and assume that Dsp(u, v) ≤ cD(u, v) for all node pairs (u, v), for some constant c. Then

D(u, v) ≤ r′ · DG(u, v) ≤ cr′

r · D(u, v) + r′.

In words, r′ · DG reconstructs D with expansion cr′

r , no contraction, and additive error r′.

Proof. Fix a node pair (u, v), and let ρ be a shortest u-v path in G. By the triangle inequality,
D(u, v) is a lower bound on the total metric length of ρ, which in turn is at most r′DG(u, v),
because each hop in G has length at most r′. So D(u, v) ≤ r′DG(u, v). Now, let P be a shortest
u-v path in Dsp. Any two nodes on P that are within r hops from one another are connected
by an edge in G. Therefore, G contains a u-v path of at most ⌈ |P |

r ⌉ hops, which implies that

DG(u, v) ≤ ⌈D
sp(u,v)
r ⌉ ≤ 1 + cD(u,v)

r .

4.3 Amoeba stage: mapping edges to categories

We now define the Amoeba stage of the algorithm. The Amoeba stage consists of K iterations
i = 1, . . . ,K: in each successive iteration i, a new category is identified (and re-numbered as
category i), and some edges in Epru are mapped to this category. These edges constitute the edge

set E
(i)
amb. Eventually, each edge e ∈ Epru is mapped to at least one category.

The Amoeba stage is summarized in Algorithm 1. Each iteration i consists of an initialization

phase, in which we find a suitable clique in Epru, and a growth phase, in which we grow E
(i)
amb one

edge at a time. We think of this process as growing the amoeba.
In Algorithm 1 and the subsequent analysis thereof, we use the following notation. For a subset

S ⊆ V , let diamj(S) be its diameter in E
(j)
amb. Let Γ(v,E) denote the (1-hop) neighborhood of

node v in the edge set E. We call the clique C from iteration i the seed clique for category i. The
condition (5) is called the Amoeba Test: more precisely, edge (u, v) passes the test if and only if (5)
is satisfied.
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Algorithm 1 The Amoeba algorithm.

Output. Estimated social distance D′
i, for each category i = 1, . . . ,K.

Parameters. Numbers (MΛ,Mamb, Namb, ramb).

Pruning Stage. Let MΛ(u, u
′) be the number of common neighbors of u and u′ in Esg.

Epru ← {(u, u′) ∈ V × V : MΛ(u, u
′) ≥MΛ}.

Amoeba Stage. For each iteration i = 1, . . . ,K,

1. Initialization phase. Find any clique C ⊆ V in Epru such that |C| ≥ Namb, and diamj(C) ≥
log2(n) for each category j = 1, . . . , i− 1. Initialize Eamb = C × C.

2. Growth phase. While there exists an edge (u, v) ∈ Epru \ Eamb such that

Esg contains at least Mamb edges between u and Γ(v,Eamb), (5)

pick any such edge and insert it into Eamb.

3. Set E
(i)
amb = Eamb. Let D′

i be the shortest-paths metric of E
(i)
amb, multiplied by ramb.

Notation. Recall that diamj(S) is the diameter of a subset S ⊆ V in E
(j)
amb, and Γ(v,E) denotes

the (1-hop) neighborhood of node v in the edge set E. Condition (5) is called the Amoeba Test.

The Amoeba stage is parameterized by numbers (Mamb, Namb, ramb). We setNamb = Θ((rloc/2)
d)

and Mamb = Θ(Namb/(8
dK2)) for suitable constants in Θ(·). We define ramb = γamb ·K3/d · rpru

for a sufficiently large absolute constant γamb, and call it the amoeba radius.10

4.4 Analysis of the Amoeba stage

An edge (u, v) ∈ Epru is called i-long if Di(u, v) > ramb, and i-short if Di(u, v) ≤ rloc. An edge set
Eamb ⊆ Epru is an i-amoeba iff (V,Eamb) contains no i-long edges, and it contains a clique of at
least Namb nodes whose category-i diameter is at most 4rpru.

The high-level outline of the correctness proof for Amoeba is as follows. We will prove by

induction on i that each edge set E
(i)
amb captures (at least) all i-short edges (renumbering the

categories appropriately), and does not include any i-long edges.
The induction step requires that the algorithm be able to reconstruct another category i while

there is an uncovered edge. Thereto, we show that Eamb remains an i-amoeba throughout the
algorithm. We break the induction step into multiple lemmas capturing the following four key
points:

• The required seed clique C of size Namb exists in Epru.

• All edges in the seed clique have sufficiently small length.

• No i-long edge passes the Amoeba Test.

10Recall that ksgCsg = Ω(16dK3 log n) with a sufficiently large constant. In particular, if ksgCsg = Θ(16dK3 log n),
then the parameters are Namb = Θ(8dK3 log n), Mamb = Θ(K log n) and ramb = Θ(K8 log n)1/d.
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• While there is an i-short edge not yet added to Eamb, at least one such edge passes the
Amoeba Test.

Lemma 4.4. If there is an edge e not included in any E
(j)
amb, then Epru contains a clique of at least

Namb nodes whose diameter in E
(j)
amb

is at least log2(n) for all j.

Proof. Let e ∈ Epru be an edge not included in E
(j)
amb for all j < i, and let i be a category it belongs

to. For an arbitrary node u, consider B = Bi(u, rloc/2). Because Di(v, v
′) ≤ rloc for all v, v′ ∈ B,

the set B forms a clique in Epru. Furthermore, because of the near-uniform density of category i,
B has Θ((rloc/2)

d) = Θ(Csgksg) = Ω(K3 log n) nodes, for a sufficiently large constant in the Ω(·).
For any j < i, the Local Category-Disjointness condition condition implies that |Bj(u, ramb ·

log2(n))∩B| ≤ O(log n). Thus, there is at least one v ∈ B \Bj(u, ramb · log2(n)). Because each edge

in E
(j)
amb has length at most ramb in category j, this means that Dj(u, v) > log2(n); in particular,

B cannot have diameter less than log2(n) in E
(j)
amb. Since this holds for all j, B is a candidate for

seed clique i, and the algorithm thus guarantees progress.

Lemma 4.5. Let C be a clique in Epru of size |C| > Ω(K3 log n), for a sufficiently large constant
in Ω(·). Then, there exists a category i such that Di(u, v) ≤ 4rpru for all u, v ∈ C.

Proof. Fix an arbitrary w ∈ C. Because each edge (u, v) ∈ Epru satisfies Di(u, v) ≤ rpru for some
category i, there is a category i such that for at least |C|/K nodes v ∈ C, we have Di(w, v) ≤ rpru.
Fix such a category i, and let S be the set of all v ∈ C with Di(w, v) ≤ rpru. If S = C, then we are
done.

Otherwise, consider a node u ∈ C \ S. For each node v ∈ S, there is a category i′ with
Di′(u, v) ≤ rpru. In particular, there must be a category i′ such that Di′(u, v) ≤ rpru for at least
|C|/K2 > Ω(log n) nodes v ∈ S, with a large enough constant in Ω(·). Fix such a category i′, and
let S′ be the set of nodes v ∈ S with Di′(u, v) ≤ rpru. Because S′ ⊆ Bi(w, rpru) ∩ Bi′(u, rpru), the
assumption i′ 6= i would contradict the Local Category-Disjointness condition. Hence i′ = i, and u
is at distance at most 2rpru from w in category i. Since this argument holds for every u ∈ C \ S,
we have proved that C has diameter at most 4rpru in category i.

Remark. Lemma 4.5 can be restated as saying that for any edge-coloring of a sufficiently large
clique that is consistent with the Local Category-Disjointness condition11, there is a color i such
that the set of edges of color i has diameter at most 4. Without the Local Category-Disjointness
condition, this statement is false in general for K ≥ 3. For a simple counter-example, consider a
clique C whose nodes are partitioned into three sets C1, C2, C3 so that color i ∈ {1, 2, 3} is assigned
to all edges with both endpoints in Ci and to all edges with neither endpoint in Ci. Then, the
edge set corresponding to any one color i is not even connected. For K = 2, there is a simple
combinatorial proof that does not involve Local Category-Disjointness.

Lemma 4.6. Assume that Eamb ⊆ Epru contains no i-long edge, and let u, v be nodes with (u, v) ∈
Epru and Di(u, v) > ramb. Then, with high probability, (u, v) does not pass the Amoeba Test.

11Reformulated in terms of edge colorings, the Local Category-Disjointness states that two balls with respect to
edges of colors i 6= i′, each of radius polylog(n), overlap in at most O(log n) nodes.
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Proof. We bound the number of edges between u and Γ(v,Eamb) in two parts: by the number of
edges between u and Bi(v, rpru), and the number of edges between u and Γ(v,Eamb) \Bi(v, rpru).

First, we claim that |Γ(v,Eamb) \ Bi(v, rpru)| ≤ O(K log n). The reason is that any node
w ∈ Γ(v,Eamb) \ Bi(v, rpru) must be at distance at most rpru from v in some category j 6= i
(because (v,w) ∈ Epru), so w ∈ Bj(v, rpru) ∩ Bi(v, ramb). Now, the Local Category-Disjointness
condition implies that there can be at most O(log n) such nodes w for any fixed j, and thus at most
O(K log n) total.

Next, we consider nodes w ∈ Bi(v, rpru). By the Local Category-Disjointness condition for
Bi(v, rpru)∩Bj(u, ramb), there can be at most O(log n) such nodes w at distance at most ramb from
u in category j, for a total of O(K log n) nodes.

All other nodes w ∈ Bi(v, rpru) are at distance at least ramb from u in all categories j 6= i, and at
distance at least ramb−rpru ≥ ramb/2 from u in category i. Thus, the probability for the edge (u,w)
to exist in any one category j is at most q = O(Csgksgr

−d
amb) = O(Csgksg/(γ

d
ambK

3) · r−d
pru). Summing

over all w ∈ Bi(v, rpru) and all categories gives us at most qK|Bi(v, rpru)| = O(Csgksg/(γ
d
ambK

2))
edges in expectation, and Chernoff Bounds prove concentration. Adding the at most O(K log n)
edges of the first two types, and recalling that γamb is a suitably large constant and Csgksg =
Ω(K3 log n) with a large constant, we see that with high probability, the total number of edges
between u and Γ(v,Eamb) is less than Mamb, so the edge (u, v) does not pass the Amoeba Test.

Lemma 4.7. Let Eamb be an i-amoeba that does not include all i-short edges. Then, w.h.p., there
exists an edge (u, v) ∈ Epru that is accepted by the Amoeba Test.

Proof. First notice that because the Amoeba Test only counts edges from u to a neighborhood of
v, it is monotone in the following sense: if the edge e passes for some current edge set Eamb, then
it also passes for any E′

amb ⊇ Eamb. We will define an ordering e1, e2, . . . of all edges in category i
such that with high probability, eℓ will pass the Amoeba Test whenever C ∪{e1, . . . , eℓ−1} ⊆ Eamb.
Thus, Amoeba, starting from C, can always make progress when considering the lowest-numbered
edge eℓ not yet included. (Notice that this does not require the algorithm to actually know the
ordering.)

Let C be the clique in (V,Eamb) of size at least Namb whose existence is guaranteed by the
definition of an i-amoeba. C ⊆ Bi(w, 2rpru) for some w, and Bi(w, 2rpru) can be covered by
O((rpru/rloc)

d) = O(K2) balls of radius rloc/2, at least one of which must therefore contain a
sub-clique C ′ ⊆ C of at least Namb/K

2 nodes. Let v0 be the center of such a ball Bi(v
′, rloc/2).

First, all edges between u ∈ Bi(v0, rloc/2) and v ∈ C ′ will pass the Amoeba Test, because
(u,w) is i-short for all w ∈ C ′ ⊆ Γ(v,Eamb) (implying that the edge (u,w) is in Epru), and
|C ′| ≥ Namb/K

2 ≥Mamb.
Second, because each v ∈ Bi(v0, rloc/2) is now connected to all of C ′ in Eamb, the exact same

argument applies to all node pairs u, v ∈ Bi(v0, rloc/2).
Third, we use induction on r, showing that once all edges in Bi(v0, r) have been included, all

edges in Bi(v0, r+1) will be included next in some order. For the base case, we use r = rloc/2. Let
u be any node in Bi(v0, r+1) \Bi(v0, r), and w a node “close to u on the line from v0 to u.” More
formally, w is a node with Di(v0, w) ≤ r− rloc/4 and Di(u,w) ≤ rloc/4 +O(1). The existence of w
follows by the near-uniform density assumption.

By near-uniform density, the ball B′ = Bi(w, rloc/4) contains at least Ω(2
−dNamb) nodes, and by

induction hypothesis, all nodes of B′ are neighbors of v. Furthermore, Esg contains edges between
u and all w with constant probability, so using Chernoff Bounds, with high probability, the pair
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(u, v) will pass the Amoeba Test for all v ∈ B′, inserting all these edges. Once all i-short edges
between u ∈ Bi(v0, r + 1) and v ∈ Bi(v0, r) have been inserted, the i-short edges between the
remaining pairs u, v ∈ Bi(v0, r + 1) will be inserted by the following argument. Node u has i-short
edges to all nodes in B′ (which are already in Eamb), so Di(v,w) ≤ 2rloc for all w ∈ B′. Thus, each
edge from v to w ∈ B′ is included with probability at least p = Ω(Csgksg2

−dr−d
loc), and there are at

least |B′| ≥ Ω(4−drdloc) such nodes, implying that the expected number of edges between v and the
neighborhood of u is at least Ω(8−dCsgksg). By Chernoff Bounds, we obtain concentration results,
and because Mamb ≤ Θ(8−dCsgksg), the edge (u, v) will be included with high probability.

The algorithm will thus terminate with i-amoebas E
(i)
amb, i = 1, . . . ,K. The distance Di(u, v)

is now estimated as the shortest-path distance between u and v in E
(i)
amb, multiplied by ramb. By

Lemma 4.3, this gives constant expansion ramb/rloc = Θ(K5/d), no contraction, and additive error
ramb.

4.5 Efficient Implementation of the Amoeba algorithm

We outline how to implement the Amoeba algorithm in near-linear time. The first (and perhaps
most surprising) step is quickly finding the seed clique. Then, we need to execute each Amoeba

step in (amortized) polylogarithmic time. The resulting algorithm computes the graph E
(i)
amb for

each category i in near-linear time. Recall that E
(i)
amb is a constant-distortion spanner for Di, in

the sense that its shortest-path metric approximates Di. Once we have a spanner, we can compute
succinct distance labels by adapting a hierarchical beaconing technique from prior work on distance
labeling and routing schemes (e.g. [32, 13, 69, 70]). We next describe each of these steps in more
detail.

4.5.1 Finding the seed clique

By suitably adjusting the threshold MΛ, the Two-Hop Test can be modified to accept all node
pairs that are within distance r′loc = 3 rpru in some category, and to reject all node pairs that
are at distance at least r′pru = Θ(K2/d r′loc) in all categories. We run the Amoeba algorithm on
the pruned graph E′

pru obtained by this modified Two-Hop Test. Let r′amb be the corresponding
Amoeba radius. To produce the seed cliques for E′

pru, we use the original Two-Hop Test in the way
described below.

Consider the original Two-Hop Test, and let Epru be the corresponding pruned graph. Let N(u)
denote the 1-hop neighborhood of node u in Epru, including u itself. For a node set S, define N(S)
to be the intersection N(S) ,

⋂

u∈S N(u). We focus on such intersections for node sets S ⊆ N(u)
of size |S| = K.

Lemma 4.8. For any node u and category i, there exists a set S ⊆ N(u) of size K such that
the intersection N(S) contains at least Namb nodes, has diameter at most 3 rpru in category i, and
diameter at least R = r′amb log2(n) in all other categories.

Proof. Let B = Bi(u, rloc/2). We show that there exists a candidate set S ⊆ B. Recall that B
induces a clique in the pruned graph Epru, so for any subset S ⊆ B, we have B ⊆ N(S). Since B
contains at least Namb nodes and has diameter at least R in each category j 6= i, N(S) inherits
these properties. Thus, it remains to ensure that N(S) has low diameter in category i.
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We claim that Local Category-Disjointness implies the existence of a subset S ⊆ B of size K,
such that any two nodes in S are at distance at least 2 rpru in each category j 6= i. Consider (for
the proof only) the following simple algorithm. The algorithm works with two set-valued variables,
S and U , initialized to S = ∅ and U = B. It runs the following loop K times: pick any node
v ∈ U , add this node to S, and remove from U all balls Bj(v, 2 rpru), j 6= i. Clearly, the following
invariant is maintained after each iteration: any two nodes v ∈ S,w ∈ S ∪ U are at distance at
least 2 rpru in any category j 6= i. Therefore, the algorithm finds the desired set S unless U were to
become empty prematurely. This cannot happen because by Local Category-Disjointness, B and
any Bj(v, 2 rpru), j 6= i overlap in at most O(log n) nodes, so the cardinality of U decreases by at
most O(K log n) in each iteration.

Now fix the subset S guaranteed by the previous paragraph. Consider some node w ∈ N(S).
For any category j 6= i, there can be at most one node in S within category-j distance rpru from
w. (If there were two such nodes v, v′ ∈ S then Dj(v, v

′) ≤ rpru, a contradiction.) It follows that
at least one node v ∈ S is at distance more than rpru from w in each category j 6= i. Since the
pruned graph Epru contains the edge (v,w), v and w must be close in some category, and we have
proved that they can only be close in category i. Therefore Di(v,w) ≤ rpru. Since S ⊆ B, it follows
that Di(u,w) ≤ rpru + rloc/2. Therefore, any two nodes in N(S) are at category-i distance at most
2 rpru + rloc from one another.

For each iteration i of the Amoeba Stage, we need to find a seed clique C for E′
pru such that

|C| ≥ Namb and diamj(C) ≥ log2(n), for each category j < i. By Lemma 4.8, one such clique is
given by N(S), for any given node u and some subset S ⊆ N(u) of size K. Therefore, we can run
the original Two-Hop Test to obtain the pruned graph Epru, pick any node u, and iterate through
all K-node subsets S ⊆ N(u) until we find a set S such that N(S) is a clique in E′

pru. It is easy
to see that this approach results in running time n polylog(n). In fact, one only needs the initial
pruning step to be local to node u, so the list of all candidate subsets N(S) can be obtained in
polylog(n) time.

4.5.2 Efficient implementation of the Amoeba step

To implement the Amoeba step efficiently, we use a queue which initially contains all edges. In each
Amoeba step, edges are popped from the queue until one is found that satisfies Condition (5) holds.
Once an edge (u, v) satisfies this condition, it is added to the amoeba, while all its adjacent edges
are (re-)enqueued. Any one edge is adjacent to at most polylogarithmically many other edges, and
can therefore be enqueued at most polylogarithmically many times. Thus the entire growth phase of
the Amoeba algorithm is implemented in n polylog(n) running time. The following argument shows
the correctness of this queue policy: If an edge (u, v) is checked and does not satisfy Condition (5),
then it can satisfy this condition at some later point only if another edge incident to u or v has
been added to the Amoeba, i.e., only if (u, v) is re-enqueued.

4.5.3 From a spanner to succinct distance labels

Fix a category i. For the remainder of this section, all “balls” and “distances” refer to category i.

We use the spanner Eamb = E
(i)
amb produced by the Amoeba algorithm to produce distance labels

for Di of polylogarithmic size, so that for any two nodes u, v the distance Di(u, v) can be estimated
with constant distortion from their labels alone (in polylogarithmic time).
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Consider exponentially increasing distance scales r. For each distance scale r, pick kr scale-r
beacon nodes independently and uniformly at random; kr is chosen so that with high probability,
each ball of radius r contains Θ(log n) scale-r beacon nodes; For each scale-r beacon b, run a
breadth-first search in Eamb for Θ(r) steps, to compute distance estimates between b and all nodes
within distance Θ(r) from b. Simple accounting shows that computing the estimates for all scales
and all beacons takes n polylog(n) time.

Thus, for every given node u, we have computed distance estimates between u and some subset
Su of beacons. Su includes all scale-r beacons within distance Θ(r) from u, for each scale r.
Together, these distance estimates constitute u’s distance label. Given the distance labels of two
nodes u and v, one can reconstruct the distance estimate for the pair (u, v) by picking the beacon
b ∈ Su ∩ Sv closest to node u, and using the distance estimate for the pair (b, v) as an estimate for
(u, v).

5 Improving the distortion for a single category

Our first improvement is to reduce the distortion from a multiplicative constant to a factor 1+o(1).
In fact, under stronger assumptions on the uniformity of the metric space, we will be able to reduce
the distortion to additively polylogarithmic. We first show the improvement for a single category,
and discuss the necessary extensions for multiple categories in Section 6.

In trying to improve the distortion beyond a multiplicative constant, we face an immediate
obstacle: as discussed in Section 3, an algorithm can estimate the normalization constant Csg

and the target degree ksg only up to a constant factor. However, for further improvements of the
distortion, more accurate estimates of Csg and ksg appear to be necessary. In order to side-step
this technical obstacle, we define normalized distances

N (u, v) = D(u, v)/(Csg ksg)
1/d, (6)

and we focus on N instead of actual distances as the quantities to be inferred.
Note that Theorem 4.1 can also be interpreted to yield an estimate N ∗ for N which with high

probability has no contraction, constant expansion and polylog(n) additive error. In this section,
we improve this bound to unit distortion with sub-linear additive error.

Theorem 5.1. Consider a single-category social graph of dimension d, with Csgksg = Ω(log n) and
near-uniform density. There is a polynomial-time algorithm that w.h.p. reconstructs each normal-
ized distance N (u, v) with additive error ±N γ logO(1) n, where γ = d+2

2d+2 . The algorithm runs in
polynomial time.

The high-level idea is to augment the Two-Hop Test from Section 4 with a post-processing step
we call Two-Ball Algorithm. This is a variation of the common neighbors heuristic where instead
of common neighbors, the algorithm counts 3-hop paths whose first and last hops are sufficiently
short according to the initial estimates. More precisely, to estimate N (s, t), the algorithm counts
edges between two node sets B̃∗

s and B̃∗
t that are small balls (centered at s and t, respectively) with

respect to the initial estimates N ∗.
The Two-Ball Algorithm proceeds as follows. The input consists of N ∗ and the original edge

set Esg. For every two nodes s and t, the normalized distance N (s, t) is estimated as follows. Let
B̃u(κ;N ∗) be the set of the κ closest nodes to node u according to N ∗, breaking ties arbitrarily; note
that this set is — up to tie-breaking — a ball with respect to N ∗. Consider balls B̃∗

s = B̃s(κ;N ∗)

21



and B̃∗
t = B̃t(κ;N ∗), for some cardinality κ to be specified later. Count the number of edges in

Esg between B̃∗
s and B̃∗

t , and let M̃s,t be that number. The new estimate is

N ′(s, t) =
(

κ2/M̃s,t

)1/d
.

We take κ = rdx, where rx , x(d+2)/(2d+2) and x = N ∗(s, t). See Algorithm 2 for the pseudocode.

Algorithm 2 The Two-Ball Algorithm.

Inputs. Original edge set Esg and initial estimates N ∗ from Theorem 4.1.
Output. Improved distance estimates N ′.
For each node pair (s, t):

1. B̃∗
s = B̃s(κ;N ∗) and B̃∗

t = B̃t(κ;N ∗), where κ = xd(d+2)/(2d+2) and x = N ∗(s, t).
2. M̃s,t is the number of edges in Esg between B̃∗

s and B̃∗
t .

3. N ′(s, t) = (κ2/M̃s,t)
1/d.

Notation. B̃u(κ;N ∗) is the set of the κ closest nodes to u according toN ∗, breaking ties arbitrarily.

The idea is that E
[

M̃s,t

]

≈ κ2N−d(s, t), and our estimate inverts this relation. We pick κ to

optimize the trade-off between the “spatial uncertainty” (the pairwise distances between nodes in
B̃∗

s and B̃∗
t are not exactly N (s, t)) and “sampling uncertainty” (deviations of the number of edges

from the expectation). The former increases with κ, while the latter decreases with κ.

Proof of Theorem 5.1. Assume that N ∗ satisfies the high-probability property that it is an esti-
mate of N with constant distortion and polylog(n) additive error. Consider a node pair (s, t), at
normalized distance y = N (s, t).

Assume that N (s, t) is large enough to ensure that ry is larger than the polylog(n) additive
error. (Otherwise, the additive error guarantee is trivially satisfied.) Then, by near-uniform density,
all nodes in B̃s(κ;N ∗) are at normalized distance at most c ry from s, for some constant c. Likewise,
all nodes in B̃t(κ;N ∗) are at normalized distance at most c ry from t. Therefore

κ2

(y + 2c ry)d
≤ E

[

M̃s,t

]

≤ κ2

(y − 2c ry)d
. (7)

We next apply Chernoff bounds to M̃s,t, and use the bounds that 1
1−2β · (1 + 6β) ≤ 1

1−8β and
1

1+2β · (1− 6β) ≥ 1
1+8β (with β = c

ry
y ) to derive that

Prob

[

κ2

(y + 8c ry)d
≤ M̃s,t ≤

κ2

(y − 8c ry)d

]

≥ 1− 1/nO(log n).

Taking the union bound over all node pairs (s, t), it follows that w.h.p. |(κ2/M̃s,t)
1/d − y| ≤ O(ry).

5.1 The Recursive Two-Ball Algorithm

Given that the Two-Ball Algorithm produces improved estimates of (normalized) distances, it seems
natural to run the algorithm again, using the improved estimates as a starting point for defining
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the balls B̃∗
s and B̃∗

t more accurately. This suggests a recursive approach: to estimate D(s, t),
the algorithm can use the previously computed estimates for smaller distance scales to define B̃∗

s

and B̃∗
t . We call the resulting algorithm (with carefully optimized distance scales) the Recursive

Two-Ball Algorithm. The technical goal is to improve the additive error in Theorem 5.1.
The analysis of this algorithm is significantly more delicate and involved. In particular, in order

to take advantage of the improved estimates, a stronger uniformity condition is needed on the
metric: we say that the metric space has perfectly uniform density iff each ball of radius r contains
CPD rd±O(rd−1) points, where CPD is a known constant. Then we can improve the additive error
to polylog(n).

Theorem 5.2. Consider a single-category social graph with Csgksg = Ω(log n) and perfectly uniform
density. Assume that the social distance is defined by the ℓd2 norm, with d > 2. Then, the Recursive
Two-Ball Algorithm w.h.p. reconstructs all normalized distances with unit distortion and additive
error polylog(n).

Remark. The algorithm uses a constant cd that captures, up to the first-order term, how the
expected number of edges between two radius-r balls depends on r and the distance between
centers. Specifically, in the setting of Theorem 5.2, consider two radius-r balls whose centers are
at distance x > 4r. The expected number of edges between these two balls is (cd r

2/x)d, up to a
multiplicative factor 1 +O(r−2). Here, cd is a constant that depends only on the dimension d and
the constant CPD in the definition of perfectly uniform density. We assume that cd is known to the
algorithm.

The restriction to the ℓ2 norm is essential to define cd: under ℓp, p 6= 2, the expected number
of edges between the two balls significantly depends on the alignment of the s-t line relative to the
coordinate axes.

Remark. For d = 2, a similar (but slightly more complicated) algorithm and analysis yield additive
error 2O(

√
log x) for node pairs at normalized distance x; we omit the details.

We next define the algorithm. Let us first set up the notation. Let N ∗ be the normalized
distance estimates guaranteed by Theorem 4.1. We will compute refined estimates N ′, which are
initialized to N ∗. Let B̃u(κ;N ′) be the set of the κ closest nodes to u according to N ′, breaking
ties arbitrarily.

The Recursive Two-Ball Algorithm proceeds as follows. The input consists of N ∗ and the
original edge set Esg. The algorithm considers node pairs (s, t) such that N ∗(s, t) > polylog(n),
in order of increasing N ∗. For each such node pair, we define balls around s and t whose radius
is roughly r̂x, where x = N ∗(s, t) and r̂x = x1/2+1/d. Formally, we define balls B̃′

s = B̃s(κ;N ′)
and B̃′

t = B̃t(κ;N ′), where κ = CPD r̂dx. Note that these balls are defined with respect to the
improved estimates N ′. Let M̃s,t be the number of edges between B̃′

s and B̃′
t. The new estimate

is N ′(s, t) = cd r̂2x M̃
−1/d
s,t . The pseudocode is shown in Algorithm 3. Note that the algorithm is

quite simple; the only complication is how to pick κ as a function of x = N ∗(s, t).

5.2 Proof of Theorem 5.2

The high-level idea of the analysis is as follows. Let a(x) be the maximum additive error for node
pairs at normalized distance at most x. As in the Two-Hop Test, the error comes from two sources:
spatial uncertainty and sampling uncertainty. We show that the spatial uncertainty can contribute

23



Algorithm 3 The Recursive Two-Ball Algorithm.

Inputs. Original edge set Esg and initial estimates N ∗ from Theorem 4.1.
Output. Improved distance estimates N ′.
N ′ ← N ∗.
For each node pair (s, t) such that N ∗(s, t) > polylog(n), in order of increasing N ∗:

1. κ = CPD r̂dx, where x = N ∗(s, t) and r̂x = x1/2+1/d.
2. B̃′

s = B̃s(κ;N ′) and B̃′
t = B̃t(κ;N ′).

3. M̃s,t is the number of edges in Esg between B̃′
s and B̃′

t.

4. N ′(s, t) = cd r̂2x M̃
−1/d
s,t .

Notation. B̃u(κ;N ′) is the set of the κ closest nodes to node u according to N ′, breaking ties
arbitrarily.
cd is the constant from the remark after Theorem 5.2.

at most O(a(r̂x)) to the overall additive error; interestingly, this holds for any choice of r̂x. We
use Chernoff Bounds to bound the contribution of sampling uncertainty by O(a(r̂x)) as well; this is
where the particular exponent in r̂x is used. It follows that a(x) = O(a(r̂x)). Finally, the distance
estimates for a given node pair implicitly rely on recursion from distance scale x to distance scale
r̂x. Let ρ(x) be the depth of this recursion: the number of steps until the distance scale goes below
polylog(n). It is easy to see that a(x) = 2O(ρ(x)) and that ρ(x) = O(log log n).

Consider two nodes s and t whose normalized distance is x = N (s, t).
Let B̃s = B̃u(κ;N ) and B̃t = B̃u(κ;N ) be the sets of the κ closest nodes to s and t, respectively,

under the (correct) normalized distances (V,N ).
We start with a simple lemma showing that this choice implies that the actual sets of nodes are

very close between B̃′
s and B̃s (and B̃′

t and B̃t, respectively).

Lemma 5.3. For a sufficiently large constant β, we have that

BN (s, r̂x − 2a(r̂x)− β) ⊆ B̃′
s ⊆ BN (s, r̂x + 2a(r̂x) + β),

BN (t, r̂x − 2a(r̂x)− β) ⊆ B̃′
t ⊆ BN (t, r̂x + 2a(r̂x) + β).

Proof. We first prove the first inclusion. Let v ∈ BN (s, r̂x − 2a(r̂x) − β) be arbitrary. Because
N (s, v) ≤ r̂x − 2a(r̂x) − β, the definition of a(·) implies that N ′(s, v) ≤ N (s, v) + a(r̂x) ≤ r̂x −
a(r̂x)−β. On the other hand, N ′(s, u) ≥ r̂x− a(r̂x)−β for all nodes u such that N (s, u) ≥ r̂x−β.
Therefore, there can be at most CPD (r̂x − β)d ±O((r̂x − β)d−1) nodes u with N ′(s, u) ≤ N ′(s, v).
This number is less than CPD r̂dx = κ whenever β is large enough.

Because B̃′
s contains the κ nodes closest to s under N ′ (by its definition), this means that

v ∈ B̃′
s. Since this argument holds for arbitrary v, we have proved the first claim. The second

inclusion is proved by an analogous calculation.

We next show that the number of edges between B̃s and B̃t is close to the number of edges
between B̃′

s and B̃′
t. To state this claim concisely, let #edges(S, S′) be the number of edges in Esg

between node sets S and S′.

Lemma 5.4. With high probability, |E
[

#edges(B̃′
s, B̃

′
t)
]

− E

[

#edges(B̃s, B̃t)
]

| = O(x · a(r̂x)).
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Proof. We construct a bijection φ : (B̃′
s ∪ B̃′

t)→ (B̃s ∪ B̃t) as follows. Partition the domain and the
co-domain into four disjoint regions each (using ⊕ to denote the disjoint union of sets):

(B̃′
s ∪ B̃′

t) = (B̃′
s ∩ B̃s)⊕ (B̃′

s \ B̃s)⊕ (B̃′
t ∩ B̃t)⊕ (B̃′

t \ B̃t),

(B̃s ∪ B̃t) = (B̃′
s ∩ B̃s)⊕ (B̃s \ B̃′

s)⊕ (B̃′
t ∩ B̃t)⊕ (B̃t \ B̃′

t).

The regions in each partition are indeed disjoint because B̃s ∩ B̃t = B̃′
s ∩ B̃′

t = ∅. We define φ
separately for each of the four subsets the domain. First, any node in (B̃′

s ∩ B̃s) or (B̃′
t ∩ B̃t) is

mapped to itself. Second, φ is an arbitrary bijection (B̃′
s\B̃s)→ (B̃s\B̃′

s) and (B̃′
t\B̃t)→ (B̃t\B̃′

t).
This completes the definition. For the second step, note that the respective domains and co-domains
have the same size; this is because |B̃s| = |B̃′

s| = κ and |B̃t| = |B̃′
t| = κ.

Nodes v ∈ (B̃′
s \ B̃s) ∪ (B̃′

t \ B̃t) called perturbed nodes. By Lemma 5.3, B̃′
s and B̃′

t contain at
most CPD · (2a(r̂x) + β) · r̂d−1

x perturbed nodes each.
By the perfectly uniform density assumption, at least CPD rd−O(rd−1) nodes have distance at

most r from s. In particular, setting r = r̂x + β gives us that at least κ nodes satisfy the distance
bound, implying that every node u ∈ B̃s satisfies N (s, u) ≤ r̂x + β, Furthermore, by the second
inclusion of Lemma 5.3, every node v ∈ B̃′

s satisfies N (s, v) ≤ r̂x + 2a(r̂x) + β. Similar bounds
apply for t. We thus get that N (v, φ(v)) ≤ 2r̂x + 2a(r̂x) + O(1) < 3r̂x for all v, and of course
N (v, φ(v)) = 0 for unperturbed nodes v.

Now consider a pair u ∈ B̃′
s and v ∈ B̃′

t such that at least one of u, v is perturbed. (We call such
a pair a perturbed pair.) By triangle inequality, |N (v, u)−N (φ(v), φ(u))| ≤ 6r̂x, and the number of
perturbed pairs is at most (4a(r̂x) + 2β) · r̂2d−1

x , by the bound on the number of perturbed nodes.
Next, we bound how much a single perturbed pair u ∈ B̃′

s, v ∈ B̃′
t affects the expected number

of edges between the balls. Because x+ 6r̂x ≥ N (φ(u), φ(v)) ≥ x− 6r̂x, we get that

N (u, v)

N (φ(u), φ(v))
∈ 1±O(r̂x/x).

We can now express the difference between the probabilities of the edges (φ(u), φ(v)) and (u, v) as

∣

∣

∣
(x±O(r̂x))

−d − (x± 2r̂x)
−d

∣

∣

∣
= x−d ·

∣

∣

∣

∣

∣

(

1± O(r̂x)

x

)−d

− (1± 2r̂x
x

)−d

∣

∣

∣

∣

∣

= O

(

x−d ·
(

1

1±O(r̂x/x)
− 1

1± 2r̂x/x

))

= O
(

x−d · r̂x/x
)

.

In the second step, we truncated the Binomial expansion (because r̂x/x = o(1/d)), and the final
step again used that r̂x/x is small. Summing over all perturbed pairs, the total expected difference
in the number of edges can be bounded by above as follows:

∣

∣

∣
E

[

#edges(B̃′
s, B̃

′
t)−#edges(B̃s, B̃t)

]
∣

∣

∣
≤ O

(

r̂x
x
· x−d · a(r̂x) · r̂2d−1

x

)

= O(x a(r̂x)),

where the last step was obtained by substituting the definition of r̂x. The concentration now follows
from Chernoff Bounds.

Lemma 5.5. a(x) = O(a(r̂x)).
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Proof. Consider two nodes s and t at normalized distance x. Using an analysis very similar to the
one in the proof of Lemma 5.4, the expected number of edges between B̃s and B̃t is (cd r̂

2
x/x)

d ±
O(x) = cddx

2 ± O(x) (where cd is the constant from the remark after Theorem 5.2). r̂x is chosen
so that Chernoff Bounds ensure that w.h.p., the actual number of edges between B̃s and B̃t does
not deviate from its expectation by more than O(x · a(r̂x)). Combining this number of edges
with the bound from Lemma 5.4, the expected number of edges between B̃′

s and B̃′
t is M̃s,t =

cddx
2±O(x ·a(r̂x)) with high probability. (The big-O term combines both the misestimates bounded

by the Chernoff Bound and the ones from Lemma 5.4.)

Because the algorithm estimates the distance as cd r̂
2
xM̃

−1/d
s,t , the additive distortion is at most

∣

∣

∣
x− cd r̂

2
x M̃

−1/d
s,t

∣

∣

∣
= x ·

∣

∣

∣

∣

∣

1− cd x
2/d

(cdd x
2 ±O(xa(r̂x)))1/d

∣

∣

∣

∣

∣

= x ·
∣

∣

∣

∣

∣

1−
(

cdd x

cdd x±O(a(r̂x))

)1/d
∣

∣

∣

∣

∣

= x ·
∣

∣

∣

∣

∣

1−
(

1± O(a(r̂x))

cdd x±O(a(r̂x))

)1/d
∣

∣

∣

∣

∣

≤ x · O(a(r̂x))

cdd x±O(a(r̂x))

≤ O(a(r̂x)).

In the penultimate inequality, we used that |1 − (1 ± δ)1/d| ≤ δ for any δ, and the final inequality
used that a(r̂x) = o(x) to simplify the denominator.

The distance estimates for a given node pair implicitly rely on recursion from distance scale x
to distance scale r̂x. Let ρ(x) be the depth of this recursion: the number of steps until the distance
scale goes below polylog(n). It is easy to see that a(x) = 2O(ρ(x)) and that ρ(x) = O(log log n).
This completes the proof of Theorem 5.2.

6 Improving the distortion for multiple categories

In order to improve the estimates for multiple categories, we employ the two algorithms from
Section 5. The main difference with the single-category case is that when we count the number of
edges between the balls in the original multi-category social graph graph for some category i, some
of these edges may come from other categories, which might affect the estimation. We would like
to claim that the number of edges from other categories between the two balls is small compared to
the number of edges from category i. Unfortunately, such a claim does not follow from the Local
Category-Disjointness condition, which prompts the following stronger condition.

The stronger condition, called Scale-R Category-Disjointness, states that at all scales up to R,
categories look essentially “random” with respect to one another. More specifically, given a pair of
balls B, B′ in some category i, we count the number of node pairs (u, u′), u ∈ B, u′ ∈ B′ such that
u and u′ are close in some other category j:

#pairsj(B,B′, r) , |{(u, u′) | u ∈ B, u′ ∈ B′, Dj(u, u
′) < r}|. (8)
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If the node identifiers within each category are permuted randomly, then the expected number of
such node pairs is Θ(rd/n) · |B| |B′|, and with high probability, the deviations are bounded by:

#pairsj(B,B′, r) ≤ O(rd/n) · |B| |B′| +O(log2 n). (9)

Scale-R Category-Disjointness asserts that (9) holds “locally:” at all distance scales up to R.

Definition 6.1. The Scale-R Category-Disjointness condition states that (9) holds for any two
categories i 6= j, any two disjoint category-i balls B, B′ with |B| · |B′| ≤ Rd, and any r ∈ (0, R].

Remark. Equation (9) for randomly permuted categories is derived in Section 8. The expectation
is relatively easy to derive, whereas the high-probability guarantee requires a more careful analysis.
We obtain (a slightly weaker version of) Local Category-Disjointness as a special case if R =
polylog(n) and B is restricted to be a single node.

We will improve over the constant distortion under the condition above. We present two results:
an extension of the Two-Ball Algorithm (Section 6.1) and an analysis of the Recursive Two-Ball
Algorithm for multiple categories (Section 6.2).

Like in the single-category case, we focus on normalized distances. For each category i, let

C
(i)
sg and k

(i)
sg be the normalization constant and the target degree, respectively. The normalized

category-i distance between nodes u, v ∈ V is Ni(u, v) , Di(u, v)/(C
(i)
sg k

(i)
sg )1/d.

6.1 The Extended Two-Ball Algorithm

The Scale-R Category-Disjointness condition does not apply to distance scales beyond R, and
even for R = ∞, the guarantee of Equation (9) is quite weak at very large scales. Accordingly,
we find that the Two-Ball Algorithm becomes problematic at large distance scales. To deal with
these issues, we apply the Two-Ball Algorithm only to distance scales small enough to provide
strong guarantees. The improved distance estimates define edge lengths, and a post-processing
step computes shortest paths with respect to these edge lengths. The resulting algorithm, called
Extended Two-Ball Algorithm, satisfies the following theorem.

Theorem 6.2. Assume the setting of Theorem 4.1 with Scale-R1+1/(d+1) Category-Disjointness,
R ≥ polylog(n) for a sufficiently large polylog(n). Then, the Extended Two-Ball Algorithm runs
in polynomial time, and with high probability produces distance estimates N ′

i with the following
guarantee:

For any pair (s, t) at normalized distance x = Ni(s, t), the estimate N ′
i (s, t) has multi-

plicative distortion 1±
[

(min(x,R, R̂))−d/(2d+2) ·O(log2 n)
]

, where R̂ =
(

n
logn

)(2d+2)/(2d2+3d)
.

Remark. The distortion in Theorem 6.2 can be interpreted as 1 ± O
(

ℓ−d/(2d+2) · log2 n
)

, where

ℓ = min(x,R, R̂) is, in some sense, the effective distance scale.

We begin by defining the Extended Two-Ball Algorithm precisely. The input consists of the
multi-category social graph and the distance estimates N ∗ = N ∗

i for a given category i, as guaran-
teed by Theorem 4.1. Recall that these are non-contracting estimates with constant expansion δ
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and polylog(n) additive error; we assume that (an upper bound on) δ is known to the algorithm.
Apart from δ, the algorithm is parameterized by the distance scale R from Theorem 6.2.

The algorithm proceeds as follows. (See Algorithm 4 for the pseudocode). It focuses on the
edge set H = {(u, v) | N ∗(u, v) ≤ R}. For each edge (u, v) ∈ H, it applies the Two-Ball Algorithm
with respect to distances N ∗ to obtain improved distance estimates NH(u, v). These improved
estimates are treated as edge lengths for H. For each node pair (s, t), we distinguish two cases. If
the edge (s, t) is in H, we simply set the final estimate N ′

i (s, t) = NH(s, t). Otherwise, the final
distance estimate N ′

i (s, t) is the length of the shortest s-t path using the edge set

Ht = {(u, v) ∈ H | N ∗(u, v) ≥ R
2δ or v = t}. (10)

In other words, the distance is estimated by the length of the shortest path using only “sufficiently
long” edges, except for possibly the last edge, which may be short.

Algorithm 4 The Extended Two-Ball Algorithm (for a given category i).

Inputs. Original edge set Esg and initial estimates N ∗ = N ∗
i from Theorem 4.1.

Parameters. Distance scale R and expansion δ of N ∗.
Output. Improved distance estimates N ′

i .

H = {(u, v) | N ∗(u, v) ≤ R}.
The Two-Ball Algorithm. For each node pair (s, t) ∈ H,

1. B̃∗
s = B̃s(κ;N ∗) and B̃∗

t = B̃t(κ;N ∗), where κ = xd(d+2)/(2d+2) and x = N ∗(s, t).
2. M̃s,t is the number of edges in Esg between B̃∗

s and B̃∗
t .

3. NH(s, t) = (κ2/M̃s,t)
1/d.

Post-processing. For each node pair (s, t),
If (s, t) ∈ H, then N ′

i (s, t) = NH(s, t); otherwise

1. Ht = {(u, v) ∈ H | N ∗(u, v) ≥ R
2δ or v = t}.

2. N ′
i (s, t) is the length of the shortest s-t path in Ht with respect to edge lengths NH .

Notation. B̃u(κ;N ∗) is the set of the κ closest nodes to u according toN ∗, breaking ties arbitrarily.

6.1.1 Analysis: the Two-Ball Algorithm for multiple categories

We begin the analysis by showing that for sufficiently small distances, Scale-R Category-Disjointness
ensures that the basic Two-Ball Algorithm gives accurate estimates.

Lemma 6.3. Assume that the Scale-R1+1/(d+1) Category-Disjointness condition holds, and let (s, t)
be a node pair at normalized category-i distance Ni(s, t) = x ≤ R. Then, the Two-Ball Algorithm
obtains a distance estimate N ′

i (s, t) of Ni(s, t) with the following guarantee:

∣

∣N ′
i (s, t)−Ni(s, t)

∣

∣ ≤
(

x(d+2)/(2d+2) + xd+1

n

)

· O(log2 n).

Proof. Recall from the proof of Theorem 5.1 that to estimate Ni(s, t), the Two-Ball Algorithm
considers two balls B̃∗

s , B̃
∗
t around s and t, respectively, and counts edges between them. The
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balls were chosen so that |B̃∗
s | = |B̃∗

t | = κ , rdx, where rx = x(d+2)/(2d+2) . The improved distance
estimate is N ′(s, t) , (κ2/M̃s,t)

1/d, where M̃s,t is the number of edges between B̃∗
s and B̃∗

t .

If only edges from E
(i)
sg were counted, Theorem 5.1 would apply verbatim. However, edges

between B̃∗
s and B̃∗

t from other categories can be erroneously included in the count. The presence
of other categories never decreases M̃s,t, so the high-probability lower bound on M̃s,t, and hence
the high-probability upper bound on N ′(s, t), carries over from Theorem 5.1.

We need to prove a lower bound on N ′(s, t). Let M̃ (i)
s,t be the number of category-i edges between

B̃∗
s and B̃∗

t . In the proof of Theorem 5.1, we showed that with high probability, M̃
(i)
s,t ≤ κ2

(x−8c rx)d
,

for some constant c. This implies M̃
(i)
s,t ≤ κ2

xd (1 +O(c rx/x))
d ≤ κ2

xd (1 +O(cd rx/x)).

We next count edges from other categories between B̃∗
s and B̃∗

t . Fix some category j 6= i, and
consider node pairs (u ∈ B̃∗

s , u
′ ∈ B̃∗

t ). We distinguish between two distance scales for Nj(u, u
′).

1. We first consider the case that Nj(u, u
′) > R1+1/(d+1). The probability for the edge (u, u′) to

exist is then at most O(R−(d+1−1/(d+1))). The number of candidate pairs (u, u′) is at most
κ2 = xd+1−1/(d+1) ≤ Rd+1−1/(d+1), so the expected number of such long edges is O(1). Using
Chernoff Bounds, with high probability, the number of long edges is at most O(log2 n).

2. The other case is Nj(u, u
′) ≤ R1+1/(d+1). We divide the range of possible distances into

exponentially increasing buckets of the form (y, 2y]. Suppose that y ≤ Nj(u, u
′) ≤ 2y (for

some y ≤ R/2). Then, the pair (u, u′) has an edge with probability at most O(y−d), and by
the Scale-R1+1/(d+1) Category-Disjointness condition, there are at most O(yd/n) · |B̃∗

s | |B̃∗
t | +

O(log2 n) pairs (u, u′) at this distance scale. Using linearity of expectations, and summing
over all O(log n) distance scales y, we obtain that the expected number of short category-j

edges between B̃∗
s and B̃∗

t is at most O(
|B̃∗

s | |B̃∗
t | logn
n + log2 n), and Chernoff Bounds establish

concentration.

Combining both cases, and substituting that |B̃∗
s | = |B̃∗

t | = κ gives us that with high probability,
the number of category-j edges between B̃∗

s and B̃∗
t is at most O( lognn · κ2 + log2 n). Combining

these edges across all categories j 6= i and plugging in the upper bound for M̃
(i)
s,t , we obtain:

M̃s,t ≤
κ2

xd

(

1 +O
(

cd
rx
x

))

+O(K)
(

logn
n · κ2 + log2 n

)

.

Adding some log n factors for simplification, and hiding the constants inside O(·), we can re-write
this bound as follows:

M̃s,t ≤
κ2

xd

(

1 +O(log2 n)
(

x−d/(2d+2) + xd

n

))

.

Substituting the definition N ′(s, t) , (κ2/M̃s,t)
1/d, it follows that

N ′
i (s, t) ≥ x

(

1−O(log2 n)
(

x−d/(2d+2) + xd

n

))

≥ x−O(log2 n)
(

x(d+2)/(2d+2) + xd+1

n

)

.

6.1.2 Analysis: the post-processing step

Theorem 6.2 easily follows from Lemma 6.3 and the following Lemma 6.4, which analyzes the
post-processing step. The lemma is not specific to the actual estimates produced by the Two-Ball
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Algorithm. Instead, it states that if each individual edge’s length is estimated with small additive
distortion (compared to the true edge length), then the multiplicative distortion of the overall
estimates is small. For readability, we continue to omit the subscript i from all metrics.

Lemma 6.4. Assume the setting of Theorem 4.1, and let δ be the expansion in N ∗. Consider
running the post-processing step of the Extended Two-Ball Algorithm (parameterized by some R)
on distance estimates NH satisfying the following for some ∆ < R

4δ2
:

|NH(u, v)−N (u, v)| ≤ ∆ for all (u, v) ∈ H. (11)

Then, the final estimates N ′(s, t) have multiplicative distortion 1 + O(δ2∆/R) for all node pairs
(s, t) not in H.

Proof of Theorem 6.2. Without loss of generality, assume that R ≤ R̂, where R̂ is from the theorem
statement. (If R > R̂, then we could parameterize the algorithm by R̂ instead.) Then the upper
bound in Lemma 6.3 becomes ∆x , x(d+2)/(2d+2) · O(log2 n).

To complete the proof of Theorem 6.2, notice that all edges (u, v) ∈ H, by definition, satisfy
N ∗(u, v) ≤ R. As N ∗ is non-contracting, this also implies that N (u, v) ≤ R, so the bound (11)
holds with ∆ = ∆R, according to Lemma 6.3. If (s, t) ∈ H (which happens when N ∗(s, t) ≤ R),
then we can apply Lemma 6.3 directly to the edge (s, t), obtaining the bound in terms of x.

Proof of Lemma 6.4. Fix a node pair (s, t) /∈ H, and let x = N (s, t). Because (s, t) /∈ H, and the
estimate N ∗ has expansion at most δ, we get that N (s, t) ≥ 1

δ N ∗(s, t) > R
δ . Let Ht ⊆ H be the

edge set defined in (10), and for any path P , let N (P ) the length of the path P according to the
distance function N .

We claim that the edge set Ht contains an s-t path P with k = ⌈x/(Rδ − 1)⌉ hops and length
N (P ) ≤ N (s, t) + k. Consider the straight line between s and t in R

d. For each i, let pi be the
point at N -distance i · (Rδ − 1) from s on the straight line between s and t. The point pi itself may
not be the location of any node in the social network. However, by near-uniform density (which
guarantees that every unit cube contains at least one node of the network), each point pi has a
node ui at distance at most D(pi, ui) ≤ d. Thus, N (pi, ui) ≤ d/(Csg ksg)

1/d ≤ 1
2 for large enough

n, as Csgksg = Ω(log n).
Let P be the path (s = u0, u1, u2, . . . , uk−1, t = uk). By triangle inequality, all edges (ui, ui+1) ∈

P have N -length within ±1 of the distance D(pi, pi+1) between the corresponding points pi. There-
fore, N (P ) ≤ N (s, t) + k. Moreover, because each edge (u, v) ∈ P satisfies N (u, v) ≤ R

δ , the fact
that N ∗ has expansion at most δ implies that N ∗(u, v) ≤ R. In particular, each edge of P is
in H. Furthermore, all edges (ui, ui+1) ∈ P except possibly the last one satisfy N ∗(ui, ui+1) ≥
N (ui, ui+1) ≥ R

δ − 2. By definition of Ht, it follows that the path P is in Ht, completing the proof
of the claim.

Next, we upper-bound the estimated distance N ′(s, t). Simply using the path P we just exhib-
ited, we see that

N ′(s, t) ≤ NH(P )
(11)

≤ N (P ) + k∆ ≤ N (s, t) + k(∆ + 1),

where the last inequality used the property thatN (P ) ≤ N (s, t)+k. An upper bound of 1+O(kδ/R)
on the expansion now follows by substituting k = O(x δ

R).
It remains to bound the contraction, by proving that each s-t path P in Ht has NH(P ) ≥

N (s, t)−O(x δ2∆/R). By the same argument as in the preceding paragraph, this holds whenever
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P has at most 4x δ2/R hops. We therefore focus on the case when P has at least 4x δ2/R hops.
Each of these hops (u, v), except possibly the last one, has N ∗(u, v) ≥ R

2δ by definition of H. In
turn, by the maximum expansion of N ∗, the actual length of each hop is at least N (u, v) ≥ R

2δ2
, so

that the estimates NH satisfy NH(u, v) ≥ N (u, v) −∆ ≥ R
4δ2

, because we assumed that ∆ ≤ R
4δ2

.
Summing over all (at least) 4x δ2/R hops (u, v), we obtain that NH(P ) ≥ x = N (s, t), so in this
case, the estimate has no contraction at all. This completes the proof of the lower bound.

6.2 The Recursive Two-Ball Algorithm for multiple categories

We show that the Recursive Two-Ball Algorithm from Section 5.1 can be applied verbatim in the
case of multiple categories with Scale-∞ Category-Disjointness, yielding poly-logarithmic additive
error. The analysis only needs to be modified slightly to deal with edges from other categories.
However, our guarantees only apply to node pairs at distances x ≤ n1/(d+1) = Dd/(d+1), where
D = n1/d is the diameter of the metric space.

Theorem 6.5. Consider a multi-category social graph with Csgksg = Ω(log n), with Scale-∞
Category-Disjointness and perfectly uniform density for each category. Assume that the social
distance in each category is defined by the ℓd2 norm, with d > 2. Then, the Recursive Two-Ball
Algorithm runs in polynomial time, and produces distance estimates N ′

i satisfying the following
guarantee with high probability:

For every pair (s, t) of nodes at normalized distance Ni(s, t) ≤ n1/(d+1), we have that

|N ′
i (s, t)−Ni(s, t)| ≤ polylog(n).

For normalized distances larger than n1/(d+1), even under actual randomly permuted categories,
the number of edges from other categories grows prohibitively large for large distances; it seems
unlikely that this obstacle could be easily overcome.

However, we can use the improved estimates from Theorem 6.5 with the post-processing step
from the Extended Two-Ball Algorithm (with R = n1/(d+1)). The resulting algorithm estimates
normalized distances x > R with additive error (x/R) polylog(n). (This follows from the shortest-
path argument encapsulated in Lemma 6.4.)

Proof of Theorem 6.5. The proof of Theorem 5.2 applies almost verbatim. Recall that the Recur-
sive Two-Ball Algorithm counts edges between balls B̃′

s, B̃
′
t around s and t, containing κ = Θ(r̂dx)

nodes each, where r̂x = x1/2+1/d. These balls are calculated with respect to the distances estimated
by the algorithm in earlier stages. The only added difficulty for the analysis in the case of multiple
categories is bounding the additional edges between B̃′

s and B̃′
t arising from categories j 6= i.

Notice that there are κ2 = O(xd+2) ≤ O(x · n) pairs of nodes that could have an edge between
them. Focus on one category j 6= i, and divide node pairs (u, v), u ∈ B̃′

s, v ∈ B̃′
t into buckets of

the form (y, 2y] depending on their distance in category j. By Scale-∞ Category-Disjointness, the

bucket (y, 2y] contains at most O(y
d

n · |B̃′
s| |B̃′

t| + log2 n) = O(yd · x + log2 n) node pairs. Each
of these node pairs gives rise to an edge with probability at most O(y−d), and summing over all
O(log n) buckets (y, 2y] gives us that the expected number of category-j edges between B̃′

s and B̃′
t

is at most O(x log n + log2 n) = O(x log2 n). Using Chernoff Bounds and a union bound over all
categories, with high probability, the total number of edges added by categories j 6= i is at most
O(Kx log2 n).
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Because log2 n = O(a(r̂x)) for sufficiently large poly-logarithmic x, theO(Kx log2 n) = O(x a(r̂x))
additional edges are easily subsumed in the error bound of O(x a(r̂x)) already present in the proof
of Lemma 5.5. For smaller distances x, the only change will be a slightly different poly-logarithmic
base case for a(r̂x).

7 Constant target degree

The analysis so far has relied heavily on the fact that the target degree ksg (essentially the expected
average node degree) was at least logarithmic. Indeed, as discussed in Section 3, the first obvious
problem with constant expected degree is that with non-negligible probability, the social graph Esg

is disconnected. To circumvent this problem, much of the past literature (e.g., [22, 40, 41, 61])
assumes that in addition to the random edges, the network also contains a set Eloc of local edges
deterministically.12 In the literature, Eloc is frequently the d-dimensional grid. We adopt a more
general model in which Eloc can be essentially any set of short edges. A constant target degree
poses two additional challenges beyond mere connectivity:

• There are insufficiently many long-range links to support pruning via counting common neigh-
bors. Even for short distances, the number of common neighbors is only constant, and high-
probability guarantees can therefore not be obtained.13 Therefore, in order to identify short
edges as such, we need to rely on the structure of Eloc.

• To avoid stochastic dependence between multiple stages (such as the Two-Hop Test and Two-
Ball Algorithm), we had previously partitioned Esg randomly into separate sets to be used in
the stages. With constant node degrees, this may risk leaving the Two-Hop Test with only
half of the local edges Eloc. Hence, partitioning the edges may not be viable any more. On
the other hand, if the same edges are used in multiple stages, subtle stochastic dependencies
between the stages are created; our analysis needs to carefully account for these dependencies.

In this section, we explore the changes (in modeling, algorithms and analysis) necessary to deal
with constant target degrees. We focus on the single-category case for the remainder of the section.

Our results apply so long as the set of local edges is “rich enough” in local connectivity.

Definition 7.1 (“Richness” of local edges). 1. An edge set E is a (σ, δ)-spanner if its shortest-
path distance Dsp satisfies the following for all node pairs (u, v):

σ · D(u, v) ≤ Dsp(u, v) ≤ δ · D(u, v)

2. A set E of edges is (b, h)-connected if for every edge (u, v) ∈ E, E contains b edge-disjoint
u-v paths of at most h edges each.

3. Eloc is (b, h)-rich with distortion (σ, δ) if it is a (σ, δ)-spanner and contains a (b, h)-connected
(σ, δ)-spanner E ⊆ Eloc (called its connectivity witness).

12Without loss of generality, Eloc can also include all edges which would be included by the basic small-world model
with probability 1.

13See, e.g., the difficulties faced by [29]. The authors of [29] consider a small-world model with one random neighbor
for each node. They can only make guarantees about pruning away all but a poly-logarithmic number of long-range
edges. The main reason is that even distant nodes will choose the same random neighbor with probability Ω(1/n), and
high-probability bounds therefore only guarantee at most poly-logarithmically many long random edges to remain.
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Remark. As an example, the d-dimensional toroidal grid is (2d− 1, 3)-rich and (for d ≥ 2) (2d, 7)-
rich, both with distortion (1, O(1)).14

Next we present a solution which relies on knowing parameters (b, h) of the local structure’s
richness. In other words, the pruning algorithm needs to know how rich a local structure to expect.
In Section 7.2, we show how to make the pruning algorithm adapt to the available richness under
fairly mild assumptions.

7.1 Basic Approach: Edge-Disjoint Paths

Our solution is based on a more careful design of the pruning stage, where instead of counting
common neighbors, the algorithm counts edge-disjoint paths of bounded length. The pruning stage
is very simple: The algorithm starts with an edge set E = Esg. It prunes each edge (u, v) ∈ E such
that E does not contain b edge-disjoint u-v paths of at most h hops each. This is repeated until no
more edges can be pruned. We call this algorithm the (b, h)-EDP Pruning Algorithm; here, EDP
stands for Edge-Disjoint Paths. See Algorithm 5 for pseudocode.

Algorithm 5 The (b, h)-EDP Pruning Algorithm.

Input. Edge set E.
Repeat

1. Find any (u, v) ∈ E s.t. E does not contain b edge-disjoint u-v paths of at most h hops each.
2. Prune (u, v) from E.

Until no such edges (u, v) remain.

The idea is that this algorithm keeps a sufficiently rich subset of local edges, and prunes all
edges in Esg whose length exceeds some threshold rEDP (defined in Equation (12)). (We call such
edges long edges.) For edges of intermediate length, the algorithm makes no guarantees about
whether they are pruned. Crucially, the pruned graph does not depend on the long edges, in the
following sense: Let Esg, Êsg be two edge sets generated according to the same distribution, such
that the random choices for non-long edges are the same, and the random choices for long edges
are independent. Then, with high probability (over the random process generating all edges of Esg

and Êsg), the remaining set of edges after pruning is the same for both Esg and Êsg. The advantage
of this guarantee is that we do not need to worry about dependencies on the pruned graph, so
long as the post-processing stage only uses long edges. Therefore, we can use the pruned graph
to define the initial estimates N ∗ for normalized distances and then use a suitably modified and
optimized version of the (Recursive) Two-Ball Algorithm which only considers node pairs (s, t) for
which N ∗(s, t) is sufficiently large. We omit the (easy) modifications of the algorithm and analysis.

We start the analysis of the (b, h)-EDP Pruning Algorithm with several observations. First,
notice that the pruned graph T (E) is the maximal (b, h)-connected subset of E, i.e., the union of
all such subsets. It follows that T (E) does not depend on the order in which the edges are pruned.
Second, because T (E) is the maximal (b, h)-connected subset of E, the pruned graph T (E) does

14Fix an edge (u, v). As a base case, for d = 2, it is easy to construct three paths of lengths (1, 3, 3), or four paths
of lengths (1, 3, 5, 7). For each added dimension, there are two additional disjoint paths of length 3, taking one edge
along the new dimension, an edge parallel to (u, v), and another edge in the new dimension. These paths are clearly
disjoint.

33



not depend on the presence or absence of the pruned edges e ∈ E \ T (E). Formally, T (E) = T (E′)
whenever T (E) ⊆ E′ ⊆ E.

To ensure correctness, we can use the (b, h)-EDP Pruning Algorithm only if the local structure
is (b, h)-rich. The performance depends on the parameters (b, h): we get better estimates for
larger b and smaller h. We summarize our results as follows. In a slight abuse of notation, here,
the (Recursive) Two-Ball Algorithm refers to the suitably modified version that works with the
(b, h)-EDP Pruning Algorithm.

Theorem 7.2. Consider a single-category social graph of near-uniform density. Suppose that the
local edge set Eloc is (b, h)-rich with distortion (σ, δ). Let D = Θ(n1/d) be the diameter of the metric
space. For any constant α > 0 (which need not be known to the algorithm), let

rEDP(α) = D(2+α)/b · h · (O(ksg + log1+α n))2h/d = D(2+α)/b · (O(log n))O(h). (12)

Let E′ be the edge set retained by the (b, h)-EDP Pruning Algorithm. Then, with probability at least
1−O(n−α), the following hold.

(a) E′ contains the connectivity witness E′
loc of Eloc and no edges whose length exceeds rEDP(α).

The algorithm makes no guarantees for other edges.

(b) Let Dsp be the shortest-path distance on E′. Then, for all node pairs (u, v), we have that

D(u, v) ≤ βDsp(u, v) ≤ δ · βD(u, v), where β = max( 1σ , rEDP(α)).

In words, the shortest paths distance in E′, scaled up by β, gives no contraction, and expansion
at most δ β.

(c) The Two-Ball Algorithm reconstructs all normalized distances N (u, v) with unit distortion
and additive error rEDP(α)(N γ(u, v) + rEDP(α)), where γ = d+2

2d+2 .

(d) Assume that the metric has perfectly uniform density, and the social distance is the ℓd2 norm
for d ≥ 3 dimensions. Then the Recursive Two-Ball Algorithm reconstructs all normalized
distances with unit distortion and additive error rEDP(α) · polylog(n).

Proof. Most of the proof will focus on the first part of the theorem, i.e., that with high probability,
all edges of length at least rEDP(α) are pruned. The remaining parts then follow analogously to
previous proofs. The proof of the second part is virtually identical to the proof of Lemma 4.3. The
analysis of the (Recursive) Two-Ball Algorithm is also similar to the high-degree case, as long we
we establish the independence between the pruned graph and the long edges: the edges of length
exceeding rEDP(α). The reason that this independence is sufficient is that the (Recursive) Two-Ball
Algorithm only uses long edges, and its analysis can then omit any conditioning on the pruned
graph.

To prove independence formally, let Esg be a random edge set, and E the set of all its non-
long edges (of length at most rEDP(α)). Let Êsg be another random edge set drawn from the
same distribution whose non-long edges are also exactly E, while its long edges are generated
independently from those of Esg. With high probability, the (b, h)-EDP Pruning Algorithm will
prune all long edges from both Esg and Êsg. By the observation preceding Theorem 7.2, this implies
that T (Esg) = T (E) and T (Êsg) = T (E), so that the (b, h)-EDP Pruning Algorithm will produce
the same pruned edge set on both graphs.
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The remainder of the proof focuses on the first part of the theorem, i.e., the fact that with high
probability, all long edges are pruned. The proof involves an intricate Deferred Decisions argument
encapsulated in Lemma 7.3 below, which may be of interest in its own right.

Fix parameters (b, h) and a node pair (s, t), and let r = D(s, t) > rEDP(α). In applying Lemma
7.3, we consider the “universal set” U of all node pairs. Recall that the edge set E = Esg includes
each node pair (u, v) independently with some probability p(u,v). The “feasible subsets” of U
(“feasible paths”) are all simple s-t paths of at most h hops. Any such path must contain at
least one hop of length at least r

h ; the corresponding edge is present with probability at most

q , Csg ksg (h/r)
d. By Lemma 7.3, we obtain that for each c ∈ N,

πs,t , Prob [Esg contains b disjoint feasible paths ] ≤ Prob
[

|E′| > c
]

+ 1
1−cq (cq)

b, (13)

where E′ is the set of all node pairs (u, v) such that Esg ∪ {(u, v)} contains a feasible path.
The edge (s, t) is retained with probability at most πs,t. Once we prove that πs,t = O(n−(2+α)),

we can complete the proof by taking the Union Bound over all n2 node pairs (s, t). So it remains
to upper-bound the right-hand side of (13) by O(n−(2+α)).

We first bound Prob [ |E′| > c ] in (13). Let the random variable ∆ denote the maximum degree
of Esg. Any node pair (u, v) ∈ E′ has the property that Esg contains both an s-u path and a v-t
path of length at most h hops each. Therefore, for fixed endpoints (s, t), there are at most ∆h

candidates for u and at most ∆h candidates for v, and thus at most ∆2h candidates for (u, v). We
have thus proved that |E′| ≤ ∆2h. Now, using Chernoff Bounds to upper-bound ∆, we have:

Prob
[

∆ ≥ Θ(ksg + log n
δ )

]

≤ δ/n2, for all δ > 0.

Therefore Prob [ |E′| ≥ c ] ≤ δ/n2 for c = (Θ(ksg + log n
δ ))

2h.
Substituting this choice of c into (13) and taking δ = n−α, we obtain:

πs,t = O(n−(2+α) + (cq)b).

Finally, we show that πs,t = O(n−(2+α)) by substituting q = Csg ksg (h/r)
d and r ≥ rEDP(α).

Lemma 7.3. Consider a universe set U and a collection F of non-empty subsets of U called
feasible sets. A random set E ⊆ U is obtained by including each element e ∈ U independently with
probability pe. The goal is to bound from above the number of disjoint feasible subsets of E.

Fix q ∈ [0, 1] such that each feasible set contains at least one element e with pe ≤ q. Let E′ be
the set of elements e ∈ U such that F ⊆ E ∪ {e} for some feasible set F . Then, for each b ∈ N,

Prob [E contains b disjoint feasible sets ] ≤ min
c∈N

[

Prob
[

|E′| > c
]

+
1

1− cq
(cq)b

]

. (14)

Proof. An element e ∈ U with pe ≤ q is called a witness. Fix an arbitrary ordering ρ of U in
which all non-witnesses precede all witnesses. For each feasible set F ∈ F , the latest witness in
F according to ρ is called a canonical witness for F . If furthermore F ⊆ E, then w is called
E-important. Since each feasible set F ⊆ E contains an E-important witness, from here on, we
will focus on counting distinct E-important witnesses (rather than disjoint feasible sets F ⊆ E).

We reveal one by one whether elements of U are included in E, in the order of ρ. For each witness
w, let Ew be the actual subset of E that is revealed before w is considered. Let us say that w is
ρ-important if it is a canonical witness for some feasible set F ⊆ Ew∪{w}. Then, w is E-important
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if and only if w ∈ E and w is ρ-important. The latter two events, namely {w is ρ-important} and
{w ∈ E}, are independent.

Let w(t) be tth ρ-important witness chosen in the above revelation process, Xt = 1{w(t)∈E}, and

let N be the total number of ρ-important witnesses. Then, SN ,
∑N

t=1 Xt is the total number of
E-important witnesses. Our goal is to bound SN from above.

We accomplish this goal via Lemma 7.4 below. The sequence {Xt} and the stopping time N
satisfy the conditions in Lemma 7.4 (the upper bound). Specifically, we have established that
E [Xt | N ≥ t] = pw(t) ≤ q, and the event {Xt = 1} is independent of the past history given that
N ≥ t. By Lemma 7.4, we obtain that for all c,

Prob [SN ≥ b ] ≤ Prob [ Binc,q ≥ b ] + Prob [N > c ] , (15)

where Binc,q is a random variable distributed according to the Binomial distribution with c samples
and success probability q. We have Prob [N > c ] ≤ Prob [ |E′| > c ], since each ρ-important witness
is in E′. We complete the proof by noting that

Prob [ Binc,q ≥ b ] =

c
∑

l=b

(

c

l

)

ql(1− q)c−l ≤
c

∑

l=b

(cq)l ≤ 1
1−cq (cq)

b.

Lemma 7.4 below is a technical lemma for analyzing a certain kind of “revelation process,”
in which a sequence of history-dependent 0-1 random variables is revealed, and the length of
this sequence is also a history-dependent random variable. The lemma shows that whenever the
expectation of each individual 0-1 random variable can be bounded, we can also bound the sum:
we relate its distribution to the corresponding Binomial distribution. We will also use this lemma
in the analysis of the adaptive algorithm in Section 7.2.

Lemma 7.4. Consider a stochastic process Xt ∈ {0, 1}, t ∈ N and a stopping time N on a filtration
{Ft : t ∈ N}. Define SN ,

∑N
t=1 Xt. Assume that for some constants p ≤ q we have

E [Xt | N ≥ t, F ] ∈ [p, q] for all t ∈ N, F ∈ Ft−1.

Our goal is to bound the distribution of SN in terms of the Binomial distribution.
Let Bint,p be a random variable distributed according to the Binomial distribution with t samples

and success probability p. Then, for all x, t ∈ N, we have that

Prob [ Bint,p ≥ x ]−Prob [N < t ] ≤ Prob [SN ≥ x ] ≤ Prob [ Bint,q ≥ x ]+Prob [N < t ] . (16)

Proof. It suffices to prove the lower bound in (16); the upper bound is then derived from the lower
bound applied to the stochastic process {1−Xt | t ∈ N}. Let {Yt | t ∈ N} be a family of mutually
independent 0-1 random variables with expectation p, and define

X∗
t =

{

Xt, N ≥ t

Yt, otherwise.

For each t, let St =
∑t

s=1Xs, S
∗
t =

∑t
s=1X

∗
s , and F∗

t = σ(X∗
1 , . . . ,X

∗
t ). For each event F ∈ F∗

t−1,
we have that

E [X∗
t | F,N ≥ t] = E [Xt | F,N ≥ t] ≥ p,

E [X∗
t | F,N < t] = E [Yt | F ] = p,
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which implies that

E [X∗
t | F ] = E [X∗

t | F,N ≥ t] · Prob [N ≥ t | F ] + E [X∗
t | F,N < t] · Prob [N < t | F ] ≥ p.

By induction on t, it follows that Prob [S∗
t ≥ x ] ≥ Prob [ Bint,p ≥ x ] for all x, t ∈ N. Noting that

SN ≥ St = S∗
t whenever N ≥ t, we obtain that

Prob [SN ≥ x ] ≥ Prob [SN ≥ x | N ≥ t ] · Prob [N ≥ t ]

≥ Prob [S∗
t ≥ x | N ≥ t ] · Prob [N ≥ t ]

= Prob [S∗
t ≥ x and N ≥ t ]

≥ Prob [S∗
t ≥ x ]− Prob [N < t ]

≥ Prob [ Bint,p ≥ x ]− Prob [N < t ] .

7.1.1 Running times in Theorem 7.2

While the main thrust in this paper is information-theoretic, the algorithms in Theorem 7.2 are
actually polynomial. Let us discuss how to improve the running times to near-linear, an important
feature for the sizes of networks we are envisioning.

The näıve implementation of the (b, h)-EDP Pruning Algorithm checks every remaining edge
at each iteration, which gives a running time of Õ(n2). We show how to reduce it to to Õ(n).

Lemma 7.5. The (b, h)-EDP Pruning Algorithm can be implemented in Õ(n) time for constant b
and h.

Proof. We maintain a queue of edges to be checked, initially containing all edges of Esg. In each
step, one edge e = (u, v) is removed from the queue and checked for pruning with respect to the
current pruned graph Ecur. If Ecur does not contain the requisite b-tuple of edge-disjoint paths
of length at most h, then e is pruned permanently. Otherwise, the b-tuple of paths provides a
“certificate” for e. Later iterations may remove edges from this certificate; therefore, for each edge
e′ in the certificate, the algorithm stores a pointer that e′ is part of the certificate for e. If e′ is
pruned at any point, then, following the pointers, the algorithm can determine all edges e whose
certificates e′ participates in. Upon pruning e′, all such edges e are then re-enqueued and will
need to be checked again for alternative certificates. Once the queue becomes empty, the algorithm
terminates.

Without loss of generality, the target degree ksg is O(log2 n) (otherwise, the much more efficient
Two-Hop Test from Section 4 would be used). By Chernoff Bounds, all node degrees are O(log2 n)
with high probability. Finding a certificate for a given edge using brute force then takes only
polylog(n) time. Moreover, for each edge e, there can be at most polylog(n) edges whose certificates
e participates in. No new edges are added to the queue if the current edge is not pruned, and at
most polylog(n) edges are added otherwise. Therefore, the running time is Õ(n).

We also comment on the running time of the Two-Ball Algorithm. Applying this algorithm to
a given node pair (u, v) can be computationally expensive when D(u, v) is large (and consequently,
the algorithm needs to consider large balls around u and v). Thus, the Two-Ball Algorithm for a
given node pair can be viewed as a precise but costly distance measurement. Instead of applying it
to every node pair, we could instead use the beacon-based triangulation technique from [43]: here,
one selects O((1ǫ ) (

1
δ )

d) “beacon nodes” uniformly at random, and measures the distance from each
node only to each beacon. This technique achieves distortion (1 + δ)C for all but an ǫ-fraction of
node pairs, where C is the distortion of the Two-Ball test.
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7.2 Adapting to the “optimal” richness

Theorem 7.2 assumes that the (b, h)-richness of the local edge set Eloc is known to the algorithm.
In reality, it is desirable to adapt to the “optimal” richness without knowing it in advance. Here,
the “optimal” richness means the (b, h) pair that minimizes rEDP(α) in Equation (12), subject to the
constraint that Eloc is (b, h)-rich with small distortion. We show that such an automatic adaptation
can be achieved if Eloc is “robust,” in the sense defined below.

Our algorithm, called Adaptive EDP algorithm, proceeds as follows: for a given set H of candi-
date hop counts, we try all (b, h) pairs, h ∈ H, in order of increasing rEDP(α) until the pruned graph
is connected, and focus on the last pair. Without loss of generality, we can start with b equal to
the smallest node degree in Esg. We can use binary search over the (b, h) pairs (in the same order)
to reduce the number of pairs that we need to consider.

While the above algorithm is very simple, the challenge is to prove that it works. That is, we
need to identify a suitable “robustness property” of Eloc and argue that under this property, the
chosen (b, h) pair is optimal. Let Tb,h(E) denote the pruned graph if (b, h)-EDP Pruning Algorithm
is applied to the edge set E. We rely on the following crucial observation:

Lemma 7.6. Consider a single-category social graph with near-uniform density. Suppose that the
local structure Eloc is a (·, δ)-spanner, and moreover, Tb,h(Eloc) contains at least ǫn isolated nodes,
for some parameters b, h, ǫ, δ such that

(2δh)d C2
UDCsg ksg ≤ 1

6 . (17)

Then Tb,h(Esg) is disconnected with high probability.

Remark. Since Csg = Θ(1/ log n) and CUD = Θ(1), condition (17) holds, for large enough n,
whenever ksg, δ and h are constants.

Lemma 7.6 is proved below. It naturally motivates the following definition of “robustness.”

Definition 7.7. A connected graph G = (V,E) is called (ǫ, h)-robust with distortion (σ, δ), for
some ǫ ∈ (0, 1], if the following holds for every b: either G is (b, h)-rich with distortion (σ, δ), or
Tb,h(E) contains at least ǫn isolated nodes.15

In the first case of this definition, we can use the (b, h)-EDP Pruning Algorithm safely, while in
the second case, we will show that Tb,h(Esg) is disconnected with high probability.

Notice that the toroidal grid is (1, h)-robust for any h. We give more examples of robust graphs
in Section 7.2.1.

Theorem 7.8. Consider a single-category social graph with near-uniform density and local struc-
ture Eloc. Suppose that for all h ∈ H, Eloc is (ǫ, h)-robust with distortion (σ, δ) and (17) holds.
Then, when the Adaptive EDP algorithm is run with the candidate set H, it will obtain the guar-
antees of Theorem 7.2 for the optimum pair (b, h) among all h ∈ H.

Proof. The Adaptive EDP algorithm picks the pair (b, h) with optimal rEDP(α) among all pairs
(b, h), h ∈ H such that the pruned graph Tb,h(Esg) is connected. By Lemma 7.6, with high proba-
bility, this is the set of all pairs (b, h), h ∈ H such that the local structure Eloc is (b, h)-rich with
distortion (σ, δ).

15Note that any graph G in Definition 7.7 is a (σ, δ)-spanner. This is because for b = 1 no edges are pruned, and
so G must be (1, h)-rich with distortion (σ, δ), which in turn implies that it is a (σ, δ)-spanner.
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Proof of Lemma 7.6. Fix (b, h) and let T = Tb,h. Let I be the set of ǫn isolated nodes in T (Eloc).
The high-level idea of the proof is as follows. For each node u ∈ I and any edge (u, v) ∈ Eloc,

the local structure Eloc alone does not contain b edge-disjoint paths of length at most h. Thus, for
u not to be isolated in T (Esg), a small neighborhood of u would have to be incident on at least
one random edge. Because there are at least ǫn such isolated nodes u, we will be able to show
that with high probability, at least one of them will end up isolated in T (Esg). This is not trivial
as there is significant dependence between the isolation events for different nodes; we solve this
issue by considering a sufficiently spread-out subset N of I (which limits the dependence), and
then applying Lemma 7.4 to a carefully designed revelation process. We now fill in the remaining
technical details.

For any set S ⊆ V , let E(S) denote the event that Esg contains no random edges incident on
S. We begin by lower-bounding Prob [ E(u) ] for individual nodes u. Fix u and a distance scale
r, and let Ur be the set of nodes v with D(u, v) ∈ (r, 2r]. There are at most CUD · (2r)d nodes
in Ur, and for each node v ∈ Ur, an edge (u, v) is created independently with probability at most
q , Csg ksg r

−d. Thus, the probability that u has no edges to any nodes in Ur is at least

(1− q)|Ur | =
[

(1− q)1/q
]2d CUD·Csg ksg

≥ 4−2d CUD·Csg ksg .

Here, we used the fact that the function f(q) = (1 − q)1/q is decreasing in q, so in particular
f(q) ≥ f(12) =

1
4 for any q ≤ 1

2 .
The event that u has no random edges is now the intersection of the events that u has no

random edges at scale r, with r ranging over powers of 2. Thus, E(u) is the intersection of log(n)

independent events, each with probability at least 4−2d CUD·Csg ksg . Thus, for each node u,

Prob [ E(u) ] ≥ 4−2d CUD·Csg ksg logn = n−2·2d CUD·Csg ksg .

For any node u ∈ I, let Vu be the (h−1)-hop neighborhood of u in Eloc. Note that Vu ⊆ B(u, δh),
so it contains at most CUD (δh)d nodes. We consider events E(Vu) that no node in Vu is incident
on any random edges. The absence of any random edges incident on a subset of nodes V ′ can
only increase the probability that no random edge is incident on a given node u, as there are fewer
remaining candidate edges. In this sense, the events {E(v) | v} are positively correlated, and we
can bound

Prob [ E(Vu) ] = Prob
[
⋂

v∈Vu
E(v)

]

≥ ∏

v∈Vu
Prob [ E(v) ] ≥ n−2·(2δh)d C2

UD·Csg ksg . (18)

By the assumption (17), the above expression is at most p , n−1/3.
We claim that whenever E(Vu) happens, the node u ∈ I is isolated in T (Esg). First, note that

under the event E(Vu), u itself has no incident random edges. Let (u, v) ∈ Eloc be arbitrary. We
show that (u, v) must be pruned. Because no random edges are incident on Vu, no path in T (Esg)
of length at most h starting from u can contain any random edge. Thus, all u-v paths of length at
most h in T (Esg) must be entirely in Eloc. However, (u, v) /∈ T (Eloc), so Eloc does not contain b
edge-disjoint u-v paths of length at most h. Hence, (u, v) /∈ T (Esg).

It remains to show that with high probability, at least one of the events E(Vu), u ∈ I happens.
To limit the dependence between the events under consideration, we focus on a subset N ⊆ I. Let
N ⊆ I be a 2Ch-net for (I,D).16 Because there are at most O((Ch)d) nodes within distance 2Ch

16Recall that an r-net for a metric space (V,D) is a set of points N ⊆ V such that (i) any two points in N are at
distance at least r from one another, and (ii) any point in V is within distance at most r from some point in N . It
is a well-known fact that such sets exist and can be constructed greedily by adding one point at a time.
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of any node u, we obtain that |N | ≥ ǫn/O((Ch)d). Furthermore, because Eloc has distortion at
most C, we get that Vu ⊆ B(u,C(h− 1)), implying that the neighborhoods Vu, u ∈ N are pairwise
disjoint.

The events E(Vu), u ∈ N are still not independent, but their dependence is now more limited,
making them amenable to the technique of Lemma 7.4. We define an ordering for revealing the
presence (or absence) of edges (u, v), along with a revelation of the events E(Vu), u ∈ N . Fix some
ordering ϕ on N , and start with R = N . R throughout will be a set of candidate nodes u such
that the event E(Vu) has not been ruled out. In step t = 1, 2, . . ., if R 6= ∅, let ut ∈ R be the first
remaining node in R according to ϕ. Reveal the presence or absence of all random edges incident
on Vut which have not been revealed yet. Whenever a random edge (v, v′) is revealed to be present
such that v ∈ Vut , v

′ ∈ Vu′ for some u′ ∈ R, remove u′ from R. (In this case, E(Vu′) clearly cannot
happen any more.) Once R is empty, reveal the presence or absence of all remaining random edges.
Clearly, this is an equivalent way of revealing the random edge set Esg.

Consider a particular step t, during which a node ut ∈ R is processed. If no edges incident on
Vut are revealed, the event E(Vut) has happened, and T (Esg) will be disconnected. Conditioned on
processing node ut, the event E(Vut) happens with probability at least p = n−4/9, as the absence
of some edges incident on Vut may already have been revealed earlier, whereas no edges can have
been revealed as present. (Otherwise, ut would have been removed from R.)

Let N be the number of steps t of the revelation process, and let Xt be the indicator variable
of the event E(Vut). Thus, whenever each Vu, u ∈ N has an incident random edge, we have that
∑N

t=1 Xt = 0. It thus suffices to upper-bound the probability that
∑N

t=1 Xt = 0, which can be
accomplished using the lower bound of Lemma 7.4 with x = 0:

Prob
[

∑N
t=1 Xt ≥ 1

]

≥ (1− (1− p)t)− Prob [N < t ] , for all t ∈ N,

or equivalently,

Prob
[

∑N
t=1 Xt = 0

]

≤ (1− p)t +Prob [N < t ] , for all t ∈ N. (19)

We choose t = ǫ
√
n. Then,

(1− p)t ≤ (1− n−4/9)ǫ
√
n ≤ e−ǫn1/18

,

so (1−p)t is exponentially small. Finally, we bound the probability that N < ǫ
√
n. Consider a step

t of the revelation process. With high probability, each node in Vut has at most O(log n) incident
random edges, so that the total number of random edges incident on Vu is at most O(khloc log n).
Thus, with high probability, at most O(khloc log n) other nodes u can be removed from R in any one
step, implying that the process will take at least

|N |
O(khloc log n)

≥ Ω

(

ǫn

(Ch)dkhloc log n

)

≥ ǫ
√
n

steps, for sufficiently large n. In particular, N ≥ t with high probability, completing the proof.

7.2.1 Examples of robust graphs

Recall that the toroidal grid is (1, h)-robust for any h. The grid example extends to graphs that
are edge-transitive on a small scale, in the following sense.
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Definition 7.9. Fix a graph G and a path length h. For any edge e, let He be the induced
subgraph of the h-hop neighborhood of e in G. Two edges e, e′ are locally h-equivalent if there
exists an isomorphism φe,e′ : He → He′ with φ(e) = e′. G is called edge-transitive at scale h if any
two edges are locally h-equivalent.

Notice that the traditional definition of edge-transitive graphs is obtained when h equals the
graph’s diameter.

Let G be an edge-transitive graph at scale h that is a (σ, δ)-spanner for D. It is easy to see
that G is (1, h)-robust with distortion (σ, δ). Indeed, the h-hop neighborhood of a given edge (u, v)
determines whether this edge is (b, h)-connected (i.e., whether there exist b edge-disjoint u-v paths
of at most h hops each). So for every given b, either every edge in G is (b, h)-connected, or every
edge in G is not (b, h)-connected and therefore pruned by the (b, h)-EDP Pruning Algorithm.

We further generalize this example to graphs G with some short edges added. Specifically, pick
an arbitrary node set S ⊆ V such that its (h+1)-neighborhood in G contains at most 1− ǫn nodes,
for some ǫ ∈ (0, 1). Add arbitrary edges (u, v) such that u, v ∈ S and D(u, v) ≤ δ. Note that the
resulting graph G′ is also a (σ, δ)-spanner for D.

We claim that G′ is (ǫ, h)-robust with distortion (σ, δ). Indeed, if G is (b, h)-connected for some
b then G′ is (b, h)-rich with distortion (σ, δ) and connectivity witness G. Otherwise, no edge in
G is (b, h)-connected in G alone. Consider the complement S′ of the (h + 1)-neighborhood of S.
Any edge e in G′ with at least one endpoint in S′ is also present in G, and moreover has the same
h-neighborhood in both graphs. It follows that e is not (b, h)-connected in G′; consequently, it is
pruned by the (b, h)-EDP Pruning Algorithm. Therefore every node in S′ is isolated in Tb,h(G

′).

8 Category Disjointness and Random Permutations

Recall that our motivation for the definition of the Local Category-Disjointness and Scale-R
Category-Disjointness conditions was that they intuitively capture the notion of categories looking
random with respect to one another “locally.” In this section, we confirm the intuition guiding
the definition, by showing that both conditions are satisfied with high probability when the metric
space for each category i is randomly permuted, in the sense that Di(u, v) = D′

i(σi(u), σi(v)) for
some “base metric” D′

i and a random permutation σi on the node set. Accordingly, both conditions
are indeed significantly weaker (in particular, more local) than requiring that metrics be randomly
permuted.

Lemma 8.1. Consider a multi-category social graph with near-uniform density. For each category
i, let D′

i be a “base” metric, and σi a uniformly random permutation of the node set. (The per-
mutations for different metrics are pairwise independent.) For each node pair (u, v), the category-i
distance is Di(u, v) = D′

i(σi(u), σi(v)). Then, with high probability, the Local Category-Disjointness
and Scale-∞ Category-Disjointness conditions are satisfied.17

Proof. Our proof uses an extension of Chernoff Bounds to dependent random variables in which
the randomness comes from a random permutation (Theorem 8.2, stated and proved below).

We begin by proving that the Local Category-Disjointness condition is satisfied. Fix two cate-
gories i 6= i′. Consider balls B, B′ of radii r, r′ = polylog(n) in categories i, i′, respectively. Note
that E [|B ∩B′|] = O((rr′)d/n) < 1.

17Therefore Scale-R Category-Disjointness is satisfied for any R.
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Define a mapping from category i to category j by σ(u) , σ−1
j (σi(u)) : V → V . σ(u) captures

at what point of the metric space Dj a node in the metric space Di ends up. Because σi, σj were
independent uniform permutations on V , so is σ. We will consider nodes u ∈ B, which we capture
by setting αu = 1{u∈B}. Such a node is also in B′ iff σ(u) ∈ B′. Thus, defining Xu = 1{σ(u)∈B′},
we get that |B ∩ B′| = ∑

u∈V αuXu, and by Theorem 8.2, this sum is at most O(log n) with high
probability.

Next, we prove that the Scale-∞ Category-Disjointness condition holds as well. Fix a category
j, distance scale r > 0, and two disjoint sets B,B′ ⊆ V, |B′| ≥ |B| (which will be balls in category
i). Define the random variable f(B,B′) ,

∑

v∈B,v′∈B′ 1{Dj(v,v′)<r} to be the number of node pairs
at category-j distance at most r.

We will prove a high-probability bound on f(B,B′) conditioned on the choice of all permutations
σi for i 6= j. In other words, we consider the probability space induced by the random choice of
σ = σj . We will prove that with high probability,

f(B,B′) = O(rd/n) · |B| |B′|+O(log2 n). (20)

Then the Scale-∞ Category-Disjointness condition follows by taking a Union Bound over all cate-
gories i, j, all pairs of balls B,B′ in category i, and all distinct distances r in category j.

We begin by calculating the expectation of f(B,B′) using linearity of expectation. Notice that

E

[

1{Dj(v,v′)<r}
]

= Prob [Dj(v, v
′) < r ] is the probability that v′ is mapped to a node in a ball

around v of radius r. Since there are Θ(rd) nodes in the ball around v of radius r (wherever v itself

is mapped), we get that E
[

1{Dj(v,v′)<r}
]

= Θ(rd/n), and E [f(B,B′)] = Θ(rd/n) · |B| |B′|.
It remains to prove that f(B,B′) is concentrated around its expectation. Thereto, we will use

Theorem 8.2 twice. First, focus on an arbitrary node v′ and consider f(B, {v′}). We have that
E [f(B, {v′})] = Θ(rd/n) · |B|. We can reveal the randomness of σ by first revealing σ(v′), which
defines a set U = {u ∈ V | D′

j(u, σ(v
′)) < r}. Then,

f(B, {v′}) = ∑

v∈V αv 1{σ(v)∈U},

where αv = 1 if v ∈ B, and αv = 0 otherwise. Thus, Theorem 8.2 implies concentration of
f(B, {v′}) for any v′, and gives us that with high probability, f(B, {v′}) = O(max(log n, r

d

n · |B|))
for all v′. Let N := Θ(max(log n, r

d

n · |B|)) denote this high-probability bound.
Next, our goal is to sum over all v′ ∈ B′. First, reveal σ(v) for all v ∈ B, and condition on this

choice, writing T = {σ(v) | v ∈ B}. Then, σ is defined by a uniformly random permutation from
V \B to V \T , or — equivalently — by a uniformly random permutation σ−1 from V \T to V \B.
For each u′ ∈ V \T , let βu′ =

∑

u∈T 1{D′
j(u,u

′)<r} be the number of nearby locations to which nodes

in B were mapped. Then, we can write

f(B,B′) =
∑

u′∈V \T βu′ 1{σ−1(u′)∈B′} = N ·∑u′∈V \T
βu′

N · 1{σ−1(u′)∈B′}.

Defining αu′ = min(1,
βu′

N ) ∈ [0, 1], we get that with high probability (in the high-probability event
that f(B, {v′}) ≤ N for all v′),

f(B,B′) ≤ N ·∑u′∈V \T αu′ 1{σ−1(u′)∈B′},
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and σ−1 is a uniformly random permutation. By Theorem 8.2, with high probability,

f(B,B′) ≤ N ·O(
∑

u′∈V \T αu′ 1{σ−1(u′)∈B′} + log n)

= O(E
[

f(B,B′)
]

+N log n).

If N = Θ(log n), this bound is obviously O(E [f(B,B′)] + log2 n). Otherwise, N = Θ( r
d

n · |B|), and
rd

n · |B| = Ω(log n), which implies (because rd ≤ n) that |B| = Ω(log n). And because we assumed
that |B′| ≥ |B|, we get that

E
[

f(B,B′)
]

= Θ(rd/n) · |B| |B′| ≥ Θ(rd/n) · |B| log n ≥ Θ(N log n)

so that the N log n term is subsumed in the E [f(B,B′)] term. This completes the proof of the
lemma.

Theorem 8.2 (Chernoff Bounds for permutations). Fix n ∈ N and a subset I ⊆ {1, . . . , n}. Let
σ be a uniformly random permutation of {1, . . . , n}. For each i ∈ {1, . . . , n}, fix αi ∈ [0, 1] and let
Xi = 1{σ(i)∈I}. Then X =

∑n
i=1 αiXi satisfies both conditions from Theorem 3.1:

Prob [ |X − µ| > δµ ] ≤ exp(−µ δ2/3), for any δ > 0

Prob
[

X > (1 + δ)µ′ ] ≤ exp(−µ′ δ2/3), for any δ ∈ (0, 1).

While the result appears standard, we are not aware of a published proof, so for completeness
we provide a self-contained proof. The proof uses Chernoff Bounds for negatively associated random
variables (see, e.g., [17]). We summarize the relevant result in the following theorem:

Theorem 8.3 ([17, pages 34–35 and Problem 3.1]). Let X1, . . . ,Xn be random variables jointly
distributed on [0, 1]n such that

∑

i Xi is a constant. For any subset I ⊆ {1, . . . , n}, write SI ,
∑

i∈I Xi. Assume that the following hold for any such subset:

• Any Xi with i ∈ I is conditionally independent of the Xj with j /∈ I given SI .

• For any coordinate-wise non-decreasing function f : R|I| → R, the conditional expectation
E [f(Xi, i ∈ I) | SI = t] is non-decreasing as a function of t ∈ R.

Then, the random variables X1, . . . ,Xn are said to be negatively associated. In particular, it
follows that X , αiXi satisfies the bounds from Theorem 8.2, for any fixed α1, . . . , αn ∈ [0, 1].

Proof of Theorem 8.2. First note that by definition,
∑n

i=1 Xi = |I| is a constant. Thus, it suffices
to verify that the random variables Xi are negatively associated.

Fix I ⊆ {1, . . . , n}. For each t ∈ N, let Ft be the set of all tuples (xi, i ∈ I) such that xi ∈ {0, 1}
and

∑

i∈I xi = t. Let Ut be the uniform distribution over Ft.
To establish the first property of negative association, simply note that the conditional distri-

bution of (Xi, i ∈ I) given SI = t and any assignment for (Xi, i /∈ I) is Ut, so independence is
established.

For the second property, fix a coordinate-wise non-decreasing function f : R|I| → R. Since the
conditional distribution of (Xi, i ∈ I) given {SI = t} is Ut, we have that

g(t) , E [f(Xi, i ∈ I) | SI = t] = E~x∼Ut
[f(~x)] .

We need to show that g(t+ 1) ≥ g(t). We couple selections according to Ut and Ut+1 as follows.

43



• Pick ~x ∼ Ut.
• Pick j uniformly at random from {i ∈ I | xi = 0}.
• Set yj = 1, and yi = xi for all j 6= i.

Notice that ~y ∼ Ut+1. By monotonicity of f , we have that f(~y) ≥ f(~x). It follows that

g(t+ 1) = E~y∼Ut+1
[f(~y)] ≥ E~x∼Ut [f(~x)] = g(t).

The claim now follows from applying the result for negatively associated random variables.

9 Conclusions

We have shown that, under standard assumptions about generative models for social networks,
it is possible to reconstruct social spaces with small distortion from a multiplex social network;
indeed, it is possible to do so in near-linear time. The edges do not need to be labeled with
their “origin,” so long as the categories are “locally sufficiently uncorrelated.” Under increasingly
stronger assumptions, the distortion can be improved from constant, to 1+o(1), to poly-logarithmic
additive error. While these results rely on having poly-logarithmic node degree, we also show that
small polynomial distortion can be obtained in the constant-degree regime, so long as the social
network contains a sufficiently rich local structure. This is possible even if the algorithm only
possesses very rudimentary knowledge about the local structure.

While our results can be interpreted as a proof of concept — it is possible in principle to
efficiently separate the different dimensions of social interactions and identify similarities between
individuals — they set the stage for a number of possible extensions.

1. There are several specific technical open questions within our model, the most immediate of
which is extending the multi-category results to the constant-degree regime.

2. We assumed that the algorithm had knowledge of various input parameters (the number of
categories, the number of dimensions, etc.), whereas ideally, the algorithm should be able to
learn these parameters from input data as well.

3. For our multi-category algorithms to work, we required a “category disjointness” condition,
essentially stating that locally, metrics look uncorrelated with respect to each other. It seems
unlikely that one could reconstruct metrics if categories were extremely similar, but it is
an interesting open question how much our current condition could be weakened while still
allowing for provable reconstruction. In particular, we conjecture that future work will be
able to deal with a few localized violations of the category disjointness condition, so that they
lead to incorrect distance estimates only for the affected nodes, without propagating to other
parts of the metric space.

4. Our model so far also assumes that the node degrees are essentially uniform across nodes,
which will usually not hold in practice. A corresponding extension for the single-category case
might not be too difficult, but inferring the individual node degrees for multiple categories
appears more difficult.

5. Finally, and perhaps most importantly, one may want to consider “host spaces” other than
Euclidean space with near uniform density, such as ultrametrics, more general “group struc-
tures” (e.g., [41]), or point sets with significantly non-uniform density. It would be particularly

44



interesting if an algorithm did not need to know the structure of the host space in advance,
and instead could infer it from the data.

In practice, there will usually be additional information available beyond the edges. This
may include information about nodes’ locations, interests, or demographics (as collected by social
networking sites); partial interaction statistics along the edges; or perhaps a social network that
has been previously embedded in a social distance space, but is now being extended by a few new
nodes. In either case, it is an interesting question how to formalize the benefits that can be obtained
with such side information. In particular, time stamps on edges introduce a temporal dimension
into the problem: now, instead of fixed node locations in the social space, one could ask about
nodes’ trajectories over time.
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