
ar
X

iv
:1

31
0.

84
18

v3
  [

cs
.L

G
] 

 1
8 

M
ay

 2
01

4

A functional approximation based distributed learning
algorithm

Dhruv Mahajan
Microsoft Research

Bangalore, India
dhrumaha@microsoft.com

S. Sathiya Keerthi
CISL

Microsoft, Mountain View
keerthi@microsoft.com

S. Sundararajan
Microsoft Research

Bangalore, India
ssrajan@microsoft.com

Léon Bottou
Microsoft Research

New York, USA
leonbo@microsoft.com

ABSTRACT
Scalable machine learning over big data stored on a cluster of
commodity machines with significant communication costs
has become important in recent years. In this paper we give
a novel approach to the distributed training of linear classi-
fiers (involving smooth losses and L2 regularization) that is
designed to reduce communication costs. At each iteration,
the nodes minimize approximate objective functions; then
the resulting minimizers are combined to form a descent di-
rection to move. Our approach gives a lot of freedom in
the formation of the approximate objective function as well
as in the choice of methods to solve them. The method is
shown to have O(log(1/ǫ)) time convergence. The method
can be viewed as an iterative parameter mixing method.
A special instantiation yields a parallel stochastic gradient
descent method with strong convergence. When communi-
cation times between nodes are large, our method is much
faster than the SQM method [7], which computes function
and gradient values in a distributed fashion.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
In recent years, machine learning over big data has be-

come an important problem, not only in web related appli-
cations, but also more commonly in other applications, e.g.,
in the data mining over huge amounts of user logs. The
data in such applications are usually collected and stored in
a decentralized fashion over a cluster of commodity machines
(nodes) where communication times between nodes is signif-
icantly large. In such a setting it is natural for the examples
to be partitioned over the nodes. The development of effi-
cient distributed machine learning algorithms that minimize
communication between nodes is an important problem.

In this paper we consider the distributed batch training of
linear classifiers in which: (a) both, the number of examples
and the number of features are large; (b) the data matrix is
sparse; (c) the examples are partitioned over the nodes; (d)

the loss function is convex and differentiable; and, (e) the
L2 regularizer is employed. This problem involves the large
scale unconstrained minimization of a convex, differentiable
objective function f(w) where w is the weight vector. The
minimization is usually performed using an iterative descent
method in which an iteration starts from a point wr, com-
putes a direction dr that satisfies

sufficient angle of descent: −gr, dr ≤ θ (1)

where gr = g(wr), g(w) = ∇f(w), a, b is the angle between
vectors a and b, and 0 ≤ θ < π/2, and then performs a line
search along the direction dr to find the next point, wr+1 =
wr + tdr. Let w⋆ = argminw f(w). A key side contribution
of this paper is the proof that, when f is convex and satisfies
some additional weak assumptions, the method has global
linear rate of convergence (glrc)1 and so it finds a point wr

satisfying f(wr)− f(w⋆) ≤ ǫ in O(log(1/ǫ)) iterations. The
main theme of this paper is that the flexibility offered by this
method with good convergence properties allows us to build
a class of useful distributed learning methods.

Take one of the most effective distributed methods, viz.,
SQM (Statistical Query Model) [7, 1], which is a batch,
gradient-based descent method. The gradient is computed
in a distributed way with each node computing the gradi-
ent component corresponding to its set of examples. This
is followed by an aggregation of the components. We are
interested in systems in which the communication time be-
tween nodes is large relative to the computation time in each
node.2 In such a scenario, it is useful to ask: Q1. Can we
do more computation in each node so that the number of
communication passes is decreased, thus reducing the total
computing time?

There have been some efforts in the literature to reduce
the amount of communication. In these methods, the cur-
rent wr is first passed on to all the nodes. Then, each node p
forms an approximation f̃p of f using only its examples, fol-
lowed by several optimization iterations (local passes over

its examples) to decrease f̃p and reach a point wp. The

1We say a method has glrc if ∃ 0 < δ < 1 such that
(f(wr+1)− f(w⋆)) ≤ δ(f(wr)− f(w⋆)) ∀r.
2This is the case when feature dimension is huge. Many
applications gain performance when the feature space is ex-
panded, say, via feature combinations, explicit expansion of
nonlinear kernels etc.
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wp ∀p are averaged to form the next iterate wr+1. One can
stop after just one major iteration (going from r = 0 to
r = 1); such a method is referred to as parameter mixing
(PM) [17]. Alternatively, one can do many major iterations;
such a method is referred to as iterative parameter mixing
(IPM) [9]. Convergence theory for such methods is inade-
quate [17, 18], which prompts us to ask: Q2. Is it possible
to devise an IPM method that produces {wr} → w⋆?

For large scale learning on a single machine, it is now well
established that example-wise methods3 such as stochastic
gradient descent (SGD) and its variations [3, 11] and dual
coordinate ascent [10] are much faster than batch gradient-
based methods. However, example-wise methods are inher-
ently sequential. If one employs a method such as SGD
as the local optimizer for f̃p in PM/IPM, the result is, in
essence, a parallel SGD method. However, convergence the-
ory for such a method is limited, even that requiring a com-
plicated analysis [26]. Thus, we ask: Q3. Can we form a
parallel SGD method with strong convergence properties?

We make a novel and simple use of the iterative descent
method mentioned at the beginning of this section to design
a distributed algorithm that answers Q1-Q3 positively. The
main idea is to use distributed computation for generating
a good search direction dr and not just for forming the gra-
dient as in SQM. At iteration r, let us say each node p has
the current iterate wr and the gradient gr. This informa-
tion can be used together with the examples in the node to
form a function f̂p(·) that approximates f(·) and satisfies

∇f̂p(w
r) = gr. One simple and effective suggestion is:

f̂p(w) = fp(w) + (gr −∇fp(w
r)) · (w −wr) (2)

where fp is the part of f that does not depend on examples
outside node p. In section 3 we give other suggestions for
forming f̂p. Now f̂p can be optimized within node p using
any method M which has glrc, e.g., Trust region method,
L-BFGS, etc. There is no need to optimize f̂p fully. We
show (see section 3) that, in a constant number of local
passes over examples in node p, an approximate minimizer
wp of f̂p can be found such that the direction dp = wp −wr

satisfies the sufficient angle of descent condition, (1). The set
of directions generated in the nodes, {dp} can be averaged
to form the overall direction dr for iteration r. Note that
dr also satisfies (1). The result is an overall distributed
method that finds a point w satisfying f(w)− f(w⋆) ≤ ǫ in
O(log(1/ǫ)) time. This answers Q2.

The method also reduces the number of distributed passes
over the examples compared with SQM, thus also answering
Q1. The intuition here is that, if each f̂p is a good ap-
proximation of f , then dr will be a good global direction for
minimizing f at wr, and so the method will move towards w⋆

much faster than SQM. As one special instantiation of our
distributed method, we can use, for the local optimization
method M, any variation of SGD with glrc (in expectation),
e.g., the one in Johnson & Zhang [11]. For this case, in a
related work we showed that our method has O(log(1/ǫ))
time convergence in a probabilistic sense [15]. The result
is a strongly convergent parallel SGD method, which an-
swers Q3. An interesting side observation is that, the sin-
gle machine version of this instantiation is very close to the
variance-reducing SGD method in Johnson & Zhang [11].

In summary, the paper makes the following contributions.

3These methods update w after scanning each example.

1. For convex f we establish glrc for a general iterative
descent method.

2. We propose a distributed learning algorithm that: (a)
converges in O(log(1/ǫ)) time, thus leading to an IPM
method with strong convergence; (b) is more efficient
than SQM when communication times are high; and
(c) flexible in terms of the local optimization method
M that can be used in the nodes.

3. We give an effective parallelization of SGD with good
theoretical support and make connections with a re-
cently proposed variance-reducing SGD method.

Experiments validate our theory as well as show the benefits
of our method for large dimensional datasets where commu-
nication is the bottleneck. We conclude with a discussion on
unexplored possibilities for extending our distributed learn-
ing method in section 5.

2. BASIC DESCENT METHOD
Let f ∈ C1, the class of continuously differentiable func-

tions4, f be convex, and the gradient g satisfy the following
assumptions.

A1. g is Lipschitz continuous, i.e., ∃ L > 0 such that
‖g(w)− g(w̃)‖ ≤ L‖w − w̃‖ ∀ w, w̃.

A2. ∃ σ > 0 such that (g(w)− g(w̃)) · (w − w̃) ≥ σ‖w −
w̃‖2 ∀ w, w̃.

A1 and A2 are essentially second order conditions: if f
happens to be twice continuously differentiable, then L and
σ can be viewed as upper and lower bounds on the eigenval-
ues of the Hessian of f . A convex function f is said to be
σ- strongly convex if f(w) − σ

2
‖w‖2 is convex. In machine

learning, all convex risk functionals in C1 having the L2 reg-
ularization term, λ

2
‖w‖2 are σ- strongly convex with σ = λ.

It can be shown [22] that, if f is σ-strongly convex, then f
satisfies assumption A2.

Let fr = f(wr), gr = g(wr) and wr+1 = wr + tdr. Con-
sider the following standard line search conditions.

Armijo: fr+1 ≤ fr + αgr · (wr+1 − wr) (3)

Wolfe: gr+1 · dr ≥ βgr · dr (4)

where 0 < α < β < 1.

Algorithm 1: Descent method for f

Choose w0;
for r = 0, 1 . . . do

1. Exit if gr = 0;
2. Choose a direction dr satisfying (1);
3. Do line search to choose t > 0 so that
wr+1 = wr + tdr satisfies the Armijo-Wolfe
conditions (3) and (4);

end

Let us now consider the general descent method in Algo-
rithm 1 for minimizing f . The following result shows that

4It would be interesting future work to extend all the theory
developed in this paper to non-differentiable convex func-
tions, using sub-gradients.



the algorithm is well-posed. A proof is given in the appendix
B.

Lemma 1. Suppose gr · dr < 0. Then {t : (3) and (4)
hold for wr+1 = wr + tdr} = [tβ , tα], where 0 < tβ < tα,
and tβ , tα are the unique roots of

g(wr + tβd
r) · dr = βgr · dr, (5)

f(wr + tαd
r) = fr + tααg

r · dr, tα > 0. (6)

Theorem 2. Let w⋆ = argminw f(w) and f⋆ = f(w⋆).5

Then {wr} → w⋆. Also, we have glrc, i.e., ∃ δ satisfying
0 < δ < 1 such that (fr+1 − f⋆) ≤ δ (fr − f⋆) ∀ r ≥ 0, and,

fr −f⋆ ≤ ǫ is reached after at most log((f0−f⋆)/ǫ)
log(1/δ)

iterations.

An upper bound on δ is (1− 2α(1− β) σ2

L2 cos2 θ).
A proof of Theorem 2 is given in the appendix B. If one is

interested only in proving convergence, it is easy to establish
under the assumptions made; such theory goes back to the
classical works of Wolfe [24, 25]. But proving glrc is harder.
There exist proofs for special cases such as the gradient de-
scent method [5]. The glrc result in Wang & Lin [23] is only
applicable to descent methods that are“close” (see equations
(7) and (8) in [23]) to the gradient descent method. Though
Theorem 2 is not entirely surprising, as far as we know, such
a result does not exist in the literature.

It is important to note that the rate of convergence indi-
cated by the upper bound on δ given in Theorem 2 is pes-
simistic since it is given for a very general descent algorithm
that includes plain batch gradient descent which is known to
have a slow rate of convergence. Depending on the method
used for choosing dr the actual rate of convergence can be a
lot better. For example, we observe very good rates for our
distributed method; see section 4.

3. DISTRIBUTED TRAINING
Let {xi, yi} be the training set associated with a binary

classification problem (yi ∈ {1,−1}). Consider a linear clas-
sification model, y = sgn(wTx). Let l(w ·xi, yi) be a contin-
uously differentiable loss function that has Lipschitz contin-
uous gradient. This allows us to consider loss functions such
as least squares, logistic loss and squared hinge loss. Hinge
loss is not covered by our theory since it is non-differentiable.

Suppose the data is distributed in P nodes. Let: Ip be
the set of indices i such that (xi, yi) sits in the p-th node;
Lp(w) =

∑
i∈Ip

l(w; xi, yi) be the total loss associated with

node p; and, L(w) =
∑

p Lp(w) be the total loss over all
nodes. Our aim is to to minimize the regularized risk func-
tional f(w) given by

f(w) =
λ

2
‖w‖2 + L(w) =

λ

2
‖w‖2 +

∑

p

Lp(w) (7)

where λ > 0 is the regularization constant. It is easy to
check that g = ∇f is Lipschitz continuous.

Our distributed method is based on the descent method
in Algorithm 1. We use a master-slave architecture.6 Let
the examples be partitioned over P slave nodes. Distributed
computing is used to compute the gradient gr as well as the
direction dr. In the r-th iteration, let us say that the master
has the current wr and gradient gr. One can communicate
these to all P (slave) nodes. The direction dr is formed as

5Assumption A2 implies that w⋆ is unique.
6An AllReduce arrangement of nodes [1] may also be used.

follows. Each node p constructs an approximation of f(w)
using only information that is available in that node, call it
f̂p(w), and (approximately) optimizes it (starting from wr)
to get the point wp. Let dp = wp − wr. Then dr is chosen
to be any convex combination of dp ∀p.

Our method offers great flexibility in choosing f̂p and the

method used to optimize it. We only require f̂p to satisfy
the following.

A3. f̂p is σ-strongly convex, has Lipschitz continuous gradi-

ent and satisfies gradient consistency at wr: ∇f̂p(w
r) = gr.

Below we give ways of forming f̂p. The σ-strongly convex
condition is easily taken care of by making sure that the L2

regularizer is a part of f̂p. This condition implies that

f̂p(wp) ≥ f̂p(w
r)+∇f̂p(w

r) · (wp −w
r)+

σ

2
‖wp−w

r‖2 (8)

The gradient consistency condition is motivated by the need
to satisfy the angle condition (1). Since wp is obtained

by starting from wr and optimizing f̂p, it is reasonable to

assume that f̂p(wp) < f̂p(w
r). Using these in (8) gives

−gr · dp > 0. Since dr is a convex combination of the dp
it follows that −gr · dr > 0. Later we will formalize this to
yield (1) precisely.

A natural way of choosing the approximating functional
f̂p is

f̂p(w) =
λ

2
‖w‖2 + Lp(w) + L̂p(w) (9)

where L̂p(w) is an approximation of L(w)−Lp(w) =
∑

q 6=p

Lq(w), but one that does not explicitly require any exam-

ples outside node p. To satisfy A3 we only need L̂p to have
Lipschitz continuous gradient; all other conditions are di-
rectly satisfied. A simple instance of L̂p is a linear function
constructed using the gradient at wr:

L̂p(w) = (gr − λwr −∇Lp(w
r)) · (w −wr) (10)

(The zeroth order term needed to get f(wr) = f̂(wr) is
omitted because it is a constant that plays no role in the
optimization.) There are other ways of forming an approx-

imation L̂p(w). For example, one could add a second order
term, 1

2
(w − wr) ·H(w − wr) to the approximation in (10)

where H is a positive semi-definite matrix; for H we can
use a diagonal approximation or keep a limited history of
gradients and form a BFGS approximation of L− Lp.

Convergence Theory. The distributed method described
above is an instance of Algorithm 1 and so Theorem 2 can
be used. However, obtaining dr requires the determination
of the wp via minimizing f̂p. As already mentioned, it is not

necessary for wp to be the minimizer of f̂p; we only need to
find wp such that the direction dp = wp − wr satisfies (1).
The angle θ needs to be chosen right. Let us discuss this
first. Let ŵ⋆

p be the minimizer of f̂p. It can be shown (see
appendix B) that ŵ⋆

p − wr,−gr ≤ cos−1 σ
L
. To allow for

wp being an approximation of ŵ⋆
p, we choose θ such that

π

2
> θ > cos−1 σ

L
(11)

The following result shows that if an optimizer with glrc
is used to minimize f̂p, then, only a constant number of
iterations is needed to satisfy the sufficient angle of descent



condition.

Lemma 3. Assume gr 6= 0. Suppose we minimize f̂p
using an optimizer M that starts from v0 = wr and gen-
erates a sequence {vk} having glrc, i.e., f̂p(v

k+1) − f̂⋆
p ≤

δ(f̂p(v
k) − f̂⋆

p ), where f̂⋆
p = f̂p(ŵ

⋆
p). Then, there exists k̂

(which depends only on σ and L) such that −gr, vk − wr ≤

θ ∀k ≥ k̂.
Lemma 3 can be combined with Theorem 2 to yield the

following convergence theorem.

Theorem 4. Suppose θ satisfies (11), M is as in Lemma

3 and, in each iteration r and for each p, k̂ or more iterations
of M are applied to minimize f̂p (starting from wr) and get
wp. Then the distributed method converges to a point w
satisfying f(w)− f(w⋆) ≤ ǫ in O(log(1/ǫ)) time.

Proofs of Lemma 3 and Theorem 4 are given in appendix
B.

Practical implementation. Going with the practice
in numerical optimization, we replace (1) by the condition,
−gr · dr > 0 and use α = 10−4, β = 0.9 in (3) and (4). We
terminate Algorithm 1 when ‖gr‖ ≤ ǫg‖g

0‖ is satisfied at
some r. Let us take line search next. On w = wr + tdr,
the loss has the form l(zi + tei, yi) where zi = wr · xi and
ei = dr · xi. Once we have computed zi ∀i and ei ∀i, the
distributed computation of f(wr + tdr) and its derivative
with respect to t is cheap as it does not involve any compu-
tation involving the data, {xi}. Thus many t values can be
explored cheaply. Since dr is determined by approximate op-
timization, t = 1 is expected to give a decent starting point.
We first identify an interval [t1, t2] ⊂ [tβ, tα] (see Lemma 1)
by starting from t = 1 and doing forward and backward step-
ping. Then we check if t1 or t2 is the minimizer of f(wr+tdr)
on [t1, t2]; if not, we do several bracketing steps in (t1, t2)
to locate the minimizer approximately. Finally, when using
method M, we terminate it after a fixed number of steps,
k̂. Algorithm 2 gives all the steps of the distributed method
while also mentioning the distributed communications and
computations involved.

Choices for M. There are many good methods hav-
ing (deterministic) glrc: L-BFGS, TRON [13], Primal coor-
dinate descent [6], etc. One could also use methods with
glrc in the expectation sense (in which case, convergence in
Theorem 4 should also be interpreted in some probabilis-
tic sense; see our related work [15] for details). Recently
suggested variants of SGD [12, 11] are methods with such
convergence. This particular instantiation of our distributed
method yields a parallel SGD method with strong conver-
gence properties, which, as already indicated in section 1
(see Q3), fills a gap in the literature. In section 4 we con-
duct experiments using TRON and the SVRG method in
Johnson & Zhang (2013).

Connection with SVRG. The connection of our method
with the recently proposed SVRGmethod [11] is interesting.

To show this, let us take the f̂p in (10). Let np = |Ip|
be the number of examples in node p. Define ψi(w) =
npl(w · xi, yi) +

λ
2
‖w‖2. It is easy to check that

∇f̂p(w) =
1

np

∑

i∈Ip

(∇ψi(w)−∇ψi(w
r) + gr) (12)

Algorithm 2: Distributed method for minimizing f
com: communication; cmp: = computation; agg: ag-
gregation

Choose w0;
for r = 0, 1 . . . do

1. Compute gr (com: wr; cmp: Two passes over
data; agg: gr); By-product: {zi = wr · xi};

2. Exit if ‖gr‖ ≤ ǫg‖g
0‖;

3. for p = 1, . . . , P (in parallel) do
4. Set v0 = wr;

5. for k = 0, 1, . . . , k̂ do
6. Find vk+1 using one iteration of M;

end

7. Set wp = vk̂+1;

end
8. Set dr as any convex combination of {wp} (agg:
wp);
9. Compute {ei = dr · xi} (comm: dr; cmp: One
pass over data);
10. Do line search to find t (for each t: comm: t;
cmp: l and ∂l/∂t agg: f(wr + tdr) and its derivative
wrt t);

11. Set wr+1 = wr + tdr;

end

Thus, plain SGD updates applied to f̂p has the form

w = w − η(∇ψi(w)−∇ψi(w
r) + gr) (13)

which is precisely the update in SVRG. In particular, the
single node (P = 1) implementation of our method using

plain SGD updates for optimizing f̂p is very close to the
SVRG method.7 While Johnson & Zhang [11] motivate the
update in terms of variance reduction, we derive it from a
functional approximation viewpoint.

Computation-Communication tradeoff. Compared
to the SQM method (see section 1), our method does a lot

more computation (optimize f̂p) in each node. On the other
hand our method reaches a good solution using a much
smaller number of outer iterations. Clearly, our method
will be attractive for problems with high communication
costs, e.g., problems with a large feature dimension. For
a given distributed computing environment and specific im-
plementation choices, it is easy to do a rough analysis to un-
derstand the conditions in which our method will be more
efficient than SQM. Consider a distributed grid of nodes
in an AllReduce tree. Let us use TRON for implement-
ing SQM and SVRG for M in our method. Assuming that
T outer
SVRG < 3.2T outer

SQM (where T outer
SVRG and T outer

SQM are the number
of outer iterations required by SQM and our method with
SVRG), we can do a rough analysis of the costs of SQM
and our method (see appendix A for details) to show that
our method will be faster when the following condition is
satisfied.

nz

m
≪

γP log2 P

2

T outer
SQM

k̂
(14)

7Note the subtle point that applying SVRG method on f̂p is
different from doing (13), which corresponds to plain SGD.
It is the former that assures glrc (in expectation).



where: nz is the number of nonzero elements in the data,
i.e., {xi}; m is the feature dimension; γ is the relative cost
of communication to computation (e.g. 100−1000); P is the

number of nodes; and k̂ is the number of inner iterations of
our method.

4. EXPERIMENTS
In this section, we demonstrate the effectiveness of our

method on large dimensional data sets. We first discuss
our experimental setup. We then show results to validate
the theory proposed in the paper. Finally, we compare our
approach with existing distributed machine learning algo-
rithms and clearly demonstrate scenarios under which our
method performs better.

4.1 Experimental Setup
We run our experiments on a Hadoop cluster. Since iter-

ations in traditional MapReduce are slower (because of job
setup and disk access costs), as in Agarwal et al. [1], we
build an AllReduce binary tree between the mappers8. The
communication bandwidth is 1Gbps (gigabits per sec). For
functional approximation we use (9) and (10).

Table 1: Datasets
Dataset Examples Features Non-zeros
kdd2010 8.41M 20.21M 0.31B

url 1.91M 3.23M 0.22B

Data Sets. We consider two well known large dimensional
datasets: kdd2010 and url. Table 3 shows the number of ex-
amples, features and nonzero feature values. We use these
datasets mainly to illustrate the validity of theory, and its
utility to distributed machine learning.

Methods for Comparison. We use the squared-hinge loss
function with l2-regularization for all the experiments. We
compare the following methods.

SQM: We use the Trust Region Newton method (TRON)
proposed in Lin et al. [13] and, do the gradient and Hessian
computations in a parallel manner. We initialize the weight
vector to zero and set all the parameters (except regularizer
λ) to the values recommended in Lin et al. [13].

HYBRID: We find a local weight vector per node by min-
imizing the local objective function (based only on the ex-
amples in that node) using one epoch of SGD [3]. (The
optimal step size is chosen by running SGD on a subset of
data.) We then average the weights from all the nodes and
use the averaged weight vector to warm start SQM. Note
that this method is same as that proposed in Agarwal et
al. [1] (except that they use the L-BFGS method instead of
TRON).

FS-k: Our algorithm with the SVRG method [11] used for
solving the local optimization in every iteration. As sug-
gested in [11], we recalculate the batch gradient after every
5 epochs (referred as outer iteration in the local optimiza-
tion context). We run k outer iterations of SVRG and show
results for k = 8 and 16.

8Note that we do not use the pipelined version and hence we
incur an extra multiplicative logP cost in communication.

FT-k: Our algorithm with TRON [13] used for solving the
local optimization. We stop the inner optimization after do-
ing k Hessian-vector multiplications. The results are shown
for k = 50 and 100 for kdd2010 and k = 25 and 50 for url.

Evaluation Criteria. We use the Area under Precision-
Recall Curve (AUPRC) and relative difference to the opti-
mal function value as the evaluation criteria. The difference
is calculated as (f − f∗)/f∗ in log scale, where f∗ is the op-
timal function value. We obtained f∗ by running the SQM
algorithm for large number of iterations.

4.2 Results

Comparison with ADMM. The Alternating Direction
Method of Multipliers (ADMM) [4], like our method, solves
approximate problems in the nodes and iteratively reaches
the full batch solution. ADMM has a quadratic proximal
term called augmented Lagrangian with penalty parameter
ρ. Recently, Deng & Yin [8] proved the linear rate of con-
vergence for ADMM under the assumptions A1 and A2 on
ADMM functions. As a result, their analysis also hold for
the objective function in (7). They also give an analytical
formula to set ρ in order to get the best theoretical linear
rate constant. We consider the following two versions of
ADMM.

ADMM-R We use the ρ value given by the analytical for-
mula in [8].

ADMM-Adap We start with the value of ρ in ADMM-R
and select the best ρ in its neighborhood by running ADMM
for 10 iterations and looking at the objective function value.
However, this step takes additional time and causes late
start of ADMM in the plot (Figure 1).

For both the versions, we use TRON [13] for solving the
local optimization. Figure 1 gives a comparison of ADMM
with our method FT-k on url with 100 nodes. The horizon-
tal axis is the number of communication passes. For all the
methods we use TRON iterations, k = 100. Note that the
recommended value of ρ in Deng and Yin [8] makes ADMM
an order of magnitude slower than our method. We found
that the ρ found by ADMM-R was more than 104 times the
best ρ value found by ADMM-Adap. Even near this best
value, the performance of ADMM was sensitive to the vari-
ation of ρ. We also observed that once ADMM-Adap finds
the best ρ, it works extremely well. However, a significant
amount of time is spent on finding this value, thus making
the overall approach slow. Similar observations were made
on kdd2010 and other parameter settings. Moreover, the
value of optimal ρ is data or problem dependent. Hence, we
do not include ADMM further in our study.

Apart from ADMM, Bertsekas and Tsitsiklis [2] discuss
several other classic optimization methods for separable con-
vex programming, based on proximal and Augmented La-
grangian ideas. ADMM represents the best of these meth-
ods. Also, Gauss-Seidel and Jacobi methods given there are
related to feature partitioning, which is not the main theme
of this paper. Therefore we will not mention these methods
any further.
Linear Convergence. To validate linear convergence, we
study the variation of (f − f∗)/f∗ (in log scale) as a func-
tion of the number of communication passes9. For our al-
gorithms (FS-k and FT-k ), the number of communication

9Note that we do not use the number of outer iterations as
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Figure 1: Plot showing comparison with ADMM for
url with 100 nodes. x-axis is the number of commu-
nication passes and y-axis is the relative decrease in
function value in log10 scale.
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0 500 1000

−2

−1

0

1

Communication passes

D
iff

er
en

ce
 to

 O
pt

. F
un

. V
al

ue

 

 

FT−25
FT−50
SQM
Hybrid

(c) url - 6 nodes
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Figure 2: Plots showing linear convergence of our
method using TRON as the local optimizer. x-axis
is the number of communication passes and y-axis is
the relative decrease in function value in log10 scale.

passes is just twice the number of outer iterations. From
Figure 2, we make the following observations for FT-k on
the kdd2010 dataset: (a) the rate of convergence is linear for
both P = 25 and 100, (b) it is steeper when P = 25. This
steeper behavior for P = 25 is expected because the func-
tional approximation in each node becomes better as the
number of nodes decreases. Note that, almost always, the
rate of convergence is better in the early stages of the opti-
mization and becomes steady in the end stages. We observed
similar linear convergence behavior for FS-k also. Note that
the slope is dependent on k and remains nearly same when k
is sufficiently large and the number of examples per node is
small (see for example, the kdd2010 dataset when P = 100).

x-axis because it has different meaning for different meth-
ods. For example for SQM and HYBRID each outer it-
eration requires different number of passes (Hessian-vector
computations) over data and hence different communication
also. However, our class of methods requires fixed number
of passes over data as well as only 2 communication passes
per outer iteration.
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(c) 25 nodes
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Figure 3: Plots showing overall linear convergence of
our method and comparisons with SQM and HYBRID
for kdd2010. x-axis is time (in seconds). Results are
shown using with TRON and SVRG for local opti-
mization.

Similar observations hold for the URL dataset as well.

Time Taken. Figure 3 shows the timing results. We ob-
serve that there is an optimum value of k for which we get the
best result. This is because although the rate of convergence
becomes better with increasing k (as discussed above), the
computation cost starts increasing and becomes dominant
after a certain value of k. Moreover, the optimal k value
also decreases with increasing P . This happens because of
two reasons. First, the computation cost increases with de-
creasing number of nodes. As a result the number of inner
iterations that we can perform before the computation cost
starts dominating the communication cost, decreases. Sec-
ond, since the functional approximation becomes better as
P decreases, we require lesser number of iterations to get a
good descent direction. As a result, our approach does well
even if k is small. From our experiments, we also observed
that at the optimal k, neither communication cost nor com-
putation cost dominates other completely. Hence, as a rule
of thumb, we recommend that the value of k should be cho-
sen (or selected in a range) such that both the costs balance
each other.

Overall, these experiments clearly demonstrate: (a) the
flexibility of our distributed algorithm in using any linear
convergent local optimization algorithm, (b) a linearly con-
vergent IPM algorithm and (c) a parallel SGD method (with
its variants such as SVRG).

Comparison with other methods. For HYBRID and
SQM algorithms, the number of communication passes is
equal to the number of Hessian-vector and gradient compu-
tations. From Figures 2 and 3, we first see that HYBRID
performs better than SQM due to warm start when the num-
ber of iterations are small. However, the performance differ-
ence between HYBRID and SQM decreases with increasing



iterations and eventually SQM performs better. This behav-
ior is a bit surprising and needs to be investigated.

Second, both FS-k and FT-k need significantly less com-
munication passes (3−5 times) than HYBRID to reach mod-
erately small relative error (say 10−3). In this case, our al-
gorithms perform better in terms of time also. Note that as
seen in Figure 4, this is sufficient to get a good AUPRC per-
formance; also, our algorithms (both FT-k and FS-k) reach
the stable performance much quicker than other algorithms.
This clearly illustrates the usefulness of our distributed al-
gorithm when communication cost is the bottleneck.

One other important point to note is: HYBRID and SQM
start performing better when a very small relative error (e.g.,
10−6) is desirable. This behavior can be explained as follows:
In the beginning of the optimization, our functional approx-
imation gives a good global view to all the nodes. As a
result, we perform better than SQM and HYBRID by doing
multiple inner iterations on this global approximation. How-
ever, closer to the optimum, the function curvature starts
dominating the rate of convergence. Since SQM and HY-
BRID have better curvature estimates (available via global
Hessian) they start performing better near the optimal so-
lution. Hence, in summary, our approach has good global
convergence but slow local movement (i.e., near the optimal
solution) while SQM and HYBRID have slow global con-
vergence but good local movement. Although theoretically
one can incorporate second order functional approximation
in our approach also, effectively communicating the Hes-
sian information can be challenging. In future, we would
like to incorporate ideas from Quasi-newton algorithms like
L-BFGS [14] in our functional approximation and develop
hybrid algorithms that switch to SQM at some point in our
method.

Computation and Communication Costs Table 2 shows
the ratio of computational cost to communication cost for
three different settings of nodes and datasets for all the
methods. Note that the ratio is extremely small for HY-
BRID and SQM. Hence, communication cost dominates the
time for these two methods. On the other hand, both the
costs are well balanced for the different settings of our method.
Note that ratio varies in the range of 0.625 − 2.845. This
clearly shows that our approach trades-off computation with
communication, while significantly reducing the number of
outer iterations (Figure 2) and time (Figure 3).

To conclude, our functional approximation based distributed
learning algorithm is flexible and fills several gaps in the lit-
erature. We have demonstrated that our algorithms work
well when (a) the number of features is very large, (b) the
functional approximation is good, and (c) moderately small
relative objective function error is desired. We expect to
come up with better functional approximations and hybrid
algorithms in the near future that does well under all con-
ditions.
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Figure 4: Plots showing AUPRC metric for our
method, SQM and HYBRID for kdd2010. x-axis is time
(in seconds).

Table 2: Comp./Comm. cost for various methods.
FT-50 FT-100 FS-8 FS-16 HYB. SQM

kdd2010, 100 nodes
1.640 2.456 0.625 0.905 0.032 0.036

kdd2010, 25 nodes
2.119 2.274 1.691 2.869 0.052 0.054

url, 100 nodes
1.729 2.845 0.746 1.135 0.036 0.034

5. DISCUSSION
In this section, we discuss briefly, other different distributed

settings made possible by our algorithm. The aim is to show
the flexibility and generality of our approach while ensuring
glrc.

Section 3 considered example partitioning where examples
are distributed across the nodes. First, it is worth mention-
ing that, due to the gradient consistency condition, parti-
tioning is not a necessary constraint; our theory allows ex-
amples to be resampled, i.e., each example is allowed to be
a part of any number of nodes arbitrarily. For example, to
reduce the number of outer iterations, it helps to have more
examples in each node.

Second, the theory proposed in section 3 holds for fea-
ture partitioning also. Suppose, in each node p we restrict
ourselves to a subset of features, Jp ⊂ {1, . . . , d}, i.e., in-
clude the constraint, wp ∈ {w : w(j) = wr(j) ∀r 6∈ Jp},
where w(j) denotes the weight of the jth feature. Note that
we do not need {Jp} to form a partition. This is useful
since important features can be included in all the nodes.

Gradient sub-consistency. Given wr and Jp we say that

f̂p(w) has gradient sub-consistency with f at wr on Jp if
∂f

∂w(j)
(wr) = ∂f̂

∂w(j)
(wr) ∀ j ∈ Jp.

Under the above condition, we can modify the algorithm
proposed in Section 3 to come up with a feature decompo-
sition algorithm with glrc.



Several feature decomposition based approaches [21, 20]
have been proposed in the literature. The one closest to our
method is the work by Patrikkson on a synchronized parallel
algorithm [20] which extends a generic cost approximation
algorithm [19] that is similar to our functional approxima-
tion. The sub-problems on the partitions are solved in par-
allel. Although the objective function is not assumed to be
convex, the cost approximation is required to satisfy a mono-
tone property, implying that the approximation is convex.
The algorithm only has asymptotic linear rate of conver-
gence and it requires the feature partitions to be disjoint.
In contrast, our method has glrc and works even if features
overlap in partitions. Moreover, there does not exist any
counterpart of our example partitioning based distributed
algorithm discussed in section 3.

Recently Mairal [16] has developed an algorithm called
MISO. The main idea of MISO (which is in the spirit of the
EM algorithm) is to build majorization approximations with
good properties so that line search can be avoided, which is
interesting. MISO is a serial method. Developing a dis-
tributed version of MISO is an interesting future direction;
but, given that line search is inexpensive communication-
wise, it is unclear if such a method would give great benefits.

Our approach can be easily generalized to joint example-
feature partitioning as well as non-convex setting. The exact
details of all the extensions mentioned above and related
experiments are left for future work.

6. CONCLUSION
To conclude, we have proposed a novel functional approx-

imation based distributed algorithm with provable global
linear rate of convergence. The algorithm is general and
flexible in the sense of allowing different local approxima-
tions at the node level, different algorithms for optimizing
the local approximation, early stopping and general data
usage in the nodes.

7. APPENDIX A: COMPLEXITY ANALYSIS
Let us use the notations of section 3 given around (14).

We define the overall cost of any distributed algorithm as

[(c1
nz

p
+ c2m)T inner + c3γm log2 P ]T outer, (15)

where T outer is the number of outer iterations, T inner is the
number of inner iterations at each node before communica-
tion happens and c1 and c2 denote the number of passes over
the data andm-dimensional dot products per inner iteration
respectively. For communication, we assume an AllReduce
binary tree as described in Agarwal et al [1] without pipelin-
ing. As a result, we get a multiplicative factor of log2P in
our cost. γ is the ratio of computation to communication
speed. For sparse datasets γ is very large. c3 is the number
of m-dimensional vectors (gradients, Hessian-vector compu-
tations etc.) we need to communicate.

Table 3: Value of cost parameters

Method c1 c2 c3 T inner

SQM 2 ≈ 5− 10 1 1

Our 1.2 0.2 2 k̂

The values of different parameters for SQM implemented
using TRON and our approach implemented using SVRG

are given in Table 3. T outer
SQM is the number of overall conju-

gate gradient iterations plus gradient computations.
Since dense dot products are extremely fast and c3 is a

small number for both the approaches, we ignore it for sim-
plicity. Now for our method to have lesser cost than SQM ,
we can use (15) to get the condition,

(1.2k̂T outer
SVRG − 2T outer

SQM )
nz

P
≤ (T outer

SQM − 2T outer
SVRG)γm log2 P

(16)
Ignoring T outer

SQM on the left side of this inequality and rear-
ranging, we get the looser condition,

nz

m
≤
γP log2 P

k̂

1

1.2
(
T outer
SQM

T outer
SVRG

− 2) (17)

Assuming T outer
SQM > 3.2T outer

SVRG, we arrive at the final condi-
tion in (14).

8. APPENDIX B: PROOFS

8.1 Proofs of the results in section 2
Let us now consider the establishment of the convergence

theory given in section 2.

Proof of Lemma 1. Let ρ(t) = f(wr + tdr) and γ(t) =
ρ(t) − ρ(0) − αtρ′(0). Note the following connections with
quantities involved in Lemma 1: ρ(t) = fr+1, ρ(0) = fr,
ρ′(t) = gr+1 ·dr and γ(t) = fr+1−fr−αgr ·(wr+1−wr). (3)
corresponds to the condition γ(t) ≤ 0 and (4) corresponds
to the condition ρ′(t) ≥ βρ′(0).
γ′(t) = ρ′(t) − αρ′(0). ρ′(0) < 0. ρ′ is strictly monotone

increasing because, by assumption A2,

ρ′(t)− ρ′(t̃) ≥ σ(t− t̃)‖dr‖2 ∀ t, t̃ (18)

This implies that γ′ is also strictly monotone increasing and,
all four, ρ, ρ′, γ′ and γ tend to infinity as t tends to infinity.

Let tβ be the point at which ρ′(t) = βρ′(0). Since ρ′(0) <
0 and ρ′ is strictly monotone increasing, tβ is unique and
tβ > 0. This validates the definition in (5). Monotonicity of
ρ′ implies that (4) is satisfied iff t ≥ tβ.

Note that γ(0) = 0 and γ′(0) < 0. Also, since γ′ is mono-
tone increasing and γ(t) → ∞ as t → ∞, there exists a
unique tα > 0 such that γ(tα) = 0, which validates the defi-
nition in (6). It is easily checked that γ(t) ≤ 0 iff t ∈ [0, tα].

The properties also imply γ′(tα) > 0, which means ρ′(tα) ≥
αρ′(0). By the monotonicity of ρ′ we get tα > tβ , proving
the lemma.

Proof of Theorem 2. Using (4) and A1,

(β − 1)gr · dr ≤ (gr+1 − gr) · dr ≤ Lt‖dr‖2 (19)

This gives a lower bound on t:

t ≥
(1− β)

L‖dr‖2
(−gr · dr) (20)

Using (3), (20) and (1) we get

fr+1 ≤ fr + αtgr · dr

≤ fr −
α(1− β)

L‖dr‖2
(−gr · dr)2

≤ fr −
α(1− β)

L
cos2 θ‖gr‖2 (21)



Subtracting f⋆ gives

(fr+1 − f⋆) ≤ (fr − f⋆)−
α(1− β)

L
cos2 θ‖gr‖2 (22)

A2 together with g(w⋆) = 0 implies ‖gr‖2 ≥ σ2‖wr −w⋆‖2.
Also A1 implies fr − f⋆ ≤ L

2
‖wr − w⋆‖2 [22]. Using these

in (22) gives

(fr+1 − f⋆) ≤ (fr − f⋆)− 2α(1− β)
σ2

L2
cos2 θ(fr − f⋆)

≤ (1− 2α(1− β)
σ2

L2
cos2 θ)(fr − f⋆) (23)

Let δ = (1− 2α(1− β) σ2

L2 cos2 θ). Clearly 0 < δ < 1. Theo-
rem 2 follows.

8.2 Proofs of the results in section 3
Let us now consider the establishment of the convergence

theory given in section 3. We begin by establishing that the
exact minimizer of f̂p makes a sufficient angle of descent at
wr.

Lemma 5. Let ŵ⋆
p be the minimizer of f̂p. Let dp =

(ŵ⋆
p − wr). Then

− gr · dp ≥ (σ/L)‖gr‖‖dp‖ (24)

Proof. First note, using gradient consistency and∇fp(ŵ
⋆
p) =

0 that

‖gr‖ = ‖∇f̂p(w
r)−∇f̂p(ŵ

⋆
p)‖ ≤ L‖dp‖ (25)

Now,

− gr · dp = (∇f̂p(w
r)−∇f̂p(ŵ

⋆
p))

T (wr − ŵ⋆
p)

≥ σ‖dp‖
2

= σ‖gr‖‖dp‖
‖dp‖

‖gr‖

≥
σ

L
‖gr‖‖dp‖ (26)

where the second line comes from σ-strong convexity and
the fourth line follows from (25).

Proof of Lemma 3. Let us now turn to the question
of approximate stopping and establish Lemma 3. Given θ
satisfying (11) let us choose ζ ∈ (0, 1) such that

π

2
> θ > cos−1 σ

L
+ cos−1 ζ (27)

By A3 and equations (3.16) and (3.22) in [22], we get

σ

2
‖v − ŵ⋆

p‖
2 ≤ f̂p(v)− f̂⋆

p ≤
L

2
‖v − ŵ⋆

p‖
2 (28)

After k iterations we have

f̂p(v
k)− f̂⋆

p ≤ δk(f̂p(w
r)− f̂⋆

p ) (29)

We can use these to get

‖vk − ŵ⋆
p‖

2 ≤
2(f̂p(v

k)− f̂⋆
p )

σ

≤
2δk(f̂p(w

r)− f̂⋆
p )

σ

≤
δkL

σ
‖wr − ŵ⋆

p‖
2 def
= (rk)2 (30)

Figure 5: Construction used in the proof of Lemma
3.

For now let us assume the following:

‖vk − ŵ⋆
p‖

2 ≤ ‖wr − ŵ⋆
p‖

2 (31)

Using (30) note that (31) holds if

δkL

σ
≤ 1 (32)

Let Sk be the sphere, Sk = {v : ‖v − ŵ⋆
p‖

2 ≤ (rk)2}. By

(30) we have vk ∈ Sk. See Figure 8.2. Therefore,

φk ≤ max
v∈Sk

φ(v) (33)

where φk is the angle between ŵ⋆
p−w

r and vk−wr, and φ(v)
is the angle between v−wr and ŵ⋆

p −wr. Given the simple
geometry, it is easy to see that maxv∈Sk φ(v) is attained by a

point v̂ lying on the boundary of Sk (i.e., ‖v̂−ŵ⋆
p‖

2 = (rk)2)
and satisfying (v̂ − ŵ⋆

p) ⊥ (v̂ − wr). This geometry yields

cos2 φ(v̂) =
‖v̂ − wr‖2

‖ŵ⋆
p −wr‖2

=
‖ŵ⋆

p −wr‖2 − (rk)2

‖ŵ⋆
p − wr‖2

= 1−
(rk)2

‖ŵ⋆
p − wr‖2

= 1−
δkL

σ
(34)

Since φk ≤ φ(v̂),

cos2 φk ≥ 1−
δkL

σ
(35)

Thus, if

1−
δkL

σ
≥ ζ2 (36)

then

cos φk ≥ ζ ∀k ≥ k̂ (37)

holds. By (27) this yields −gr, vk − wr ≤ θ, the result
needed in Lemma 3. Since ζ > 0, (36) implies (32), so (31)



holds and there is no need to separately satisfy it. Now (36)
holds if

k ≥ k̂
def
=

log(L/(σ(1− ζ2)))

log(1/δ)
(38)

which proves the lemma.

Proof of Theorem 4. It trivially follows from a combi-
nation of Lemma 3 and Theorem 2.
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